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1 Chain complexes

R = commutative ring with 1 (eg. Z, a field k)
R-modules: basic definitions and facts
e f: M — N an R-module homomorphism:
The kernel ker(f) of f is defined by
ker(f) = {all x € M such that f(x) = 0}.
ker(f) C M is a submodule.
The image im(f) C N of f is defined by
im(f) = {f(x) | xe M }.
The cokernel cok(f) of f is the quotient
cok(f) = N/im(f).



e A sequence
ML M S p

is exact if ker(g) =im(f). Equivalently, g- f =
0 and im(f) C ker(g) is surjective.

The sequence M| — My — --- — M, 1s exact if
ker = im everywhere.

Examples: 1) The sequence

0—>ker(f)—>Mi>N—>cok(f)—>0

1S exact.

2) The sequence

0sMILnN

is exact if and only if f 1s a monomorphism (monic,
injective)

3) The sequence

M@N%O

is exact if and only if f is an epimorphism (epi,
surjective).



Lemma 1.1 (Snake Lemma). Given a commuta-
tive diagram of R-module homomorphisms

Al—A,-2-A;—0
ifl lfz |15
0—B;—~B,—Bs

in which the horizontal sequences are exact. There
is an induced exact sequence

ker(f1) — ker(f>) — ker(f3) 2 cok(fi) — cok(f2) — cok(f3).

d(y) = [z for y € ker(f3), where y = p(x), and
fa(x) = i(z).

Lemma 1.2 ((3 x 3)-Lemma). Given a commuta-
tive diagram of R-module maps

0 0 0

With exact columns.



1) If either the top two or bottom two rows are
exact, then so is the third.

2) If the top and bottom rows are exact, and g -
f =0, then the middle row is exact.

Lemma 1.3 (5-Lemma). Given a commutative di-
agram of R-module homomorphisms

AT Ay Ay A, S A

lhl lhz ih3 ih4 lh5

By —-By——=B3——~ B4 Bs

with exact rows, such that hy, hy, hy, hs are isomor-
phisms. Then hs is an isomorphism.

The Snake Lemma is proved with an element chase.
The (3 x 3)-Lemma and 5-Lemma are consequences.

e.g. Prove the 5-Lemma with the induced diagram

0—cok(f;) —A3;—ker(g;) —0

lg lh3 lg

00— COk(fz) *>B3 erl‘(gz) —0



Chain complexes
A chain complex C in R-modules is a sequence of
R-module homomorphisms

) ) ) ) )
.= C=>C—=>Ch—>Cy — ...

such that 9% = 0 (or that im(d) C ker(d)) every-
where. C, is the module of n-chains.

A morphism f : C — D of chain complexes con-
sists of R-module maps f, : C, — D, n € Z such
that there are comm. diagrams

C‘ni> n

| E

Cn—l KTD n—1
The chain complexes and their morphisms form a

category, denoted by Ch(R).

e If C is a chain complex such that C,, = 0 for
n < 0, then C is an ordinary chain complex.
We usually drop all the O objects, and write

%CQ&C]&CQ

Ch, (R) is the full subcategory of ordinary chain
complexes in Ch(R).



e Chain complexes indexed by the integers are
often called unbounded complexes.

Slogan: Ordinary chain complexes are spaces,
and unbounded complexes are spectra.

e Chain complexes of the form
e 3 0—=>Ch—Cy— ...
are cochain complexes, written (classically) as
C=C'=C*— ...
Both notations are in common (confusing) use.

Morphisms of chain complexes have kernels and
cokernels, defined degreewise.

A sequence of chain complex morphisms
C—D—E
is exact if all sequences of morphisms
C,—D,—E,

are exact.



Homology

Given a chain complex C :
) d
= C =G, =>C g — .
Write

Z,=7,(C)=ker(d:C,— C,_1), (n-cycles), and
B, =B,(C) =im(d : C,.1 — C,) (n-boundaries).

02 =0, 0 B,(C) C Z,(C).
The n'* homology group H,(C) of C is defined by
H,(C) = Z,(C)/B.(C).
A chain map f : C — D induces R-module maps
f«:H,(C) — H,(D), n€Z.

f:C— Disahomology isomorphism (resp. quasi-
isomorphism, acyclic map, weak equivalence) if
all induced maps f, : H,(C) — H,(D), n € Z are
isomorphisms.

A complex C is acyclic if the map 0 — C is a ho-
mology isomorphism, or if H,(C) = 0 for all n, or
if the sequence

) ) ) )
.= C—=>Ch—C_1 — ...

1S exact.



Lemma 1.4. A short exact sequence
0—-+C—D—=E—Q0

induces a natural long exact sequence

. 5 Hy(C) — Hy(D) — Hy(E) S Hy_1(C) — ...

Proof. The short exact sequence induces compar-
isons of exact sequences

P
OHZn—I(C) Zn—1<D) - n—l(E)

Use the natural exact sequence
0 — Hy(C) = Cy/Bn(C) 25 Z1(C) — Hy 1 (C) — 0
Apply the Snake Lemma. []

2  Ordinary chain complexes

Amap f:C—DinChy(R)is a

e weak equivalence if f is a homology isomor-
phism,

e fibration if f : C, — D, is surjective for n > 0,

e cofibration if f has the left lifting property (LLP)
with respect to all morphisms of Ch . (R) which
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are simultaneously fibrations and weak equiv-
alences.

A trivial fibration is a map which is both a fibra-
tion and a weak equivalence. A frivial cofibration
is both a cofibration and a weak equivalence.

f has the left lifting property with respect to all
trivial fibrations (ie. f is a cofibration) if given
any solid arrow commutative diagram

C—

f l 4 ip

D
in Ch. (R) with p a trivial fibration, then the dotted
arrow exists making the diagram commute.

Special chain complexes and chain maps:

e R(n) [= R[—n] in “shift notation”] consists of
a copy of the free R-module R, concentrated in
degree n:

---%O—>O%In€—>0%0—>...
There is a natural R-module isomorphism

homCh+ (R) (R(I’l) ) C) =Zy (C)

e R(n+ 1) is the complex

ntl | n
o+ —=0—- R —-R—-0—...

10



e There is a natural R-module isomorphism
homcy, (r)(R{n+1),C) = Gy
e There is a chain & : R(n) - R(n+ 1)
0—0—R—0

oL

0—R—R—0

a classifies the cycle 1 € R(n+1),,.

Lemma 2.1. Suppose that p : A — B is a fibration

and that i : K — A is the inclusion of the kernel of

p. Then there is a long exact sequence

L DSHL(B) S HA(K) S Hy(A) 2 Hy(B) S
% Ho(K) & Hy(A) 2% Hy(B).

Proof. j:im(p) C B, and write @ : A — im(p) for

the induced epimorphism. Then H,(im(p)) = H,(B)
for n > 0, and there 1s a diagram

Hy(A) b Hy(B)

Hy(im(p))

in which 7, is an epimorphism and i, is a monomor-
phism (exercise). The long exact sequence is con-

11



structed from the long exact sequence in homol-
ogy for the short exact sequence

0 K-5ASim(p) =0,
with the monic i, : Hy(im(p)) — Hy(B). [
Lemma 2.2. p : A — B is a fibration if and only if
p has the RLP wrt. all maps 0 — R(n+ 1), n > 0.
Proof. The lift exists in all solid arrow diagrams
0 A

R(n+1)—B
forn > 0. []

Corollary 2.3. 0 — R(n+ 1) is a cofibration for
all n > 0.

Proof. This map has the LLP wrt all fibrations,
hence wrt all trivial fibrations. []

Lemma 2.4. The map 0 — R(n) is a cofibration.

Proof. The trivial fibration p : A — B induces an

epimorphism Z,(A) — Z,(B) for alln > 0:
i1~ Ba(A)—Zy(A) — Hy(A) —0

(4
i R T
(

Byi1—By(B)—Z,(B) —H,(B) —0



A chain complex A is cofibrant if the map 0 — A
is a cofibration.

eg. R(n+ 1) and R(n) are cofibrant.
All chain complexes C are fibrant, because all chain
maps C — 0 are fibrations.

Proposition 2.5. p : A — B is a trivial fibration
and if and only if

1) p: Ay — By is a surjection, and
2) p has the RLP wrtall o : R(n) — R{n+1).

Corollary 2.6. o : R(n) — R(n+1) is a cofibra-
tion.

Proof of Proposition 2.5. 1) Suppose that p: A —
B 1is a trivial fibration with kernel K.

Use Snake Lemma with the comparison
Ay -2~ Ag—=Hy(A) —0
O
B ?BOHHO(B) —0
to show that p : Ag — By is surjective.
Suppose given a diagram
R(n)——A




Choose z € A, 1 such that p(z) =y. Then x — d(z)
1s a cycle of K, and K is acyclic (exercise) so there
isav e K, suchthat d(v) =x—9(z). d(z+v) =
x and p(z+v) = p(v) =y, so v+z is the desired
lift.

2) Suppose that p : Ag — By 1s surjective and that
p has the right lifting property with respect to all
R(n) — R(n+1).

The solutions of the lifting problems
R(n)—2—A

)

R(n+1)—~B

show that p is surjective on all cycles, while the
solutions of the lifting problems

R(n)——A

7

T

R(n+1)—~-B

show that p induces a monomorphism in all ho-
mology groups. It follows that p is a weak equiv-
alence.
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We have the diagram

Zy1(A) —=Aps1 —%-Z,(A) —H,(A) —0

ip lp ip Pl%

Zn_|_1(B) HBI’H—I 7Zn(B) HHH(B) *>O

Then p : B,(A) — B,(B) isepi, S0 p: A,y1 — Byt

is epi, for all n > 0. []
Proposition 2.7. Every chain map f : C — D has
two factorizations
E
/N
C D
NS
F
where

1) p is a fibration. i is a monomorphism, a weak
equivalence and has the LLP wrt all fibrations.

2) g is a trivial fibration and j is a monomor-
phism and a cofibration.
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Proof. 1) Form the factorization

C® (Biep,, nz0R(n+1))
C 7 D
p is the sum of f and all classifying maps for

chains x in all non-zero degrees. It is therefore
surjective in non-zero degrees, hence a fibration.

i is the inclusion of a direct summand with acyclic
cokernel, and is thus a monomorphism and a weak
equivalence. i is a direct sum of maps which have
the LLP wrt all fibrations, and thus has the same
lifting property.

2) Recall that A — B i1s a trivial fibration if and
only if it has the RLP wrt all cofibrations R(n) —
R{n+1),n>—1.

Notation: R(—1) — R(0) is the map 0 — R(0).
Consider the set of all diagrams

op

D: R(np) C

i leqo
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and form the pushout

@pR(np)

|

where C = Cy. Then j; is a monomorphism and
a cofibration, because the collection of all such
maps is closed under direct sum and pushout.

Every lifting problem D as above is solved in Cy:

R(nD) %D C() U C1

| % im

R<I’ZD—|—1> ﬁD D

commutes.
Repeat this process inductively for the maps g; to
produce a string of factorizations

Co J1 C J2 C, J3

q1
(IOl / 92

D
Let FF = ligi Ci. Then f has a factorization

C—-F

N

D

17



Then j is a cofibration and a monomorphism, be-
cause all j; have these properties and the family of
such maps is closed under (infinite) composition.

Finally, given a diagram

R(n)—*—F

|

The map « factors through some finite stage of the
filtered colimit defining F, so that o is a composite

Rn) % C = F

for some k. The lifting problem

R(I’l) o Ck

e

is solved in Cy, 1, hence in F. []

Remark: This proof is a small object argument.

The R(n) are small (or compact): hom(R(n), )
commutes with filtered colimits.

18



Corollary 2.8. 1) Every cofibration is a monomor-
phism.

2) Suppose that j : C — D is a cofibration and a
weak equivalence. Then j has the LLP wrt all fi-
brations.

Proof. 2) The map j has a factorization

C--F

N

D

where i has the left lifting property with respect to
all fibrations and is a weak equivalence, and p is a
fibration. Then p is a trivial fibration, so the lifting
exists in the diagram

Cc—-

P
ji o lp
since j 1s a cofibration. Then j is a retract of a map

(namely i) which has the LLP wrt all fibrations,
and so j has the same property.

1) is an exercise. []
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Resolutions
Suppose that P is a chain complex. Proposition

2.7 says that 0 — P has a factorization

0L F

N

P

where j is a cofibration (so that F is cofibrant) and
g is a trivial fibration, hence a weak equivalence.

The proof of Proposition 2.7 implies that each R-
module F, is free, so F' is a free resolution of P.

If the complex P is cofibrant, then the lift exists in

0—F

|

PP
All modules P, are direct summands of free mod-
ules and are therefore projective.

This observation has a converse:

Lemma 2.9. A chain complex P is cofibrant if and
only if all modules P, are projective.

Proof. Suppose that P is a complex of projectives,
and p : A — B is a trivial fibration.

20



Then p: A,, — B, is surjective for all n > 0 and has
acyclic kernel i : K — A.

Suppose given a lifting problem

0—A

l 9 ’ ip

There is a map 6, : Py — Ao which lifts fj:
Ao

7 o
Py T)BO

Suppose given a lift up to degree n, ie. homomor-
phisms 6; : P, — A; for i < n such that p;0, = f; for
i<nand 06;=60;_dfor1 <i<n

Thereisamap 6, ., : .1 — Anq1 suchthat p, 16, | =

fn—|—1 .
Then

Pn(90,1—6,0) = 9Pp410, 1 — [0 =9 fus1— fud =0
so thereisav: P,.; — K, such that
inv — 89,;_” — 9n8

Also
8(89,;“ —6,0)=0

21



and K is acyclic, so thereisaw: P, | — K, such
that
i,dw = 89,;“ —0,d.

Then
381 — in 1) = 6,0

and

pn-l—l(erlz—l-l — g W) = Pn+19r/z+1 = fut1-

Remarks:

1) Every chain complex C has a cofibrant model,
1.e. a weak equivalence p : P — C with P cofi-
brant (aka. complex of projectives).

2) M = an R-module. A cofibrant model P —
M (0) is a projective resolution of M in the usual
sense.

3) Cofibrant models P — C are also (commonly)
constructed with Eilenberg-Cartan resolutions.
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3 Closed model categories

A closed model category is a category .# equipped
with three classes of maps, namely weak equiva-
lences, fibrations and cofibrations, such that the
following conditions are satisfied:

CM1 The category .# has all finite limits and col-
imits.

CM2 Given a commutative triangle
4

N
Z

of morphisms in ., if any two of f,g and &
are weak equivalences, then so is the third.

X

CM3 The classes of cofibrations, fibrations and weak
equivalences are closed under retraction.

CM4 Given a commutative solid arrow diagram

A—X

ii 4 lp

B——
such that i is a cofibration and p is a fibration.
Then the lift exists making the diagram com-
mute if either i or p is a weak equivalence.

23



CMS Every morphism f : X — Y has factorizations

Z
i p
VPR
X———Y
N
W
where p is a fibration and i is a trivial cofi-
bration, and ¢ is a trivial fibration and j is a

cofibration.

Theorem 3.1. With the definition of weak equiva-
lence, fibration and cofibration given above, Ch. (R)
satisfies the axioms for a closed model category.

Proof. CM1, CM2 and CM3 are exercises. CMS
is Proposition 2.7, and CM4 is Corollary 2.8. [

Exercise: A map f : C — D of Ch(R) (unbounded
chain complexes) is a weak equivalence if it is a
homology isomorphism.

f is a fibration if all maps f : C, — D,, n € 7 are
surjective.

A map of is a cofibration if and only if it has the
left lifting property with respect to all trivial fibra-
tions.

Show that, with these definitions, Ch(R) has the
structure of a closed model category.
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