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1 Chain complexes

R = commutative ring with 1 (eg. Z, a field k)

R-modules: basic definitions and facts

• f : M→ N an R-module homomorphism:

The kernel ker( f ) of f is defined by

ker( f ) = {all x ∈M such that f (x) = 0}.

ker( f )⊂M is a submodule.

The image im( f )⊂ N of f is defined by

im( f ) = { f (x) | x ∈M }.

The cokernel cok( f ) of f is the quotient

cok( f ) = N/ im( f ).
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• A sequence

M
f−→M′

g−→M′′

is exact if ker(g)= im( f ). Equivalently, g · f =
0 and im( f )⊂ ker(g) is surjective.

The sequence M1 → M2 → ··· → Mn is exact if
ker = im everywhere.

Examples: 1) The sequence

0→ ker( f )→M
f−→ N→ cok( f )→ 0

is exact.

2) The sequence

0→M
f−→ N

is exact if and only if f is a monomorphism (monic,
injective)

3) The sequence

M
f−→ N→ 0

is exact if and only if f is an epimorphism (epi,
surjective).
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Lemma 1.1 (Snake Lemma). Given a commuta-
tive diagram of R-module homomorphisms

A1 //

f1
��

A2
p
//

f2
��

A3 //

f3
��

0

0 //B1 i
//B2 //B3

in which the horizontal sequences are exact. There
is an induced exact sequence

ker( f1)→ ker( f2)→ ker( f3)
∂−→ cok( f1)→ cok( f2)→ cok( f3).

∂ (y) = [z] for y ∈ ker( f3), where y = p(x), and
f2(x) = i(z).

Lemma 1.2 ((3×3)-Lemma). Given a commuta-
tive diagram of R-module maps

0

��

0

��

0

��

0 //A1 //

��

A2 //

��

A3 //

��

0

0 //B1
f
//

��

B2
g
//

��

B3 //

��

0

0 //C1 //

��

C2 //

��

C3 //

��

0

0 0 0

With exact columns.
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1) If either the top two or bottom two rows are
exact, then so is the third.

2) If the top and bottom rows are exact, and g ·
f = 0, then the middle row is exact.

Lemma 1.3 (5-Lemma). Given a commutative di-
agram of R-module homomorphisms

A1
f1 //

h1
��

A2 //

h2
��

A3 //

h3
��

A4
g1 //

h4
��

A5
h5
��

B1 f2
//B2 //B3 //B4 g2

//B5

with exact rows, such that h1,h2,h4,h5 are isomor-
phisms. Then h3 is an isomorphism.

The Snake Lemma is proved with an element chase.
The (3×3)-Lemma and 5-Lemma are consequences.

e.g. Prove the 5-Lemma with the induced diagram

0 // cok( f1) //

∼=
��

A3 //

h3
��

ker(g1) //

∼=
��

0

0 // cok( f2) //B3 // ker(g2) // 0
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Chain complexes
A chain complex C in R-modules is a sequence of
R-module homomorphisms

. . .
∂−→C2

∂−→C1
∂−→C0

∂−→C−1
∂−→ . . .

such that ∂ 2 = 0 (or that im(∂ ) ⊂ ker(∂ )) every-
where. Cn is the module of n-chains.

A morphism f : C→ D of chain complexes con-
sists of R-module maps fn : Cn→ Dn, n ∈ Z such
that there are comm. diagrams

Cn
fn //

∂
��

Dn

∂
��

Cn−1 fn−1
//Dn−1

The chain complexes and their morphisms form a
category, denoted by Ch(R).

• If C is a chain complex such that Cn = 0 for
n < 0, then C is an ordinary chain complex.
We usually drop all the 0 objects, and write

→C2
∂−→C1

∂−→C0

Ch+(R) is the full subcategory of ordinary chain
complexes in Ch(R).
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• Chain complexes indexed by the integers are
often called unbounded complexes.

Slogan: Ordinary chain complexes are spaces,
and unbounded complexes are spectra.

• Chain complexes of the form

· · · → 0→C0→C−1→ . . .

are cochain complexes, written (classically) as

C0→C1→C2→ . . . .

Both notations are in common (confusing) use.

Morphisms of chain complexes have kernels and
cokernels, defined degreewise.

A sequence of chain complex morphisms

C→ D→ E

is exact if all sequences of morphisms

Cn→ Dn→ En

are exact.
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Homology
Given a chain complex C :

· · · →Cn+1
∂−→Cn

∂−→Cn−1→ . . .

Write
Zn = Zn(C) = ker(∂ : Cn→Cn−1), (n-cycles), and
Bn = Bn(C) = im(∂ : Cn+1→Cn) (n-boundaries).

∂ 2 = 0, so Bn(C)⊂ Zn(C).

The nth homology group Hn(C) of C is defined by

Hn(C) = Zn(C)/Bn(C).

A chain map f : C→ D induces R-module maps

f∗ : Hn(C)→ Hn(D), n ∈ Z.

f :C→D is a homology isomorphism (resp. quasi-
isomorphism, acyclic map, weak equivalence) if
all induced maps f∗ : Hn(C)→ Hn(D), n ∈ Z are
isomorphisms.

A complex C is acyclic if the map 0→C is a ho-
mology isomorphism, or if Hn(C)∼= 0 for all n, or
if the sequence

. . .
∂−→C1

∂−→C0
∂−→C−1

∂−→ . . .

is exact.
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Lemma 1.4. A short exact sequence

0→C→ D→ E→ 0

induces a natural long exact sequence

. . .
∂−→Hn(C)→Hn(D)→Hn(E)

∂−→Hn−1(C)→ . . .

Proof. The short exact sequence induces compar-
isons of exact sequences

Cn/Bn(C) //

∂∗
��

Dn/Bn(D) //

∂∗
��

En/Bn(E) //

∂∗
��

0

0 // Zn−1(C) // Zn−1(D) // Zn−1(E)

Use the natural exact sequence

0→Hn(C)→Cn/Bn(C)
∂∗−→Zn−1(C)→Hn−1(C)→ 0

Apply the Snake Lemma.

2 Ordinary chain complexes

A map f : C→ D in Ch+(R) is a

• weak equivalence if f is a homology isomor-
phism,

• fibration if f : Cn→ Dn is surjective for n > 0,

• cofibration if f has the left lifting property (LLP)
with respect to all morphisms of Ch+(R) which
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are simultaneously fibrations and weak equiv-
alences.

A trivial fibration is a map which is both a fibra-
tion and a weak equivalence. A trivial cofibration
is both a cofibration and a weak equivalence.

f has the left lifting property with respect to all
trivial fibrations (ie. f is a cofibration) if given
any solid arrow commutative diagram

C //

f
��

X
p
��

D //

??

Y
in Ch+(R) with p a trivial fibration, then the dotted
arrow exists making the diagram commute.

Special chain complexes and chain maps:

• R(n) [= R[−n] in “shift notation”] consists of
a copy of the free R-module R, concentrated in
degree n:

· · · → 0→ 0→
n
R→ 0→ 0→ . . .

There is a natural R-module isomorphism

homCh+(R)(R(n),C)∼= Zn(C).

• R〈n+1〉 is the complex

· · · → 0→
n+1
R 1−→

n
R→ 0→ . . .
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• There is a natural R-module isomorphism

homCh+(R)(R〈n+1〉,C)∼=Cn+1.

• There is a chain α : R(n)→ R〈n+1〉

. . . // 0 //

��

0 //

��

R
1
��

// 0

��

// . . .

. . . // 0 //R 1
//R // 0 // . . .

α classifies the cycle 1 ∈ R〈n+1〉n.

Lemma 2.1. Suppose that p : A→ B is a fibration
and that i : K→ A is the inclusion of the kernel of
p. Then there is a long exact sequence

. . .
p∗−→Hn+1(B)

∂−→ Hn(K)
i∗−→ Hn(A)

p∗−→ Hn(B)
∂−→ . . .

. . .
∂−→ H0(K)

i∗−→ H0(A)
p∗−→ H0(B).

Proof. j : im(p)⊂ B, and write π : A→ im(p) for
the induced epimorphism. Then Hn(im(p))=Hn(B)
for n > 0, and there is a diagram

H0(A)
p∗ //

π∗ &&

H0(B)

H0(im(p))
i∗

88

in which π∗ is an epimorphism and i∗ is a monomor-
phism (exercise). The long exact sequence is con-
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structed from the long exact sequence in homol-
ogy for the short exact sequence

0→ K i−→ A π−→ im(p)→ 0,

with the monic i∗ : H0(im(p))→ H0(B).

Lemma 2.2. p : A→ B is a fibration if and only if
p has the RLP wrt. all maps 0→ R〈n+1〉, n≥ 0.

Proof. The lift exists in all solid arrow diagrams

0 //

��

A
p
��

R〈n+1〉 //

::

B

for n≥ 0.

Corollary 2.3. 0→ R〈n+ 1〉 is a cofibration for
all n≥ 0.

Proof. This map has the LLP wrt all fibrations,
hence wrt all trivial fibrations.

Lemma 2.4. The map 0→ R(n) is a cofibration.

Proof. The trivial fibration p : A→ B induces an
epimorphism Zn(A)→ Zn(B) for all n≥ 0:

An+1 // //

����

Bn(A) //

��

Zn(A) //

��

Hn(A) //

∼=
��

0

Bn+1 // //Bn(B) // Zn(B) //Hn(B) // 0
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A chain complex A is cofibrant if the map 0→ A
is a cofibration.

eg. R〈n+1〉 and R(n) are cofibrant.

All chain complexes C are fibrant, because all chain
maps C→ 0 are fibrations.

Proposition 2.5. p : A→ B is a trivial fibration
and if and only if

1) p : A0→ B0 is a surjection, and

2) p has the RLP wrt all α : R(n)→ R〈n+1〉.
Corollary 2.6. α : R(n)→ R〈n+ 1〉 is a cofibra-
tion.

Proof of Proposition 2.5. 1) Suppose that p : A→
B is a trivial fibration with kernel K.

Use Snake Lemma with the comparison

A1
∂ //

p
����

A0 //

p
��

H0(A)
∼=
��

// 0

B1
∂

//B0 //H0(B) // 0

to show that p : A0→ B0 is surjective.

Suppose given a diagram

R(n) x //

α
��

A
p
��

R〈n+1〉 y
//B
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Choose z∈ An+1 such that p(z) = y. Then x−∂ (z)
is a cycle of K, and K is acyclic (exercise) so there
is a v∈Kn+1 such that ∂ (v) = x−∂ (z). ∂ (z+v) =
x and p(z+ v) = p(v) = y, so v+ z is the desired
lift.

2) Suppose that p : A0→ B0 is surjective and that
p has the right lifting property with respect to all
R(n)→ R〈n+1〉.
The solutions of the lifting problems

R(n) 0 //

��

A
p
��

R〈n+1〉 x
//

;;

B

show that p is surjective on all cycles, while the
solutions of the lifting problems

R(n) x //

��

A
p
��

R〈n+1〉 y
//

;;

B

show that p induces a monomorphism in all ho-
mology groups. It follows that p is a weak equiv-
alence.
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We have the diagram

Zn+1(A) //

p
����

An+1
∂ //

p
��

Zn(A)
p
����

//Hn(A)
∼=p
��

// 0

Zn+1(B) //Bn+1
∂

// Zn(B) //Hn(B) // 0

Then p : Bn(A)→ Bn(B) is epi, so p : An+1→ Bn+1

is epi, for all n≥ 0.

Proposition 2.7. Every chain map f : C→ D has
two factorizations

E
p
��

C f
//

i
??

j ��

D

F
q

??

where

1) p is a fibration. i is a monomorphism, a weak
equivalence and has the LLP wrt all fibrations.

2) q is a trivial fibration and j is a monomor-
phism and a cofibration.
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Proof. 1) Form the factorization

C⊕ (
⊕

x∈Dn+1,n≥0 R〈n+1〉)
p

))C f
//

i 55

D

p is the sum of f and all classifying maps for
chains x in all non-zero degrees. It is therefore
surjective in non-zero degrees, hence a fibration.

i is the inclusion of a direct summand with acyclic
cokernel, and is thus a monomorphism and a weak
equivalence. i is a direct sum of maps which have
the LLP wrt all fibrations, and thus has the same
lifting property.

2) Recall that A→ B is a trivial fibration if and
only if it has the RLP wrt all cofibrations R(n)→
R〈n+1〉, n≥−1.

Notation: R(−1)→ R〈0〉 is the map 0→ R(0).

Consider the set of all diagrams

D : R(nD)
αD //

��

C
f=q0
��

R〈nD+1〉
βD
//D
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and form the pushout⊕
D R(nD)

(αD) //

��

C0

j1
�� q0

��

⊕
D R〈nD+1〉

(θD)

//

(βD) **

C1

q1 ��
D

where C = C0. Then j1 is a monomorphism and
a cofibration, because the collection of all such
maps is closed under direct sum and pushout.

Every lifting problem D as above is solved in C1:

R(nD)
αD //

��

C0
j1 //C1

q1
��

R〈nD+1〉
βD

//
θD

55

D

commutes.

Repeat this process inductively for the maps qi to
produce a string of factorizations

C0
j1 //

q0
��

C1
q1

~~

j2 //C2

q2
vv

j3 // . . .

D
Let F = lim−→i

Ci. Then f has a factorization

C j
//

f ��

F
q
��

D
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Then j is a cofibration and a monomorphism, be-
cause all jk have these properties and the family of
such maps is closed under (infinite) composition.

Finally, given a diagram

R(n) α //

��

F
q
��

R〈n+1〉
β

//D

The map α factors through some finite stage of the
filtered colimit defining F , so that α is a composite

R(n) α ′−→Ck→ F

for some k. The lifting problem

R(n) α ′ //

��

Ck
qk
��

R〈n+1〉
β

//D

is solved in Ck+1, hence in F .

Remark: This proof is a small object argument.

The R(n) are small (or compact): hom(R(n), )

commutes with filtered colimits.
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Corollary 2.8. 1) Every cofibration is a monomor-
phism.

2) Suppose that j : C→ D is a cofibration and a
weak equivalence. Then j has the LLP wrt all fi-
brations.

Proof. 2) The map j has a factorization

C i //

j ��

F
p
��

D
where i has the left lifting property with respect to
all fibrations and is a weak equivalence, and p is a
fibration. Then p is a trivial fibration, so the lifting
exists in the diagram

C i //

j
��

F
p
��

D 1
//

??

D

since j is a cofibration. Then j is a retract of a map
(namely i) which has the LLP wrt all fibrations,
and so j has the same property.

1) is an exercise.
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Resolutions
Suppose that P is a chain complex. Proposition
2.7 says that 0→ P has a factorization

0 j
//

��

F
q
��

P
where j is a cofibration (so that F is cofibrant) and
q is a trivial fibration, hence a weak equivalence.

The proof of Proposition 2.7 implies that each R-
module Fn is free, so F is a free resolution of P.

If the complex P is cofibrant, then the lift exists in

0 //

��

F
q
��

P 1
//

??

P

All modules Pn are direct summands of free mod-
ules and are therefore projective.

This observation has a converse:

Lemma 2.9. A chain complex P is cofibrant if and
only if all modules Pn are projective.

Proof. Suppose that P is a complex of projectives,
and p : A→ B is a trivial fibration.
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Then p : An→ Bn is surjective for all n≥ 0 and has
acyclic kernel i : K→ A.

Suppose given a lifting problem

0 //

��

A
p
��

P f
//

θ
??

B

There is a map θ0 : P0→ A0 which lifts f0:

A0
p0
��

P0

θ0
>>

f0
//B0

Suppose given a lift up to degree n, ie. homomor-
phisms θi : Pi→ Ai for i≤ n such that piθi = fi for
i≤ n and ∂θi = θi−1∂ for 1≤ i≤ n

There is a map θ ′n+1 : Pn+1→An+1 such that pn+1θ ′n+1 =

fn+1.

Then

pn(∂θ
′
n+1−θn∂ )= ∂ pn+1θ

′
n+1− fn∂ = ∂ fn+1− fn∂ = 0

so there is a v : Pn+1→ Kn such that

inv = ∂θ
′
n+1−θn∂ .

Also
∂ (∂θ

′
n+1−θn∂ ) = 0
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and K is acyclic, so there is a w : Pn+1→Kn+1 such
that

in∂w = ∂θ
′
n+1−θn∂ .

Then
∂ (θ ′n+1− in+1w) = θn∂

and

pn+1(θ
′
n+1− in+1w) = pn+1θ

′
n+1 = fn+1.

Remarks:

1) Every chain complex C has a cofibrant model,
i.e. a weak equivalence p : P→C with P cofi-
brant (aka. complex of projectives).

2) M = an R-module. A cofibrant model P →
M(0) is a projective resolution of M in the usual
sense.

3) Cofibrant models P→C are also (commonly)
constructed with Eilenberg-Cartan resolutions.
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3 Closed model categories

A closed model category is a category M equipped
with three classes of maps, namely weak equiva-
lences, fibrations and cofibrations, such that the
following conditions are satisfied:

CM1 The category M has all finite limits and col-
imits.

CM2 Given a commutative triangle

X g
//

h ��

Y

f��
Z

of morphisms in M , if any two of f ,g and h
are weak equivalences, then so is the third.

CM3 The classes of cofibrations, fibrations and weak
equivalences are closed under retraction.

CM4 Given a commutative solid arrow diagram

A //

i
��

X
p
��

B //

??

Y
such that i is a cofibration and p is a fibration.
Then the lift exists making the diagram com-
mute if either i or p is a weak equivalence.
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CM5 Every morphism f : X → Y has factorizations

Z
p

  
X f

//

i
>>

j   

Y

W
q

>>

where p is a fibration and i is a trivial cofi-
bration, and q is a trivial fibration and j is a
cofibration.

Theorem 3.1. With the definition of weak equiva-
lence, fibration and cofibration given above, Ch+(R)
satisfies the axioms for a closed model category.

Proof. CM1, CM2 and CM3 are exercises. CM5
is Proposition 2.7, and CM4 is Corollary 2.8.

Exercise: A map f : C→D of Ch(R) (unbounded
chain complexes) is a weak equivalence if it is a
homology isomorphism.

f is a fibration if all maps f : Cn→ Dn, n ∈ Z are
surjective.

A map of is a cofibration if and only if it has the
left lifting property with respect to all trivial fibra-
tions.

Show that, with these definitions, Ch(R) has the
structure of a closed model category.
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