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6 Example: Chain homotopy

C = an ordinary chain complex. We have two con-
structions:

1) C! is the complex with
C,=Ci®C®Cyy
for n > 0, and with
Co=1{(x,9,2) €ECo®Co®C | (x—y)+2(z) =0}.
The boundary map d : C! — C!_, is defined by
d(x,y,2) = (d(x),d(y), (=1)"(x —y) + ().

2) C is the chain complex with
C,=C,® Crt1
for n > 0 and
Co={(x,2) €ECo®C, | x+9(z) =0 }.
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The boundary 0 : C, — C,_, of C is defined by
d(x,z) = (d(x),(—=1)"x+ 9 (2)).
Lemma 6.1. The complex C is acyclic.

Proof. If d(x,z) = 0 then d(x) = 0 and d(z) =
(—1)"*1x. It follows that

I((—=1)"2,0) = (x,2)
if (x,z) is a cycle, so (x,z) is a boundary. N
There is a pullback diagram
c'—2-C

’| v

C@C?C

in which p and p’ are projections defined in each
degree by p(x,y,z) = (x,y) and p'(x,z) = x. The
map o is defined by a(x,y.z) = (x —y,z), while
B (X 3 Y ) = X=).

p' is a fibration, and fibrations are closed under
pullback, so p is also a fibration. The maps & and
B are surjective in all degrees, and the diagram
above expands to a comparison

cl—%.C—0
e
0—~C—4-CHC—4-C—0
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where A is the diagonal map.

Lemma 6.1 and a long exact sequence argument
imply that the map s is a weak equivalence.

We have a functorial diagram
' (1)
b
in which p is a fibration and s is a weak equiva-
lence. This i1s a path object.

A commutative diagram of chain maps
o (2)

2l
DT =C&C

is a right homotopy between the chain maps f, g :
D—C

The map h, if it exists, is defined by
h(x) = (f(x),g(x),s(x))

for a collection of R-module maps s : D,, = G, 1.
The fact that 4 1s a chain map forces

s(9(x)) = (=1)"(f(x) — g(x)) + I (s(x))

for x € D,,. Thus

(=1)"s(d(x)) = (f(x) —g(x)) +((=1)"s(x)),
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SO

(=1)"s(d(x)) +a((—1)""s(x) = f(x) — g(x).

The maps x — (—1)""s(x), x € D, arising from
the right homotopy / define a chain homotopy be-
tween the chain maps f and g.

All chain homotopies arise in this way.

Exercise: Show that there is a functorial diagram
of the form (1) for unbounded chain complexes C,
such that the corresponding right homotopies (2)
define chain homotopies between maps f,g: D —
C of unbounded chain complexes.

7 Homotopical algebra

A closed model category is a category .# equipped
with weak equivalences, fibrations and cofibrations,
such that the following hold:

CM1 The category .# has all (finite) limits and col-
imits.
CM2 Given a commutative triangle

X8 .y

NI




in ./, if any two of f, g and h are weak equiv-
alences, then so is the third.

CM3 The classes of cofibrations, fibrations and weak
equivalences are closed under retraction.

CM4 Given a commutative solid arrow diagram

AH

B—
such that i is a cofibration and p is a fibration.

Then the lift exists if either i or p is a weak
equivalence.

CMS Every morphism f : X — Y has factorizations

Z
i p
7N
X———Y
NS
w
where p i1s a fibration and i is a trivial cofi-

bration, and ¢ is a trivial fibration and j is a
cofibration.



Here’s the meaning of the word “closed”:

Lemma7.1. 1)i: A — B is a cofibration if and
only if it has the LLP wrt all trivial fibrations.

2)i:A — Bis a trivial cofibration if and only if
it has the LLP wrt all fibrations.

3) p: X — Y is a fibration if and only if it has the
RLP wrt all trivial cofibrations.

4) p is a trivial fibration if and only if it has the
RLP wrt all cofibrations.

Proof. I'll prove statement 2). The rest are similar.

If i 1s a trivial cofibration, then it has the LLP wrt
all fibrations by CM4.

Suppose i has the LLP wrt all fibrations. i has a
factorization .
A-L-X

PN

B
where j is a trivial cofibration and p is a fibration.
Then the lifting exists in the diagram

A-l-x

BB
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Then i is a retract of j and is therefore a trivial
cofibration by CM3. []

Corollary 7.2. 1) The classes of cofibrations and
trivial cofibrations are closed under composi-
tions and pushout. Any isomorphism is a triv-
ial cofibration.

2) The classes of fibrations and trivial fibrations
are closed under composition and pullback. Any
isomorphism is a trivial fibration.

Remark: Lemma 7.1 implies that, in order to de-
scribe a closed model structure, one needs only
specify the weak equivalences and either the cofi-
brations or fibrations.

We saw this in the descriptions of the model struc-
tures for the chain complex categories and for spaces.

Homotopies

1) A path object for Y € .# is a commutative di-
agram
YI



such that A 1s the diagonal map, s is a weak
equivalence and p is a fibration.

2) A right homotopy between maps f,g: X — Y
1s a commutative diagram

YI
h J/pv s
X@Y X Y<A Y

where p is the fibration for some (displayed)
path object for Y.

f 1s right homotopic to g if such a right homo-
topy exists. Write f ~, g.

Examples: 1) Path objects abound in nature, since
the diagonal map A: Y — Y XY factorizes as a
fibration following a trivial cofibration, by CMS.

2) Chain homotopy is a type of right homotopy in
both Ch.(R) and Ch(R).

3) For ordinary spaces X, there is a space X, whose
elements are the paths I/ — X in X. Restricting to
the two ends of the paths defines a map d : X! —
X x X, which is a Serre fibration (exercise). There
is a constant path map s : X — X!, and a commu-



tative diagram

A

X—XxX

. d : .
The composite X 5 X x X ©% X is a trivial fi-
bration (exercise), so s is a weak equivalence.

The traditional path space defines a path object
construction. Right homotopies X — Y/ are tra-
ditional homotopies X x I — Y by adjointness.

Here’s the dual cluster of definitions:

1) A cylinder object for an object X € .# is a
commutative diagram

XuUux - Vx

" e

X®I1

where V is the “fold” map, i is a cofibration
and o 1s a weak equivalence.

2) A left homotopy between maps f,g: X — Y is
a commutative diagram
x-¥ xuxY2y

o il h
X®I1

9



where i is the cofibration appearing in some
cylinder object for X .

Say f is left homotopic to g if such a left ho-
motopy exists. Write f ~; g.

Examples: 1) Suppose X is a CW-complex and [/
1s the unit interval. The standard picture

XUXx - Vx

|

X X1

is a cylinder object for X. The space X x I is ob-
tained from X LI X by attaching cells, so i is a cofi-
bration.

2) There are lots of cylinder objects: the map V :
X UX — X has a factorization as a cofibration fol-
lowed by a trivial fibration, by CMS.

Duality
Here is what I mean by “dual”:
Lemma 7.3. .# = a closed model category.

Say a morphism f°P .Y — X of the opposite cat-
egory A °P is a fibration (resp. cofibration, weak
equivalence) if and only if the corresponding map
f: X =Y is a cofibration (resp. fibration, weak
equivalence) of M .
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Then with these definitions, .4 °P satisfies the ax-
ioms for a closed model category.

Proof. Exercise. []

Reversing the arrows in a cylinder object gives a
path object, and vice versa. All homotopical facts
about a model category .# have equivalent dual
assertions in .Z P,

Examples: In Lemma 7.1, statement 3) is the dual
of statement 1), and statement 4) is the dual of
statement 2).

Lemma 7.4. Right homotopy of maps X — Y is an
equivalence relation if Y is fibrant.

The dual of Lemma 7.4 is the following:
Lemma 7.5. Left homotopy of maps X — Y is an
equivalence relation if X is cofibrant.
Proof. Lemma 7.5 is equivalent to Lemma 7.4 in
MMOP. []
Proof of Lemma 7.4. If Y if fibrant then any pro-
jection X x Y — X is a fibration (exercise).
Thus, if

YI

l(po,m)

Y=Y XY
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is a path object for a fibrant object Y, then the
maps po and p; are trivial fibrations.

Suppose given right homotopies

Y! and Y/

y l(po,m) h/1 l(qo,cn)

(f1./2) Yy X (f2./3) Yy

Form the pullback

X

Y/ xy Y/ Foyd

q*i iqo

Y! Y

P1

The diagram

Y/ xy Y/ v/

(‘I*,CIIP*)i i(‘IOﬂl)

is a pullback and pg x 1 : Y/ xY — Y x Y is a fi-
bration, so the composite

Yl sy y! P00y y

is a fibration. The weak equivalences s, s’ from the
respective path objects determine a commutative
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diagram
YI Xy Y‘]

y l(poq*,qm*)

Y——Y XY
and the map (s,s’) is a weak equivalence since
Pog+ 1s a trivial fibration.
The homotopies h,h’ therefore determine a right

homotopy
Y % Y Y I

(h’y i(poq*mp*)

Xmi =Y

It follows that the right homotopy relation is tran-
sitive.
Right homotopy is symmetric, since the twist iso-

morphism ¥ XY =Y x Y is a fibration.

Right homotopy is reflexive, since the morphism
s in a path object is a right homotopy from the
identity to itself. []
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Here’s the result that ties the homotopical room
together:

Lemma 7.6. 1) Suppose Y is fibrant and X QI is
a fixed choice of cylinder object for an object
X. Suppose f,g: X — Y are right homotopic.
Then there is a left homotopy

xux Yy

e

X®I1

2) Suppose X is cofibrant and Y' is a fixed choice
of path object for an object Y. Suppose f,g :
X — Y are left homotopic. Then there is a right
homotopy

YI
h lp
X—Y XY

(f.8)

Proof. Statement 2) is the dual of statement 1).
We’ll prove statement 1).

Suppose
XUXY-X and y!

il / / l(po,m)

X®I Y —=Y xY
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are the fixed choice of cylinder and the path ob-
ject involved in the right homotopy f ~, g, respec-
tively, and let 4 : X — Y! be the right homotopy.
Form the diagram

xux W yr oy

X@I—5—Y

The lift O exists because pg is a trivial fibration
since Y is fibrant (exercise). The composite p;0 is
the desired left homotopy. []

Corollary 7.7. Suppose f,g: X — Y are morphisms
of M, where X is cofibrant and Y is fibrant. Sup-
pose

XUX-Y-X and Y!
iJ/ / / lp
X®I YTYXY

are fixed choices of cylinder and path objects for X
and Y respectively. Then the following are equiv-
alent:

e f is left homotopic to g.

e There is a right homotopy h: X — Y! from f to
g.
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e f is right homotopic to g.
e There is a left homotopy H : X @I — Y from f
to g.

Thus, if X 1s cofibrant and Y is fibrant, all notions
of homotopy of maps X — Y collapse to the same
thing.

Write f ~ g to say that f is homotopic to g (by
whatever means) in this case.

Here’s the first big application:

Theorem 7.8 (Whitehead Theorem). Suppose f :
X — Y is a weak equivalence, and the objects X
and Y are both fibrant and cofibrant. Then f is a
homotopy equivalence.

Proof. We can assume that f is a trivial fibration:
every weak equivalence is a composite of a trivial
fibration with a trivial cofibration, and the trivial
cofibration case is dual.

Y is cofibrant, so the lifting exists in the diagram

"
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Suppose

X®I
is a cylinder object for X, and then form the dia-
gram

xux“lx

iJ/ h7 lf

The indicated lift (and required homotopy) exists
because f is a trivial fibration. []

Examples: 1) (traditional Whitehead Theorem) Ev-
ery weak equivalence f : X — Y between CW-
complexes is a homotopy equivalence.

2) Every weak equivalence f : C — D in Ch,(R)
between complexes of projective R-modules is a
chain homotopy equivalence.

3) Any two projective resolutions p : P — M(0),
q:Q — M(0) of amodule M are chain homotopy
equivalent.

The maps p and ¢ are trivial fibrations, and both P
and Q are cofibrant chain complexes, so the lift 0
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exists in the diagram

s//
Q, lq

P M(0)

The map 0 is a weak equivalence of cofibrant com-
plexes, hence a chain homotopy equivalence.

3 bis) f : M — N a homomorphism of modules.
p:P—M(0),q:Q— N(0) projective resolutions.

The lift exists in the diagram

since P is cofibrant and ¢ is a trivial fibration, so f
lifts to a chain complex map f;.

If f also lifts to some other chain complex map
f>: P — Q, there is a commutative diagram

for some (any) choice of cylinder P ® 1.
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Then f; ~; f>, so fi and f, are chain homotopic
since P is cofibrant and Q is fibrant.

4) X = a space. There is a trivial fibration p : U —
X such that U 1s a CW complex (exercise).

Suppose Y is a cofibrant space. Then Y is a retract
of a CW-complex (exercise).

Suppose f : X — Y and choose trivial fibrations
p:U—Xand g:V — Y such that U and V are
CW-complexes. Then there isamap f': U —V
which lifts f in the sense that the diagram

vy
pl lq

commutes, and any two such maps are “naively”
homotopic (exercise).

19



8 The homotopy category

For all X € . find maps
X & ox 2 ROX
such that

e py is a trivial fibration and QX is cofibrant, and
Jx 1s a trivial cofibration and RQX is fibrant
(and cofibrant),

e OX =X and pxy = lx if X is cofibrant, and
ROX = QX and jxy = 1px if QX is fibrant.

Every map f : X — Y determines a diagram

fl i Iz

Y <5 QY —RQY

since OX is cofibrant and RQY is fibrant.

Lemma 8.1. The map f, is uniquely determined
up to homotopy.

Proof. Suppose f| and f; are different choices for
f1 and f; respectively.
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There is a diagram

QXl_lQX (flaf]) 7QY
% e yy
OX @1 —5~0X - —~Y

for any choice of cylinder QX ® I for QX, so f;
and f| are left homotopic.

The maps jy f and jy f{ are left homotopic, hence
right homotopic because QX is cofibrant and RQY
is fibrant. Thus, there is a right homotopy

ROY!

/ ip
oX (rf1.Jv ) ROY x ROY

for some (actually any) path object RQY’. Form
the diagram

0X "——-RQY'
jxl e Ao lp
ROX ———~RQY x RQY
Then f, and f; are homotopic. []

(. ).y is the category whose objects are the cofibrant-
fibrant objects of .#, and whose morphisms are
homotopy classes of maps.
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Lemma 8.1 implies that there is a well-defined func-
tor

M — ﬂ(%)cf
defined by X — RQX and f — [RQ(f)], where

RO(f) = f-

The homotopy category Ho(.#') of .# has the same
objects as .#, and has

homy,(. /) (X,Y) = homn(///)cf(RQX,RQY).
There is a functor
v: M — Ho(A)
that 1s the identity on objects, and sends f : X — Y
to the homotopy class [RQ(f)].

y takes weak equivalences to isomorphisms in Ho(.Z/),
by the Whitehead Theorem (Theorem 7.8).

Lemma 8.2. Suppose f : ROX — RQY represents
a morphism [f|: X — Y of Ho(.#'). Then there is
a commutative diagram

X Y(px) 0X Y(ix) ROX
mi I |7

Yo O G REY

Y(iy
in Ho(. ).
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Proof. The maps y(px) and y(jx ) are isomorphisms
defined by the class [1gpx] in T (A ). O

Theorem 8.3. Suppose # is a closed model cate-
gory, and F : /M — D takes weak equivalences to
isomorphisms.

There is a unique functor F, : Ho(.#) — D such
that the diagram of functors

M -Ho(M)

\ |

D
commutes.

Proof. This resultis a corollary of Lemma 8.2. [

Remarks: 1) Ho(.#) is a model for the category
M |WE]~! obtained from .# by formally invert-
ing all weak equivalences.

2) v: . # — Ho(.#') induces a fully faithful func-
tor ¥, : w(.#.r) — Ho(4). Every object of Ho(.#)
is isomorphic to a (cofibrant fibrant) object in the
image of ¥,.

It follows that the functor 7, is an equivalence of
categories.

This last observation specializes to well known
phenomena:

23



e The homotopy category of CGWH is equiva-
lent to the category of CW-complexes and or-
dinary homotopy classes of maps between them.

e The derived category of Ch(R) is equivalent
to the category of chain complexes of projec-
tives and chain homotopy classes of maps be-
tween them.

One final thing: the functor y: .# — Ho(.#) re-
flects weak equivalences:

Proposition 8.4. Suppose that # is a closed model
category, and that f : X — Y is a morphism such
that y(f) is an isomorphism in Ho(.#'). Then f is
a weak equivalence of M .

For the proof, it is enough to suppose that both
X and Y are fibrant and cofibrant and that f is a
fibration with a homotopy inverse g : Y — X. Then
the idea is to show that f is a weak equivalence.

This claim is a triviality in almost all cases of inter-
est, but it is a bit tricky to prove in full generality.
This result appears as Proposition II.1.14 in [1].
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