
Lecture 03: Homotopical algebra

Contents
6 Example: Chain homotopy 1

7 Homotopical algebra 4

8 The homotopy category 20

6 Example: Chain homotopy

C = an ordinary chain complex. We have two con-
structions:

1) CI is the complex with

CI
n =Cn⊕Cn⊕Cn+1

for n > 0, and with

CI
0 = {(x,y,z)∈C0⊕C0⊕C1 | (x−y)+∂ (z) = 0 }.

The boundary map ∂ : CI
n→CI

n−1 is defined by

∂ (x,y,z) = (∂ (x),∂ (y),(−1)n(x− y)+∂ (z)).

2) C̃ is the chain complex with

C̃n =Cn⊕Cn+1

for n > 0 and

C̃0 = {(x,z) ∈C0⊕C1 | x+∂ (z) = 0 }.
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The boundary ∂ : C̃n→ C̃n−1 of C̃ is defined by

∂ (x,z) = (∂ (x),(−1)nx+∂ (z)).

Lemma 6.1. The complex C̃ is acyclic.

Proof. If ∂ (x,z) = 0 then ∂ (x) = 0 and ∂ (z) =
(−1)n+1x. It follows that

∂ ((−1)n+1z,0) = (x,z)

if (x,z) is a cycle, so (x,z) is a boundary.

There is a pullback diagram

CI α //

p
��

C̃
p′
��

C⊕C
β

//C

in which p and p′ are projections defined in each
degree by p(x,y,z) = (x,y) and p′(x,z) = x. The
map α is defined by α(x,y.z) = (x− y,z), while
β (x,y) = x− y.

p′ is a fibration, and fibrations are closed under
pullback, so p is also a fibration. The maps α and
β are surjective in all degrees, and the diagram
above expands to a comparison

CI α //

p
��

C̃ //

p′
��

0

0 //C
∆

//

s
<<

C⊕C
β

//C // 0
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where ∆ is the diagonal map.

Lemma 6.1 and a long exact sequence argument
imply that the map s is a weak equivalence.

We have a functorial diagram

CI

p
��

C
∆

//

s
<<

C⊕C

(1)

in which p is a fibration and s is a weak equiva-
lence. This is a path object.

A commutative diagram of chain maps

CI

p
��

D
( f ,g)

//

h
;;

C⊕C

(2)

is a right homotopy between the chain maps f ,g :
D→C

The map h, if it exists, is defined by

h(x) = ( f (x),g(x),s(x))

for a collection of R-module maps s : Dn→Cn+1.
The fact that h is a chain map forces

s(∂ (x)) = (−1)n( f (x)−g(x))+∂ (s(x))

for x ∈ Dn. Thus

(−1)ns(∂ (x)) = ( f (x)−g(x))+∂ ((−1)ns(x)),
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so

(−1)ns(∂ (x))+∂ ((−1)n+1s(x) = f (x)−g(x).

The maps x 7→ (−1)n+1s(x), x ∈ Dn, arising from
the right homotopy h define a chain homotopy be-
tween the chain maps f and g.

All chain homotopies arise in this way.

Exercise: Show that there is a functorial diagram
of the form (1) for unbounded chain complexes C,
such that the corresponding right homotopies (2)
define chain homotopies between maps f ,g : D→
C of unbounded chain complexes.

7 Homotopical algebra

A closed model category is a category M equipped
with weak equivalences, fibrations and cofibrations,
such that the following hold:

CM1 The category M has all (finite) limits and col-
imits.

CM2 Given a commutative triangle

X g
//

h ��

Y

f��
Z

4



in M , if any two of f ,g and h are weak equiv-
alences, then so is the third.

CM3 The classes of cofibrations, fibrations and weak
equivalences are closed under retraction.

CM4 Given a commutative solid arrow diagram

A //

i
��

X
p
��

B //

??

Y
such that i is a cofibration and p is a fibration.
Then the lift exists if either i or p is a weak
equivalence.

CM5 Every morphism f : X → Y has factorizations

Z
p

  
X f

//

i
>>

j   

Y

W
q

>>

where p is a fibration and i is a trivial cofi-
bration, and q is a trivial fibration and j is a
cofibration.
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Here’s the meaning of the word “closed”:

Lemma 7.1. 1) i : A→ B is a cofibration if and
only if it has the LLP wrt all trivial fibrations.

2) i : A→ B is a trivial cofibration if and only if
it has the LLP wrt all fibrations.

3) p : X →Y is a fibration if and only if it has the
RLP wrt all trivial cofibrations.

4) p is a trivial fibration if and only if it has the
RLP wrt all cofibrations.

Proof. I’ll prove statement 2). The rest are similar.

If i is a trivial cofibration, then it has the LLP wrt
all fibrations by CM4.

Suppose i has the LLP wrt all fibrations. i has a
factorization

A j
//

i ��

X
p
��

B
where j is a trivial cofibration and p is a fibration.
Then the lifting exists in the diagram

A j
//

i
��

X
p
��

B

??

1
//B

6



Then i is a retract of j and is therefore a trivial
cofibration by CM3.

Corollary 7.2. 1) The classes of cofibrations and
trivial cofibrations are closed under composi-
tions and pushout. Any isomorphism is a triv-
ial cofibration.

2) The classes of fibrations and trivial fibrations
are closed under composition and pullback. Any
isomorphism is a trivial fibration.

Remark: Lemma 7.1 implies that, in order to de-
scribe a closed model structure, one needs only
specify the weak equivalences and either the cofi-
brations or fibrations.

We saw this in the descriptions of the model struc-
tures for the chain complex categories and for spaces.

Homotopies

1) A path object for Y ∈M is a commutative di-
agram

Y I

p
��

Y

s
<<

∆

//Y ×Y
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such that ∆ is the diagonal map, s is a weak
equivalence and p is a fibration.

2) A right homotopy between maps f ,g : X → Y
is a commutative diagram

Y I

p
��

X
( f ,g)

//

h
;;

Y ×Y Y
∆

oo

s
cc

where p is the fibration for some (displayed)
path object for Y .

f is right homotopic to g if such a right homo-
topy exists. Write f ∼r g.

Examples: 1) Path objects abound in nature, since
the diagonal map ∆ : Y → Y ×Y factorizes as a
fibration following a trivial cofibration, by CM5.

2) Chain homotopy is a type of right homotopy in
both Ch+(R) and Ch(R).

3) For ordinary spaces X , there is a space X I, whose
elements are the paths I→ X in X . Restricting to
the two ends of the paths defines a map d : X I →
X×X , which is a Serre fibration (exercise). There
is a constant path map s : X → X I, and a commu-
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tative diagram

X I

d
��

X

s
;;

∆

//X×X

The composite X I d−→ X ×X
prL−−→ X is a trivial fi-

bration (exercise), so s is a weak equivalence.

The traditional path space defines a path object
construction. Right homotopies X → Y I are tra-
ditional homotopies X× I→ Y by adjointness.

Here’s the dual cluster of definitions:

1) A cylinder object for an object X ∈M is a
commutative diagram

X tX ∇ //

i
��

X

X⊗ I
σ

;;

where ∇ is the “fold” map, i is a cofibration
and σ is a weak equivalence.

2) A left homotopy between maps f ,g : X → Y is
a commutative diagram

X X tX∇oo
( f ,g)

//

i
��

Y

X⊗ I
h

;;

σ

cc
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where i is the cofibration appearing in some
cylinder object for X .

Say f is left homotopic to g if such a left ho-
motopy exists. Write f ∼l g.

Examples: 1) Suppose X is a CW -complex and I
is the unit interval. The standard picture

X tX ∇ //

i
��

X

X× I
pr

;;

is a cylinder object for X . The space X × I is ob-
tained from X tX by attaching cells, so i is a cofi-
bration.

2) There are lots of cylinder objects: the map ∇ :
X tX → X has a factorization as a cofibration fol-
lowed by a trivial fibration, by CM5.

Duality
Here is what I mean by “dual”:

Lemma 7.3. M = a closed model category.

Say a morphism f op : Y → X of the opposite cat-
egory M op is a fibration (resp. cofibration, weak
equivalence) if and only if the corresponding map
f : X → Y is a cofibration (resp. fibration, weak
equivalence) of M .
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Then with these definitions, M op satisfies the ax-
ioms for a closed model category.

Proof. Exercise.

Reversing the arrows in a cylinder object gives a
path object, and vice versa. All homotopical facts
about a model category M have equivalent dual
assertions in M op.

Examples: In Lemma 7.1, statement 3) is the dual
of statement 1), and statement 4) is the dual of
statement 2).

Lemma 7.4. Right homotopy of maps X→Y is an
equivalence relation if Y is fibrant.

The dual of Lemma 7.4 is the following:

Lemma 7.5. Left homotopy of maps X → Y is an
equivalence relation if X is cofibrant.

Proof. Lemma 7.5 is equivalent to Lemma 7.4 in
M op.

Proof of Lemma 7.4. If Y if fibrant then any pro-
jection X×Y → X is a fibration (exercise).

Thus, if
Y I

(p0,p1)
��

Y
∆

//

s
<<

Y ×Y
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is a path object for a fibrant object Y , then the
maps p0 and p1 are trivial fibrations.

Suppose given right homotopies

Y I

(p0,p1)
��

X //

h1
99

( f1, f2)
//Y ×Y

and Y J

(q0,q1)
��

X

h2
99

( f2, f3)
//Y ×Y

Form the pullback

Y I×Y Y J p∗ //

q∗
��

Y J

q0
��

Y I
p1

//Y

The diagram

Y I×Y Y J p∗ //

(q∗,q1 p∗)
��

Y J

(q0,q1)
��

Y I×Y p1×1
//Y ×Y

is a pullback and p0× 1 : Y I×Y → Y ×Y is a fi-
bration, so the composite

Y I×Y Y J (p0q∗,q1 p∗)−−−−−−→ Y ×Y

is a fibration. The weak equivalences s,s′ from the
respective path objects determine a commutative
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diagram
Y I×Y Y J

(p0q∗,q1 p∗)
��

Y
∆

//

(s,s′) ::

Y ×Y

and the map (s,s′) is a weak equivalence since
p0q∗ is a trivial fibration.

The homotopies h,h′ therefore determine a right
homotopy

Y I×Y Y J

(p0q∗,q1 p∗)
��

X
( f1, f3)

//

(h,h′) ::

Y ×Y

It follows that the right homotopy relation is tran-
sitive.

Right homotopy is symmetric, since the twist iso-
morphism Y ×Y

∼=−→ Y ×Y is a fibration.

Right homotopy is reflexive, since the morphism
s in a path object is a right homotopy from the
identity to itself.

13



Here’s the result that ties the homotopical room
together:

Lemma 7.6. 1) Suppose Y is fibrant and X ⊗ I is
a fixed choice of cylinder object for an object
X. Suppose f ,g : X → Y are right homotopic.
Then there is a left homotopy

X tX
( f ,g)

//

i
��

Y

X⊗ I
h

;;

2) Suppose X is cofibrant and Y I is a fixed choice
of path object for an object Y . Suppose f ,g :
X→Y are left homotopic. Then there is a right
homotopy

Y I

p
��

X
( f ,g)

//

h
;;

Y ×Y

Proof. Statement 2) is the dual of statement 1).
We’ll prove statement 1).

Suppose

X tX ∇ //

i
��

X

X⊗ I
σ

;; and Y I

(p0,p1)
��

Y
∆

//

s
<<

Y ×Y
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are the fixed choice of cylinder and the path ob-
ject involved in the right homotopy f ∼r g, respec-
tively, and let h : X → Y I be the right homotopy.
Form the diagram

X tX
(s f ,h)

//

i
��

Y I

p0
��

p1 //Y

X⊗ I f σ
//

θ

88

Y

The lift θ exists because p0 is a trivial fibration
since Y is fibrant (exercise). The composite p1θ is
the desired left homotopy.

Corollary 7.7. Suppose f ,g : X→Y are morphisms
of M , where X is cofibrant and Y is fibrant. Sup-
pose

X tX ∇ //

i
��

X

X⊗ I
σ

;; and Y I

p
��

Y
∆

//

s
<<

Y ×Y

are fixed choices of cylinder and path objects for X
and Y respectively. Then the following are equiv-
alent:

• f is left homotopic to g.

• There is a right homotopy h : X→Y I from f to
g.
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• f is right homotopic to g.

• There is a left homotopy H : X⊗ I→ Y from f
to g.

Thus, if X is cofibrant and Y is fibrant, all notions
of homotopy of maps X → Y collapse to the same
thing.

Write f ∼ g to say that f is homotopic to g (by
whatever means) in this case.

Here’s the first big application:

Theorem 7.8 (Whitehead Theorem). Suppose f :
X → Y is a weak equivalence, and the objects X
and Y are both fibrant and cofibrant. Then f is a
homotopy equivalence.

Proof. We can assume that f is a trivial fibration:
every weak equivalence is a composite of a trivial
fibration with a trivial cofibration, and the trivial
cofibration case is dual.

Y is cofibrant, so the lifting exists in the diagram

/0 //

��

X
f
��

Y 1
//

j
??

Y
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Suppose
X tX ∇ //

i
��

X

X⊗ I
σ

;;

is a cylinder object for X , and then form the dia-
gram

X tX
( j f ,1)

//

i
��

X
f
��

X⊗ I f σ
//

h
;;

Y

The indicated lift (and required homotopy) exists
because f is a trivial fibration.

Examples: 1) (traditional Whitehead Theorem) Ev-
ery weak equivalence f : X → Y between CW -
complexes is a homotopy equivalence.

2) Every weak equivalence f : C→ D in Ch+(R)
between complexes of projective R-modules is a
chain homotopy equivalence.

3) Any two projective resolutions p : P→ M(0),
q : Q→M(0) of a module M are chain homotopy
equivalent.

The maps p and q are trivial fibrations, and both P
and Q are cofibrant chain complexes, so the lift θ
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exists in the diagram

Q
q
��

P p
//

θ

==

M(0)

The map θ is a weak equivalence of cofibrant com-
plexes, hence a chain homotopy equivalence.

3 bis) f : M → N a homomorphism of modules.
p : P→M(0), q : Q→N(0) projective resolutions.

The lift exists in the diagram

0 //

��

Q
q
��

P p
//

f1
55

M(0) f
//N(0)

since P is cofibrant and q is a trivial fibration, so f
lifts to a chain complex map f1.

If f also lifts to some other chain complex map
f2 : P→ Q, there is a commutative diagram

P⊕P
( f1, f2) //

i
��

Q
q
��

P⊗ I
σ
//

h
33

P p
//M(0) f

//N(0)

for some (any) choice of cylinder P⊗ I.
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Then f1 'l f2, so f1 and f2 are chain homotopic
since P is cofibrant and Q is fibrant.

4) X = a space. There is a trivial fibration p : U→
X such that U is a CW complex (exercise).

Suppose Y is a cofibrant space. Then Y is a retract
of a CW -complex (exercise).

Suppose f : X → Y and choose trivial fibrations
p : U → X and q : V → Y such that U and V are
CW -complexes. Then there is a map f ′ : U → V
which lifts f in the sense that the diagram

U f ′
//

p
��

V
q
��

X f
//Y

commutes, and any two such maps are “naively”
homotopic (exercise).
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8 The homotopy category

For all X ∈M find maps

X
pX←− QX

jX−→ RQX

such that

• pX is a trivial fibration and QX is cofibrant, and
jX is a trivial cofibration and RQX is fibrant
(and cofibrant),

• QX = X and pX = 1X if X is cofibrant, and
RQX = QX and jX = 1QX if QX is fibrant.

Every map f : X → Y determines a diagram

X
f
��

QXpXoo

f1
��

jX //RQX
f2
��

Y QYpY
oo

jY
//RQY

since QX is cofibrant and RQY is fibrant.

Lemma 8.1. The map f2 is uniquely determined
up to homotopy.

Proof. Suppose f ′1 and f ′2 are different choices for
f1 and f2 respectively.

20



There is a diagram

QX tQX
( f1, f ′1) //

i
��

QY
pY
��

QX⊗ I
σ

//

55

QX f pX
//Y

for any choice of cylinder QX ⊗ I for QX , so f1

and f ′1 are left homotopic.

The maps jY f1 and jY f ′1 are left homotopic, hence
right homotopic because QX is cofibrant and RQY
is fibrant. Thus, there is a right homotopy

RQY I

p
��

QX
( jY f1, jY f ′1)

//

h
44

RQY ×RQY

for some (actually any) path object RQY I. Form
the diagram

QX h //

jX
��

RQY I

p
��

RQX
( f2, f ′2)

//

H
55

RQY ×RQY

Then f2 and f ′2 are homotopic.

π(M )c f is the category whose objects are the cofibrant-
fibrant objects of M , and whose morphisms are
homotopy classes of maps.
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Lemma 8.1 implies that there is a well-defined func-
tor

M → π(M )c f

defined by X 7→ RQX and f 7→ [RQ( f )], where

RQ( f ) = f2.

The homotopy category Ho(M ) of M has the same
objects as M , and has

homHo(M )(X ,Y ) = homπ(M )c f (RQX ,RQY ).

There is a functor

γ : M → Ho(M )

that is the identity on objects, and sends f : X→Y
to the homotopy class [RQ( f )].

γ takes weak equivalences to isomorphisms in Ho(M ),
by the Whitehead Theorem (Theorem 7.8).

Lemma 8.2. Suppose f : RQX → RQY represents
a morphism [ f ] : X → Y of Ho(M ). Then there is
a commutative diagram

X
[ f ]
��

QX
γ(pX )oo

[ f ]
��

γ( jX ) //RQX
γ( f )
��

Y QY
γ(pY )
oo

γ( jY )
//RQY

in Ho(M ).
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Proof. The maps γ(pX) and γ( jX) are isomorphisms
defined by the class [1RQX ] in π(M )c f .

Theorem 8.3. Suppose M is a closed model cate-
gory, and F : M → D takes weak equivalences to
isomorphisms.

There is a unique functor F∗ : Ho(M )→ D such
that the diagram of functors

M
γ
//

F %%

Ho(M )
F∗
��

D
commutes.

Proof. This result is a corollary of Lemma 8.2.

Remarks: 1) Ho(M ) is a model for the category
M [WE]−1 obtained from M by formally invert-
ing all weak equivalences.

2) γ : M → Ho(M ) induces a fully faithful func-
tor γ∗ : π(Mc f )→Ho(M ). Every object of Ho(M )

is isomorphic to a (cofibrant fibrant) object in the
image of γ∗.

It follows that the functor γ∗ is an equivalence of
categories.

This last observation specializes to well known
phenomena:
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• The homotopy category of CGWH is equiva-
lent to the category of CW -complexes and or-
dinary homotopy classes of maps between them.

• The derived category of Ch+(R) is equivalent
to the category of chain complexes of projec-
tives and chain homotopy classes of maps be-
tween them.

One final thing: the functor γ : M → Ho(M ) re-
flects weak equivalences:

Proposition 8.4. Suppose that M is a closed model
category, and that f : X → Y is a morphism such
that γ( f ) is an isomorphism in Ho(M ). Then f is
a weak equivalence of M .

For the proof, it is enough to suppose that both
X and Y are fibrant and cofibrant and that f is a
fibration with a homotopy inverse g : Y →X . Then
the idea is to show that f is a weak equivalence.

This claim is a triviality in almost all cases of inter-
est, but it is a bit tricky to prove in full generality.
This result appears as Proposition II.1.14 in [1].
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