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9 Simplicial sets

A simplicial set is a functor

X : ∆
op→ Set,

ie. a contravariant set-valued functor defined on
the ordinal number category ∆.

One usually writes n 7→ Xn.

Xn is the set of n-simplices of X .

A simplicial map f : X → Y is a natural transfor-
mation of such functors.

The simplicial sets and simplicial maps form the
category of simplicial sets, denoted by sSet — one
also sees the notation S for this category.

If A is some category, then a simplicial object in
A is a functor

A : ∆
op→A .
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Maps between simplicial objects are natural trans-
formations.

The simplicial objects in A and their morphisms
form a category sA .

Examples: 1) sGr = simplicial groups.

2) sAb = simplicial abelian groups.

3) s(R−Mod) = simplicial R-modules.

4) s(sSet) = s2Set is the category of bisimplicial
sets.

Simplicial objects are everywhere.

Examples of simplicial sets:

1) We’ve already met the singular set S(X) for a
topological space X , in Section 4.

S(X) is defined by the cosimplicial space (covari-
ant functor) n 7→ |∆n|, by

S(X)n = hom(|∆n|,X).

θ : m→ n defines a function

S(X)n = hom(|∆n|,X)
θ∗−→ hom(|∆m|,X) = S(X)m

by precomposition with the map θ : |∆m| → |∆m|.
The assignment X 7→ S(X) defines the singular
functor

S : CGWH→ sSet.
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2) The ordinal number n represents a contravariant
functor

∆
n = hom∆( ,n) : ∆

op→ Set,

called the standard n-simplex.

ιn := 1n ∈ hom∆(n,n).
The n-simplex ιn is the classifying n-simplex.

The Yoneda Lemma implies that there is a natural
bijection

homsSet(∆
n,Y )∼= Yn

defined by sending the map σ : ∆n→ Y to the ele-
ment σ(ιn) ∈ Yn.

A map ∆n→ Y is an n-simplex of Y .

Every ordinal number morphism θ : m → n in-
duces a simplicial set map

θ : ∆
m→ ∆

n,

defined by composition.

We have a covariant functor

∆ : ∆→ sSet

with n 7→ ∆n. This is a cosimplicial object in sSet.
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If σ : ∆n→ X is a simplex of X , the ith face di(σ)

is the composite

∆
n−1 di
−→ ∆

n σ−→ X ,

The jth degeneracy s j(σ) is the composite

∆
n+1 s j
−→ ∆

n σ−→ X .

3) ∂∆n is the subobject of ∆n which is generated
by the (n−1)-simplices di, 0≤ i≤ n.

Λn
k isthe subobject of ∂∆n which is generated by

the simplices di, i 6= k.

∂∆n is the boundary of ∆n, and Λn
k is the kth horn.

The faces di : ∆n−1→ ∆n determine a covering
n⊔

i=0

∆
n−1→ ∂∆

n,

and for each i < j there are pullback diagrams

∆n−2 d j−1
//

di
��

∆n−1

di
��

∆n−1
d j

//∆n

(Excercise!). It follows that there is a coequalizer⊔
i< j,0≤i, j≤n ∆n−2 //

//
⊔

0≤i≤n ∆n−1 // ∂∆n
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in sSet.
Similarly, there is a coequalizer⊔

i< j,i, j 6=k ∆n−2 //
//
⊔

0≤i≤n,i 6=k ∆n−1 //Λn
k.

4) Suppose the category C is small, ie. the mor-
phisms Mor(C) (and objects Ob(C)) form a set.

Examples include all finite ordinal numbers n (be-
cause they are posets), all monoids (small cate-
gories having one object), and all groups.

There is a simplicial set BC with n-simplices

BCn = hom(n,C),

ie. the functors n→C.

The simplicial structure on BC is defined by pre-
composition with ordinal number maps: if θ : m→
n is an ordinal number map (aka. functor) and
σ : n→C is an n-simplex, then θ ∗(σ) is the com-
posite functor

m θ−→ n σ−→C.

The object BC is called the classifying space or
nerve of C (the notation NC is also common).

If G is a (discrete) group, BG “is” the standard
classifying space for G in CGWH, which classi-
fies principal G-bundles.
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NB: Bn = ∆n.

5) Suppose I is a small category, and X : I→ Set
is a set-valued functor (aka. a diagram in sets).

The translation category (“category of elements”)
EI(X) has objects given by all pairs (i,x) with x ∈
X(i).

A morphism α : (i,x)→ ( j,y) is a morphism α :
i→ j of I such that α∗(x) = y.

The simplicial set B(EIX) is the homotopy col-
imit for the functor X . One often writes

holim−−−→ I X = B(EIX).

Here’s a different description of the nerve BI:

BI = holim−−−→ I ∗ .

BI is the homotopy colimit of the (constant) func-
tor I→ Set which associates the one-point set ∗ to
every object of I.

There is a functor

EIX → I,

defined by the assignment (i,x) 7→ i.

This functor induces a simplicial set map

π : B(EIX) = holim−−−→ I X → BI.

6



A functor n→C is specified by a string of arrows

a0
α1−→ a1

α2−→ . . .
αn−→ an

in C, for then all composites of these arrows are
uniquely determined.

The functors n→EIX can be identified with strings

(i0,x0)
α1−→ (i1,x1)

α2−→ . . .
αn−→ (in,xn).

Such a string is specified by the underlying string
i0 → ·· · → in in the index category Y and x0 ∈
X(i0).

It follows that there is an identification

(holim−−−→ I X)n = B(EIX)n =
⊔

i0→···→in

X(i0).

The construction is functorial with respect to nat-
ural transformations in diagrams X .

A diagram X : I → sSet in simplicial sets (a sim-
plicial object in set-valued functors) determines a
simplicial category m 7→ EI(Xm) and a correspond-
ing bisimplicial set with (n,m) simplices

B(EIX)m =
⊔

i0→···→in

X(i0)m.

The diagonal d(Y ) of a bisimplicial set Y is the
simplicial set with n-simplices Yn,n. Equivalently,
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d(Y ) is the composite functor

∆
op ∆−→ ∆

op×∆
op Y−→ Set

where ∆ is the diagonal functor.

The diagonal dB(EIX) of the bisimplicial set B(EIX)

is the homotopy colimit holim−−−→ I X of the functor
X : I→ sSet.
There is a natural simplicial set map

π : holim−−−→ I X → BI.

6) Suppose X and Y are simplicial sets. The func-
tion complex

hom(X ,Y )

has n-simplices

hom(X ,Y )n = hom(X×∆
n,Y ).

If θ : m→ n is an ordinal number map and f :
X ×∆n → Y is an n-simplex of hom(X ,Y ), then
θ ∗( f ) is the composite

X×∆
m 1×θ−−→ X×∆

m f−→ Y.

There is a natural simplicial set map

ev : X×hom(X ,Y )→ Y

8



defined by

(x, f : X×∆
n→ Y ) 7→ f (x, ιn).

Suppose K is a simplicial set.

The function

ev∗ : hom(K,hom(X ,Y ))→ hom(X×K,Y ),

is defined by sending g : K → hom(X ,Y ) to the
composite

X×K
1×g−−→ X×hom(X ,Y ) ev−→ Y.

The function ev∗ is a bijection, with inverse that
takes f : X ×K → Y to the morphism f∗ : K →
hom(X ,Y ), where f∗(y) is the composite

X×∆
n 1×y−−→ X×K

f−→ Y.

The natural bijection

hom(X×K,Y )∼= hom(K,hom(X ,Y ))

is called the exponential law.

sSet is a cartesian closed category.

The function complexes also give sSet the struc-
ture of a category enriched in simplicial sets.
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10 The simplex category and realization

Suppose X is a simplicial set.

The simplex category ∆/X has for objects all sim-
plices ∆n→ X .

Its morphisms are the incidence relations between
the simplices, meaning all commutative diagrams

∆m
τ
&&

θ
��

X
∆n σ

88

(1)

∆/X is a type of slice category. It is denoted by
∆ ↓ X in [2]. See also [6].

In the broader context of homotopy theories asso-
ciated to a test category (long story — see [4]) one
says that the simplex category is a cell category.

Exercise: Show that a simplicial set X is a colimit
of its simplices, ie. the simplices ∆n→ X define a
simplicial set map

lim−→
∆n→X

∆
n→ X ,

which is an isomorphism.
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There is a space |X |, called the realization of the
simplicial set X , which is defined by

|X |= lim−→
∆n→X

|∆n|.

Here |∆n| is the topological standard n-simplex, as
described in Section 4.

|X | is the colimit of the functor ∆/X → CGWH
which takes the morphism (1) to the map

|∆m| θ−→ |∆n|.

The assignment X 7→ |X | defines a functor

| | : sSet→ CGWH,

called the realization functor.

Lemma 10.1. The realization functor is left ad-
joint to the singular functor S : CGWH→ sSet.

Proof. A simplicial set X is a colimit of its sim-
plices. Thus, for a simplicial set X and a space Y ,
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there are natural isomorphisms

hom(X ,S(Y ))∼= hom( lim−→
∆n→X

∆
n,S(Y ))

∼= lim←−
∆n→X

hom(∆n,S(Y ))

∼= lim←−
∆n→X

hom(|∆n|,Y )

∼= hom( lim−→
∆n→X

|∆n|,Y )

= hom(|X |,Y ).

Remark: Kan introduced the concept of adjoint
functors to describe the relation between the real-
ization and singular functors.

Examples:

1) |∆n| = |∆n|, since the simplex category ∆/∆n

has a terminal object, namely 1 : ∆n→ ∆n.

2) |∂∆n| = |∂∆n| and |Λn
k| = |Λn

k|, since the real-
ization functor is a left adjoint and therefore
preserves coequalizers and coproducts.

The nth skeleton skn X of a simplicial set X is the
subobject generated by the simplices Xi, 0≤ i≤ n.
The ascending sequence of subcomplexes

sk0 X ⊂ sk1 X ⊂ sk2 X ⊂ . . .
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defines a filtration of X , and there are pushout di-
agrams ⊔

x∈NXn ∂∆n //

��

skn−1 X

��⊔
x∈NXn ∆n // skn X

(2)

NXn is the set of non-degenerate n-simplices of X .

σ ∈ Xn is non-degenerate if it is not of the form
s j(y) for some (n−1)-simplex y and some j.

Exercise: Show that the diagram (2) is indeed a
pushout.

For this, it’s helpful to know that the functor X 7→
skn X is left adjoint to truncation up to level n.

For that, you should know that every simplex x
of a simplicial set X has a unique representation
x = s∗(y) where s : n � k is an ordinal number epi
and y ∈ Xk is non-degenerate.

Corollary 10.2. The realization |X | of a simplicial
set X is a CW-complex.

Every monomorphism A→ B of simplicial sets in-
duces a cofibration |A| → |B| of spaces. ie. |B| is
constructed from |A| by attaching cells.
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Lemma 10.3. The realization functor preserves fi-
nite limits.

Proof. There are isomorphisms

|X×Y | ∼= | lim−→
∆n→X ,∆m→Y

∆
n×∆

m|

∼= lim−→
∆n→X ,∆m→Y

|∆n×∆
m|

∼= lim−→
∆n→X ,∆m→Y

|∆n|× |∆m|

∼= |X |× |Y |
One shows that the canonical maps

|∆n×∆
m| → |∆n|× |∆m|

are isomorphisms with an argument involving shuf-
fles — see [1, p.52].

If σ ,τ : ∆n→ Y are simplices such that

|σ |= |τ| : |∆n| → |Y |,

then σ = τ (exercise).

Suppose f ,g : X → Y are simplicial set maps, and
x ∈ |X | is an element such that f∗(x) = g∗(x).

If σ is the “carrier” of x (ie. non-degenerate sim-
plex of X such that x is interior to the cell defined
by σ ), then f∗(y) = g∗(y) for all y in the interior of
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|σ | (by transforming by a suitable automorphism
of the cosimplicial space |∆|— see [1, p.51]).

But then

| f σ |= |gσ | : |∆n| → |Y |,

so f σ = gσ and x ∈ |E|, where E is the equalizer
of f and g in sSet.

11 Model structure for simplicial sets

A map f : X → Y of simplicial sets is a weak
equivalence if f∗ : |X |→ |Y | is a weak equivalence
of CGWH.

A map i : A→ B of simplicial sets is a cofibra-
tion if and only if it is a monomorphism, ie. all
functions i : An→ Bn are injective.

A simplicial set map p : X → Y is a fibration if it
has the RLP wrt all trivial cofibrations.

Remark: There is a natural commutative diagram

X tX ∇ //

(i0,i1) ��

X

X×∆1
pr

;; (3)

for simplicial sets X . (i0, i1) is the cofibration

1X× i : X×∂∆
1→ X×∆

1
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induced by the inclusion i : ∂∆1 ⊂ ∆1. The two
inclusions iε of the end points of the cylinder are
weak equivalences, as is pr : X×∆1→ X .

The diagram (3) is a natural cylinder object for the
model structure on simplicial sets (see Theorem
11.6). Left homotopy with respect to this cylinder
is classical simplicial homotopy.

Lemma 11.1. A map p : X → Y is a trivial fibra-
tion if and only if it has the RLP wrt all inclusions
∂∆n ⊂ ∆n, n≥ 0.

Proof. 1) Suppose p has the lifting property.

Then p has the RLP wrt all cofibrations (exercise:
induct through relative skeleta), so the lifting s ex-
ists in the diagram

/0 //

��

X
p
��

Y 1Y
//

s
??

Y

since all simplicial sets are cofibrant.

The lifting h exists in the diagram

X tX
(sp,1)

//

i ��

X
p
��

X×∆1
p·pr

//

h
;;

Y
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so the map p∗ : |X | → |Y | is a homotopy equiva-
lence, hence a weak equivalence.

2) Suppose p is a trivial fibration and choose a fac-
torization

X j
//

p   

U
q
��

Y
such that j is a cofibration and q has the RLP wrt
all maps ∂∆n ⊂ ∆n (such things exist by a small
object argument).

q is a weak equivalence by part 1), so j is a trivial
cofibration and the lift r exists in the diagram

X 1X //

j
��

X
p
��

U q
//

r
??

Y

Then p is a retract of q, and has the RLP.

Say that a simplicial set A is countable if it has
countably many non-degenerate simplices.

A simplicial set K is finite if it has only finitely
many non-degenerate simplices, eg. ∆n, ∂∆n, Λn

k.

Fact: If X is countable (resp. finite), then all sub-
complexes of X are countable (resp. finite).
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The following result is proved with simplicial ap-
proximation techniques:

Lemma 11.2. Suppose that X has countably many
non-degenerate simplices.

Then π0|X | and all homotopy groups πn(|X |,x) are
countable.

Proof. Suppose x is a vertex of X , identified with
x ∈ |X |.
A continuous map

(|∆k|, |∂∆
k|)→ (|X |,x)

is homotopic, rel boundary, to the realization of a
simplicial set map

(sdN
∆

k,sdN
∂∆

k)→ (X ,x),

by simplicial approximation [3].

The (iterated) subdivisions sdM
∆k are finite com-

plexes, and there are only countably many maps
sdM

∆k→ X for M ≥ 0.
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Here’s a consequence:

Lemma 11.3 (Bounded cofibration lemma). Sup-
pose given cofibrations

X
i
��

A //Y

where i is trivial and A is countable.

Then there is a countable B⊂ Y with A⊂ B, such
that the map B∩X → B is a trivial cofibration.

Proof. Write B0 = A and consider the map

B0∩X → B0.

The homotopy groups of |B0| and |B0∩X | are count-
able, by Lemma 11.2.

Y is a union of its countable subcomplexes.

Suppose that

α,β : (|∆n|, |∂∆
n|)→ (|B0∩X |,x)

become homotopic in |B0| hence in |X |.
The map defining the homotopy in |X | is compact
(ie. defined on a CW -complex with finitely many
cells), so there is a countable B′ ⊂ Y with B0 ⊂ B′

such that the homotopy lives in |B′∩X |.
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The image in |Y | of any morphism

γ : (|∆n|, |∂∆
n|)→ (|B0|,x)

lifts to |X | up to homotopy, and that homotopy
lives in |B′′| for some countable subcomplex B′′ ⊂
Y with B0 ⊂ B′′.

It follows that there is a countable subcomplex
B1 ⊂ Y with B0 ⊂ B1 such that any two elements

[α], [β ] ∈ πn(|B0∩X |,x)

which map to the same element in πn(|B0|,x) must
also map to the same element of πn(|B1 ∩X |,x),
and every element

[γ] ∈ πn(|B0|,x)

lifts to an element of πn(|B1∩X |,x), and this for
all n≥ 0 and all (countably many) vertices x.

Repeat the construction inductively, to form a count-
able collection

A = B0 ⊂ B1 ⊂ B2 ⊂ . . .

of subcomplexes of Y .

Then B =
⋃

Bi is a countable subcomplex of Y ,
and the map B∩X→B is a weak equivalence.
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Say that a cofibration A→ B is countable if B is
countable.

Lemma 11.4. Every simplicial set map f : X → Y
has a factorization

X i //

f ��

Z
q
��

Y

such that q has the RLP wrt all countable trivial
cofibrations, and i is constructed from countable
trivial cofibrations by pushout and composition.

The proof of Lemma 11.4 is an example of a trans-
finite small object argument.

Lang’s Algebra [5] has a quick introduction to car-
dinal arithmetic.

Proof. Choose an uncountable cardinal number κ ,
interpreted as the (totally ordered) poset of ordinal
numbers s < κ .

Construct a system of factorizations

X is //

f ��

Zs
qs
��

Y

(4)

of f with js a trivial cofibration as follows:
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• given factorization of the form (4) consider all
diagrams

D : AD //

iD
��

Zs
qs
��

BD //Y
such that iD is a countable trivial cofibration,
and form the pushout⊔

D AD //

��

Zs

js
��⊔

D BD // Zs+1

Then the map js is a trivial cofibration, and the
diagrams together induce a map qs+1 : Zs+1→
Y . Let is+1 = jsis.

• if γ < κ is a limit ordinal, let Zγ = lim−→t<γ
Zt .

Now let Z = lim−→s<κ
Zs with induced factorization

X
j−→ Z

q−→ Y

Suppose given a lifting problem

A α //

j
��

Z
q
��

B //Y
with j : A→B a countable trivial cofibration. Then
α(A) is a countable subcomplex of X , so α(A) ⊂
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Zs for some s < κ , for otherwise α(A) has too
many elements.

The lifting problem is solved in Zs+1.

Remark: The map j : X → Z is in the saturation
of the set of countable trivial cofibrations.

The saturation of a set of cofibrations I is the
smallest class of cofibrations containing I which
is closed under pushout, coproducts, (long) com-
positions and retraction.

If a map p has the RLP wrt all maps of I then it
has the RLP wrt all maps in the saturation of I.
(exercise)

Classes of cofibrations which are defined by a left
lifting property with respect to some family of maps
are saturated in this sense. (exercise)

Lemma 11.5. A map q : X→Y is a fibration if and
only if it has the RLP wrt (the set of) all countable
trivial cofibrations.

We use a recurring trick for the proof of this result.
It amounts to verifying a “solution set condition”.
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Proof. 1) Suppose given a diagram

A //

j
��

X
f
��

B //Y
where j is a cofibration, B is countable and f is a
weak equivalence.

Lemma 11.1 says that f has a factorization f =

q · i, where i is a trivial cofibration and q has the
RLP wrt all cofibrations.

The lift exists in the diagram

A //

j
��

X
i��

Z
q��

B //

θ
::

Y

θ(B) is countable, so there is a countable sub-
complex D ⊂ Z with θ(B) ⊂ D such that the map
D∩X → D is a trivial cofibration.

We have a factorization

A //

j
��

D∩X //

��

X
f
��

B //D //Y
of the original diagram through a countable trivial
cofibration.
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2) Suppose that i : C→ D is a trivial cofibration.

Then i has a factorization

C j
//

i ��

E
p
��

D
such that p has the RLP wrt all countable trivial
cofibrations, and j is built from countable trivial
cofibrations by pushout and composition. Then j
is a weak equivalence, so p is a weak equivalence.

Part 1) implies that p has the RLP wrt all countable
cofibrations, and hence wrt all cofibrations.

The lift therefore exists in the diagram

C j
//

i
��

E
p
��

D 1D
//

θ
??

D

so i is a retract of j.

Thus, if q : Z→W has the RLP wrt all countable
trivial cofibrations, then it has the RLP wrt all triv-
ial cofibrations.

Exercise: Find a different, simpler proof for Lemma
11.5. Hint: use Zorn’s lemma.

25



Theorem 11.6. With the definitions of weak equiv-
alence, cofibration and fibration given above the
category sSet of simplicial sets satisfies the axioms
for a closed model category.

Proof. The axioms CM1, CM2 and CM3 are easy
to verify.

Every map f : X → Y has a factorization

X j
//

f   

W
q
��

Y
such that j is a cofibration and q is a trivial fi-
bration — this follows from Lemma 11.1 and a
standard small object argument. The other half of
the factorization axiom CM5 is a consequence of
Lemma 11.4 and Lemma 11.5.

CM4 also follows from Lemma 11.1.

Remark: In the adjoint pair of functors

| | : sSet � CGWH : S

the realization functor (the left adjoint part) pre-
serves cofibrations and trivial cofibrations. It’s an
immediate consequence that the singular functor S
preserves fibrations and trivial fibrations.
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Adjunctions like this between closed model cat-
egory are called Quillen adjunctions or Quillen
pairs. We’ll see later on, and this is a huge result,
that these functors form a Quillen equivalence.

Remark: We defined the weak equivalences of sim-
plicial sets to be those maps whose realizations
are weak equivalences of spaces. In this way, the
model structure for sSet, as it is described here, is
induced from the model structure for CGWH via
the realization functor | |.
Alternatively, one says that the model structure on
simplicial sets is obtained from that on spaces by
transfer.
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