Lecture 10: Serre spectral sequence

Contents

28	The fundamental groupoid, revisited	1
29	The Serre spectral sequence	9
30	The transgression	18
31	The path-loop fibre sequence	23

28 The fundamental groupoid, revisited

The **path category** *PX* for a simplicial set *X* is the category generated by the graph $X_1 \rightrightarrows X_0$ of 1-simplices $x : d_1(x) \rightarrow d_0(x)$, subject to the relations

$$d_1(\boldsymbol{\sigma}) = d_0(\boldsymbol{\sigma}) \cdot d_2(\boldsymbol{\sigma})$$

given by the 2-simplices σ of X.

There is a natural bijection

 $hom(PX,C) \cong hom(X,BC),$

so the functor $P : sSet \rightarrow cat$ is left adjoint to the nerve functor.

Write *GPX* for the groupoid freely associated to the path category. The functor $X \mapsto GP(X)$ is left adjoint to the nerve functor

$$B: \mathbf{Gpd} \to s\mathbf{Set}.$$

Say that a functor $f : G \to H$ between groupoids is a **weak equivalence** if the induced map $f : BG \to BH$ is a weak equivalence of simplicial sets.

Observe that $sk_2(X) \subset X$ induces an isomorphism $P(sk_2(X)) \cong P(X)$, and hence an isomorphism

$$GP(\mathrm{sk}_2(X)) \cong GP(X).$$

Nerves of groupoids are Kan complexes, so f: $G \rightarrow H$ is a weak equivalence if and only if

1) f induces bijections

 $f: \hom(a,b) \to \hom(f(a), f(b))$

for all objects a, b of G, (i.e. f is full and faithful) and

2) for every object *c* of *H* there is a morphism $c \rightarrow f(a)$ in *H* for some object *a* of *G* (*f* is surjective on π_0).

Thus, *f* is a weak equivalence of groupoids if and only if it is a categorical equivalence (exercise).

Lemma 28.1. The functor $X \mapsto GP(X)$ takes weak equivalences of simplicial sets to weak equivalences of groupoids.

Proof. 1) Claim: The inclusion $\Lambda_k^n \subset \Delta^n$ induces an isomorphism $GP(\Lambda_k^n) \cong GP(\Delta^n)$ if $n \ge 2$.

This is obvious if $n \ge 3$, for then $sk_2(\Lambda_k^n) = sk_2(\Delta^n)$.

If n = 2, then $GP(\Lambda_k^2)$ has a contracting homotopy onto the vertex *k* (exercise). It follows that $GP(\Lambda_k^2) \to GP(\Delta^2)$ is an isomorphism.

If n = 1, then Λ_k^1 is a point, and $GP\Lambda_k^1$ is a strong deformation retraction of $GP(\Delta^1)$.

2) In all cases, $GP(\Lambda_k^n)$ is a strong deformation retraction of $GP(\Delta^n)$.

Strong deformation retractions are closed under pushout in the groupoid category (exercise).

Thus, every trivial cofibration $i : A \to B$ induces a weak equivalence $GP(A) \to GP(B)$, so every weak equivalence $X \to Y$ induces a weak equivalence $GP(X) \to GP(Y)$.

Suppose *Y* is a Kan complex, and recall that the fundamental groupoid $\pi(Y)$ for *Y* has objects given by the vertices of *Y*, morphisms given by homotopy classes of paths (1-simplices) $x \rightarrow y$ rel end points, and composition law defined by extending maps

 $(\beta, , \alpha) : \Lambda_1^2 \to Y$

to maps $\sigma : \Delta^2 \to Y : [d_1(\sigma)] = [\beta] \cdot [\alpha].$

There is a natural functor

$$GP(Y) \to \pi(Y)$$

which is the identity on vertices and takes a simplex $\Delta^1 \rightarrow Y$ to the corresponding homotopy class. This functor is an isomorphism of groupoids (exercise).

If *X* is a topological space then the combinatorial fundamental groupoid $\pi(S(X))$ coincides up to isomorphism with the usual fundamental groupoid $\pi(X)$ of *X*.

Corollary 28.2. Suppose $i: X \to Z$ is a weak equivalence, such that Z is a Kan complex.

Then i induces a weak equivalence of groupoids

 $GP(X) \xrightarrow{i_*} GP(Z) \xrightarrow{\cong} \pi(Z).$

There is a functor

$$u_X: GP(X) \to G(\Delta/X)$$

that takes a 1-simplex $\boldsymbol{\omega} : d_1(\boldsymbol{\omega}) \to d_0(\boldsymbol{\omega})$ to the morphism $(d^0)^{-1}(d^1)$ in $G(\Delta/X)$ defined by the diagram

This assignment takes 2-simplices to composition laws of $G(\Delta/X)$ [1, p.141].

There is a functor

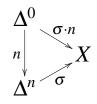
$$v_X: G(\Delta/X) \to GP(X)$$

which associates to each object $\sigma : \Delta^n \to X$ its last vertex

$$\Delta^0 \xrightarrow{n} \Delta^n \xrightarrow{\sigma} X.$$

Then any map between simplices of Δ/X is mapped to a canonically defined path between last vertices, and compositions of Δ/X determine 2-simplices relating last vertices.

Then $v_X u_X$ is the identity on GP(X) and the maps



determine a natural isomorphism (aka. homotopy)

$$u_X v_X \cong 1_{G(\Delta/X)}.$$

We have proved

Lemma 28.3. There is an equivalence of groupoids

$$u_X: GP(X) \leftrightarrows G(\Delta/X): v_X,$$

which is natural in simplicial sets X.

Here's a summary. Suppose X is a simplicial set with fibrant model $i : X \rightarrow Z$. Then there is a picture of natural equivalences

$$\begin{array}{ccc} GP(X) & \xrightarrow{i_{*}} & GP(Z) \xrightarrow{\cong} & \pi(Z) \\ & & u_{X} \downarrow \simeq & \simeq & \uparrow \varepsilon_{*} \\ G(\Delta/X) & & \pi(S|Z|) \xrightarrow{\cong} & \pi(|Z|) \end{array}$$

You need the Milnor theorem (Theorem 13.2) to show that ε_* is an equivalence.

I refer to any of the three equivalent models $\pi(Z)$, GP(X) or $G(\Delta/X)$ as the **fundamental groupoid** of *X*, and write $\pi(X)$ to denote any of these objects.

The adjunction map $X \rightarrow BGP(X)$ is often written

$$\eta: X \to B\pi(X).$$

Lemma 28.4. Suppose C is a small category.

Then there is an isomorphism

$$GP(BC) \cong G(C),$$

which is natural in C.

Proof. The adjunction functor $\varepsilon : P(BC) \to C$ is an isomorphism (exercise).

Remark: This result leads to a fast existence proof for the isomorphism

$$\pi_1(BQ\mathbf{M},0)\cong K_0(\mathbf{M})$$

(due to Quillen [3]) for an exact category \mathbf{M} , in algebraic *K*-theory.

It also follows that the adjunction functor

$$\varepsilon: GP(BG) \to G$$

is an isomorphism for all groupoids G.

Lemma 28.5. Suppose X is a Kan complex.

Then the adjunction map $\eta : X \to BGP(X)$ induces a bijection $\pi_0(X) \cong \pi_0(BGP(X))$ and isomorphisms

$$\pi_1(X,x) \xrightarrow{\cong} \pi_1(BGP(X),x)$$

for each vertex x of X.

Proof. This result is another corollary of Lemma 28.4.

There is a commutative diagram

$$\pi(X) \xrightarrow{\pi(\eta)} \pi(BGP(X))$$

$$\cong^{\uparrow} \qquad \uparrow^{\cong}$$

$$GP(X) \xrightarrow{GP(\eta)} GPBGP(X)$$

$$\xrightarrow{\cong \downarrow \varepsilon}$$

$$GP(X)$$

It follows that η induces an isomorphism

$$\pi(\eta): \pi(X) \xrightarrow{\cong} \pi(BGPX).$$

Finish by comparing path components and automorphism groups, respectively. \Box

Say that a morphism $p: G \rightarrow H$ of groupoids is a **fibration** if the induced map $BG \rightarrow BH$ is a fibration of simplicial sets.

Exercise: Show that a functor *p* is a fibration if and only if it has the **path lifting property** in the sense that all lifting problems

$$\begin{array}{c}
\mathbf{0} \longrightarrow G \\
\downarrow & \downarrow^{p} \\
\mathbf{1} \longrightarrow H
\end{array}$$

(involving functors) can be solved.

Cofibrations of groupoids are defined by a left lifting property in the usual way.

There is a **function complex** construction hom(G, H) for groupoids, with

 $\mathbf{hom}(G,H) := \mathbf{hom}(BG,BH).$

Lemma 28.6. 1) With these definitions, the category **Gpd** satisfies the axioms for a closed simplicial model category. This model structure is cofibrantly generated and right proper. 2) The functors

$$GP: s\mathbf{Set} \leftrightarrows \mathbf{Gpd}: B$$

form a Quillen adjunction.

Proof. Use Lemma 28.1 and its proof.

29 The Serre spectral sequence

Suppose $f: X \to Y$ is a map of simplicial sets, and consider all pullback diagrams

$$f^{-1}(\sigma) \longrightarrow X$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Delta^{n} \xrightarrow{\sigma} Y$$

defined by the simplices of Y.

We know (Lemma 23.1) that the bisimplicial set map

$$\bigsqcup_{\sigma_0\to\cdots\to\sigma_n}f^{-1}(\sigma_0)\to X$$

defines a (diagonal) weak equivalence

$$\operatorname{\underline{holim}}_{\sigma:\Delta^n\to Y}f^{-1}(\sigma)\to X$$

where the homotopy colimit defined on the simplex category Δ/Y .

The induced bisimplicial abelian group map

$$\bigoplus_{\sigma_0 \to \dots \to \sigma_n} \mathbb{Z}(f^{-1}(\sigma_0)) \to \mathbb{Z}(X)$$

is also a diagonal weak equivalence.

It follows (see Lemma 24.4) that there is a spectral sequence with

$$E_2^{p,q} = L(\varinjlim_{\sigma:\Delta^n \to Y})_p H_q(f^{-1}(\sigma)) \Rightarrow H_{p+q}(X,\mathbb{Z}),$$
(1)

often called the Grothendieck spectral sequence.

Making sense of the spectral sequence (1) usually requires more assumptions on the map f.

A) Suppose $f: X \to Y$ is a fibration and that *Y* is connected.

By properness, the maps

$$\theta_*: f^{-1}(\sigma) \to f^{-1}(\tau)$$

induced by simplex morphisms $\theta : \sigma \to \tau$ are weak equivalences, and the maps

$$\theta_*: H_k(f^{-1}(\sigma),\mathbb{Z}) \to H_k(f^{-1}(\tau),\mathbb{Z})$$

are isomorphisms.

It follows that the functors $H_k : \Delta/Y \to \mathbf{Ab}$ which are defined by

$$\boldsymbol{\sigma} \mapsto H_k(f^{-1}(\boldsymbol{\sigma}),\mathbb{Z})$$

factor through an action of the fundamental groupoid of *Y*, in the sense that these functors extend uniquely to functors

$$H_k: G(\Delta/Y) \to \mathbf{Ab}.$$

Suppose *x* is a vertex of *Y*, and write $F = p^{-1}(x)$ for the fibre of *f* over *x*.

Since *Y* is connected there is a morphism $\omega_{\sigma} : x \to \sigma$ in $G(\Delta/Y)$ for each object σ of the simplex category. The maps ω_{σ} , induce isomorphisms

$$\omega_{\sigma*}: H_k(F,\mathbb{Z}) \to H_k(f^{-1}(\sigma),\mathbb{Z}),$$

and hence define a functor

$$H_k(F,\mathbb{Z}): G(\Delta/Y) \to \mathbf{Ab}$$

which is naturally isomorphic to the functor H_k .

It follows that the spectral sequence (1) is isomorphic to

$$E_2^{p,q} = L(\varinjlim_{\Delta/Y})_p H_q(F,\mathbb{Z})) \Rightarrow H_{p+q}(X,\mathbb{Z})$$
(2)

under the assumption that $f: X \to Y$ is a fibration and *Y* is connected.

This is the general form of the **Serre spectral sequence**. This form of the Serre spectral sequence is used, but calculations often involve more assumptions.

B) The fundamental groupoid $G(\Delta/Y)$ acts trivially on the homology fibres $H_k(f^{-1}(\sigma),\mathbb{Z})$ of f if any two morphisms $\alpha,\beta: \sigma \to \tau$ in $G(\Delta/Y)$ induce the same map

$$\alpha_* = \beta_* : H_k(f^{-1}(\sigma), \mathbb{Z}) \to H_k(f^{-1}(\tau), \mathbb{Z})$$

for all $k \ge 0$.

This happens, for example, if the fundamental group (or groupoid) of *Y* is trivial.

In that case, all maps $x \to x$ in $G(\Delta/Y)$ induce the identity

$$H_k(F,\mathbb{Z}) \to H_k(F,\mathbb{Z})$$

for all $k \ge 0$, and there are isomorphisms (exercise)

$$L(\varinjlim)_p H_q(F,\mathbb{Z}) \cong H_p(B(\Delta/Y), H_q(F,\mathbb{Z}))$$
$$\cong H_p(Y, H_q(F,\mathbb{Z})).$$

Thus, we have the following:

Theorem 29.1. Suppose $f : X \to Y$ is a fibration with Y connected, and let F be the fibre of f over a vertex x of Y. Suppose the fundamental groupoid $G(\Delta/Y)$ of Y acts trivially on the homology fibres of f.

Then there is a spectral sequence with

$$E_2^{p,q} = H_p(Y, H_q(F, \mathbb{Z})) \Rightarrow H_{p+q}(X, \mathbb{Z}).$$
(3)

This spectral sequence is natural in all such fibre sequences.

The spectral sequence given by Theorem 29.1 is the standard form of the homology Serre spectral sequence for a fibration.

Integral coefficients were used in the statement of Theorem 29.1 for display purposes — \mathbb{Z} can be replaced by an arbitrary abelian group of coefficients.

Examples: Eilenberg-Mac Lanes spaces

Say that *X* is *n*-connected $(n \ge 0)$ if $\pi_0 X = *$, and $\pi_k(X, x) = 0$ for all $k \le n$ and all vertices *x*.

One often says that *X* is **simply connected** if it is 1-connected.

X is simply connected if and only if it has a trivial fundamental groupoid $\pi(X)$ (exercise).

Here's a general fact:

Lemma 29.2. Suppose X is a Kan complex, $n \ge 0$, and that X is n-connected. Pick a vertex $x \in X$.

Then X has a subcomplex Y such that $Y_k = \{x\}$ for $k \le n$, and Y is a strong deformation retract of X.

The proof is an exercise.

Corollary 29.3. Suppose X is n-connected. Then there are isomorphisms

$$H_k(X, \mathbb{Z}) \cong egin{cases} \mathbb{Z} & \textit{if } k = 0, \ 0 & \textit{if } 0 < k \leq n. \end{cases}$$

Example: There is a fibre sequence

$$K(\mathbb{Z},1) \to WK(\mathbb{Z},1) \to K(\mathbb{Z},2)$$
 (4)

such that $WK(\mathbb{Z}, 1) \simeq *$.

 $K(\mathbb{Z},2)$ is simply connected, so the Serre spectral sequence for (4) has the form

$$H_p(K(\mathbb{Z},2), H_q(K(\mathbb{Z},1),\mathbb{Z})) \Rightarrow H_{p+q}(*,\mathbb{Z}).$$

1) $H_1(K(\mathbb{Z},2), A) = 0$ by Corollary 29.3, so $E_2^{1,q} = 0$ for all q .

2) $K(\mathbb{Z}, 1) \simeq S^1$, so $E_2^{p,q} = 0$ for q > 1.

The quotient of the differential

$$d_2: E_2^{2,0} \to E_2^{0,1} \cong \mathbb{Z}$$

survives to $E_{\infty}^{0,1} \subset H_1(*) = 0$, so d_2 is surjective. The kernel of d_2 survives to $E_{\infty}^{2,0} = 0$, so d_2 is an isomorphism and

$$H_2(K(\mathbb{Z},2),\mathbb{Z})\cong\mathbb{Z}.$$

Inductively, we find isomorphisms

$$H_n(K(\mathbb{Z},2),\mathbb{Z}) \cong egin{cases} \mathbb{Z} & ext{if } n = 2k, \, k \ge 0, ext{ and } \ 0 & ext{if } n = 2k+1, \, k \ge 0. \end{cases}$$

Example: There is a fibre sequence

 $K(\mathbb{Z}/n,1) \to WK(\mathbb{Z}/n,1) \to K(\mathbb{Z}/n,2)$ (5)

such that $WK(\mathbb{Z}/n, 1) \simeq *$.

 $K(\mathbb{Z}/n,2)$ is simply connected, so the Serre spectral sequence for (5) has the form

$$H_p(K(\mathbb{Z}/n,2),H_q(K(\mathbb{Z}/n,1),\mathbb{Z})) \Rightarrow H_{p+q}(*,\mathbb{Z}).$$

We showed (see (6) of Section 25) that there are isomorphisms

$$H_p(B\mathbb{Z}/n,\mathbb{Z}) \cong egin{cases} \mathbb{Z} & p=0,\ 0 & ext{if } p=2n, n>0, ext{ and }\ \mathbb{Z}/n & ext{if } p=2n+1, n\geq 0. \end{cases}$$

There are isomorphisms

$$E_2^{1,q} \cong 0$$

for $q \ge 0$ and

$$H_2(K(\mathbb{Z}/n,2),\mathbb{Z}) \xrightarrow{d_2}_{\cong} H_1(K(\mathbb{Z}/n,1),\mathbb{Z}) \cong \mathbb{Z}/n.$$

 $E_2^{0,2} = H_2(K(\mathbb{Z}/n, 1), \mathbb{Z}) = 0$, so all differentials on $E_2^{3,0}$ are trivial. Thus, $E_2^{3,0} = E_{\infty}^{3,0} = 0$ because $H_3(*) = 0$, and

$$H_3(K(\mathbb{Z}/n,2),\mathbb{Z}) = E_2^{3,0} = 0.$$

We shall need the following later:

Lemma 29.4. *Suppose A is an abelian group. Then there is an isomorphism*

$$H_3(K(A,2),\mathbb{Z})\cong 0.$$

Proof. Suppose *X* and *Y* are connected spaces such that

$$H_i(X,\mathbb{Z})\cong 0\cong H_i(Y,\mathbb{Z})$$

for i = 1, 3. Then a Künneth formula argument (exercise — use Theorem 27.2) shows that $X \times Y$ has the same property.

The spaces $K(\mathbb{Z},2)$ and $K(\mathbb{Z}/n,2)$ are connected and have vanishing integral H_1 and H_3 , so the same holds for all K(A,2) if A is finitely generated. Every abelian group is a filtered colimit of its finitely generated subgroups, and the functors $H_*(,\mathbb{Z})$ preserve filtered colimits.

Lemma 29.5. Suppose A is an abelian group and that $n \ge 2$. Then there is an isomorphism

$$H_{n+1}(K(A,n),\mathbb{Z})\cong 0.$$

Proof. The proof is by induction on *n*. The case n = 2 follows from Lemma 29.4.

Consider the fibre sequence

$$K(A,n) \rightarrow WK(A,n) \rightarrow K(A,n+1),$$

with contractible total space WK(A, n).

 $E_2^{p,n+1-p} = 0$ for p < n+1 (the case p = 0 is the inductive assumption). All differentials defined on $E_2^{n+2,0}$ are therefore 0 maps, so

$$H_{n+2}(K(A, n+1), \mathbb{Z}) \cong E_2^{n+2,0} \cong E_{\infty}^{n+2,0} = 0,$$

since $E_{\infty}^{n+2,0}$ is a quotient of $H_{n+2}(*) = 0$.

30 The transgression

Suppose $p: X \to Y$ is a fibration with connected base space *Y*, and let $F = p^{-1}(*)$ be the fibre of *p* over some vertex * of *Y*. Suppose that *F* is connected.

Consider the bicomplex

$$\displaystyle{igoplus_{\sigma_0 o \dots o \sigma_n}} \mathbb{Z}(p^{-1}(\sigma_0))$$

defining the Serre spectral sequence for $H_*(X,\mathbb{Z})$, and write F_p for its horizontal filtration stages.

 $\mathbb{Z}(F)$ is a subobject of F_0 .

The differential $d_n: E_n^{n,0} \to E_n^{0,n-1}$ is called the **transgresssion**, and is represented by the picture

$$H_{n-1}F_{0} \xrightarrow{\cong} H_{n-1}(F_{0}/F_{-1}) \longrightarrow E_{n}^{0,n-1}$$

$$\downarrow^{i_{*}}_{\downarrow}$$

$$H_{n}(F_{n}/F_{n-1}) \xrightarrow{\partial} H_{n-1}F_{n-1}$$

Here,

$$E_n^{n,0} = \partial^{-1}(\operatorname{im}(i_*)) / \operatorname{im}(\operatorname{ker}(i_*)),$$

$$E_n^{0,n-1} = H_{n-1}(F_0) / \operatorname{ker}(i_*),$$

and $d_n([x]) = [y]$ where $i_*(y) = \partial(x)$.

One says (in old language) that [x] **transgresses** to [y] if $d_n([x]) = [y]$.

Note that

$$E_n^{0,n-1} \cong H_{n-1}(F_0)/\operatorname{ker}(i_*).$$

Given $[x] \in E_n^{n,0}$ and $z \in E_n^{0,n-1}$, then $d_n([x]) = z$ if and only if there is an element $y \in H_{n-1}(F_0)$ such that $i_*(y) = \partial(x)$ and $y \mapsto z$ under the composite

$$H_{n-1}(F_0) \xrightarrow{\cong} H_{n-1}(F_0/F_{-1}) \to E_n^{0,n-1}$$

The inclusion $j : \mathbb{Z}(F) \subset F_0$ induces a composite map

$$j': H_{n-1}(F) \to \varinjlim_{\sigma} H_{n-1}(F_{\sigma}) = E_2^{0,n-1} \twoheadrightarrow E_n^{0,n-1},$$

and j' is surjective since Y is connected (exercise).

Suppose $x \in H_n(F_n/F_{n-1})$ represents an element of $E_n^{n,0}$. Then $\partial(x) = i_*(y)$ for some $y \in H_{n-1}(F_0)$. Write *z* for the image of *y* in $E_n^{0,n-1}$.

Choose $v \in H_{n-1}(F)$ such that j'(v) = z. Then $j_*(v)$ and y have the same image in $E_n^{0,n-1}$ so $i_*j_*(z) = i_*(y)$ in $H_{n-1}(F_{n-1})$. This means that $\partial(x)$ is in the image of the map $H_{n-1}(F) \to H_{n-1}(F_{n-1})$.

It follows from the comparison of exact sequences

that *x* is in the image of the map

 $H_n(F_n/F) \rightarrow H_n(F_n/F_{n-1}).$

In particular, the induced map

$$H_n(F_n/F) \to E_n^{n,0}$$

is surjective.

Thus, $d_n(x) = y$ if and only if there is an element w of $H_n(F_n/F)$ such that w maps to x and y, respectively, under the maps

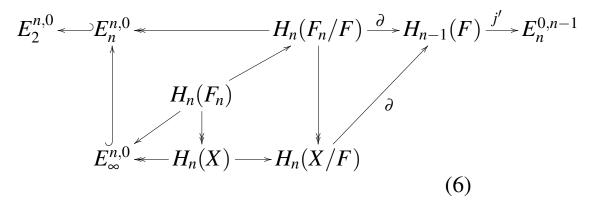
$$E_n^{n,0} \leftarrow H_n(F_n/F) \xrightarrow{\partial} H_{n-1}(F) \xrightarrow{j'} E_n^{0,n-1}.$$

 $H_n(F_n) \rightarrow H_n(X)$ is surjective, and $H_{n-1}(F_n) \rightarrow H_{n-1}(X)$ is an isomorphism, so a comparison of long exact sequences also shows that the map

$$H_n(F_n/F) \to H_n(X/F)$$

is surjective.

In summary, there is a commutative diagram



This diagram is natural in fibrations *p*.

There is a comparison of Serre spectral sequences arising from the diagram

$$\begin{array}{cccc}
X \xrightarrow{p} Y \\
p & & & \downarrow 1 \\
Y \xrightarrow{p} Y \xrightarrow{p} Y
\end{array}$$
(7)

All fibres of *p* are connected, so it follows that the map

$$p_*: E_2^{n,0} \to H_n(Y)$$

is an isomorphism.

Write $F_n(Y)$ and $E_r^{p,q}(Y)$ for the filtration and spectral sequences, respectively, for the total complex associated to the map $1: Y \to Y$.

There is a commutative diagram

$$E_2^{n,0} \longleftarrow E_n^{n,0}$$

$$\cong \downarrow \qquad \qquad \downarrow^{p_*}$$

$$E_2^{n,0}(Y) \xleftarrow{\cong} E_n^{n,0}(Y)$$

that is induced by the comparison (7).

It follows that $p_*: E_n^{n,0} \to E_n^{n,0}(Y)$ injective, and that $E_n^{n,0}$ is identified with a subobject of $H_n(Y/*)$ via the composite

$$E_n^{n,0} \stackrel{p_*}{\subset} E_n^{n,0}(Y) \stackrel{\cong}{\leftarrow} E_{\infty}^{n,0}(Y) \stackrel{\cong}{\leftarrow} H_n(Y) \stackrel{\cong}{\to} H_n(Y/*).$$

Lemma 30.1. Suppose $p: X \to Y$ is a fibration with connected base Y and connected fibre F over $* \in Y_0$. Suppose $x \in E_n^{n,0} \subset H_n(Y/*)$, $n \ge 1$, and that $y \in E_n^{0,n-1}$.

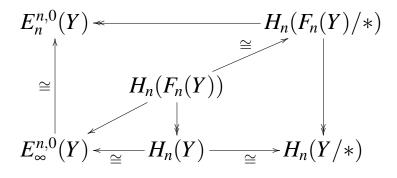
Then $d_n(x) = y$ if and only if there is an element $z \in H_n(X/F)$ such that $p_*(z) = x \in H_n(Y/*)$ and $z \mapsto y$ under the composite

$$H_n(X/F) \xrightarrow{\partial} H_{n-1}(F) \xrightarrow{j'} E_n^{0,n-1}.$$

Proof. Use the fact that the map

$$H_n(F_n/F) \to H_n(X/F)$$

is surjective, and chase elements through the comparison induced by (7) of the diagram (6) with the diagram



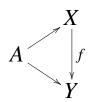
to prove the result.

31 The path-loop fibre sequence

We will use the model structure for the category s_* **Set** of pointed simplicial sets (aka. pointed spaces).

This model structure is easily constructed, since $s_*Set = */sSet$ is a slice category: a pointed simplicial set is a simplicial set map $* \to X$, and a pointed map is a diagram

In general, if \mathcal{M} is a closed model category, with object *A*, then the slice category A/\mathcal{M} has a closed model structure, for which a morphism



is a weak equivalence (resp. fibration, cofibration) if the map $f: X \rightarrow Y$ is a weak equivalence (resp. fibration, cofibration).

Exercise: 1) Verify the existence of the model structure for the slice category A/\mathcal{M} .

2) The dual assertion is the existence of a model structure for the category \mathcal{M}/B for all objects $B \in \mathcal{M}$. Formulate the result.

Warning: A map $g: X \to Y$ of pointed simplicial sets is a weak equivalence if and only if it induces a bijection $\pi_0(X) \cong \pi_0(Y)$ and isomorphisms

$$\pi_n(X,z)\cong\pi_n(Y,g(z))$$

for **all** base points $z \in X_0$.

The model structure for s_* **Set** is a closed simplicial model structure, with function complex **hom**_{*}(*X*, *Y*) defined by

$$\mathbf{hom}_*(X,Y)_n = \mathbf{hom}(X \wedge \Delta^n_+, Y),$$

where

$$\Delta^n_+ = \Delta^n \sqcup \{*\}$$

is the simplex Δ^n with a disjoint base point.

The **smash product** of pointed spaces *X*, *Y* is defined by

$$X \wedge Y = \frac{X \times Y}{X \vee Y},$$

where the wedge $X \lor Y$ or one-point union of Xand Y is the coproduct of X and Y in the pointed category. The **loop space** ΩX of a pointed Kan complex *X* is the pointed function complex

$$\Omega X = \mathbf{hom}_*(S^1, X),$$

where $S^1 = \Delta^1 / \partial \Delta^1$ is the simplicial circle with the obvious choice of base point.

Write Δ^1_* for the simplex Δ^1 , pointed by the vertex 1, and let

$$S^0 = \partial \Delta^1 = \{0, 1\},$$

pointed by 1. Then the cofibre sequence

$$S^0 \subset \Delta^1_* \xrightarrow{\pi} S^1 \tag{9}$$

of pointed spaces induces a fibre sequence

$$\Omega X = \hom_*(S^1, X) \to \hom_*(\Delta^1_*, X) \xrightarrow{p} \hom_*(S^0, X) \cong X$$
(10)

provided X is fibrant.

The pointed inclusion $\{1\} \subset \Delta^1_*$ is a weak equivalence, so the space

$$PX = \mathbf{hom}_*(\Delta^1_*, X)$$

is contractible if X is fibrant.

The simplicial set PX is the **pointed path space** for X, and the fibre sequence (10) is the **path-loop fibre sequence** for X.

It follows that, if X is fibrant and * denotes the base point for all spaces in the fibre sequence (10), then there are isomorphisms

$$\pi_n(X,*)\cong\pi_{n-1}(\Omega X,*)$$

for $n \ge 2$ and a bijection

$$\pi_1(X,*)\cong\pi_0(\Omega X).$$

Dually, one can take a pointed space Y and smash with the cofibre sequence (9) to form a natural cofibre sequence

$$Y \cong S^0 \wedge Y \to \Delta^1_* \wedge Y \to S^1 \wedge Y.$$

The space $\Delta^1_* \wedge Y$ is contractible (exercise) — it is the **pointed cone** for *Y*, and one writes

$$CX = X \wedge \Delta^1_*.$$

One often writes

$$\Sigma X = X \wedge S^1$$
.

This object is called the **suspension** of *X*, although saying this is a bit dangerous because there's more than one suspension construction for simplicial sets — see [1, III.5], [2, 4.4].

The suspension functor is left adjoint to the loop functor. More generally, there is a natural isomorphism

$$\mathbf{hom}_*(X \wedge K, Y) \cong \mathbf{hom}_*(K, \mathbf{hom}_*(X, Y))$$

of pointed simplicial sets (exercise).

Lemma 31.1. Suppose $f : X \to \Omega Y$ is a pointed map, and let $f' : \Sigma X \to Y$ denote its adjoint. Then there is a commutative diagram

$$X \longrightarrow CX \longrightarrow \Sigma X$$

$$f \downarrow \qquad \qquad \downarrow h(f) \qquad \qquad \downarrow f'$$

$$\Omega Y \longrightarrow PY \longrightarrow Y$$

Proof. We'll say how h(f) is defined. Checking that the diagram commutes is an exercise.

The pointed map (contracting homotopy)

$$h:\Delta^1_*\wedge\Delta^1_* o\Delta^1_*$$

is defined by the relations

$$\begin{array}{c} 0 \longrightarrow 1 \\ \downarrow & \downarrow \\ 1 \longrightarrow 1 \end{array}$$

Then the map

$$h(f): X \wedge \Delta^1_* \to \mathbf{hom}_*(\Delta^1_*, Y)$$

is adjoint to the composite

$$X \wedge \Delta^{1}_{*} \wedge \Delta^{1}_{*} \xrightarrow{1 \wedge h} X \wedge \Delta^{1}_{*} \xrightarrow{f \wedge 1} \hom_{*}(S^{1}, Y) \wedge \Delta^{1}_{*}$$
$$\xrightarrow{1 \wedge \pi} \hom_{*}(S^{1}, Y) \wedge S^{1} \xrightarrow{ev} Y.$$

Lemma 31.2. Suppose Y is a pointed Kan complex which is n-connected for $n \ge 1$.

Then the transgression d_i induces isomorphisms

$$H_i(Y) \cong H_{i-1}(\Omega Y)$$

for $2 \leq i \leq 2n$.

Proof. Y is at least simply connected, and the homotopy groups $\pi_i(Y, *)$ vanish for $i \leq n$.

The Serre spectral sequence for the path-loop fibration for *Y* has the form

$$E_2^{p,q} = H_p(Y, H_q(\Omega Y)) \Rightarrow H_{p+q}(PY).$$

The space ΩY is (n-1)-connected, so $E_2^{p,q} = 0$ for $0 < q \le n-1$ or 0 .

Thus, the first possible non-trivial group off the edges in the E_2 -term is in bidegree (n+1,n).

All differentials reduce total degree by 1 so

- the differentials $d_r: E_r^{i,0} \to E_r^{i-r,r-1}$ vanish for $i \leq 2n$ and r < i,
- the differentials $d_r: E_r^{r,i-r} \to E_r^{0,i-1}$ vanish for r < i and $i \le 2n$.

It follows that there is an exact sequence

$$0 \to E_{\infty}^{i,0} \to E_i^{i,0} \xrightarrow{d_i} E_i^{0,i-1} \to E_{\infty}^{0,i-1} \to 0$$

for $0 < i \le 2n$, and

$$E_i^{i,0} \cong E_2^{i,0} \cong H_i(Y)$$
, and
 $E_i^{0,i-1} \cong E_2^{0,i-1} \cong H_{i-1}(\Omega Y)$

for $0 < i \le 2n$.

All groups $E^{p,q}_{\infty}$ vanish for $(p,q) \neq (0,0)$.

Lemma 31.3. Suppose $f : X \to \Omega Y$ is a map of pointed simplicial sets, where Y is fibrant. Suppose Y is n-connected, where $n \ge 1$.

Then for $2 \le i \le 2n$ there is a commutative diagram

$$\begin{array}{ccc} H_i(\Sigma X) & \xrightarrow{\partial} & H_{i-1}(X) \\ f'_* & & \downarrow f_* \\ H_i(Y) & \xrightarrow{\cong} & H_{i-1}(\Omega Y) \end{array}$$
(11)

where $f': \Sigma X \to Y$ is the adjoint of f.

Proof. From the diagram of Lemma 31.1, there is a commutative diagram

After the standard identifications

$$E_i^{i,0} \cong H_i(Y/*), ext{ and } E_i^{0,i-1} \cong H_{i-1}(\Omega Y).$$

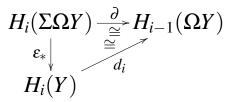
and given $x \in H_i(Y/*)$ and $y \in H_{i-1}(\Omega Y)$, Lemma 30.1 implies that $d_i(x) = y$ if there is a $z \in H_i(PY/\Omega Y)$ such that $p_*(z) = x$ and $\partial(z) = y$.

This is true for $f'_*(v)$ and $f_*(\partial(v))$ for $v \in H_i(\Sigma X)$, given the isomorphism in the diagram (12).

The map d_i is an isomorphism for $2 \le i \le 2n$ by Lemma 31.2. ∂ is always an isomorphism.

Corollary 31.4. Suppose Y is an n-connected pointed Kan complex with $n \ge 1$.

Then there is a commutative diagram



for $2 \le i \le 2n$.

The adjunction map $\varepsilon : \Sigma \Omega Y \to Y$ induces an isomorphism $H_i(\Sigma \Omega Y) \cong H_i(Y)$ for $2 \le i \le 2n$.

Proof. This is the case $f = 1_{\Omega Y}$ of Lemma 31.3.

If *Y* is a 1-connected pointed Kan complex, then ΩY is connected.

We can say more about the map ε_* . The following result implies that $\Sigma \Omega Y$ is simply connected, so the adjunction map ε in the statement of Corollary 31.4 induces isomorphisms

$$\varepsilon_*: H_i(\Sigma \Omega Y) \xrightarrow{\cong} H_i(Y)$$

for $0 \le i \le 2n$.

Lemma 31.5. Suppose X is a connected pointed simplicial set.

Then the fundamental groupoid $\pi(\Sigma X)$ is a trivial groupoid.

Proof. The proof is an exercise.

Use the assumption that *X* is connected to show that the functor $\pi(CX) \rightarrow \pi(\Sigma X)$ is full. \Box

References

- [1] P. G. Goerss and J. F. Jardine. *Simplicial Homotopy Theory*, volume 174 of *Progress in Mathematics*. Birkhäuser Verlag, Basel, 1999.
- [2] J. F. Jardine. Generalized Étale Cohomology Theories, volume 146 of Progress in Mathematics. Birkhäuser Verlag, Basel, 1997.
- [3] Daniel Quillen. Higher algebraic K-theory. I. In Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pages 85– 147. Lecture Notes in Math., Vol. 341. Springer, Berlin, 1973.