Lecture 12: Cohomology: an introduction

Contents

35	Cohomology	1
36	Cup products	9
37	Cohomology of cyclic groups	13

35 Cohomology

Suppose that $C \in Ch_+$ is an ordinary chain complex, and that *A* is an abelian group.

There is a *cochain complex* hom(C,A) with

 $\operatorname{hom}(C,A)^n = \operatorname{hom}(C_n,A)$

and *coboundary*

 δ : hom $(C_n, A) \rightarrow$ hom (C_{n+1}, A)

defined by precomposition with $\partial : C_{n+1} \to C_n$.

Generally, a **cochain complex** is an unbounded complex which is concentrated in negative degrees. See Section 1.

We use classical notation for hom(C,A): the corresponding complex in negative degrees is specified by

$$\hom(C,A)_{-n} = \hom(C_n,A).$$

The **cohomology group** $H^n \operatorname{hom}(C, A)$ is specified by

$$H^{n}\operatorname{hom}(C,A) := \frac{\operatorname{ker}(\delta : \operatorname{hom}(C_{n},A) \to \operatorname{hom}(C_{n+1},A))}{\operatorname{im}(\delta : \operatorname{hom}(C_{n-1},A) \to \operatorname{hom}(C_{n},A))}$$

This group coincides with the group $H_{-n} \hom(C, A)$ for the complex in negative degrees.

Exercise: Show that there is a natural isomorphism

 $H^n \operatorname{hom}(C,A) \cong \pi(C,A(n))$

where A(n) is the chain complex consisting of the group A concentrated in degree n, and $\pi(C,A(n))$ is chain homotopy classes of maps.

Example: If X is a space, then the cohomology group $H^n(X, A)$ is defined by

 $H^{n}(X,A) = H^{n} \hom(\mathbb{Z}(X),A) \cong \pi(\mathbb{Z}(X),A(n)),$

where $\mathbb{Z}(X)$ is the Moore complex for the free simplicial abelian group $\mathbb{Z}(X)$ on *X*.

Here is why the classical definition of $H^n(X,A)$ is not silly: all ordinary chain complexes are fibrant, and the Moore complex $\mathbb{Z}(X)$ is free in each degree, hence cofibrant, and so there is an isomorphism

$$\pi(\mathbb{Z}(X), A(n)) \cong [\mathbb{Z}(X), A(n)],$$

where the square brackets determine morphisms in the homotopy category for the standard model structure on Ch_+ (Theorem 3.1).

The normalized chain complex $N\mathbb{Z}(X)$ is naturally weakly equivalent to the Moore complex $\mathbb{Z}(X)$, and there are natural isomorphisms

$$[\mathbb{Z}(X), A(n)] \cong [N\mathbb{Z}(X), A(n)]$$

$$\cong [\mathbb{Z}(X), K(A, n)] \text{ (Dold-Kan correspondence)}$$

$$\cong [X, K(A, n)] \text{ (Quillen adjunction)}$$

Here, [X, K(A, n)] is morphisms in the homotopy category for simplicial sets. We have proved the following:

Theorem 35.1. There is a natural isomorphism

 $H^n(X,A) \cong [X,K(A,n)]$

for all simplicial sets X and abelian groups A.

In other words, $H^n(X,A)$ is representable by the Eilenberg-Mac Lane space K(A,n) in the homotopy category.

Suppose that *C* is a chain complex and *A* is an abelian group. Define the **cohomology groups** (or hypercohomology groups) $H^n(C,A)$ of *C* with coefficients in *A* by

$$H^n(C,A) = [C,A(n)].$$

This is the derived functor definition of cohomology.

Example: Suppose that *A* and *B* are abelian groups. We compute the groups $H^n(A(0), B) = [A(0), B(n)]$. This is done by replacing A(0) by a cofibrant model. There is a short exact sequence

$$0 \to F_1 \to F_0 \to A \to 0$$

with F_i free abelian. The chain complex F_* given by

 $\cdots \rightarrow 0 \rightarrow 0 \rightarrow F_1 \rightarrow F_0$

is cofibrant, and the chain map $F_* \to A(0)$ is a weak equivalence, hence a cofibrant replacement for the complex A(0).

It follows that there are isomorphisms

$$[A(0),B(n)] \cong [F_*,B(n)] \cong \pi(F_*,B(n)) = H^n \operatorname{hom}(F_*,A),$$

and there is an exact sequence

$$0 \to H^0 \hom(F_*, B) \to \hom(F_0, B) \to \hom(F_1, B)$$
$$\to H^1 \hom(F_*, B) \to 0.$$

It follows that

$$[A(0), B(n)] = H^n \hom(F_*, B) = \begin{cases} \hom(A, B) & \text{if } n = 0, \\ \operatorname{Ext}^1(A, B) & \text{if } n = 1, \\ 0 & \text{if } n > 1. \end{cases}$$

Similarly, there are isomorphisms

$$[A(p), B(n)] = \begin{cases} \hom(A, B) & \text{if } n = p, \\ \operatorname{Ext}^{1}(A, B) & \text{if } n = p + 1, \\ 0 & \text{if } n > p + 1 \text{ or } n < p. \end{cases}$$

Most generally, for ordinary chain complexes, we have the following:

Theorem 35.2. *Suppose that C is a chain complex, and B is an abelian group.*

There is a short exact sequence

$$0 \to \operatorname{Ext}^{1}(H_{n-1}(C), B) \to H^{n}(C, B) \xrightarrow{p} \operatorname{hom}(H_{n}(C), B) \to 0.$$
(1)

The map p is natural in C and B. This sequence is split, with a non-natural splitting.

Theorem 35.2 is the **universal coefficients theorem** for cohomology.

Proof. Let $Z_p = \ker(\partial : C_p \to C_{p-1})$. Pick a surjective homomorphism, $F_0^p \to Z_p$ with F_0^p free, and F_1^p be the kernel of the (surjective) composite

$$F_0^p \to Z_p \to H_p(C).$$

Then F_1^p is free, and there is a map $F_1^p \to C_{p+1}$

such that the diagram

commutes. Write ϕ_p for the resulting chain map $F^p_*[-p] \to C$. Then the sum

$$\phi: \bigoplus_{p \ge 0} F^p_*[-p] \to C$$

(ϕ_n on the n^{th} summand) is a cofibrant replacement for the complex *C*.

At the same time, we have cofibrant resolutions $F^p_*[-p] \rightarrow H_p(C)(p)$, for $p \ge 0$.

It follows that there are isomorphisms

$$[C, B(n)] \cong [\bigoplus_{p \ge 0} H_p(C)(p), B(n)]$$
$$\cong \prod_{p \ge 0} [H_p(C)(p), B(n)]$$
$$\cong \hom(H_n(C), B) \oplus \operatorname{Ext}^1(H_{n-1}(C), B)$$

The induced map $p : [C, B(n)] \to \hom(H_p(C), B)$ is defined by restricting a chain map $F \to B(n)$ to the group homomorphism $Z_n(F) \subset F_n \to B$, where $F \to C$ is a cofibrant model of *C*. Recall that there are various models for the space K(A,n) in simplicial abelian groups. These include the object $\Gamma A(n)$ arising from the Dold-Kan correspondence, and the space

$$A \otimes S^n \cong A \otimes (S^1)^{\otimes n}$$

where

$$S^n = (S^1)^{\wedge n} = S^1 \wedge \dots \wedge S^1$$
 (*n* smash factors).

In general, if *K* is a pointed simplicial set and *A* is a simplicial abelian group, we write

$$A \otimes K = A \otimes \tilde{\mathbb{Z}}(K),$$

where $\tilde{\mathbb{Z}}(K)$ is the reduced Moore complex for *K*.

Suppose given a short exact sequence

$$0 \to A \xrightarrow{\iota} B \xrightarrow{p} C \to 0 \tag{2}$$

of simplicial abelian groups.

The diagram

$$A \longrightarrow A \otimes \Delta^{1}_{*}$$

$$\downarrow \qquad \qquad \downarrow^{0}$$

$$B \longrightarrow C$$

is homotopy cocartesian, so there is a natural map $\delta: C \to A \otimes S^1$ in the homotopy category. Pro-

ceeding inductively gives the **Puppe sequence**

$$0 \to A \xrightarrow{i} B \xrightarrow{p} C \xrightarrow{\delta} A \otimes S^1 \xrightarrow{i \otimes 1} B \otimes S^1 \xrightarrow{p \otimes 1} \dots (3)$$

and a long exact sequence

$$[E,A] \to [E,B] \to [E,C] \xrightarrow{\delta} [E,A \otimes S^1] \to [E,B \otimes S^1] \to \dots$$

or equivalently

$$H^{0}(E,A) \to H^{0}(E,B) \to H^{0}(E,C) \xrightarrow{\delta} H^{1}(E,A) \to H^{1}(E,B) \to \dots$$
(4)

in cohomology, for arbitrary simplicial abelian groups (or chain complexes) E.

The morphisms δ is the long exact sequence (4) are called **boundary** maps.

Specializing to $E = \mathbb{Z}(X)$ for a space X and a short exact sequence of groups (2) gives the standard long exact sequence

$$H^{0}(X,A) \to H^{0}(X,B) \to H^{0}(X,C) \xrightarrow{\delta} H^{1}(X,A) \to H^{1}(X,B) \to \dots$$
(5)

in cohomology for the space *X*.

There are other ways of constructing the long exact sequence (5) — exercise.

36 Cup products

Lemma 36.1. The twist automorphism

 $\tau: S^1 \wedge S^1 \xrightarrow{\cong} S^1 \wedge S^1, \ x \wedge y \mapsto y \wedge x.$

induces

$$\tau_* = \times (-1) : H_2(S^1 \wedge S^1, \mathbb{Z}) \to H_2(S^1 \wedge S^1, \mathbb{Z}).$$

Proof. There are two non-degenerate 2-simplices σ_1, σ_2 in $S^1 \wedge S^1$ and a single non-degenerate 1-simplex $\gamma = d_1 \sigma_1 = d_1 \sigma_2$.

It follows that the normalized chain complex $N\mathbb{Z}(S^1 \wedge S^1)$ has the form

 $\cdots \to 0 \to \mathbb{Z} \oplus \mathbb{Z} \xrightarrow{\nabla} \mathbb{Z} \xrightarrow{0} \mathbb{Z}$

where $\nabla(m,n) = m + n$. Thus, $H_2(S^1 \wedge S^1, \mathbb{Z}) \cong \mathbb{Z}$, generated by $\sigma_1 - \sigma_2$.

The twist τ satisfies $\tau(\sigma_1) = \sigma_2$ and fixes their common face γ .

Thus,
$$\tau_*(\sigma_1 - \sigma_2) = \sigma_2 - \sigma_1$$
.

Corollary 36.2. Suppose that $\sigma \in \Sigma_n \operatorname{acts} \operatorname{on} (S^1)^{\wedge n}$ by shuffling smash factors.

Then the induced automorphism

 $\sigma_*: H_n((S^1)^{\wedge n}, \mathbb{Z}) \to H_n((S^1)^{\wedge n}, \mathbb{Z}) \cong \mathbb{Z}$

is multiplication by the sign of σ .

Explicitly, the action of σ on $(S^1)^{\wedge n}$ is specified by

$$\sigma(x_1\wedge\cdots\wedge x_n)=x_{\sigma(1)}\wedge\cdots\wedge x_{\sigma(n)}.$$

Suppose that *A* and *B* are abelian groups. There are natural isomorphisms of simplicial abelian groups

$$K(A,n) \otimes K(B,m) \xrightarrow{\cong} A \otimes B \otimes (S^1)^{\otimes (n+m)} = K(A \otimes B, n+m)$$

where the displayed isomorphism

$$(S^1)^{\otimes n} \otimes A \otimes (S^1)^{\otimes m} \otimes B \xrightarrow{\cong} (S^1)^{\otimes n} \otimes (S^1)^{\otimes m} \otimes A \otimes B$$

is defined by permuting the middle tensor factors.

Suppose that *X* and *Y* are simplicial sets, and suppose that $f: X \to K(A, n)$ and $g: Y \to K(B, m)$ are simplicial set maps.

There is a natural map

$$X \times Y \xrightarrow{\eta} \mathbb{Z}(X) \otimes \mathbb{Z}(Y),$$

which is defined by $(x, y) \mapsto x \otimes y$.

The composite

 $X \times Y \xrightarrow{\eta} \mathbb{Z}(X) \otimes \mathbb{Z}(Y) \xrightarrow{f_* \otimes g_*} K(A, n) \otimes K(B, m) \cong K(A \otimes B, n+m)$ represents an element of $H^{n+m}(X \times Y, A \otimes B)$. Warning: The isomorphism above has the form

 $a \otimes (x_1 \wedge \cdots \wedge x_n) \otimes b \otimes (y_1 \wedge \cdots \wedge y_m)$ $\mapsto a \otimes b \otimes (x_1 \wedge \cdots \wedge x_n \wedge y_1 \wedge \cdots \wedge y_m).$

Do **not** shuffle smash factors.

We have defined a pairing

$$\cup: H^n(X,A) \otimes H^m(Y,B) \to H^{n+m}(X \times Y,A \otimes B),$$

called the external cup product.

If *R* is a unitary ring, then the ring multiplication $m : R \otimes R \rightarrow R$ and the diagonal $\Delta : X \rightarrow X \times X$ together induce a composite

 $H^{n}(X,R) \otimes H^{m}(X,R) \xrightarrow{\cup} H^{n+m}(X \times X, R \otimes R) \xrightarrow{\Delta^{*} \cdot m_{*}} H^{n+m}(X,R)$

which is the cup product

 $\cup: H^n(X,R) \otimes H^m(X,R) \to H^{n+m}(X,R)$

for $H^*(X, R)$.

Exercise: Show that the cup product gives the cohomology $H^*(X, R)$ the structure of a graded commutative ring with identity. This ring structure is natural in spaces X and rings R.

The graded commutativity follows from Corollary 36.2.

Suppose that we have a short exact sequence of simplicial abelian groups

$$0 \to A \to B \to C \to 0$$

and that *D* is a flat simplicial abelian group in the sense that the functor $? \otimes D$ is exact. The sequence

$$0 \to A \otimes D \xrightarrow{i \otimes 1} B \otimes D \xrightarrow{p \otimes 1} C \otimes D \xrightarrow{\delta \otimes 1} A \otimes S^1 \otimes D$$
$$\xrightarrow{i \otimes 1} B \otimes S^1 \otimes D \xrightarrow{p \otimes 1} \dots$$

is equivalent to the Puppe sequence for the short exact sequence

$$0 \to A \otimes D \to B \otimes D \to C \otimes D \to 0$$

It follows that there is a commutative diagram

In particular, if $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is a short exact sequence of *R*-modules and *X* is a space, then there is a commutative diagram

$$\begin{array}{ccc} H^{p}(X,C) \otimes H^{q}(X,R) & \stackrel{\cup}{\longrightarrow} H^{p+q}(X,C) & (6) \\ \delta \otimes 1 & & & & \downarrow \delta \\ H^{p+1}(X,A) \otimes H^{q}(X,R) & \stackrel{\longrightarrow}{\longrightarrow} H^{p+q+1}(X,A) \end{array}$$

It an exercise to show that the diagram

$$\begin{array}{ccc}
H^{q}(X,R) \otimes H^{p}(X,C) & \stackrel{\cup}{\longrightarrow} H^{q+p}(X,C) & (7) \\
& 1 \otimes \delta & & \downarrow^{(-1)^{q}\delta} \\
H^{q}(X,R) \otimes H^{p+1}(X,A) & \stackrel{\longrightarrow}{\longrightarrow} H^{q+p+1}(X,A)
\end{array}$$

commutes.

The diagrams (6) and (7) are cup product formulas for the boundary homomorphism.

37 Cohomology of cyclic groups

Suppose that ℓ is a prime $\neq 2$. What follows is directly applicable to cyclic groups of ℓ -primary roots of unity in fields.

We shall sketch the proof of the following:

Theorem 37.1. There is a ring isomorphism

 $H^*(B\mathbb{Z}/\ell^n,\mathbb{Z}/\ell)\cong\mathbb{Z}/\ell[x]\otimes\Lambda(y)$

where |x| = 2 *and* |y| = 1.

We write |z| = n for $z \in H^n(X, A)$. |z| is the **degree** of *z*.

In the statement of Theorem 37.1, $x \in H^2(B\mathbb{Z}/\ell^n, \mathbb{Z}/\ell)$ and $y \in H^1(B\mathbb{Z}/\ell^n, \mathbb{Z}/\ell)$. $\mathbb{Z}/\ell[x]$ is a graded polynomial ring with generator *x* in degree 2, and $\Lambda(y)$ is an exterior algebra with generator *y* in degree 1.

Fact: If
$$z \in H^{2k+1}(X, \mathbb{Z}/\ell)$$
 and $\ell \neq 2$, then
 $z \cdot z = (-1)^{(2k+1)(2k+1)} z \cdot z = (-1)z \cdot z$,

so that $2(z \cdot z) = 0$, and $z \cdot z = 0$.

We know, from the Example at the end of Section 25, that there are isomorphisms

$$H_p(B\mathbb{Z}/\ell^n,\mathbb{Z})=egin{cases} \mathbb{Z} & ext{if } p=0,\ \mathbb{Z}/\ell^n & ext{if } p=2k+1, k\geq 0,\ 0 & ext{if } p=2k, k>0. \end{cases}$$

It follows (exercise) that there are isomorphisms

 $H_p(B\mathbb{Z}/\ell^n,\mathbb{Z}/\ell)\cong\mathbb{Z}/\ell, \text{ for } p\geq 0.$

There is an isomorphism

 $H^p(B\mathbb{Z}/\ell^n, \mathbb{Z}/\ell) \cong \hom(H_p(B\mathbb{Z}/\ell^n, \mathbb{Z}/\ell), \mathbb{Z}/\ell) \cong \mathbb{Z}/\ell$ for $p \ge 0$ (Theorem 35.2).

1) $x \in H^2(B\mathbb{Z}/\ell^n, \mathbb{Z}/\ell)$ is dual to the generator of the ℓ -torsion subgroup of

$$\mathbb{Z}/\ell^n = H_1(B\mathbb{Z}/\ell^n,\mathbb{Z}).$$

2) $y \in H^1(B\mathbb{Z}/\ell^n, \mathbb{Z}/\ell)$ is dual to the generator of $\mathbb{Z}/\ell \cong \mathbb{Z}/\ell^n \otimes \mathbb{Z}/\ell = H_1(B\mathbb{Z}/\ell^n, \mathbb{Z}/\ell).$ Here's an integral coefficients calculation:

Theorem 37.2. There is a ring isomorphism

 $H^*(B\mathbb{Z}/\ell^n,\mathbb{Z})\cong\mathbb{Z}[x]/(\ell^n\cdot x)$

where |x| = 2.

This result appears in a book of Snaith, [1]. The argument uses explicit cocycles, with the Alexander-Whitney map ((7) of Section 26).

We can verify the underlying additive statement, namely that

$$H^p(B\mathbb{Z}/\ell^n,\mathbb{Z})\congegin{cases} \mathbb{Z} & ext{if } p=0,\ \mathbb{Z}/\ell^n & ext{if } p=2k,\,k>0,\ 0 & ext{if } p ext{ odd} \end{cases}$$

Apply hom $(,\mathbb{Z})$ to the exact sequence

$$0 \to \mathbb{Z} \xrightarrow{\ell^n} \mathbb{Z} \to \mathbb{Z}/\ell^n \to 0$$

to get the exact sequence

 $0 \to \hom(\mathbb{Z}/\ell^n, \mathbb{Z}) \to \mathbb{Z} \xrightarrow{\ell^n} \mathbb{Z} \to \operatorname{Ext}^1(\mathbb{Z}/\ell^n, \mathbb{Z}) \to 0$ to show that $\hom(\mathbb{Z}/\ell^n, \mathbb{Z}) = 0$ (we knew this) and $\operatorname{Ext}^1(\mathbb{Z}/\ell^n, \mathbb{Z}) \cong \mathbb{Z}/\ell^n$.

Then

$$H^{2k}(B\mathbb{Z}/\ell^n,\mathbb{Z})\cong\operatorname{Ext}^1(H_{2k-1}(B\mathbb{Z}/\ell^n,\mathbb{Z}),\mathbb{Z})\cong\mathbb{Z}/\ell^n$$

for k > 0 and $H^{2k+1}(B\mathbb{Z}/\ell^n, \mathbb{Z}) \cong \hom(H_{2k+1}(B\mathbb{Z}/\ell^n, \mathbb{Z}), \mathbb{Z}) = 0$ for $k \ge 0$.

Proof of Theorem 37.1. The exact sequence

$$0 \to \mathbb{Z} \xrightarrow{\times \ell} \mathbb{Z} \to \mathbb{Z}/\ell \to 0$$

is an exact sequence of \mathbb{Z} -modules, so that the Puppe sequence

 $0 \to K(\mathbb{Z},0) \xrightarrow{\times \ell} K(\mathbb{Z},0) \to K(\mathbb{Z}/\ell,0) \xrightarrow{\delta} K(\mathbb{Z},1) \xrightarrow{\times \ell} K(\mathbb{Z},1) \to \dots$ has an action by $K(\mathbb{Z},2)$.

It follows that there are commutative diagrams

$$\begin{array}{c} H^{p}(B\mathbb{Z}/\ell^{n},\mathbb{Z}/\ell) \xrightarrow{\delta} H^{p+1}(B\mathbb{Z}/\ell^{n},\mathbb{Z}) \xrightarrow{\times \ell} H^{p+1}(B\mathbb{Z}/\ell^{n},\mathbb{Z}) \\ & \stackrel{\cdot x_{\downarrow}}{\longrightarrow} U^{x_{\downarrow}} \cong & \stackrel{\cdot x_{\downarrow}}{\longrightarrow} U^{p+2}(B\mathbb{Z}/\ell^{n},\mathbb{Z}/\ell) \xrightarrow{\delta} H^{p+3}(B\mathbb{Z}/\ell^{n},\mathbb{Z}) \xrightarrow{\times \ell} H^{p+3}(B\mathbb{Z}/\ell^{n},\mathbb{Z}) \\ & \text{for } p > 0. \end{array}$$

Thus, the cup product map

$$\cdot x: H^p(B\mathbb{Z}/\ell^n,\mathbb{Z}) \to H^{p+2}(B\mathbb{Z}/\ell^n,\mathbb{Z}/\ell)$$

is an isomorphism for all *p*.

Finally, the map

$$H^2(B\mathbb{Z}/\ell^n,\mathbb{Z}) \to H^2(B\mathbb{Z}/\ell^n,\mathbb{Z}/\ell)$$

is surjective, so the generator $x \in H^2(B\mathbb{Z}/\ell^n, \mathbb{Z})$ maps to a generator x of $H^2(B\mathbb{Z}/\ell^n, \mathbb{Z}/\ell)$.

The ring homomorphism

$$\mathbb{Z}/\ell[x] \otimes \Lambda(y) \to H^*(B\mathbb{Z}/\ell^n, \mathbb{Z}/\ell)$$

defined by $x \in H^2(B\mathbb{Z}/\ell^n, \mathbb{Z}/\ell)$ and a generator $y \in H^1(B\mathbb{Z}/\ell^n, \mathbb{Z}/\ell)$ is then an isomorphism of \mathbb{Z}/ℓ -vector spaces in all degrees.

References

 Victor P. Snaith. *Topological methods in Galois representation theory*. Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons Inc., New York, 1989. A Wiley-Interscience Publication.