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35 Cohomology

Suppose that C € Ch, is an ordinary chain com-
plex, and that A is an abelian group.

There is a cochain complex hom(C,A) with
hom(C,A)" =hom(C,,A)
and coboundary
0 :hom(C,,A) — hom(C,,,A)
defined by precomposition with d : C,.; — C,.

Generally, a cochain complex is an unbounded
complex which is concentrated in negative degrees.
See Section 1.

We use classical notation for hom(C,A): the cor-
responding complex in negative degrees is speci-
fied by

hom(C,A)_,, = hom(C,,A).
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The cohomology group H"hom(C,A) is specified
by

ker(S : hom(C,,A) — hom(C,.,A
H”hom(C,A)::_er(5 om(C,,A) — hom(C,1,A)

im(6 : hom(C,_,A) — hom(C,,A)
This group coincides with the group H_,,hom(C,A)
for the complex in negative degrees.

Exercise: Show that there is a natural isomorphism
H"hom(C,A) = n(C,A(n))

where A(n) is the chain complex consisting of the
group A concentrated in degree n, and 7w (C,A(n))
is chain homotopy classes of maps.

Example: If X is a space, then the cohomology
group H"(X,A) is defined by

H"(X,A) = H"hom(Z(X),A) = n(Z(X),A(n)),
where Z(X) is the Moore complex for the free
simplicial abelian group Z(X) on X.

Here is why the classical definition of H"(X,A) is
not silly: all ordinary chain complexes are fibrant,
and the Moore complex Z(X) is free in each de-
gree, hence cofibrant, and so there is an isomor-
phism

n(Z(X),A(n)) = [Z(X),A(n)],
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where the square brackets determine morphisms
in the homotopy category for the standard model
structure on Ch, (Theorem 3.1).

The normalized chain complex NZ(X) is naturally
weakly equivalent to the Moore complex Z(X),
and there are natural isomorphisms

Z(X), A(n)] 2 NZ(X),A(n)]
= |Z(X),K(A,n)] (Dold-Kan correspondence)
= [X,K(A,n)] (Quillen adjunction)

Here, [X,K(A,n)| is morphisms in the homotopy

category for simplicial sets. We have proved the
following:

Theorem 35.1. There is a natural isomorphism
H"(X,A) = [X,K(A,n)]
for all simplicial sets X and abelian groups A.

In other words, H"(X,A) is representable by the
Eilenberg-Mac Lane space K(A,n) in the homo-
topy category.

Suppose that C is a chain complex and A is an
abelian group. Define the cohomology groups (or
hypercohomology groups) H"(C,A) of C with co-
efficients in A by

H"(C,A) = [C,A(n)].
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This is the derived functor definition of cohomol-
ogy.
Example: Suppose that A and B are abelian groups.
We compute the groups H"(A(0),B) = [A(0), B(n)].
This is done by replacing A(0) by a cofibrant model.
There is a short exact sequence
O—-FH—>FK—A—0
with F; free abelian. The chain complex F, given
by
o= 0=0—=FN— kK

is cofibrant, and the chain map F, — A(0) is a
weak equivalence, hence a cofibrant replacement
for the complex A(0).

It follows that there are isomorphisms
[A(0), B(n)] = [F.., B(n)] 2 (F,,B(n)) = H" hom(F, A),
and there is an exact sequence
0 — Hhom(F,,B) —hom(Fy,B) — hom(F;,B)
— H'hom(F,,B) — 0.

It follows that
)

hom(A,B) ifn=0,
[A(0),B(n)] = H"hom(F,,B) = ¢ Ext'(A,B) ifn=1,
0 if n > 1.
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Similarly, there are isomorphisms
(
hom(A,B) ifn=p,
A(p),B(n)] = Ext(4,B) ifn=p+1,
0 ifn>p+1lorn<p.

\
Most generally, for ordinary chain complexes, we
have the following:

Theorem 35.2. Suppose that C is a chain complex,
and B is an abelian group.

There is a short exact sequence

0 — Ext!'(H,_,(C),B) — H"(C,B) £ hom(H,(C),B) — 0.
(1)

The map p is natural in C and B. This sequence is
split, with a non-natural splitting.

Theorem 35.2 1s the universal coefficients theo-
rem for cohomology.

Proof. Let Z, =ker(d : C, — C,_1). Pick a surjec-
tive homomorphism, F — Z, with F{ free, and
F be the kernel of the (surjective) composite

F —Z,— H,(C).

Then F/ is free, and there is a map F/ — C,



such that the diagram
F Gy

| K

F 0p ZP CP

commutes. Write ¢, for the resulting chain map
F'[—p] — C. Then the sum

(P:@ F*p[_p] —C
p=>0
(¢, on the n'" summand) is a cofibrant replacement
for the complex C.

At the same time, we have cofibrant resolutions
Ff[—p] — H,(C)(p), for p > 0.

It follows that there are isomorphisms

[C,B(n)] = [ED H,(C)(p),B(n)]
= 1#,(C)(). B
~ hom(H,(C),B) & Ext' (H,_1(C),B).

The induced map p : [C,B(n)] — hom(H,(C),B)
is defined by restricting a chain map F — B(n) to
the group homomorphism Z,(F) C F, — B, where
F — C 1s a cofibrant model of C. []



Recall that there are various models for the space
K(A,n) in simplicial abelian groups. These in-
clude the object I'A(n) arising from the Dold-Kan
correspondence, and the space

where
"= (SHM=8"A---AS" (n smash factors).

In general, if K is a pointed simplicial set and A is
a simplicial abelian group, we write

ARK =ARZ(K),

where Z(K) is the reduced Moore complex for K.

Suppose given a short exact sequence
0—-ALBLC—0 )

of simplicial abelian groups.

The diagram
A—ARA!

.

B——C
i1s homotopy cocartesian, so there is a natural map
6:C— A®S' in the homotopy category. Pro-

7



ceeding inductively gives the Puppe sequence
0+A5BLCSHAS L Bos' 225 .. (3)

and a long exact sequence

[E,A]— [E,B] = [E.C] > [E,A®S'] — [E,B®S'] — ...

or equivalently

H(E,A) — H°(E,B) — H(E,C) > H'(E,A) - H'(E,B) — ...
(4)

in cohomology, for arbitrary simplicial abelian groups
(or chain complexes) E.

The morphisms 6 is the long exact sequence (4)
are called boundary maps.

Specializing to E = Z(X ) for a space X and a short
exact sequence of groups (2) gives the standard
long exact sequence

H°(X,A) — H(X,B) — H'(X,C) > H'(X,A) > H'(X,B) — ...
(5)

in cohomology for the space X.

There are other ways of constructing the long ex-
act sequence (5) — exercise.



36 Cup products

Lemma 36.1. The twist automorphism
T:S'AS S 8! AS, XAy yAx.
induces
T, = x(=1) : Hh(S'AS", Z) — Hy(S' AS', 7).

Proof. There are two non-degenerate 2-simplices
01,0, in S' A S! and a single non-degenerate 1-
simplex Yy = d;01 = d,0>.
It follows that the normalized chain complex NZ(S* A
S!) has the form

0L ST DT
where V(m,n) = m+n. Thus, H>(S'AS',Z) = Z,
generated by o) — 0>.

The twist 7 satisfies 7(0;) = 0, and fixes their
common face 7.

Thus, 7.(0) — 02) = 6, — 0. ]

Corollary 36.2. Suppose that o € ¥, acts on (S')""
by shuffling smash factors.

Then the induced automorphism
O : Hn((Sl)/\naz) — Hn((Sl)/\naZ) =7
is multiplication by the sign of ©.
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Explicitly, the action of ¢ on (S')"" is specified by

O(XI A= AXp) = Xg(1) A= AXg(n)-

Suppose that A and B are abelian groups. There
are natural isomorphisms of simplicial abelian groups

K(A,n)®K(B,m) > A®B® (SH*"™ =K(A®QB,n+m)
where the displayed isomorphism
(SHE"RA® (SH®" @B = (S @ (S)*" QAR B

is defined by permuting the middle tensor factors.

Suppose that X and Y are simplicial sets, and sup-
pose that f: X — K(A,n) and g: Y — K(B,m) are
simplicial set maps.

There is a natural map
XxY L Z(X)QZY),
which is defined by (x,y) — x®y.

The composite

XxY LZ(X)RZ(Y) 225 K (A, n) @ K (B,m) 2 K(A®B,n+m)

represents an element of H"™"(X X Y,A® B).
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Warning: The isomorphism above has the form
a®(x1/\---/\xn)®b®(Y1/\"'/\Ym)
= aQbR (X A AXy AYIA - AYp).
Do not shuffle smash factors.

We have defined a pairing

U:H"(X,A)@H"(Y,B) - H"™(X xY,A®B),

called the external cup product.

If R is a unitary ring, then the ring multiplication

m: R®R — R and the diagonal A : X — X x X

together induce a composite
H"(X,R)QH"(X,R) % H"™™(X x X,R@R) 2 H"™™ (X R)
which is the cup product

U:H"(X,R)®@H"(X,R) — H"™(X,R)
for H*(X,R).

Exercise: Show that the cup product gives the co-
homology H*(X, R) the structure of a graded com-
mutative ring with identity. This ring structure is
natural in spaces X and rings R.

The graded commutativity follows from Corollary
36.2.
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Suppose that we have a short exact sequence of
simplicial abelian groups

0O—A—B—-C—0

and that D is a flat simplicial abelian group in the
sense that the functor ?® D is exact. The sequence

0—ARD %B@DHC@D Bl Aws' @D

Bl g step P2

is equivalent to the Puppe sequence for the short
exact sequence

02A®XD—+BRXD—-CRD—=0
It follows that there is a commutative diagram

|E,C]®|F,D] [E®F,C® D]
51| |5
[E,A®S'®[F,D]——~[E®F,ARD®S']

In particular, if 0 -+ A — B — C — 0 is a short ex-
act sequence of R-modules and X is a space, then
there is a commutative diagram

HP(X,C)®HI(X,R)
6®1i
H™(X,A)®@ HY(X,R) —~HPTat

HP+4

/N

X,C) (6
0
(X,A)

—_——<
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It an exercise to show that the diagram
HY(X,R)@ H?(X,C)—>—~H"P(X,C) (7)

193] (=178
HY(X,R) @ H'T(X,A) —~HT"T(X,A)

commutes.

The diagrams (6) and (7) are cup product formulas
for the boundary homomorphism.

37 Cohomology of cyclic groups

Suppose that ¢ is a prime # 2. What follows is
directly applicable to cyclic groups of /-primary
roots of unity in fields.

We shall sketch the proof of the following:
Theorem 37.1. There is a ring isomorphism

H*(BZ/0",Z]0) = 7./ l|x] @ A(y)
where |x| =2 and |y| = 1.

We write |z| =n for z € H"(X,A). |z| is the degree
of z.

In the statement of Theorem 37.1, x € H*(BZ /", 7./ )

andy € H'(BZ/(",7./1).
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Z./¢|x| is a graded polynomial ring with generator
x in degree 2, and A(y) is an exterior algebra with
generator y in degree 1.

Fact: If z € H**1(X,Z/¢) and ¢ # 2, then
77 = (_1)(2k+1)(2/’c+1)z_Z _ (—I)Z'Z,
so that 2(z-z) =0, and z-z = 0.

We know, from the Example at the end of Section
25, that there are isomorphisms

(7 itp=o0,

H,(BZ/0",Z) = Z/¢" if p=2k+1,k >0,

\O if p =2k, k> 0.

It follows (exercise) that there are isomorphisms
H,(BZ/t",Z]/t) =7/, for p> 0.

There is an isomorphism

H?(BZ/0",Z/0) =hom(H,(BZ/¢",Z/),Z]0) = 7]l

for p > 0 (Theorem 35.2).

1) x € H*(BZ/¢",7,/¢) is dual to the generator of
the /-torsion subgroup of

Z7/0"=H\(BZ/(", 7).
2)y € H'(BZ/¢",7./¢) is dual to the generator of
ZIC=Z/0"RL/=H (BZ/(",Z]P).
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Here’s an integral coefficients calculation:
Theorem 37.2. There is a ring isomorphism

H*(BZ/0",Z) = Z|x]/(£" - x)
where |x| = 2.

This result appears in a book of Snaith, [1]. The
argument uses explicit cocycles, with the Alexander-
Whitney map ((7) of Section 26).

We can verify the underlying additive statement,

namely that
)

7  ifp=0,
HP(BZ/0"Z) = 7./ if p =2k, k >0,
0  ifpodd

\

Apply hom( ,Z) to the exact sequence
O%ZQZ%Z/W—M

to get the exact sequence

0 —hom(Z/¢",Z) — Z % Z — Ext (Z/¢",Z) — 0

to show that hom(Z/¢",7Z) = 0 (we knew this) and

Ext'(Z/0",7) = 7./0".

Then

H**(BZ/¢",7) < Ext' (Hy_(BZ/ (", 7),7) = 7./ 0"
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for k > 0 and

H*Y(BZ/¢",7) = hom(Hy,(BZ/",7),7) = 0
for k > 0.

Proof of Theorem 37.1. The exact sequence

02252 57/0—0

is an exact sequence of Z-modules, so that the
Puppe sequence

0—K(Z,0) 25 K(Z,0) = K(Z/¢,0) % K(Z,1) “5 K(Z,1) — ...

has an action by K(Z,2).

It follows that there are commutative diagrams

HP(BZ/¢",7)—*~HP(BZ/(",7) HP(BZ/(",7./0)

.xi% gl.x l.x

HP**(BZ/0", 1) —+HP"*(BL/ (", 1) — H"**(BL /", 1./ ()

and
HP(BZ)",7./¢) %~ HP (BZ /0", 7) >~ HP*\(BZ (", )

x| x| > x

HP2(BL/0" 1) 0) <~ HP(BL/ 0", L) — HP P (BL/ 0", Z)
for p > 0.
Thus, the cup product map

.x: HP(BZ /0", Z) — H'**(BZ /0", 7./ 1)
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is an isomorphism for all p.
Finally, the map
H*(BZ/¢",7) — H*(BZ/{",7.]¢)
is surjective, so the generator x € H*(BZ/(",7)
maps to a generator x of H>(BZ /(" 7Z./1).
The ring homomorphism
7/l x| @ A(y) — H*(BZ/ (", Z/¢)

defined by x € H*(BZ/¢",7Z./¢) and a generator y €
HY(BZ/¢",7./¢) is then an isomorphism of Z /(-
vector spaces in all degrees. []
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