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35 Cohomology

Suppose that C ∈ Ch+ is an ordinary chain com-
plex, and that A is an abelian group.

There is a cochain complex hom(C,A) with

hom(C,A)n = hom(Cn,A)

and coboundary

δ : hom(Cn,A)→ hom(Cn+1,A)

defined by precomposition with ∂ : Cn+1→Cn.

Generally, a cochain complex is an unbounded
complex which is concentrated in negative degrees.
See Section 1.

We use classical notation for hom(C,A): the cor-
responding complex in negative degrees is speci-
fied by

hom(C,A)−n = hom(Cn,A).
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The cohomology group Hn hom(C,A) is specified
by

Hn hom(C,A) :=
ker(δ : hom(Cn,A)→ hom(Cn+1,A)
im(δ : hom(Cn−1,A)→ hom(Cn,A)

.

This group coincides with the group H−n hom(C,A)
for the complex in negative degrees.

Exercise: Show that there is a natural isomorphism

Hn hom(C,A)∼= π(C,A(n))

where A(n) is the chain complex consisting of the
group A concentrated in degree n, and π(C,A(n))
is chain homotopy classes of maps.

Example: If X is a space, then the cohomology
group Hn(X ,A) is defined by

Hn(X ,A) = Hn hom(Z(X),A)∼= π(Z(X),A(n)),

where Z(X) is the Moore complex for the free
simplicial abelian group Z(X) on X .

Here is why the classical definition of Hn(X ,A) is
not silly: all ordinary chain complexes are fibrant,
and the Moore complex Z(X) is free in each de-
gree, hence cofibrant, and so there is an isomor-
phism

π(Z(X),A(n))∼= [Z(X),A(n)],
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where the square brackets determine morphisms
in the homotopy category for the standard model
structure on Ch+ (Theorem 3.1).

The normalized chain complex NZ(X) is naturally
weakly equivalent to the Moore complex Z(X),
and there are natural isomorphisms

[Z(X),A(n)]∼= [NZ(X),A(n)]
∼= [Z(X),K(A,n)] (Dold-Kan correspondence)
∼= [X ,K(A,n)] (Quillen adjunction)

Here, [X ,K(A,n)] is morphisms in the homotopy
category for simplicial sets. We have proved the
following:

Theorem 35.1. There is a natural isomorphism

Hn(X ,A)∼= [X ,K(A,n)]

for all simplicial sets X and abelian groups A.

In other words, Hn(X ,A) is representable by the
Eilenberg-Mac Lane space K(A,n) in the homo-
topy category.

Suppose that C is a chain complex and A is an
abelian group. Define the cohomology groups (or
hypercohomology groups) Hn(C,A) of C with co-
efficients in A by

Hn(C,A) = [C,A(n)].
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This is the derived functor definition of cohomol-
ogy.

Example: Suppose that A and B are abelian groups.
We compute the groups Hn(A(0),B)= [A(0),B(n)].
This is done by replacing A(0) by a cofibrant model.
There is a short exact sequence

0→ F1→ F0→ A→ 0

with Fi free abelian. The chain complex F∗ given
by

· · · → 0→ 0→ F1→ F0

is cofibrant, and the chain map F∗ → A(0) is a
weak equivalence, hence a cofibrant replacement
for the complex A(0).

It follows that there are isomorphisms

[A(0),B(n)]∼= [F∗,B(n)]∼= π(F∗,B(n))=Hn hom(F∗,A),

and there is an exact sequence

0→ H0 hom(F∗,B)→hom(F0,B)→ hom(F1,B)
→ H1 hom(F∗,B)→ 0.

It follows that

[A(0),B(n)]=Hn hom(F∗,B)=


hom(A,B) if n = 0,

Ext1(A,B) if n = 1,

0 if n > 1.
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Similarly, there are isomorphisms

[A(p),B(n)]=


hom(A,B) if n = p,

Ext1(A,B) if n = p+1,

0 if n > p+1 or n < p.

Most generally, for ordinary chain complexes, we
have the following:

Theorem 35.2. Suppose that C is a chain complex,
and B is an abelian group.

There is a short exact sequence

0→Ext1(Hn−1(C),B)→Hn(C,B)
p−→ hom(Hn(C),B)→ 0.

(1)
The map p is natural in C and B. This sequence is
split, with a non-natural splitting.

Theorem 35.2 is the universal coefficients theo-
rem for cohomology.

Proof. Let Zp = ker(∂ : Cp→Cp−1). Pick a surjec-
tive homomorphism, F p

0 → Zp with F p
0 free, and

F p
1 be the kernel of the (surjective) composite

F p
0 → Zp→ Hp(C).

Then F p
1 is free, and there is a map F p

1 → Cp+1

5



such that the diagram

F p
1

//

��

Cp+1

∂
��

F p
0

// Zp //Cp

commutes. Write φp for the resulting chain map
F p
∗ [−p]→C. Then the sum

φ :
⊕
p≥0

F p
∗ [−p]→C

(φn on the nth summand) is a cofibrant replacement
for the complex C.

At the same time, we have cofibrant resolutions
F p
∗ [−p]→ Hp(C)(p), for p≥ 0.

It follows that there are isomorphisms

[C,B(n)]∼= [
⊕
p≥0

Hp(C)(p),B(n)]

∼= ∏
p≥0

[Hp(C)(p),B(n)]

∼= hom(Hn(C),B)⊕Ext1(Hn−1(C),B).

The induced map p : [C,B(n)]→ hom(Hp(C),B)
is defined by restricting a chain map F → B(n) to
the group homomorphism Zn(F)⊂ Fn→ B, where
F →C is a cofibrant model of C.
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Recall that there are various models for the space
K(A,n) in simplicial abelian groups. These in-
clude the object ΓA(n) arising from the Dold-Kan
correspondence, and the space

A⊗Sn ∼= A⊗ (S1)⊗n

where

Sn = (S1)∧n = S1∧·· ·∧S1 (n smash factors).

In general, if K is a pointed simplicial set and A is
a simplicial abelian group, we write

A⊗K = A⊗ Z̃(K),

where Z̃(K) is the reduced Moore complex for K.

Suppose given a short exact sequence

0→ A i−→ B
p−→C→ 0 (2)

of simplicial abelian groups.

The diagram
A //

��

A⊗∆1
∗

0
��

B p
//C

is homotopy cocartesian, so there is a natural map
δ : C → A⊗ S1 in the homotopy category. Pro-
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ceeding inductively gives the Puppe sequence

0→A i−→B
p−→C δ−→A⊗S1 i⊗1−−→B⊗S1 p⊗1−−→ . . . (3)

and a long exact sequence

[E,A]→ [E,B]→ [E,C]
δ−→ [E,A⊗S1]→ [E,B⊗S1]→ . . .

or equivalently

H0(E,A)→H0(E,B)→H0(E,C)
δ−→H1(E,A)→H1(E,B)→ . . .

(4)
in cohomology, for arbitrary simplicial abelian groups
(or chain complexes) E.

The morphisms δ is the long exact sequence (4)
are called boundary maps.

Specializing to E =Z(X) for a space X and a short
exact sequence of groups (2) gives the standard
long exact sequence

H0(X ,A)→H0(X ,B)→H0(X ,C)
δ−→H1(X ,A)→H1(X ,B)→ . . .

(5)
in cohomology for the space X .

There are other ways of constructing the long ex-
act sequence (5) — exercise.
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36 Cup products

Lemma 36.1. The twist automorphism

τ : S1∧S1 ∼=−→ S1∧S1, x∧ y 7→ y∧ x.

induces

τ∗ =×(−1) : H2(S1∧S1,Z)→ H2(S1∧S1,Z).
Proof. There are two non-degenerate 2-simplices
σ1,σ2 in S1 ∧ S1 and a single non-degenerate 1-
simplex γ = d1σ1 = d1σ2.

It follows that the normalized chain complex NZ(S1∧
S1) has the form

· · · → 0→ Z⊕Z ∇−→ Z 0−→ Z
where ∇(m,n) = m+n. Thus, H2(S1∧S1,Z)∼= Z,
generated by σ1−σ2.

The twist τ satisfies τ(σ1) = σ2 and fixes their
common face γ .

Thus, τ∗(σ1−σ2) = σ2−σ1.

Corollary 36.2. Suppose that σ ∈Σn acts on (S1)∧n

by shuffling smash factors.

Then the induced automorphism

σ∗ : Hn((S1)∧n,Z)→ Hn((S1)∧n,Z)∼= Z
is multiplication by the sign of σ .
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Explicitly, the action of σ on (S1)∧n is specified by

σ(x1∧·· ·∧ xn) = xσ(1)∧·· ·∧ xσ(n).

Suppose that A and B are abelian groups. There
are natural isomorphisms of simplicial abelian groups

K(A,n)⊗K(B,m)
∼=−→A⊗B⊗(S1)⊗(n+m)=K(A⊗B,n+m)

where the displayed isomorphism

(S1)⊗n⊗A⊗(S1)⊗m⊗B
∼=−→ (S1)⊗n⊗(S1)⊗m⊗A⊗B

is defined by permuting the middle tensor factors.

Suppose that X and Y are simplicial sets, and sup-
pose that f : X→ K(A,n) and g : Y → K(B,m) are
simplicial set maps.

There is a natural map

X×Y
η−→ Z(X)⊗Z(Y ),

which is defined by (x,y) 7→ x⊗ y.

The composite

X×Y
η−→Z(X)⊗Z(Y ) f∗⊗g∗−−−→K(A,n)⊗K(B,m)∼=K(A⊗B,n+m)

represents an element of Hn+m(X×Y,A⊗B).
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Warning: The isomorphism above has the form

a⊗ (x1∧·· ·∧ xn)⊗b⊗ (y1∧·· ·∧ ym)

7→ a⊗b⊗ (x1∧·· ·∧ xn∧ y1∧·· ·∧ ym).

Do not shuffle smash factors.

We have defined a pairing

∪ : Hn(X ,A)⊗Hm(Y,B)→ Hn+m(X×Y,A⊗B),

called the external cup product.
If R is a unitary ring, then the ring multiplication
m : R⊗R→ R and the diagonal ∆ : X → X ×X
together induce a composite

Hn(X ,R)⊗Hm(X ,R) ∪−→Hn+m(X×X ,R⊗R) ∆∗·m∗−−−→Hn+m(X ,R)

which is the cup product

∪ : Hn(X ,R)⊗Hm(X ,R)→ Hn+m(X ,R)

for H∗(X ,R).

Exercise: Show that the cup product gives the co-
homology H∗(X ,R) the structure of a graded com-
mutative ring with identity. This ring structure is
natural in spaces X and rings R.

The graded commutativity follows from Corollary
36.2.
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Suppose that we have a short exact sequence of
simplicial abelian groups

0→ A→ B→C→ 0

and that D is a flat simplicial abelian group in the
sense that the functor ?⊗D is exact. The sequence

0→ A⊗D i⊗1−−→B⊗D
p⊗1−−→C⊗D δ⊗1−−→ A⊗S1⊗D

i⊗1−−→ B⊗S1⊗D
p⊗1−−→ . . .

is equivalent to the Puppe sequence for the short
exact sequence

0→ A⊗D→ B⊗D→C⊗D→ 0

It follows that there is a commutative diagram

[E,C]⊗ [F,D] ∪ //

δ⊗1
��

[E⊗F,C⊗D]

δ
��

[E,A⊗S1]⊗ [F,D] ∪
// [E⊗F,A⊗D⊗S1]

In particular, if 0→ A→ B→C→ 0 is a short ex-
act sequence of R-modules and X is a space, then
there is a commutative diagram

H p(X ,C)⊗Hq(X ,R) ∪ //

δ⊗1
��

H p+q(X ,C)

δ
��

H p+1(X ,A)⊗Hq(X ,R) ∪
//H p+q+1(X ,A)

(6)

12



It an exercise to show that the diagram

Hq(X ,R)⊗H p(X ,C) ∪ //

1⊗δ
��

Hq+p(X ,C)

(−1)qδ
��

Hq(X ,R)⊗H p+1(X ,A) ∪
//Hq+p+1(X ,A)

(7)

commutes.

The diagrams (6) and (7) are cup product formulas
for the boundary homomorphism.

37 Cohomology of cyclic groups

Suppose that ` is a prime 6= 2. What follows is
directly applicable to cyclic groups of `-primary
roots of unity in fields.

We shall sketch the proof of the following:

Theorem 37.1. There is a ring isomorphism

H∗(BZ/`n,Z/`)∼= Z/`[x]⊗Λ(y)

where |x|= 2 and |y|= 1.

We write |z|= n for z∈Hn(X ,A). |z| is the degree
of z.

In the statement of Theorem 37.1, x∈H2(BZ/`n,Z/`)
and y ∈ H1(BZ/`n,Z/`).
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Z/`[x] is a graded polynomial ring with generator
x in degree 2, and Λ(y) is an exterior algebra with
generator y in degree 1.

Fact: If z ∈ H2k+1(X ,Z/`) and ` 6= 2, then

z · z = (−1)(2k+1)(2k+1)z · z = (−1)z · z,
so that 2(z · z) = 0, and z · z = 0.

We know, from the Example at the end of Section
25, that there are isomorphisms

Hp(BZ/`n,Z) =


Z if p = 0,

Z/`n if p = 2k+1, k ≥ 0,

0 if p = 2k, k > 0.

It follows (exercise) that there are isomorphisms

Hp(BZ/`n,Z/`)∼= Z/`, for p≥ 0.

There is an isomorphism

H p(BZ/`n,Z/`)∼= hom(Hp(BZ/`n,Z/`),Z/`)∼=Z/`
for p≥ 0 (Theorem 35.2).

1) x ∈ H2(BZ/`n,Z/`) is dual to the generator of
the `-torsion subgroup of

Z/`n = H1(BZ/`n,Z).
2) y ∈ H1(BZ/`n,Z/`) is dual to the generator of

Z/`∼= Z/`n⊗Z/`= H1(BZ/`n,Z/`).
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Here’s an integral coefficients calculation:

Theorem 37.2. There is a ring isomorphism

H∗(BZ/`n,Z)∼= Z[x]/(`n · x)

where |x|= 2.

This result appears in a book of Snaith, [1]. The
argument uses explicit cocycles, with the Alexander-
Whitney map ((7) of Section 26).

We can verify the underlying additive statement,
namely that

H p(BZ/`n,Z)∼=


Z if p = 0,

Z/`n if p = 2k, k > 0,

0 if p odd

Apply hom( ,Z) to the exact sequence

0→ Z `n
−→ Z→ Z/`n→ 0

to get the exact sequence

0→ hom(Z/`n,Z)→Z `n
−→Z→Ext1(Z/`n,Z)→ 0

to show that hom(Z/`n,Z) = 0 (we knew this) and
Ext1(Z/`n,Z)∼= Z/`n.

Then

H2k(BZ/`n,Z)∼=Ext1(H2k−1(BZ/`n,Z),Z)∼=Z/`n
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for k > 0 and

H2k+1(BZ/`n,Z)∼= hom(H2k+1(BZ/`n,Z),Z) = 0

for k ≥ 0.

Proof of Theorem 37.1. The exact sequence

0→ Z ×`−→ Z→ Z/`→ 0

is an exact sequence of Z-modules, so that the
Puppe sequence

0→K(Z,0) ×`−→K(Z,0)→K(Z/`,0) δ−→K(Z,1) ×`−→K(Z,1)→ . . .

has an action by K(Z,2).
It follows that there are commutative diagrams

H p(BZ/`n,Z) ×` //

·x ∼=
��

H p(BZ/`n,Z) //

·x∼=
��

H p(BZ/`n,Z/`)
·x
��

H p+2(BZ/`n,Z) ×` //H
p+2(BZ/`n,Z) //H p+2(BZ/`n,Z/`)

and

H p(BZ/`n,Z/`) δ //

·x
��

H p+1(BZ/`n,Z) ×` //
·x ∼=
��

H p+1(BZ/`n,Z)
·x∼=
��

H p+2(BZ/`n,Z/`)
δ

//H p+3(BZ/`n,Z) ×` //H
p+3(BZ/`n,Z)

for p > 0.

Thus, the cup product map

·x : H p(BZ/`n,Z)→ H p+2(BZ/`n,Z/`)
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is an isomorphism for all p.

Finally, the map

H2(BZ/`n,Z)→ H2(BZ/`n,Z/`)

is surjective, so the generator x ∈ H2(BZ/`n,Z)
maps to a generator x of H2(BZ/`n,Z/`).
The ring homomorphism

Z/`[x]⊗Λ(y)→ H∗(BZ/`n,Z/`)

defined by x∈H2(BZ/`n,Z/`) and a generator y∈
H1(BZ/`n,Z/`) is then an isomorphism of Z/`-
vector spaces in all degrees.
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