
Lecture 01

1 Simplicial sets

The finite ordinal number n is the set of counting

numbers

n = {0, 1, . . . , n}.
There is an obvious ordering on this set which gives

it the structure of a poset, and hence a (tiny) cat-

egory.

Fact: If C is a category then the functors α : n→
C can be identified with strings of arrows

α(0)→ α(1)→ · · · → α(n)

of length n.

The collection of all finite ordinal numbers and

all order-preserving functions between them (aka.

poset morphisms, or functors) form the ordinal

number category ∆.

Examples:

1) The ordinal number monomorphisms di : n− 1→
n are defined by the strings of relations

0 ≤ 1 ≤ · · · ≤ i− 1 ≤ i + 1 ≤ · · · ≤ n
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for 0 ≤ i ≤ n. These morphisms are called cofaces.

2) The ordinal number epimorphisms sj : n + 1→
n are defined by the strings

0 ≤ 1 ≤ · · · ≤ j ≤ j ≤ · · · ≤ n

for 0 ≤ j ≤ n. These are the codegeneracies.

The cofaces and codegeneracies together satisfy the

following relations

djdi = didj−1 if i < j,

sjsi = sisj+1 if i ≤ j

sjdi =


disj−1 if i < j,

1 if i = j, j + 1,

di−1sj if i > j + 1.

The ordinal number category ∆ is the category

which is generated by the cofaces and codegenera-

cies, subject to the cosimplicial identities [4].

Every ordinal number morphism has a unique epi-

monic factorization, and in fact has a canonical

form defined in terms of strings of codegeneracies

and strings of cofaces.
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A simplicial set is a functor X : ∆op → Set,

ie. a contravariant set-valued functor on the ordi-

nal number category ∆. Such things are usually

written n 7→ Xn, and Xn is called the set of n-

simplices of X .

A simplicial set map (or simplicial map) f : X →
Y is a natural transformation of such functors.

The simplicial sets and simplicial set maps form

the category of simplicial sets, which is denoted by

sSet.

A simplicial set is a simplicial object in the set

category.

Generally, sA denotes the category of simplicial

objects in a categoryA. Examples include the cat-

egories sGr of simplicial groups, s(R −Mod) of

simplicial R-modules, s(sSet) = s2Set of bisim-

plicial sets, and so on.

Examples:

1) The topological standard n-simplex is the space

|∆n| = {(t0, . . . , tn) ∈ Rn+1 | 0 ≤ ti ≤ 1,
∑

ti = 1}

The assignment n 7→ |∆n| is a cosimplicial space.
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If X is a space, then the singular complex S(X)

is defined by

S(X)n = hom(|∆n|, X).

The assignment X 7→ S(X) defines a covariant

functor

S : CGHaus→ sSet

in the obvious way, called the singular functor.

2) The ordinal number n represents a contravari-

ant functor

∆n = hom∆( ,n),

which is called the standard n-simplex. Write

ιn = 1n ∈ hom∆(n,n).

The n-simplex ιn is often called the classifying n-

simplex, because the Yoneda Lemma implies that

there is a natural bijection

homsSet(∆
n, Y ) ∼= Yn

defined by sending the map σ : ∆n → Y to the

element σ(ιn) ∈ Yn. I usually say that a map

∆n → Y is an n-simplex of Y .

In general, if σ : ∆n → X is a simplex of X , then

the ith face di(σ) is the composite

∆n−1 di−→ ∆n σ−→ X,
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while the jth degeneracy sj(σ) is the composite

∆n+1 sj−→ ∆n σ−→ X.

3) ∂∆n is the subobject of ∆n which is generated

by the (n− 1)-simplices di, 0 ≤ i ≤ n, and let Λn
k

be the subobject of ∂∆n which is generated by the

simplices di, i 6= k. ∂∆n is called the boundary of

∆n, and Λn
k is called the kth horn.

The faces di : ∆n−1 → ∆n determine a covering
n⊔
i=0

∆n−1 → ∂∆n,

and for each i < j there are pullback diagrams

∆n−2 dj−1 //

di ��

∆n−1

di
��

∆n−1

dj
//∆n

It follows that there is a coequalizer⊔
i<j,0≤i,j≤n ∆n−2 //

//
⊔

0≤i≤n ∆n−1 // ∂∆n

in sSet. Similarly, there is a coequalizer⊔
i<j,i,j 6=k ∆n−2 //

//
⊔

0≤i≤n,i 6=k ∆n−1 //Λn
k.
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4) Suppose that a category C is small in the sense

that the morphisms Mor(C) and objects Ob(C)

are sets. Examples of such things include all finite

ordinal numbers n, all monoids (small categories

having one object), and all groups.

If C is a small category there is a simplicial set

BC with

BCn = hom(n, C),

meaning the functors n→ C. A functor α : n→
C can be identified with a string of arrows

α(0)→ α(1)→ · · · → α(n)

of length n in C.

The simplicial structure on BC is defined by pre-

composition with ordinal number maps. The ob-

ject BC is called, variously, the classifying space

or nerve of C.

Note that Bn = ∆n in this notation.

5) Suppose that I is a small category, and that

X : I → Set is a set-valued functor. The cate-

gory of elements (or translation category, or slice

category)

∗/X = EI(X)
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associated to X has as objects all pairs (i, x) with

x ∈ X(i), or equivalently all functions

∗ x−→ X(i).

A morphism α : (i, x) → (j, y) is a morphism

α : i→ j of I such that α∗(x) = y, or equivalently

a commutative diagram

X(i)

α∗
��

∗
x 77

y ''
X(j)

The simplicial set B(EIX) is often called the ho-

motopy colimit for the functor X , and one writes

holim−−−→ I X = B(EIX).

Example: BI = holim−−−→ I ∗.
There is a canonical functor EIX → I which is de-

fined by the assignment (i, x) 7→ i, which induces

a canonical simplicial set map

π : B(EIX) = holim−−−→ I X → BI.

The functors n → EIX can be identified with

strings

(i0, x0)
α1−→ (i1, x1)

α2−→ . . .
αn−→ (in, xn).
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Note that such a string is uniquely specified by

the underlying string i0 → · · · → in in the index

category Y and x0 ∈ X(i0). It follows that there

is an identification

(holim−−−→ I X)n = B(EIX)n =
⊔

i0→···→in

X(i0).

The construction is natural with respect to natural

transformations in X . Thus a diagram X : I →
sSet in simplicial sets determines a bisimplicial set

with (n,m) simplices

B(EIX)m =
⊔

i0→···→in

X(i0)m.

The diagonal d(Y ) of a bisimplicial set Y is the

simplicial set with n-simplices Yn,n. Equivalently,

d(Y ) is the composite functor

∆op ∆−→∆op ×∆op Y−→ Set

where ∆ is the diagonal functor.

The diagonal dB(EIX) of the bisimplicial setB(EIX)

is the homotopy colimit holim−−−→ I X of the functor

X : I → sSet, and there is a natural simplicial

set map

π : holim−−−→ I X → BI.
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6) Suppose thatX and Y are simplicial sets. There

is a simplicial set hom(X, Y ) with n-simplices

hom(X, Y )n = hom(X ×∆n, Y ),

called the function complex.

There is a natural simplicial set map

ev : X × hom(X, Y )→ Y

which sends the pair (x, f : X ×∆n → Y ) to the

simplex f (x, ιn).

Suppose that K is another simplicial set. The

function

ev∗ : hom(K,hom(X, Y ))→ hom(X ×K,Y ),

which is defined by sending the map g : K →
hom(X, Y ) to the composite

X ×K 1×g−−→ X × hom(X, Y )
ev−→ Y,

is a natural bijection, giving the exponential law

hom(K,hom(X, Y )) ∼= hom(X ×K,Y ).

This natural isomorphism gives sSet the structure

of a cartesian closed category. The function com-

plexes also give sSet the structure of a category

enriched in simplicial sets.
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2 The simplex category and realization

The simplex category ∆/X for a simplicial set

X has for objects all simplices ∆n → X ; its mor-

phisms are the incidence relations between the sim-

plices, meaning all commutative diagrams

∆m
τ
''

θ
��

X

∆n σ

77

(2.1)

Fact: Every simplicial set X is a colimit of its

simplices, in that the simplices ∆n → X define a

simplicial set map

lim−→
∆n→X

∆n → X

which is an isomorphism.

The realization |X| of a simplicial set X is defined

by

|X| = lim−→
∆n→X

|∆n|.

The assignment X 7→ |X| defines a functor

| | : sSet→ CGHaus.

Lemma 2.1. The realization functor is left ad-

joint to the singular functor S : CGHaus →
sSet.
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Examples:

1) |∆n| = |∆n|, since the simplex category ∆/∆n

has a terminal object, namely 1 : ∆n → ∆n.

2) |∂∆n| = ∂|∆n|, and |Λn
k| is the part of the

boundary ∂|∆n| with the face opposite the ver-

tex k removed, since the realization functor is

a left adjoint and therefore preserves coequal-

izers and coproducts.

The nth skeleton sknX of a simplicial set X is the

subobject generated by the simplices Xi, 0 ≤ i ≤
n. The ascending sequence of subcomplexes

sk0X ⊂ sk1X ⊂ sk2X ⊂ . . .

defines a filtration of X , and there are pushout

diagrams ⊔
x∈NXn

∂∆n //

��

skn−1X

��⊔
x∈NXn

∆n // sknX

Here, NXn denotes the set of non-degenerate n-

simplices of X .

Facts: 1) The realization of a simplicial set is a

CW -complex.
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2) Every monomorphism A→ B of simplicial sets

induces a cofibration |A| → |B| of spaces. In fact,

|B| is constructed from |A| by attaching cells.

Lemma 2.2. The realization functor preserves

finite limits. Equivalently, it preserves finite

products and equalizers.

3 Model structure for simplicial sets

This section summarizes material which is pre-

sented in some detail in [3].

Say that a map f : X → Y of simplicial sets is a

weak equivalence if the induced map f∗ : |X| →
|Y | is a weak equivalence of CGHaus.

A map i : A→ B of simplicial sets is a cofibration

if and only if it is a monomorphism, meaning that

all functions i : An → Bn are injective.

A simplicial set map p : X → Y is a fibration if

and only if it has the right lifting property with

respect to all trivial cofibrations.

Theorem 3.1. With these definitions of weak

equivalence, cofibration and fibration, the cate-

gory sSet of simplicial sets satisfies the axioms

for a closed model category.
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Here are the basic ingredients of the proof:

Lemma 3.2. A map p : X → Y is a trivial

fibration if and only if it has the right lifting

property with respect to all inclusions ∂∆n ⊂
∆n, n ≥ 0.

The proof of this Lemma is formal.

The following can be proved with simplicial ap-

proximation techniques [2]:

Lemma 3.3. Suppose that a simplicial set X

has at most countably many non-degenerate sim-

plices. Then the set of path components π0|X|
and all homotopy groups πn(|X|, x) are count-

able.

Here’s a consequence:

Lemma 3.4 (Bounded cofibration lemma). Sup-

pose that i : X → Y is a trivial cofibration and

that A ⊂ Y is a countable subcomplex. Then

there is a countable subcomplex B ⊂ Y with

A ⊂ B such that the map B ∩ X → B is a

trivial cofibration.

Lemma 3.4 implies that the set of countable trivial

cofibrations generates the class of all trivial cofi-

brations, while the Lemma 3.2 implies that the set
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of all inclusions ∂∆n ⊂ ∆n generates the class of

all cofibrations. Theorem 3.1 follows from small

object arguments.

Remark 3.5. The realization functor preserves

cofibrations and trivial cofibrations. It’s an im-

mediate consequence that the singular functor S

preserves fibrations and trivial fibrations. It also

follows that the adjoint pair

| | : sSet � CGHaus : S,

is a Quillen adjunction.

A Kan fibration is a map p : X → Y of simplicial

sets which has the right lifting property with re-

spect to all inclusions Λn
k ⊂ ∆n. A Kan complex

is a simplicial set X for which the canonical map

X → ∗ is a Kan fibration.

Every fibration is a Kan fibration. Every fibrant

simplicial set is a Kan complex.

Kan complexes Y have combinatorially defined ho-

motopy groups: if x ∈ Y0 is a vertex of Y , then

πn(Y, x) = π((∆n, ∂∆n), (Y, x))

where π( , ) denotes simplicial homotopy classes

of maps. The path components of any simplicial
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set X are defined by the coequalizer

X1 ⇒ X0 → π0X,

where the mapsX1 → X0 are the face maps d0, d1.

Say that a map f : Y → Y ′ of Kan complexes

is a combinatorial weak equivalence if it induces

isomorphisms

πn(Y, x)
∼=−→ πn(Y ′, f (x))

for all x ∈ Y0, and

π0(Y )
∼=−→ π0(Y ′).

Going further requires the following major theo-

rem, due to Quillen:

Theorem 3.6. The realization of a Kan fibra-

tion is a Serre fibration.

The proof of this result requires much of the clas-

sical homotopy theory of Kan complexes (in par-

ticular the theory of minimal fibrations), and will

not be discussed here.
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Here are the consequences:

Theorem 3.7 (Milnor theorem). Suppose that

Y is a Kan complex and that η : Y → S(|Y |)
is the adjunction homomorphism. Then η is a

combinatorial weak equivalence.

It follows that the combinatorial homotopy groups

of πn(Y, x) coincide up to natural isomorphism

with the ordinary homotopy groups πn(|Y |, x) of

the realization, for all Kan complexes Y .

The proof is an inductive long exact sequence argu-

ment using path-loop fibre sequences in simplicial

sets. These are Kan fibre sequences, and the key is

to know that their realizations are fibre sequences.

Theorem 3.8. Every Kan fibration is a fibra-

tion.

The key step in the proof of Theorem 3.8 is to

show, using Theorem 3.7, that every map which is

a Kan fibration and a weak equivalence is a trivial

fibration. This is used to show that every trivial

cofibration has the left lifting property with respect

to all Kan fibrations. It follows that every Kan

fibration has the right lifting property with respect

to all trivial cofibrations.
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Remark 3.9. Theorem 3.8 implies that the model

structure of Theorem 3.1 consists of cofibrations,

Kan fibrations and weak equivalences. This is the

standard, classical model structure for simplicial

sets. The identification of the fibrations with Kan

fibrations is the “hard” part of its construction.

Theorem 3.10. The adjunction maps η : X →
S(|X|) and ε : |S(Y )| → Y are weak equiva-

lences, for all simplicial sets X and spaces Y ,

respectively.

In particular, the standard model structures on

sSet and CGHaus are Quillen equivalent.
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