
Lecture 02

4 Grothendieck topologies

A Grothendieck site is a small category C equipped

with a topology T .

A Grothendieck topology T consists of a collection

of subfunctors

R ⊂ hom( , U), U ∈ C,

called covering sieves, such that the following ax-

ioms hold:

1) (base change) If R ⊂ hom( , U) is covering

and φ : V → U is a morphism of C, then the

subfunctor

φ−1(R) = {γ : W → V | φ · γ ∈ R}

is covering for V .

2) (local character) Suppose thatR,R′ ⊂ hom( , U)

are subfunctors and R is covering. If φ−1(R′)

is covering for all φ : V → U in R, then R′ is

covering.

3) hom( , U) is covering for all U ∈ C
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Typically Grothendieck topologies arise from cov-

ering families in sites C having pullbacks. Covering

families are sets of functors which generate cover-

ing sieves.

Suppose that C has pullbacks. A topology T on C
consists of families of sets of morphisms

{φα : Uα → U}, U ∈ C,

called covering families, such that the following

axioms hold:

1) Suppose that φα : Uα → U is a covering family

and that ψ : V → U is a morphism of C.

Then the collection V ×UUα → V is a covering

family for V .

2) If {φα : Uα → V } is covering, and {γα,β :

Wα,β → Uα} is covering for all α, then the

family of composites

Wα,β

γα,β−−→ Uα
φα−→ U

is covering.

3) The family {1 : U → U} is covering for all

U ∈ C.
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Examples:

1) X = topological space. op |X is the poset of

open subsets U ⊂ X . A covering family for an

open subset U is an open cover Vα ⊂ U .

2) X = topological space. loc |X is the category

of all maps f : Y → X which are local home-

omorphisms. f is a local homeomorphism if

each x ∈ Y has a neighbourhood U such that

f (U) is open inX and the restricted map U →
f (U) is a homeomorphism. A morphism of

loc |X is a commutative diagram

Y
g //

f ��

Y ′

f ′��

X

where f and f ′ are local homeomorphisms. A

family {φα : Yα → Y } of local homeomor-

phisms (over X) is covering if Y = ∪φα(Yα).

3) X = a scheme (topological space with sheaf

of rings locally isomorphic to affine schemes

Sp(R)). The underlying topology on X is the

Zariski topology. Zar|X is the poset with ob-

jects all open subschemes U ⊂ X . A family

Vα ⊂ U is covering if ∪Vα = U (as sets).
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A scheme homomorphism φ : Y → X is étale at

y ∈ Y if

a) Oy is a flat Of(y)-module (φ is flat at y).

b) φ is unramified at y: Oy/Mf(y)Oy is a finite

separable field extension of k(f (y)).

Say that a map φ : Y → X is étale if it is étale at

every y ∈ Y (and locally of finite type).

4) S = scheme. The étale site et|S has as objects

all étale maps φ : V → S and all diagrams

V //

φ ��

V ′

φ′��

S

for morphisms (with φ, φ′ étale). A covering

family for the étale site is a collection of étale

morphisms φα : Vα → V such that V =

∪φα(Vα) as a set. Equivalently every mor-

phism Sp(Ω) → V lifts to some Vα if Ω is a

separably closed field.

5) The Nisnevich site Nis|S has the same under-

lying category as the étale site, namely all étale

maps V → S and morphisms between them.

A Nisnevich cover is a family of étale maps

Vα → V such that every morphism Sp(K) →
V lifts to some Vα where K is any field.
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6) A flat covering family of a scheme T is a set of

flat morphisms φα : Tα → T (ie. morphisms

which are flat at each point) such that T =

∪φα(Tα) as a set (equivalently tTα → T is

faithfully flat).

(Sch|S)fl is the “big” flat site. Pick a large

cardinal κ; then (Sch|S) is the category of S-

schemes X → S such that the cardinality of

both the underlying point set of X and all sec-

tions OX(U) of its sheaf of rings are bounded

above by κ.

7) There are corresponding big sites (Sch|S)Zar,

(Sch|S)et, (Sch|S)Nis, ... and you can play sim-

ilar games with topological spaces.

8) Suppose that G = {Gi} is profinite group such

that all Gj → Gi are surjective group homo-

morphisms. Write also G = lim←−Gi. A dis-

crete G-set is a set X with G-action which

factors through an action of Gi for some i.

Write G − Setdf for the category of G-sets

which are both discrete and finite. A family

Uα → X in this category is covering if and

only if
⊔
Uα → X is surjective.
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9) Suppose that C is any small category. Say that

R ⊂ hom( , x) is covering if and only if 1x ∈ R.

This is the chaotic topology on C.

10) Suppose that C is a site and that U ∈ C. Then

the slice category C/U inherits a topology from

C: a collection of maps Vα → V → U is cov-

ering if and only if the family Vα → V covers

V .

Definitions: Suppose that C is a Grothendieck

site.

1) A presheaf (of sets) on C is a functor Cop →
Set. If A is a category, an A-valued presheaf

on C is a functor Cop → A.

The set-valued presheaves on C form a category

(morphisms are natural transformation), written

Pre(C). One can talk about presheaves taking val-

ues in any category: I write sPre(C) for presheaves

on C taking values in simplicial sets — this is the

category of simplicial presheaves on C.

2) A sheaf (of sets) on C is a presheaf F : Cop →
Set such that the canonical map

F (U)→ lim←−
V→U∈R

F (V )
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is an isomorphism for each covering sieve R ⊂
hom( , U).

Morphisms of sheaves are natural transformations:

write Shv(C) for the corresponding category. The

sheaf category Shv(C) is a full subcategory of Pre(C).

One can also speak of sheaves in any complete cat-

egory, such as simplicial sets: s Shv(C) denotes the

category of simplicial sheaves on the site C.

Exercise: If the topology on C is defined by a

pretopology (so that C has all pullbacks), then F

is a sheaf if and only if all pictures

F (U)→
∏
α

F (Uα) ⇒
∏
α,β

F (Uα ×U Uβ)

arising from covering families Uα → U are equal-

izers.

Lemma 4.1. 1) If R ⊂ R′ ⊂ hom( , U) and R

is covering then R′ is covering.

2) If R,R′ ⊂ hom( , U) are covering then R∩R′
is covering.

Proof. 1) φ−1(R) = φ−1(R′) for all φ ∈ R.

2) φ−1(R ∩R′) = φ−1(R′) for all φ ∈ R.
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Suppose that R ⊂ hom( , U) is a sieve, and F is

a presheaf on C. Write

F (U)R = lim←−
V→U∈R

F (V )

I say that F (U)R is the set of R-compatible fam-

ilies in U . If S ⊂ R then there is an obvious

map

F (U)R → F (U)S

Write

LF (U) = lim−→
R

F (U)R

where the colimit is indexed over the filtering dia-

gram of all covering sieves R ⊂ hom( , U). Then

x 7→ LF (U) is a presheaf and there is a natural

presheaf map

η : F → LF

Say that a presheaf G is separated if (equivalently)

1) the map η : G→ LG is monic in each section,

ie. all functions G(U)→ LG(U) are injective,

or

2) Given x, y ∈ G(U), if there is a covering sieve

R ⊂ hom( , U) such that φ∗(x) = φ∗(y) for all

φ ∈ R, then x = y.

8



Lemma 4.2. 1) LF is separated, for all presheaves

F .

2) If G is separated then LG is a sheaf.

3) If f : F → G is a presheaf map and G is

a sheaf, then f factors uniquely through a

presheaf map f∗ : LF → G.

The object L2F is a sheaf for every presheaf F ,

and the functor F 7→ L2F is left adjoint to the

inclusion Shv(C) ⊂ Pre(C). The unit of the ad-

junction is the composite

F
η−→ LF

η−→ L2F

One often writes η : F → L2F = F̃ for this

composite.

5 Exactness properties

Lemma 5.1. 1) The associated sheaf functor

preserves all finite limits.

2) Shv(C) is complete and co-complete. Limits

are formed sectionwise.

3) Every monic is an equalizer.

4) If θ : F → G in Shv(C) is both monic and

epi, then θ is an isomorphism.
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Proof. 1) LF is defined by filtered colimits, and

finite limits commute with filtered colimits.

2) If X : I → Shv(C) is a diagram of sheaves,

then the colimit in the sheaf category is L2(lim−→X),

where lim−→X is the presheaf colimit.

3) If A ⊂ X is a subset, then there is an equalizer

A //X
p //

∗
//X/A

The same holds for subobjectsA ⊂ X of presheaves,

and hence for subobjects of sheaves, since L2 is ex-

act.

4) The map θ appears in an equalizer

F θ //G
f //

g
//K

since θ is monic. θ is an epi, so f = g. But then

1G : G → G factors through θ, giving a section

σ : G → F . Finally, θσθ = θ and θ is monic, so

σθ = 1.

Definitions:

1) A presheaf map f : F → G is a local epimor-

phism if for each α ∈ G(x) there is a covering

R ⊂ hom( , x) such that φ∗(x) = f (yφ) for all

φ ∈ R.
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2) f : F → G is a local monic if given α, β ∈
F (x) such that f (α) = f (β), there is a covering

R ⊂ hom( , x) such that φ∗(α) = φ∗(β) for all

φ ∈ R.

3) A presheaf map f : F → G which is both a local

epi and a local monic is a local isomorphism.

Lemma 5.2. 1) The natural map η : F → LF

is a local monomorphism and a local epi-

morphism.

2) Suppose that f : F → G is a presheaf mor-

phism. Then f induces an isomorphism of

associated sheaves if and only if f is both a

local epi and a local monic.

Proof. For 2) observe that, given a commutative

diagram

F
g //

h   

F ′

f
��

F ′′

of presheaf morphisms, if any two of f, g and h are

local isomorphisms, then so is the third.

A sheaf map g : E → E ′ is a monic (respectively

epi) if and only if it is a local monic (respectively

local epi).
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A Grothendieck topos is a category E which is

equivalent to a sheaf category Shv(C) on some Groth-

endieck site C.

Grothendieck toposes are characterized by exact-

ness properties:

Theorem 5.3 (Giraud). A category E having

all finite limits is a Grothendieck topos if and

only if it has the following properties:

1) E has all small coproducts; they are disjoint

and stable under pullback

2) every epimorphism of E is a coequalizer

3) every equivalence relation R ⇒ E in E is a

kernel pair and has a quotient

4) every coequalizer R ⇒ E → Q is stably ex-

act

5) there is a (small) set of objects which gen-

erates E.

A sketch proof of Giraud’s Theorem appears be-

low, but the result is proved in many places — see,

for example, [2], [3], [1].
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Here are the definitions of the terms appearing in

the statement of Giraud’s Theorem:

1) The coproduct
⊔
i Ai is disjoint if all diagrams

∅ //

��

Aj

��

Ai
//
⊔
i Ai

are pullbacks for i 6= j.
⊔
i Ai is stable under

pullback if all diagrams⊔
iB
′ ×B Ai

//

��

⊔
i Ai

��

B′ //B

are pullbacks.

3) An equivalence relation is a monomorphism

m = (m0,m1) : R→ E × E such that

a) the diagonal ∆ : E → E × E factors through

m (ie. a ∼ a)

b) the composite R
m−→ E × E τ−→ E × E factors

through m (ie. a ∼ b⇒ b ∼ a).

c) the map

(m0m0∗,m1m1∗) : R×E R→ E × E
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factors through m (this is transitivity) where

the pullback is defined by

R×E R
m1∗ //

m0∗
��

R
m0
��

R m1
//E

The kernel pair of a morphism u : E → D is

a pullback

R
m1 //

m0
��

E
u
��

E u
//D

(Exercise: every kernel pair is an equivalence

relation).

A quotient for an equivalence relation (m0,m1) :

R→ E × E is a coequalizer

R
m0 //

m1
//E //E/R

4) A coequalizer R ⇒ E → Q is stably exact if

the diagram

R×Q Q′ ⇒ E ×Q Q′ → Q′

is a coequalizer for all morphisms Q′ → Q.

5) A generating set is a set {Ai} which detects

non-trivial monomorphisms: if a monomorphism
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m : P → Q induces bijections hom(Ai, P ) →
hom(Ai, Q) for all i, thenm is an isomorphism.

Exercise: Show that any category Shv(C) on a

site C satisfies the conditions of Giraud’s theorem.

The family L2 hom( , U), U ∈ C is a set of gener-

ators.

Sketch proof of Giraud’s Theorem. The key is to

show that the category E has coequalizers, and is

therefore cocomplete — see [2], [1].

If A is the set of generators for E prescribed by

Giraud’s theorem, let C be the full subcategory

of E on the set of objects A. A subfunctor R ⊂
hom( , x) on C is covering if the map⊔

y→x∈R

y → x

is an epimorphism of E .

Every object E ∈ E represents a sheaf hom( , E)

on C, and a sheaf F on C determines an object

lim−→
hom( ,y)→F

y

of E .
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The adjunction

hom( lim−→
hom( ,y)→F

y, E) ∼= hom(F, hom( , E))

determines an adjoint equivalence between E and

Shv(C).

The proof of Giraud’s Theorem is arguably more

important than the statement of the Theorem it-

self. Here are some examples of the use of the basic

ideas:

1) Suppose that G is a sheaf of groups, and let

G − Shv(C) denote the category of all sheaves

X admitting G-action, with equivariant maps be-

tween them. The objects G × hom( , x) form a

generating set. By Giraud’s Theorem, G−Shv(C)

is a Grothendieck topos, and is called the classi-

fying topos for G.

2) If G = {Gi} is a profinite group with all tran-

sition maps Gi → Gj epi, then the category G −
Setd of discrete G-sets is a Grothendieck topos.

The finite discrete G-sets form a generating set for

this topos, and the site of finite discrete G-sets is a

small fattening of the site prescribed by Giraud’s

Theorem. The site that is specified by Giraud’s

Theorem is the orbit category.
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6 Geometric morphisms

Suppose that C and D are Grothendieck sites. A

geometric morphism f : Shv(C) → Shv(D) con-

sists of functors f∗ : Shv(C) → Shv(D) and f ∗ :

Shv(D) → Shv(C) such that f ∗ is left adjoint to

f∗ and f ∗ preserves finite limits.

The left adjoint f ∗ is called the inverse image

functor, while f∗ is called the direct image.

The functor f ∗ is left and right exact in the sense

that it preserves all finite limits and colimits; f∗
is usually not left exact (does not preserve finite

colimits), and hence has higher derived functors.

Examples

1) Suppose f : X → Y is a continuous map of

topological spaces. Pullback along f induces a

functor op |Y → op |X : U ⊂ Y 7→ f−1(U). Open

covers pull back to open covers, so if F is a sheaf

on X then composition with the pullback gives a

sheaf f∗F on Y with f∗F (U) = F (f−1(U)). The

resulting functor f∗ : Shv(op |X) → Shv(op |Y ) is

the direct image

The left Kan extension f p : Pre(op |Y )→ Pre(op |X)
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is defined by

f pG(V ) = lim−→G(U)

where the colimit is indexed over all diagrams

V //

��

U

��

X
f
// Y

The category op |Y has all products (ie. inter-

sections), so the colimit is filtered. The functor

G 7→ f pG therefore commutes with finite limits.

The inverse image functor

f ∗ : Shv(op |Y )→ Shv(op |X)

is defined by f ∗(G) = L2f p(G). The resulting

pair of functors forms a geometric morphism f :

Shv(op |X)→ Shv(op |Y ).

2) Suppose that f : X → Y is a morphism of

schemes. Etale maps (resp. covers) are stable un-

der pullback, and so there is a functor et |Y →
et |X defined by pullback, and if F is a sheaf on

et |X then there is a sheaf f∗F on et |Y defined by

f∗F (V → Y ) = F (X ×Y V → X).

The restriction functor f∗ : Pre(et |X)→ Pre(et |Y )

has a left adjoint f p defined by

f pG(U → X) = lim−→G(V )
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where the colimit is indexed over all diagrams

U //

��

V

��

X
f
// Y

where both vertical maps are étale. The colimit

is filtered, essentially because étale maps are sta-

ble under pullback and composition. The inverse

image functor

f ∗ : Shv(et |Y )→ Shv(et|X)

is defined by f ∗F = L2f pF , and so f induces a

geometric morphism f : Shv(et |X) → Shv(et |Y ).

A morphism of schemes f : X → Y induces a geo-

metric morphism f : Shv(?|X)→ Shv(?|Y ) and/or

f : (Sch|X)? → (Sch|Y )? for all of the geometric

topologies (eg. Zariski, flat, Nisnevich, qfh, ...), by

similar arguments.

3) A point of Shv(C) is a geometric morphism

Set → Shv(C). Every point x ∈ X of a topolog-

ical space X determines a continuous map {x} ⊂
X and hence a geometric morphism

Set ∼= Shv(op |{x})
x−→ Shv(op |X)
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The set

x∗F = lim−→
x∈U

F (U)

is the stalk of F at x

4) Suppose that k is a field. Any scheme map

x : Sp(k)→ X induces a geometric morphism

Shv(et|k)→ Shv(et|X)

If k happens to be separably closed, then there is

an equivalence Shv(et|k) ' Set and the result-

ing geometric morphism x : Set → Shv(et |X) is

called a geometric point of X . The inverse image

functor

F 7→ f ∗F = lim−→
U

��

Sp(k) x
//

;;

X

F (U)

is the stalk of F at x.

5) Suppose that S and T are topologies on a site C
so that S ⊂ T . In other words, T has more covers

than S and hence refines S. Then every sheaf for

T is a sheaf for S; write

π∗ : Shv(C, T ) ⊂ Shv(C, S)
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for the corresponding inclusion. The associated

sheaf functor for the topology T gives a left adjoint

π∗ for the inclusion functor π∗, and of course π∗

preserves finite limits.

Here’s an example: there is a geometric morphism

Shv(C)→ Pre(C)

determined by the inclusion of the sheaf category

in the presheaf category and the associated sheaf

functor.
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7 Points

Say that a Grothendieck topos Shv(C) has enough

points if there is a set of geometric morphisms xi :

Set→ Shv(C) such that the induced morphism

Shv(C)
(x∗i )−−→

∏
i

Set

is faithful.

Lemma 7.1. Suppose that f : Shv(D)→ Shv(C)

is a geometric morphism. Then the following

are equivalent:

a) f ∗ : Shv(C)→ Shv(D) is faithful.

b) f ∗ reflects isomorphisms

c) f ∗ reflects epimorphisms

d) f ∗ reflects monomorphisms

Proof. Suppose that f ∗ is faithful, ie. that f ∗(g1) =

f ∗(g2) implies that g1 = g2. Suppose that m :

F → G is a morphism of Shv(C) such that f ∗(m)

is monic. If m ·f1 = m ·f2 then f ∗(f1) = f ∗(f2) so

f1 = f2. The map m is therefore monic. Similarly

f ∗ reflects epimorphisms and hence isomorphisms.
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Suppose that f ∗ reflects epimorphisms and sup-

pose given g1, g2 : F → G such that f ∗(g1) =

f ∗(g2). g1 = g2 if and only if their equalizer

e : E → F is an epimorphism. But f ∗ preserves

equalizers and reflects epimorphisms, so e is an epi

and g1 = g2. The other arguments are similar.

Here are some basic definitions:

1) A lattice L is a partially ordered set which has

all finite coproducts x ∨ y and all finite products

x ∧ y.

NB: The collection of finite coproducts includes

the empty coproduct, which is an initial object 0.

Similarly, the empty product, which is finite prod-

uct, is a terminal object 1. Every lattice L, defined

as above, has both an initial object 0 and a termi-

nal object 1.

2) A lattice L is said to be distributive if

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

for all x, y, z.

3) A complement for x in a lattice L with 0 and 1

is an element a such that x∨a = 1 and x∧a = 0,

if it exists.
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If L is also distibutive, then the complement, if it

exists, is unique: if b is another complement for x,

then

b = b ∧ 1 = b ∧ (x ∨ a) = (b ∧ x) ∨ (b ∧ a)

= (x ∧ a) ∨ (b ∧ a) = (x ∨ b) ∧ a = a

One usually writes ¬x for the complement of x.

4) A Boolean algebra B is a distributive lattice in

which every element has a complement.

5) A lattice L is said to be complete if it has all

small limits and colimits (aka. all small meets and

joins).

6) A frame P is a lattice which has all small joins

(and all finite meets) and which satisfies an infinite

distributive law

U ∧ (
∨
i

Vi) =
∨
i

(U ∧ Vi)

Remark: There is a frame category whose objects

are the frames and the morphisms are the poset

maps which preserve structure. The category of

locales is the opposite category of the frame cat-

egory. I tend to use the term “locale” instead of

frame.
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Examples:

1) The poset O(T ) of open subsets of a topo-

logical space T is a frame. Every continu-

ous map f : S → T induces a morphism

of frames f−1 : O(T ) → O(S), defined by

U 7→ F−1(U).

2) The power set P(I) of a set I is a complete

Boolean algebra.

3) Every complete Boolean algebra B is a frame.

For the infinite distributive law, observe that

every join is a filtered colimit of finite joins.

Every frameA has a canonical Grothendieck topol-

ogy: a family yi ≤ x is covering if
∨
i yi = x. Write

Shv(A) for the corresponding sheaf category. Ev-

ery complete Boolean algebra B is a frame, and

therefore has an associated sheaf category Shv(B).

Example: Suppose that I is a set. Then there is

an equivalence

Shv(P(I)) '
∏
i∈I

Set
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If F is a sheaf on P(I) and A ⊂ I , then

F (A) ∼=
∏
x∈A

F ({x}).

Any set I of points xj : Set → Shv(C) assembles

to give a geometric morphism

x : Shv(P(I))→ Shv(C).

Lemma 7.2. Suppose that F is a sheaf of sets

on a complete Boolean algebra B. Then the

poset Sub(F ) of subobjects of F is a complete

Boolean algebra.

Proof. Sub(F ) is a frame, by an argument on the

presheaf level. It remains to show that every ob-

ject G ∈ Sub(F ) is complemented. The obvious

candidate for ¬G is

¬G =
∨

H∧G=∅

H

and we need to show that G
∨
¬G = F .

Every K ≤ hom( , A) is representable: in effect,

K = lim−→
hom( ,B)→K

hom( , B) = hom( , C)

where

C =
∨

hom( ,B)→K

B ∈ B.
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It follows that Sub(hom( , A)) ∼= Sub(A) is a com-

plete Boolean algebra.

Consider all diagrams

φ−1(G) //

��

G

��

hom( , A)
φ
//F

There is an induced pullback

φ−1(G) ∨ ¬φ−1(G) //

∼=
��

G ∨ ¬G

��

hom( , A)
φ

//F

F is a union of its representables (all φ are monic

since all hom( , A) are subobjects of the terminal

sheaf), so G ∨ ¬G = F .

Lemma 7.3. Suppose that B is a complete Boolean

algebra. Then every epimorphism π : F → G

in Shv(B) has a section.

Remark 7.4. Lemma 7.3 asserts that the sheaf

category on a complete Boolean algebra satisfies

the Axiom of Choice.
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Proof. Consider the family of lifts

F
π
��

N ≤
//

>>

G

This family is non-empty, because every x ∈ G(1)

restricts along some covering B ≤ 1 to a family of

elements xB which lift to F (B).

All maps hom( , B)→ G are monic, since all maps

hom( , B) → hom( , 1) = ∗ are monic. Thus,

all such morphisms represent objects of Sub(G),

which is a complete Boolean algebra by Lemma

7.2.

Zorn’s Lemma implies that the family of lifts has

maximal elements.

Suppose that N is maximal and that ¬N 6= ∅.
Then there is an x ∈ ¬N(C) for some C, and

there is a covering B′ ≤ C such that xB′ ∈ N(B′)

lifts to F (B′) for all members of the cover. Then

N ∧ hom( , B′) = ∅ so the lift extends to a lift on

N ∨ hom( , B′), contradicting the maximality of

N .

A Boolean localization for Shv(C) is a geometric

morphism p : Shv(B) → Shv(C) such that B is a

complete Boolean algebra and p∗ is faithful.
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Theorem 7.5 (Barr). Boolean localizations ex-

ist for every Grothendieck topos Shv(C).

Theorem 7.5 is proved in multiple places — see [2],

for example. There is a shorter version of the proof

in [1].

A Grothendieck topos Shv(C) does not have enough

points, in general (eg. sheaves on the flat site

for a scheme), but the result asserts that every

Grothendieck topos has a “fat point” given by a

Boolean localization. This is of fundamental im-

portance in setting up the general local homotopy

theory of simplicial sheaves and presheaves.
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