Lecture 02

4 Grothendieck topologies

A Grothendieck siteis a small category C equipped
with a topology T .

A Grothendieck topology T consists of a collection
of subfunctors

R C hom(,U), U e€C,

called covering sieves, such that the following ax-
ioms hold:

1) (base change) If R C hom( ,U) is covering
and ¢ : V — U is a morphism of C, then the

subfunctor
o (R)={y:W—=>V]¢-vyeR}
is covering for V.

2) (local character) Suppose that R, R" C hom(, U)
are subfunctors and R is covering. If ¢~ 1(R')
is covering for all ¢ : V — U in R, then R is
covering.

3) hom( , U) is covering for all U € C



Typically Grothendieck topologies arise from cov-
ering families in sites C having pullbacks. Covering
families are sets of functors which generate cover-
Ing sieves.

Suppose that C has pullbacks. A topology T on C
consists of families of sets of morphisms

{¢po: U, — U}, Ue€C,

called covering famailies, such that the following
axioms hold:

1) Suppose that ¢, : U, — U is a covering family
and that ¢ : V. — U is a morphism of C.
Then the collection V' xy U, — V is a covering
family for V.

2) If {¢po : Uy — V} is covering, and {7,z :
Wa.p — U,} is covering for all «, then the
family of composites

W5 —5% U, 25 U

IS covering.

3) The family {1 : U — U} is covering for all
UeC.



Examples:

1) X = topological space. op |x is the poset of
open subsets U C X. A covering family for an
open subset U is an open cover V,, C U.

2) X = topological space. loc|x is the category
of all maps f : Y — X which are local home-
omorphisms. f is a local homeomorphism if
each x € Y has a neighbourhood U such that
f(U)isopen in X and the restricted map U —
f(U) is a homeomorphism. A morphism of
loc|x is a commutative diagram

Yy -y’
N/
X
where f and f’ are local homeomorphisms. A

family {¢, : Yo — Y} of local homeomor-
phisms (over X)) is covering if Y = U (Ya).

3) X = a scheme (topological space with sheaf
of rings locally isomorphic to affine schemes
Sp(R)). The underlying topology on X is the
Zariski topology. Zar|y is the poset with ob-
jects all open subschemes U C X. A family
Vo C U is covering if UV, = U (as sets).



A scheme homomorphism ¢ : Y — X is étale at
yeYif

a) Oy is a flat Oy, -module (¢ is flat at y).

b) ¢ is unramified at y: O,/ MO, is a finite
separable field extension of k(f(y)).

Say that a map ¢ : Y — X is étale if it is étale at
every y € Y (and locally of finite type).

4) S = scheme. The étale site et|g has as objects
all étale maps ¢ : V' — S and all diagrams

VoV

N /o
S

for morphisms (with ¢, ¢’ étale). A covering
family for the étale site is a collection of étale
morphisms ¢, : V, — V such that V =
Upa(V,) as a set. Equivalently every mor-
phism Sp(£2) — V lifts to some V, if 2 is a
separably closed field.

5) The Nisnevich site Nis|g has the same under-
lying category as the étale site, namely all étale
maps V — S and morphisms between them.
A Nisnevich cover is a family of étale maps
Vo — V such that every morphism Sp(K) —
V' lifts to some V,, where K is any field.
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6) A flat covering family of a scheme T is a set of
flat morphisms ¢, : T, — T (ie. morphisms
which are flat at each point) such that T =
Uda(Tn) as a set (equivalently UT, — T is
faithfully flat).

(Sch|s)s is the “big” flat site. Pick a large
cardinal k; then (Schlg) is the category of S-
schemes X — S such that the cardinality of
both the underlying point set of X and all sec-
tions Ox(U) of its sheaf of rings are bounded
above by k.

7) There are corresponding big sites (Sch|s)zar,
(Schls)et, (Schls)nis, ... and you can play sim-
ilar games with topological spaces.

8) Suppose that G = {G,} is profinite group such
that all G; — G, are surjective group homo-
morphisms. Write also G = @Gl A dis-
crete G-set is a set X with G-action which
factors through an action of G; for some i.
Write G — Setys for the category of G-sets
which are both discrete and finite. A family
U, — X in this category is covering if and
only if | |U, — X is surjective.



9) Suppose that C is any small category. Say that
R C hom( ,z) is covering if and only if 1, € R.
This is the chaotic topology on C.

10) Suppose that C is a site and that U € C. Then
the slice category C /U inherits a topology from
C: a collection of maps V,, - V — U is cov-

ering if and only if the family V,, — V' covers
V.

Definitions: Suppose that C is a Grothendieck
site.

1) A presheaf (of sets) on C is a functor C? —
Set. If A is a category, an A-valued presheaf
on C is a functor C? — A.

The set-valued presheaves on C form a category
(morphisms are natural transformation), written
Pre(C). One can talk about presheaves taking val-
ues in any category: [ write s Pre(C) for presheaves
on C taking values in simplicial sets — this is the
category of simplicial presheaves on C.

2) A sheaf (of sets) on C is a presheaf F': C? —
Set such that the canonical map

FU)~ lim F(V)
V—=UeR
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is an isomorphism for each covering sieve R C

hom( , U).

Morphisms of sheaves are natural transformations:
write Shv(C) for the corresponding category. The
sheaf category Shv(C) is a full subcategory of Pre(C).
One can also speak of sheaves in any complete cat-
egory, such as simplicial sets: s Shv(C) denotes the
category of simplicial sheaves on the site C.

Exercise: If the topology on C is defined by a
pretopology (so that C has all pullbacks), then F
is a sheaf if and only if all pictures

FU) = ] FU) =] F(Us xv Us)
« a,f

arising from covering families U, — U are equal-
1Z€TS.

Lemma 4.1. 1) If RC R’ C hom( ,U) and R
is covering then R’ is covering.

2) If R, R' C hom( ,U) are covering then RNR'

1S Covering.
Proof. 1) ¢"(R) = ¢ 1(R') for all ¢ € R.
2) 0 RNR)=¢ HR) forall ¢ € R. ]



Suppose that R C hom( ,U) is a sieve, and F is
a presheaf on C. Write

F)a= m F(V)
VoUER
[ say that F(U)g is the set of R-compatible fam-
tlies in U. It S C R then there is an obvious
map

FU)r — F(U)s

Write
LF(U) =liny F(U)g
R

where the colimit is indexed over the filtering dia-
gram of all covering sieves R C hom( ,U). Then
x + LF(U) is a presheaf and there is a natural
presheaf map

n:F — LF
Say that a presheaf G is separated if (equivalently)
1) the map n : G — LG is monic in each section,

ie. all functions G(U) — LG(U) are injective,
or

2) Given x,y € G(U), if there is a covering sieve
R C hom( ,U) such that ¢*(z) = ¢*(y) for all

¢ € R, then x = y.



Lemma 4.2. 1) LF is separated, for all presheaves
F.

2) If G is separated then LG is a sheaf.

3)If f . F — G is a presheaf map and G is
a sheaf, then f factors uniquely through a
presheaf map f,: LF — G.

The object L?F is a sheaf for every presheaf F,
and the functor F' — L?F is left adjoint to the

inclusion Shv(C) C Pre(C). The unit of the ad-
junction is the composite

F5 LF L LPF
One often writes n : F — L*F = F for this
composite,

5 Exactness properties

Lemma 5.1. 1) The associated sheaf functor
preserves all finite limits.

2) Shv(C) is complete and co-complete. Limits
are formed sectionwise.

3) Every monic is an equalizer.

4)If 0 : F — G in Shv(C) is both monic and
ept, then 0 is an isomorphism.
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Proof. 1) LF is defined by filtered colimits, and
finite limits commute with filtered colimits.

2) If X : I — Shv(C) is a diagram of sheaves,
then the colimit in the sheaf category is Lz(lig X),
where hﬂ X is the presheaf colimit.

3) If A C X is a subset, then there is an equalizer

p
A—X—2X/A

The same holds for subobjects A C X of presheaves,
and hence for subobjects of sheaves, since L? is ex-
act.

4) The map 6 appears in an equalizer

f
F-%G—K

since 6 is monic. € is an epi, so f = ¢g. But then
lg : G — G factors through 6, giving a section
o: G — F. Finally, o0 = 0 and 6 is monic, so
o =1. O

Definitions:

1) A presheaf map f : F' — G is a local epimor-
phism if for each a € G(x) there is a covering
R C hom( ,z) such that ¢*(x) = f(yy) for all
® € R.
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2) f : F — G is a local monic if given o, €
F(z) such that f(a) = f(B), there is a covering
R C hom( ,x) such that ¢*(a) = ¢*(5) for all
® € R.

3) A presheaf map f : FF — G which is both a local
epi and a local monic is a local isomorphism.

Lemma 5.2. 1) The natural map n: F — LF
18 a local monomorphism and a local epi-
morphism.

2) Suppose that f : F — G is a presheaf mor-
phism. Then f induces an isomorphism of
associated sheaves if and only if f is both a
local epi and a local monic.

Proof. For 2) observe that, given a commutative
diagram

F-—2-F

DY

of presheaf morphisms, if any two of f, g and h are
local isomorphisms, then so is the third.
A sheaf map ¢ : E — E'’ is a monic (respectively
epi) if and only if it is a local monic (respectively
local epi). (]
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A Grothendieck topos is a category & which is
equivalent to a sheaf category Shv(C) on some Groth-
endieck site C.

Grothendieck toposes are characterized by exact-
ness properties:

Theorem 5.3 (Giraud). A category £ having
all finite limits 1s a Grothendieck topos if and
only if it has the following properties:

1) € has all small coproducts; they are disjoint
and stable under pullback

2) every epimorphism of £ is a coequalizer

3) every equivalence relation R = FE in £ is a
kernel pair and has a quotient

4) every coequalizer R = E — Q) is stably ex-
act

5) there is a (small) set of objects which gen-
erates &.

A sketch proof of Giraud’s Theorem appears be-
low, but the result is proved in many places — see,
for example, [2], (3], [1].
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Here are the definitions of the terms appearing in
the statement of Giraud’s Theorem:

1) The coproduct | |, A; is disjoint if all diagrams
(')

—_

are pullbacks for ¢ # j. | |, A; is stable under
pullback if all diagrams
L, B x5 Ai—|; A

i l

B’ B

are pullbacks.

3) An equivalence relation is a monomorphism
m = (mgy,my) : R — E x E such that

a) the diagonal A : F — E x E factors through
m (ie. a ~ a)

b) the composite R = E x E -+ E x E factors
through m (ie. a ~ b= b~ a).

c¢) the map

(momo*,mlml*) - R XE R—ExFE
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factors through m (this is transitivity) where

the pullback is defined by
RxpR™:R

m | |mo

R—p—FE

mi

The kernel pair of a morphism u : E — D is
a pullback

Rﬂ

v |

(Exercise: every kernel pair is an equivalence
relation).

A quotient for an equivalence relation (mg, my) :
R — E x E is a coequalizer

m

4) A coequalizer R = F — @ is stably exact if

the diagram
RxoQ = ExgQ — @

is a coequalizer for all morphisms Q" — Q.

5) A generating set is a set {A;} which detects

non-trivial monomorphisms: if a monomorphism
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m : P — @ induces bijections hom(A4;, P) —
hom(A;, Q) for all 4, then m is an isomorphism.

Exercise: Show that any category Shv(C) on a
site C satisfies the conditions of Giraud’s theorem.
The family L?hom( ,U), U € C is a set of gener-
ators.

Sketch proof of Giraud’s Theorem. The key is to
show that the category £ has coequalizers, and is
therefore cocomplete — see [2], [1].

If A is the set of generators for £ prescribed by
Giraud’s theorem, let C be the full subcategory
of £ on the set of objects A. A subfunctor R C

hom( , x) on C is covering if the map

is an epimorphism of &£.

Every object ' € & represents a sheaf hom( , F)
on C, and a sheaf F' on C determines an object

of £.
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The adjunction

hom( lim g, E) = hom(F,hom( , E))

hom( ,y)—F

determines an adjoint equivalence between £ and

Shv(C). ]

The proof of Giraud’s Theorem is arguably more
important than the statement of the Theorem it-
self. Here are some examples of the use of the basic
ideas:

1) Suppose that G is a sheaf of groups, and let
G — Shv(C) denote the category of all sheaves
X admitting G-action, with equivariant maps be-
tween them. The objects G x hom( ,x) form a
generating set. By Giraud’s Theorem, G — Shv(C)
is a Grothendieck topos, and is called the classi-
fying topos for G.

2) If G = {G;} is a profinite group with all tran-
sition maps G; — G epi, then the category G' —
Set,; of discrete G-sets is a Grothendieck topos.
The finite discrete G-sets form a generating set for
this topos, and the site of finite discrete G-sets is a
small fattening of the site prescribed by Giraud’s
Theorem. The site that is specified by Giraud’s
Theorem is the orbit category.
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6 Geometric morphisms

Suppose that C and D are Grothendieck sites. A
geometric morphism f : Shv(C) — Shv(D) con-
sists of functors f, : Shv(C) — Shv(D) and f*
Shv(D) — Shv(C) such that f* is left adjoint to
f« and f* preserves finite limits.

The left adjoint f* is called the inverse image
functor, while f, is called the direct tmage.

The functor f* is left and right exact in the sense
that it preserves all finite limits and colimits; f,
is usually not left exact (does not preserve finite
colimits), and hence has higher derived functors.

Examples

1) Suppose f : X — Y is a continuous map of
topological spaces. Pullback along f induces a
functor op |y — op|x: U C Y — f~1(U). Open
covers pull back to open covers, so if I’ is a sheaf
on X then composition with the pullback gives a
sheaf f.FF on Y with f,F'(U) = F(f~YU)). The
resulting functor f, : Shv(op |x) — Shv(op|y) is
the direct image

The left Kan extension f? : Pre(op |y) — Pre(op |x)
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is defined by
f1G(V) =l G(U)

where the colimit is indexed over all diagrams

|
The category op |y has all products (ie. inter-
sections), so the colimit is filtered. The functor

G +— fPG therefore commutes with finite limits.
The inverse image functor

f*: Shv(op |y) — Shv(op | x)
is defined by f*(G) = L%fP(G). The resulting
pair of functors forms a geometric morphism f :
Shv(op |x) — Shv(op |y).
2) Suppose that f : X — Y is a morphism of
schemes. Etale maps (resp. covers) are stable un-
der pullback, and so there is a functor et |y —
et | x defined by pullback, and if F'is a sheaf on
et | x then there is a sheaf f,F on et |y defined by
EF(V —=Y)=FX xyV = X).
The restriction functor f, : Pre(et |y) — Pre(et |y)
has a left adjoint f? defined by

fIGU — X) = lig G(V)
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where the colimit is indexed over all diagrams

U—V

|

where both vertical maps are étale. The colimit
is filtered, essentially because étale maps are sta-
ble under pullback and composition. The inverse
image functor

f*: Shv(et |y) — Shv(et|x)

is defined by f*F = L?fPF, and so f induces a
geometric morphism f : Shv(et |x) — Shv(et |y).

A morphism of schemes f : X — Y induces a geo-
metric morphism f : Shv(?|x) — Shv(?|y) and/or
[ (Schlx), = (Sch|y). for all of the geometric
topologies (eg. Zariski, flat, Nisnevich, qfh, ...), by
similar arguments.

3) A point of Shv(C) is a geometric morphism
Set — Shv(C). Every point x € X of a topolog-
ical space X determines a continuous map {x} C
X and hence a geometric morphism

Set = Shv(op [,1) = Shv(op |x)
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The set
' F =lm F(U)
zelU

is the stalk of F' at x

4) Suppose that k is a field. Any scheme map
x . Sp(k) — X induces a geometric morphism

Shv(et|) — Shv(et|x)

If & happens to be separably closed, then there is
an equivalence Shv(et|;) ~ Set and the result-
ing geometric morphism z : Set — Shv(et |y) is
called a geometric point of X. The inverse image
functor

Fes ['F= lmy  F(U)
U
A
Sp(k) z—X

is the stalk of F' at z.

5) Suppose that S and T are topologies on a site C
so that S C T'. In other words, T" has more covers
than .S and hence refines .S. Then every sheaf for
T is a sheaf for S; write

7. - Shv(C,T) C Shv(C, S)
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for the corresponding inclusion. The associated
sheaf functor for the topology T' gives a left adjoint
7* for the inclusion functor =, and of course 7*
preserves finite limits.

Here’s an example: there is a geometric morphism
Shv(C) — Pre(C)

determined by the inclusion of the sheaf category
in the presheaf category and the associated sheaf
functor.
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7 Points

Say that a Grothendieck topos Shv(C) has enough
points if there is a set of geometric morphisms x;
Set — Shv(C) such that the induced morphism

Shv(€) 5 T Set

is faithful.

Lemma 7.1. Suppose that f : Shv(D) — Shv(C)
1s a geometric morphism. Then the following
are equivalent:

a) f*: Shv(C) — Shv(D) is faithful.
b) f* reflects isomorphisms

c) f* reflects epimorphisms

d) f* reflects monomorphisms

Proof. Suppose that f*is faithful, ie. that f*(g;) =
f*(go) implies that g1 = g¢o. Suppose that m
F — G is a morphism of Shv(C) such that f*(m)

is monic. If m- f; = m- fy then f*(f1) = f*(f2) so
f1 = fo. The map m is therefore monic. Similarly
f* reflects epimorphisms and hence isomorphisms.
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Suppose that f* reflects epimorphisms and sup-
pose given gi,¢g2 : F' — G such that f*(g1) =
f*(g2). g1 = go if and only if their equalizer
e . /' — F is an epimorphism. But f* preserves
equalizers and reflects epimorphisms, so e is an epi
and g = go. The other arguments are similar. [

Here are some basic definitions:

1) A lattice L is a partially ordered set which has
all finite coproducts x V y and all finite products
VANTD

NB: The collection of finite coproducts includes
the empty coproduct, which is an initial object 0.
Similarly, the empty product, which is finite prod-
uct, is a terminal object 1. Every lattice L, defined
as above, has both an initial object 0 and a termi-
nal object 1.

2) A lattice L is said to be distributive if
rA(yVz)=(xAy)V(rAz)
for all x,vy, z.

3) A complement for x in a lattice L with 0 and 1
is an element a such that xVa =1and x Aa =0,
if it exists.
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If L is also distibutive, then the complement, if it
exists, is unique: if b is another complement for x,
then

b=bA1l=bA(xVa)=(bAzx)V (bAa)
=(xNa)V((bANa)=(zVb ANa=a
One usually writes =z for the complement of x.

4) A Boolean algebra B is a distributive lattice in
which every element has a complement.

5) A lattice L is said to be complete if it has all
small limits and colimits (aka. all small meets and
joins).

6) A frame P is a lattice which has all small joins

(and all finite meets) and which satisfies an infinite
distributive law

Un(\Vi)=\(UAV)

Remark: There is a frame category whose objects
are the frames and the morphisms are the poset
maps which preserve structure. The category of
locales is the opposite category of the frame cat-
egory. I tend to use the term “locale” instead of
frame.
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Examples:

1) The poset O(T) of open subsets of a topo-
logical space T is a frame. Every continu-
ous map f : S — T induces a morphism
of frames f~1 : O(T) — O(S), defined by
U FYU).

2) The power set P(I) of a set I is a complete
Boolean algebra.

3) Every complete Boolean algebra B is a frame.
For the infinite distributive law, observe that
every join is a filtered colimit of finite joins.

Every frame A has a canonical Grothendieck topol-
ogy: afamily y; < xiscoveringif \/, y; = . Write
Shv(A) for the corresponding sheaf category. Ev-
ery complete Boolean algebra B is a frame, and
therefore has an associated sheaf category Shv(B).

Example: Suppose that I is a set. Then there is
an equivalence

Shv(P(I)) ~ ] [ Set
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If F is a sheaf on P(I) and A C I, then
F(A) = [ [ F{a}).
r€A

Any set I of points x; : Set — Shv(C) assembles
to give a geometric morphism

x . Shv(P(I)) — Shv(C).

Lemma 7.2. Suppose that F' is a sheaf of sets
on a complete Boolean algebra B. Then the
poset Sub(F') of subobjects of F is a complete
Boolean algebra.

Proof. Sub(F') is a frame, by an argument on the
presheaf level. It remains to show that every ob-
ject G € Sub(F) is complemented. The obvious
candidate for =G is

-G=\/ H
HAG=0
and we need to show that G'\/ -G = F.

Every K < hom( , A) is representable: in effect,
K= liy  hom(,B)=hom(,C)
hom( ,B)—K

where



It follows that Sub(hom( , A)) = Sub(A) is a com-
plete Boolean algebra.

Consider all diagrams

hom( , A) —
There is an induced pullback
¢~ G) V= HG)—~G VG

| |

hom( , A) 3 F

F' is a union of its representables (all ¢ are monic
since all hom( , A) are subobjects of the terminal

sheaf), so GV -G = F. (]

Lemma 7.3. Suppose that B is a complete Boolean
algebra. Then every epimorphism m : F' — G
in Shv(B) has a section.

Remark 7.4. Lemma 7.3 asserts that the sheaf
category on a complete Boolean algebra satisfies
the Axiom of Choice.
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Proof. Consider the family of lifts
F

g

This family is non-empty, because every x € G(1)
restricts along some covering B < 1 to a family of
clements zp which lift to F/(B).

All maps hom( , B) — G are monic, since all maps
hom( ,B) — hom( ,1) = % are monic. Thus,
all such morphisms represent objects of Sub(G),

which is a complete Boolean algebra by Lemma
7.2.

Zorn’s Lemma implies that the family of lifts has
maximal elements.

Suppose that N is maximal and that =N # 0.
Then there is an z € —N(C') for some C, and
there is a covering B" < C' such that xp € N(B’)
lifts to F'(B’) for all members of the cover. Then
N Ahom( , B") = () so the lift extends to a lift on

N V hom( , B’), contradicting the maximality of
N. []

A Boolean localization for Shv(C) is a geometric
morphism p : Shv(B) — Shv(C) such that B is a
complete Boolean algebra and p* is faithful.
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Theorem 7.5 (Barr). Boolean localizations ex-
ist for every Grothendieck topos Shv(C).

Theorem 7.5 is proved in multiple places — see [2],
for example. There is a shorter version of the proof
in [1].

A Grothendieck topos Shv(C) does not have enough
points, in general (eg. sheaves on the flat site
for a scheme), but the result asserts that every
Grothendieck topos has a “fat point” given by a
Boolean localization. This is of fundamental im-
portance in setting up the general local homotopy
theory of simplicial sheaves and presheaves.
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