
Lecture 03

8 Rigidity

Suppose that k is an algebraically closed field and

let ` be a prime which is distinct from the charac-

teristic of k.

We will be working with the big étale site (Sch|k)et
over the field k throughout this section. Note the

abuse: I should have written (Sch|Sp(k))et.
I shall use the notation Gln to represent either the

algebraic group

Gln = Sp(k[Xij]det)

over k, or the sheaf of groups

Gln = hom( , Gln)

that it represents on the big site (Sch|k)et.
Observe that Gl1 is the multiplicative group Gm.

One sometimes sees the notation µ = Gm, and one

always sees the notation µ` for its `-torsion part.

Since the prime ` is distinct from the characteris-

tic of the algebraically closed field k, there is an

isomorphism

µ` ∼= Γ∗Z/` = Z/`,
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where Γ∗Z/` is the constant sheaf on the cyclic

group Z/` and the displayed equality is a standard

abuse.

In general, the constant sheaf functor A 7→ Γ∗(A)

is left adjoint to the global sections functor X 7→
Γ∗X , where

Γ∗X = X(k),

and there’s a geometric morphism

Γ : Shv((Sch|k)et)→ Set.

This is a special case of a geometric morphism

Γ : Shv(C)→ Set

defined by

Γ∗X = lim←−
U∈C

X(U),

which is the global sections functor for an arbitrary

site C. The general version of Γ∗ specializes to the

thing above for sheaves on (Sch|k)et because this

site has a terminal object, namely Sp(k).

Remark 8.1. It’s a special feature of étale sites

(and some others) that

Γ∗A(U) = hom(π0U,A)

where π0(U) is the set of connected components

of the k-scheme U , since Sp(k) is connected. In
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effect, the k-scheme
⊔
A Sp(k) represents Γ∗A, and

there is an easily proved isomorphism

homk(U,
⊔
A

Sp(k)) ∼= hom(π0U,A).

Note that every k-scheme X represents a sheaf

on (Sch|k)et, by the theorem of faithfully flat de-

scent. You can find this result in any of the étale

cohomology textbooks, such as [7].

In particular, the sheaf of groups Gln is defined on

affine k-schemes Sp(R) (ie. k-algebras R) by

Gln(Sp(R)) = Gln(R),

where the thing on the right is the group of in-

vertible n × n matrices with entries in R. There

is a standard way to recover the sheaf Gln on

(Sch|k)et from the matrix group description for

affine schemes, by an equivalence

Shv((Sch|k)et) ' Shv((Aff |k)et)

where (Aff |k)et is the étale site of affine k-schemes,

if you prefer.

The matrix group homomorphismsGln(R)→ Gln+1(R)

defined by

A 7→
[
A 0

0 1

]
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define a homomorphism Gln → Gln+1 of sheaves

of groups. The colimit presheaf

Gl = lim−→
n

Gln (8.1)

has the traditional infinite general linear groupGl(R)

in affine sections.

Warning: One typically also writes Gl for the as-

sociated sheaf, so that there is a relation of the

form (8.1) in the category of sheaves of groups.

Presheaves of groups G have classifying simplicial

presheaves BG, with

BG(U) = B(G(U))

given by the standard simplicial set construction.

The object BG is a simplicial sheaf if G is a sheaf,

because

BGn = G× · · · ×G
(n factors) as a presheaf.

The classifying space construction commutes with

filtered colimits, so we are entitled to a classifying

simplicial sheaf (or presheaf) BGl with

BGl = lim−→
n

BGln.

In general, simplicial sheaves (or presheaves) X

have cohomology groups and homology sheaves.
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The homology sheaves H̃n(X,A) are easier to de-

fine: form the presheaf of chain complexes

Z(X)⊗ A,

with

(Z(X)⊗ A)(U) = Z(X(U))⊗ A(U),

where Z(X(U)) is the standard (functorial) Moore

chain complex for the simplicial set X(U). Then

the sheaf H̃n(X,A) is the sheaf which is associated

to the presheaf Hn(Z(X)⊗ A).

Example: The sheaf H̃n(X,Z/`) is the sheaf as-

sociated to the presheaf Hn(Z/`(X)).

Cohomology is more interesting to define: the nth

(étale) cohomology group Hn(X,A) of the sim-

plicial presheaf X with coefficients in the abelian

presheaf A is defined by

Hn(X,A) = [X,K(A, n)],

where the thing on the right is morphisms in the

local homotopy category of simplicial presheaves

on the étale site.

There is a model structure on simplicial presheaves

(respectively, and Quillen equivalently, simplicial

sheaves) on the site (Sch|k)et, for which the weak
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equivalences are those maps X → Y which induce

weak equivalences of simplicial sets in all stalks —

I call these local weak equivalences, and for which

the cofibrations are the monomorphisms. This is

a special case of a construction which holds for

arbitrary Grothendieck sites, which we’ll discuss

later.

Example: The canonical map η : X → X̃ from a

simplicial presheaf to its associated simplicial sheaf

is a local weak equivalence.

One way to think about the simplicial presheaf

K(A, n) is that it should be the diagonal of the

multi-simplicial presheafBn(A). Alternatively, it’s

the presheaf Γ(A[−n]), where Γ is the Dold-Kan

functor from chain complexes to simplicial abelian

groups, and A[−n] is the presheaf of chain com-

plexes which consists of a copy of A concentrated

in degree n.

Remark 8.2. 1) If X is represented by a (sim-

plicial) scheme having the same name, and A is

a sheaf of abelian groups, then Hn(X,A) coin-

cides up to isomorphism with the étale cohomology

group Hn
et(X,A) of X , as it is normally defined.

Again, this will be proved later.
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In particular, if X is a k-scheme, and A → I∗ is

an injective resolution of A in sheaves of abelian

groups, then there is an isomorphism

Hn(X,A) ∼= Hn(I∗(X)) ∼= Extn(Z̃(X), A).

We have, in effect, generalized the standard def-

inition of étale cohomology groups of schemes to

arbitrary simplicial presheaves.

2) There is a spectral sequence [4] relating homol-

ogy sheaves and cohomology groups, with

Ep,q
2 = Extp(H̃q(X), A)⇒ Hp+q(X,A).

There is also an `-torsion version, with

Ep,q
2 = Extp(H̃q(X,Z/`), A)⇒ Hp+q(X,A)

(8.2)

if A is an `-torsion sheaf.

It follows that if f : X → Y is a map of simplicial

presheaves which induces homology sheaf isomor-

phisms

f∗ : H̃n(X,Z/`)
∼=−→ H̃n(Y,Z/`), n ≥ 0,

then f induces isomorphisms

f ∗ : Hn(Y,Z/`)
∼=−→ Hn(X,Z/`)

in étale cohomology groups for all n ≥ 0.
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Exercise: Show that if p : F → F ′ is a local

epimorphism of presheaves on (Sch|k)et, then the

induced map F (k) → F ′(k) in global sections is

surjective, since k is an algebraically closed field.

It follows that the associated sheaf map η : F → F̃

induces a bijection F (k)
∼=−→ F̃ (k) in global sec-

tions.

It also follows that the global sections functor on

Shv((Sch|k)et) is exact on abelian sheaves. In par-

ticular, there are isomorphisms

Hn
et(k,A) ∼=

{
A(k) if n = 0,

0 if n > 0.

More generally, the map A → I∗ of chain com-

plexes defined by an injective resolution with I∗ is

in negative degrees induces a natural isomorphism

Hn(X,A(k)) ∼= Hn(Γ∗X,A)

for any simplicial setX and sheaf of abelian groups

A.

It follows that the canonical map

ε : Γ∗Γ∗BGl → BGl

has the form

ε : Γ∗BGl(k)→ BGl
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up to isomorphism, and that the induced map

ε∗ : Hn(BGl,Z/`)→ Hn(Γ∗BGl(k),Z/`)

can be written as

ε∗ : Hn
et(BGl,Z/`)→ Hn(BGl(k),Z/`), (8.3)

where the object on the right is a standard coho-

mology group of the simplicial set BGl(k) with

coefficients in the abelian group Z/`.
The map (8.3) is a comparison map of étale with

discrete cohomology for the group Gl.

Theorem 8.3. Suppose that k is an algebraically

closed field, and that ` is prime which is distinct

from the characteristic of k. Then the compar-

ison map

ε∗ : Hn
et(BGl,Z/`)→ Hn(BGl(k),Z/`)

is an isomorphism.

Remark 8.4. This theorem gives a calculation

H∗(BGl(k),Z/`) ∼= Z/`[c1, c2, . . . ],

since standard results in étale cohomology theory

imply that H∗et(BGl,Z/`) is a polynomial ring in

Chern classes ci, with deg(ci) = 2i.
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Proof of Theorem 8.3. The idea is to show that

the map ε induces isomorphisms

H̃n(Γ∗BGl(k),Z/`)
∼=−→ H̃n(BGl,Z/`)

in all homology sheaves, and then invoke a com-

parison of spectral sequences (8.2).

The category Shv((Sch|k)et) has a good theory of

stalks, and it’s enough to compare stalks at all

closed points x ∈ U of all k-schemes U (which are

locally of finite type over k). The map ε∗ at the

stalk for such a point x is the map

Hn(BGl(k),Z/`)→ Hn(BGl(Osh
x ),Z/`),

where Osh
x is the strict Henselization of the local

ringOx ofU at x, and the indicated map is induced

by the k-algebra structure map k → Osh
x .

The Gabber Rigidity Theorem [2], [3] asserts that

the residue field homomorphism π : Osh
x → k in-

duces an isomorphism

π∗ : Hn(BGl(Osh
x ),Z/`)

∼=−→ Hn(BGl(k),Z/`).

The Theorem follows.

The Gabber Rigidity Theorem is a consequence of

a mod ` K-theory rigidity statement, namely that
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the residue map induces isomorphisms

π∗ : K∗(Osh
x ,Z/`)

∼=−→ K∗(k,Z/`)

As such, it is an essentially stable statement that

very much depends on the existence of the K-

theory transfer, as well as the homotopy property

for algebraicK-theory (K∗(A) ∼= K∗(A[t]) for reg-

ular rings A).

An axiomatic approach to rigidity has evolved in

the intervening years, which first appeared in [9],

and achieved its modern form for torsion presheaves

with transfers satisfying the homotopy property in

[10].

Theorem 8.3 implies that an inclusion of algebraically

closed fields k → L of characteristic away from `

induces an isomorphism

i∗ : H∗(BGl(L),Z/`) ∼= H∗(BGl(k),Z/`),
(8.4)

since there is an isomorphism of the corresponding

étale cohomology rings by a smooth base change

argument. The map i∗ is an isomorphism if and

only if the map

i∗ : K∗(k,Z/`)→ K∗(L,Z/`)

is an isomorphism, by H-space tricks, so that The-
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orem 8.3 implies Suslin’s first rigidity theorem [8].

The proof of Suslin’s second rigidity theorem, for

local fields [11], uses Gabber rigidity explicitly. The

outcome of that result, that there are isomorphisms

Kn(C,Z/`) ∼= πnKU/`

for n ≥ 0, is also a consequence of Theorem 8.3.

The comparison map

ε∗ : Hn
et(BGl,Z/`)→ Hn(BGl(k),Z/`)

is a special case of a natural comparison map

ε∗ : Hn(X,Z/`)→ Hn(X(k),Z/`)

which one can can construct for an arbitrary sim-

plicial presheaf X on the big site (Sch|k)et.
There are versions of Theorem 8.3 for all of the

classical infinite families of algebraic groups. In

particular, there are comparison isomorphisms

ε∗ : H∗et(BSl,Z/`)
∼=−→ H∗(BSl(k),Z/`),

ε∗ : H∗et(BSp,Z/`)
∼=−→ H∗(BSp(k),Z/`),

ε∗ : H∗et(BO,Z/`)
∼=−→ H∗(BO(k),Z/`),

for the infinite special linear, symplectic and or-

thogonal groups, respectively. The special linear
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case follows from Theorem 8.3, by a fibre sequence

argument. The symplectic and orthogonal group

statements follow from a rigidity statement for Karoubi

L-theory which is deduced from Gabber rigidity

with a Karoubi peridicity argument [5].

There is also a comparison map

ε∗ : Hn
et(BG,Z/`)→ Hn(BG(k),Z/`) (8.5)

for an arbitrary algebraic group G over k. The

Friedlander-Milnor conjecture asserts that this com-

parison map is an isomorphism if G is reductive.

This conjecture specializes to a conjecture of Mil-

nor when the underlying field is the complex num-

bers, in which case the étale cohomology groups

Hn(BG,Z/`) correspond with the ordinary singu-

lar cohomology groups of the (simplicial analytic)

classifying space BG(C).

The isomorphism conjecture holds when k = Fp
is the algebraic closure of the finite field Fp with

p 6= ` — this is a result of Friedlander and Mislin

[1] which depends strongly on the Lang isomor-

phism for algebraic groups defined over Fp. The

isomorphism conjecture is not known to hold, in

general, for any other algebraically closed field. It

is not even known to hold for any of the general

13



linear groups Gln outside of a stable range in ho-

mology. See Kevin Knudson’s book [6] for a de-

scription of the current state of the problem.

This conjecture is perhaps the most important un-

solved classical problem of algebraic K-theory. It

was known since the 1970s that a calculation of the

form

H∗(BGln(k),Z/`) ∼= Z/`[c1, . . . , cn]

would imply the Lichtenbaum conjecture that

K∗(k,Z/`) ∼= Z/`[β]

where β ∈ K2(k,Z/`) is the Bott element. Suslin

proved this conjecture with the stable calculations

of [8], [11] which were referred to above, but the

unstable problem remains open.
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