Lecture 04

9 Local weak equivalences

Suppose that C is a small Grothendieck site. Recall
that s Pre(C) and sShv(C) denote the categories
of simplicial presheaves and simplicial sheaves on
C, respectively.

Recall that a simplicial set map f : X — Y is a
weak equivalence if and only if the induced map
| X| — |Y] is a weak equivalence of topological
spaces in the classical sense. This is equivalent to
the assertion that all maps

a) mpX — mpY, and

b) m(X,x) = m(Y, f(x)), x € Xo,1 > 1
are bijections. Here m;(X, x) = m;(| X|, z) in gen-
eral, but

7Ti<X7 :13) - [(SZ7 *)7 (X7 CL’)] - 7T((SZ? *)7 (X7 CL’))
if X is a Kan complex, by the Milnor theorem. Re-
call that S* = A’/OA" is the simplicial i-sphere,
and 7((S’, %), (X, z)) is pointed simplicial homo-
topy classes of maps.
There is a different way to organize this: f: X —

Y is a weak equivalence if the following hold:
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a) mpX — myY is a bijection, and
b) all diagrams
7TZ'X *>7TZ'Y

L

Xo—Y)
are pullbacks for ¢ > 1.

Here,
7TZ'X = |_| 7TZ'(X, CE)
reX
is the group object over the set X of vertices de-
fined by the groups m;( X, x).

The basic idea behind the homotopy theory of sim-
plicial presheaves is that the topology of the under-
lying site C should create the weak equivalences.

[t’s easy to see how to do this in cases where there
are enough points:

Example: A map f : X — Y of simplicial
presheaves on op|r for some topological space T’
should be a local weak equivalence if and only if it
induces a weak equivalence in stalks X, — Y, for
all x € T'. In particular f should induce isomor-
phisms

m(Xeyy) = m(Ya, f(y))
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for allz > 1 and all choices of base pointy € X,
as well as bijections
7T()Xx i 7T()Y$.
Recall that the stalk
X, = h_lg X(U)
xelU
is a filtered colimit, and so each base point y comes
from somewhere, namely some z € X (U) for some

U. The point z determines a global section of X |y,
which is the composite

((op|7)/U)P — (op|1)™” X, sSet

and f restricts to a simplicial presheaf map f|y

X|y = Y|y. The one can show that f is a local

weak equivalence if and only if all induced sheaf

maps

a) ToX — ﬁoY, and

b) (X |y, 2) = m(Y|v, f(2),i > 1, U € C,
S XO(U)

are isomorphisms.

This is equivalent to the following: the map f :
X — Y is a local weak equivalence if and only if

a) mpX — Y is an isomorphism
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b) all presheaf diagrams

7TZ'X*>7TZ'Y
L
Xo Yo

induce pullback diagrams of associated sheaves.

Both descriptions generalize to equivalent condi-
tions for maps of simplicial presheaves on an arbi-
trary site C:

Definition A: A map f: X — Y of sPre(C) is
a local weak equivalence if and only if

a) the map X — 7Y is an isomorphism of
sheaves, and

b) all maps 7;(X|y,z) — m(Y|y, f(x)) are iso-
morphisms of sheaves on C/U for all i > 1, all
UeC,and all z € Xy(U).

Here, X |y is the composite
(C/U)? — CP 25 sSet.

Definition B: A map f: X — Y of sPre(C) is
a local weak equivalence if and only if

a) the map X — 7Y is an isomorphism of
sheaves, and



b) all diagrams

7TZ'X*>7TZ'Y
L
Xo Yo

induce pullback diagrams of associated sheaves.

Exercise: Show that Definition A is equivalent to
Definition B.

Here’s a first example:

Lemma 9.1. Suppose that f : X — Y s a sec-
tionwise weak equivalence in the sense that all
X(U) = Y(U) are weak equivalences of simpli-
cial sets. Then f is a local weak equivalence.

Proof. The map mpX — mpY is an isomorphism
of presheaves and all diagrams

7TZ'X4>7TZ'Y

L

Xo Yo
are pullbacks of presheaves. Sheafify. O

Suppose that ¢ : K C L is a cofibration of finite
simplicial sets and that f : X — Y is a map of
simplicial presheaves. We say that f has the local
right lifting property with respect to ¢ if for every
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diagram

L——-Y(U)

there is a covering sieve R C hom( , U) such that
the lift exists in the diagram

*

K X({U)2-X(V)

LY (U) Y (V)
for every ¢ : V — U in R.

Remark 9.2. There is no requirement for consis-
tency between the lifts along the various members
of R. Thus, if R is generated by a covering family
¢; . V; = U, we just require liftings

K —X(U)-"-X(V)

L—Y(U) = Y(V)

Write X for the presheaf defined in sections by
the simplicial function complexes

X5(U) = hom(K, X (U))



Lemma 9.3. A map f : X — Y has the local
right lifting property with respect to 1 : K — L
of and only if the simplicial presheaf map

(Z 7f*>

Xk X5 xyx YE

15 a local epimorphism in degree 0.

Proof. Exercise. O

The condition on the map f : X — Y of Lemma
9.3 is the requirement that the presheaf map

hom(L, X) 22 hom(K, X)X oy hom(L, Y)

(9.1)
is a local epimorphism, where hom(K, X) is the
presheaf which is specified in sections by

hom(K, X)(U) = hom(K, X (U))
or the simplicial set morphisms K — X (U).

If K is a finite simplicial set, then hom (K, X) is a
finite limit of the presheaves of simplices X,,, and
it is a sheaf if X is a simplicial sheaf (exercise).

The local right lifting property for f with respect
to ¢ boils down to the requirement that the map
above is a sheaf epimorphism if f : X — Y is a
morphism of simplicial sheaves.



It follows that if f : X — Y is a simplicial sheaf
map which has the local right lifting property with
respect to an inclusion ¢ : ' C L of finite simpli-
cial sets, and if p : Shv(D) — Shv(C) is a geomet-
ric morphism, then the induced map p*f : p* X —
p*Y has the local right lifting property with re-
spect toi: K C L.

Definition: A local fibration is a map which has
the local right lifting property with respect to all
A} C A" A simplicial presheat X is locally fi-
brant if the map X — x is a local fibration.

Lemma 9.4. Suppose that X and Y are pre-
sheaves of Kan complexes. Then a map p -
X — Y is a local fibration and a local weak
equivalence if and only if it has the right lifting
property with respect to all OA™ C A", n > 0.

Say that a map p : X — Y which has the local
right lifting property with respect to all 9A™ C A"
is a local trivial fibration. Such a map is also
called a hypercover. This is the natural general-
ization, to simplicial presheaves, of the concept of
a hypercover of a scheme (for the étale topology)
which was introduced by Artin and Mazur [1].

Suppose that X is a simplicial sheaf. Then the
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map X — x is a hypercover if the maps

XO — k, (9 2)
hom(A", X') — hom(0A", X), n > 1, '

are sheaf epimorphisms. There is a standard defi-
nition
cosky, (X)), = hom(sk,, A", X),
so that the second map of (9.2) can be written as
X, — cosk,_1(X),,
which is the way that it’s displayed in [1].

It will be shown (Corollary 9.17) that a map p
X — Y of simplicial presheaves is a local weak
equivalence and a local fibration if and only if it is
a local trivial fibration.

Proof of Lemma 9.4. Suppose that p is a local fi-
bration and a local weak equivalence, and that we
have a diagram

OA" - X (U)

Lk

A"—Y(U)
The idea is to show that this diagram is locally



homotopic to diagrams

OA" X (V)

A”%Y(V)
for which the local lift exists. This means that
there are homotopies
OA" x At — X (V)
| g
A" x Al —Y (V)

from the diagrams

*

OA" - X (U)X (V)

| :

A" ——Y (U) Y (V)

to the corresponding diagrams above for all ¢
V' — U in a covering for U. If such local homo-
topies exist, then solutions to the lifting problems

(DA™ x AU (A" x {0})— X (V)

| |

A" x Al Y(V)

have local solutions for each V', and so the original
lifting problem is solved on the refined covering of
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U. The local homotopies are created by arguments
similar to the proof of the corresponding result in
the simplicial set case [2, 1.7.10].

For the converse, show that the induced presheaf
maps

meX — MY,

mi( Xy, ) = m(Yu, p(z))
are local epis and monics — use presheaves of sim-
plicial homotopy groups for this. O

Kan’s Ex™ construction, which we now describe,
gives a natural combinatorial method of replac-
ing a simplicial set by a Kan complex up to weak
equivalence. The naturality means that the con-
struction can be imported to the categories of sim-
plicial presheaves and simplicial sheaves, and the
combinatorial nature of the Ex> construction means
that it is preserved by inverse image functors, up
to isomorphism.

The functor Ex : sSet — sSet is defined by
Ex(X), = hom(sd A", X).

sd A" = BNA", where NA" is the poset of non-
degenerate simplices of A™ (subsets of {0,1,...,n}).
Any ordinal number map 6 : m — mn induces
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a functor NA™ — NA" and hence induces a
simplicial set map sd A™ — sd A". Precomposi-
tion with this map gives the simplicial structure of
Ex(X). There is a last vertex functor NA" — n,
which is natural in n; the collection of such func-
tors determines a natural simplicial set map

n: X — Ex(X).
Observe that Ex(X)g = X, and that n induces a
bijection on vertices.
[terating gives
Ex>(X) = @EX”(X).

The salient features of the construction are the fol-
lowing (see [2, [11.4]):

1) themapn : X — Ex(X) is a weak equivalence,

2) the functor X +— Ex(X) preserves Kan fibra-
tions

3) Ex>*(X) is a Kan complex, and the natural
map j : X — Ex™(X) is a weak equivalence.

The Ex™ construction extends naturally to a con-
struction for simplicial presheaves, which construc-
tion preserves and reflects local weak equivalences:
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Lemma 9.5. A map f : X — Y of simpli-
cial presheaves is a local weak equivalence if and
only if the induced map Ex>™ X — Ex™Y is a
local weak equivalence.

Proof. The natural simplicial set map 7 : X —
Ex™ X restricts to a natural bijection

Xy = BEx™ X,

of vertices for all simplicial sets X, and the hori-
zontal arrows in the natural pullback diagrams

X —= 1, Ex™ X

| |

XO Ex® XO

are bijections.
[t follows that the diagram of sheaf homomorphisms
TnX — 1Y
-
is a pullback if and only if the diagram
7, Ex® X —7, Ex™Y

l :

~—— e~

Ex X() Ex> Yo
is a pullback. ]
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Lemma 9.6. Suppose that a simplicial presheaf
map f: X — Y has the local right lifting prop-
erty with respect to all OA™ C A". Then f is a
local fibration and a local weak equivalence.

Proof. The local fibration part is trivial: the map
f has the right lifting property with respect to all
inclusions of finite simplicial sets.

The induced map
fEx(X) — Ex(Y)

has the local right lifting property with respect to
all A" C A", since f has the local right lift-
ing property with respect to all sd OA"™ — sd A",
Thus, the map

[ Ex™(X) — Ex™(Y)

has the local right lifting property with respect
to all OA™ C A" and is a map of presheaves of
Kan complexes. Finish by using Lemma 9.4 and
Lemma 9.5. ]

Corollary 9.7. The maps n : X — LX and
n: X — L?X are local fibrations and local weak
equivalences.

Proof. Show that n : X — L.X has the local right
lifting property with respect to all 9A™ C A": the
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map
XA = X8 5 oan LXA

is a local epi in degree 0 if and only if the map of
associated sheaves is a sheaf epi. But the map of
associated sheaves is an isomorphism. ]

Corollary 9.8. A map f : X — Y of sim-
plicial presheaves is a local weak equivalence if

and only if the induced map f,: LX — LY is
a local weak equivalence.

Proof. The map n : X — LX induces a natural
isomorphism 79X — ToLX, and the horizontal
morphisms in the pullback diagrams

X — T LX

Xo——LX,
of sheaves are isomorphisms by Corollary 9.7. Now

use the same argument as for Lemma 9.5. []

These concepts for have very special interpreta-
tions for simplicial sheaves on a complete Boolean
algebra B:
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Lemma 9.9. Suppose that B is a complete Boolean
algebra.

1) Amapp: X =Y of simplicial sheaves on B
is a local (resp. local trivial) fibration if and
only if all maps p : X(b) — Y (b) are Kan
fibrations (resp. trivial Kan fibrations).

2) A map f: X =Y of locally fibrant simpli-
cial sheaves on B is a local weak equivalence
if and only if all maps f: X(b) — Y (b) are
weak equivalences of simplicial sets.

Proof. An induced map
XA 5 VA xpoan X0

is a sheaf epi in degree 0 if and only if it is a sec-
tionwise epi in degree 0, since Shv(B) satisfies the

Axiom of Choice (Lemma 7.3). The local fibration
statement is similar.

Suppose that f is a local weak equivalence. The
objects X and Y are sheaves of Kan complexes, so
the map f has a factorization

X 1o X xy YA

f lp
Y
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where p is a sectionwise Kan fibration and 7 is
right inverse to a sectionwise trivial Kan fibration
(all objects are sheaves of Kan complexes). The
map p is a local weak equivalence and a local fi-
bration, and is therefore a sectionwise weak equiv-
alence by Lemma 9.4. But then f is a sectionwise
weak equivalence. ]

Lemma 9.10. Suppose that
p : Shv(B) — Shv(C)
1s a Boolean localization. A map f : X — Y in

sShv(C) is a local fibration (resp. local trivial
fibration) if and only if the induced map

X —pY
is a sectionwise Kan fibration (resp. section-
wise trivial Kan fibration) in s Shv(B).
Proof. The simplicial sheaf map
XA = X8 oan YA
is a sheaf epi in degree zero if and only if the in-
duced map

p*XA” N p*Xé)A” Xp*yaw p*YA”
is a sheaf epi in degree 0 (note: p*(Y*) = (p*Y)&
if K is a finite simplicial set). Now use Lemma
9.9. ]
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Proposition 9.11. Suppose that
p : Shv(B) — Shv(C)

1s a Boolean localization, and that f : X — Y
is a map of sPre(C). Then f is a local weak
equivalence if and only if the map

fo:p"LPX — p" LY
is a local weak equivalence of s Shv(B).

Proof. Themap f : X — Y isalocal weak equiva-
lence if and only if the map L?X — L?*Y of associ-
ated simplicial sheaves is a local weak equivalence,
by Corollary 9.8. Thus it suffices to show that a
map f : X — Y of s Shv(C) is a local weak equiv-
alence if and only the induced map p* X — p*Y is
a local weak equivalence of s Shv(B).

The map f is a local weak equivalence if and only
the induced map L?Ex* X — L?’Ex™Y is a
weak equivalence of locally fibrant simplicial sheaves
by Lemma 9.5 and Corollary 9.8.

The map f, : Ex* X — Ex*Y of presheaves of
Kan complexes has a factorization

Ex* X .7

Ny

Ex>*Y
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where ¢ is a sectionwise Kan fibration and j is a
section of a sectionwise trivial Kan fibration 7 :
Z — Ex®X. Then j, : L?Ex*X — [?7 is
a section of a local trivial fibration m, : L?*Z —
L?Ex® X, and the induced map ¢. : L*Z —
L?Ex™Y is a local fibration between locally fi-
brant simplicial sheaves. It follows that f : X —
Y is a local weak equivalence if and only if g, is
a local trivial fibration. But this is so if and only
if p*q, is a sectionwise trivial fibration, by Lemma
9.10. Thus, f : X — Y is alocal weak equivalence
if and only if the induced map f, : p* L2 Ex® X —
p*L?Ex™Y is a sectionwise weak equivalence of
simplicial sheaves on B.

Finally, by exactness of p* and L?, there is a nat-
ural isomorphism

p*LPEx® X =2 [PEx®p*X

for simplicial sheaves X. Thus f : X — Y is a
local weak equivalence of simplicial sheaves on C
if and only if f, : p*X — p*Y is a local weak
equivalence of simplicial sheaves on B. ]

The following result is a corollary of the proof of
Proposition 9.11:
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Corollary 9.12. Suppose that
p : Shv(B) — Shv(C)

1S a Boolean localization. Then a simplicial
presheaf map f : X =Y is a local weak equiv-
alence if and only if the induced map

p*L?Ex® X — p*L*Ex™®Y
18 a sectionwise weak equivalence of simplicial
sheaves on B.
Now for some applications:
Lemma 9.13. Suppose given a commutative

diagram of simplicial presheaf maps

x-Ly

PN

Z

on a Grothendieck site C. If any two of f,g
or h are local weak equivalences then so s the
third.

Proof. Apply p*L? Ex™. O

Say that a simplicial presheaf map i : A — B is a
cofibration if it is a monomorphism in all sections
and in all simplicial degrees.

20



Lemma 9.14. Suppose given a pushout dia-
gram

| T

B—D
in the category s Shv(B) such that i is a cofibra-
tion and a local weak equivalence. Then i, s a

cofibration and a local weak equivalence.

Proof. Form the diagram of simplicial presheaf maps

Ex*® A—Ex*C

i |

Ex* B E

where ¢, 1s a cofibration. Then the induced map

D — FE' is a sectionwise weak equivalence. Sheafi-
fying gives a pushout diagram of simplicial sheaves

LPEX® A——~L2Ex>*C

2 |

L?*Ex™ B L’E

which is locally equivalent to the original. We can

therefore assume that the simplicial sheaves A, B
and C are locally fibrant.

The map 7 : A — B is a local weak equivalence
of locally fibrant simplicial sheaves on B and is
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therefore a sectionwise weak equivalence. Sectio-
wise trivial cofibrations are closed under pushout
in the simplicial presheaf category, and since D =
L*(BU4 C) is the associated sheaf of the presheaf
pushout, the map C' — D must then be a local
weak equivalence by Lemma 9.13. ]

Corollary 9.15. Suppose given a pushout dia-
gram

of simplicial presheaves on a Grothendieck site
C, and suppose that i is a cofibration and a lo-
cal weak equivalence. Then i, 15 a local weak
equivalence.

Proof. Suppose that p : Shv(B) — Shv(C) is a
Boolean localization. The functor p*L? preserves
cofibrations and pushouts, and preserves and re-
flects local weak equivalences.

The map p*L*A — p*L?B induced by i is a local
weak equivalence and a cofibration, so the map
p*L?’C — p*L*D induced by i, is a local weak
equivalence by Lemma 9.14. But then 7, must be
a local weak equivalence. ]
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Lemma 9.16. Suppose that p : X — Y is a
map of sShv(B) such that p is a sectionwise
Kan fibration and is a local weak equivalence.
Then p is a sectionwise trivial fibration.

Proof. The functor X — L? Ex® X preserves sec-
tionwise Kan fibrations and preserves pullbacks.
Also, the sectionwise fibration p : X — Y is local
weak equivalence if and only if the induced map
pe: L2Ex™® X — L?Ex™Y is a sectionwise weak
equivalence. It follows that the family of all maps
which are simultaneously sectionwise Kan fibra-
tions and local weak equivalences is closed under
base change.

Suppose given a diagram
OA" % X (b)

i Iy

The simplex A" contracts onto the vertex 0; write

h: A" x Al — A" for the contracting homotopy.

Let b/ : A" x Al — X (b) be a choice of lifting
OA" —— X (b)

.

n 1
ON" x Al sV (D)
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Then the original diagram is homotopic to a dia-
gram of the form

8?”$'X(b)
o vy

where x : A" — X(b) factors through a vertex
x € Y (b). Consider the induced diagram of sheaf
maps

OA" — (LbAO Xy X)(b)

) L ‘ lp*

An L,A%b)

Then L,A is a diagram of points as a simplicial

presheaf and hence is locally fibrant. Applying the
associated sheaf functor therefore gives a sheaf of
Kan complexes.

The map of associated sheaves which is induced by
the map p, : LyA” xy X — LyAY is a local fibra-
tion and a local weak equivalence between sheaves
of Kan complexes and is therefore a sectionwise
trivial fibration, so the indicated lift exists. O

Corollary 9.17. A map q : X — Y 1is a local
weak equivalence and a local fibration in s Pre(C)

24



iof and only if it has the local right lifting prop-
erty with respect to all OA™ C A", n > 0.

Proof. If ¢ has the local right lifting property with
respect to all OA™ C A" then it is a local fibration
and a local weak equivalence, by Lemma 9.6. We
prove the converse statement here.

Suppose that p : Shv(B) — Shv(C) is a Boolean
localization. Then p*L%q is a local weak equiv-
alence and a local fibration, and is therefore a
sectionwise trivial fibration by Lemma 9.16. The
functor p*L? reflects local epimorphisms, so that
the map

n

X2 5 VA xyoan XA
is a local epi in degree 0. O
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