
Lecture 05

10 Injective model structure

10.1 The existence theorem

I want to review the classical fibration replacement

construction from simplicial homotopy theory, be-

cause it is so important.

1) Suppose that f : X → Y is a map of Kan

complexes, and form the diagram

X ×Y Y I f∗ //

d0∗
��

Y I d1 //

d0
��

Y

X
f

//

sf
99

Y

Then d0 is a trivial fibration since Y is a Kan com-

plex, so d0∗ is a trivial fibration. The section s of

d0 (and d1) induces a section s∗ of d0∗. Then

(d1f∗)s∗ = d1(sf ) = f

Finally, there is a pullback diagram

X ×Y Y I f∗ //

(d0∗,d1f∗)
��

Y I

(d0,d1)
��

X × Y
f×1

// Y × Y
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and the map prR : X × Y → Y is a fibration

since X is fibrant, so that prR(d0∗, d1f∗) = d1f∗ is

a fibration.

Write Zf = X ×Y Y I and πf = d1f∗. Then we

have functorial replacement

X
s∗ //

f   

Zf
π
��

d0∗ //X

Y

of f by a fibration π, where d0∗ is a trivial fibration

such that d0∗s∗ = 1.

2) Suppose that f : X → Y is a simplicial set

map, and form the diagram

X
j //

f

��

θf

��

Ex∞X

f∗

��

s∗
$$

Z̃f //

��

Zf∗

πzz

Y
j

//Ex∞ Y

where the diagram

Z̃f //

π̃f
��

Zf∗
πf∗
��

Y
j
//Ex∞ Y
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is a pullback. Then π̃f is a fibration, and θf is a

weak equivalence. Furthermore, the construction

taking a map f to the factorization

X
θf //

f ��

Z̃f
πf
��

Y

(10.1)

has the following properties:

a) it is natural in f

b) it preserves filtered colimits in f

c) if X and Y are α-bounded where α is some

infinite cardinal, then so is Z̃f

I say that a simplicial setX is α-bounded if |Xn| <
α for all n ≥ 0, or in other words if α is an upper

bound for the cardinality of all sets of simplices of

X .

A simplicial presheaf Y is α-bounded if all of the

simplicial sets Y (U), U ∈ C, are α-bounded.

This construction (10.1) carries over to simplicial

presheaves, giving a natural factorization

X
θf //

f ��

Z̃f
πf
��

Y

(10.2)
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of a simplicial presheaf map f : X → Y such

that θf is a sectionwise weak equivalence and πf
is a sectionwise fibration. Here are some further

properties of this factorization:

a) it preserves filtered colimits in f

b) if X and Y are α-bounded where α is some

infinite cardinal, then so is Z̃f

c) f is a local weak equivalence if and only if πf
has the local right lifting property with respect

to all ∂∆n ⊂ ∆n.

To fix notation, suppose that C is a small Grothen-

dieck site.

Suppose that α is a regular cardinal such that α >

|Mor(C)|.

Remark 10.1. Regular cardinals are used through-

out these notes, so that the size of filtered colimits

works out correctly, as in the proof of the next

Lemma.

Specifically, if α is a regular cardinal and F =

lim−→i∈I Fi is a filtered colimit of sets Fi such that

|I| < α and all |Fi| < α, then |F | < α. One could

take this condition to be the definition of a regular

cardinal.
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It is easy to see that if β is an infinite cardinal,

then the successor cardinal β + 1 is regular, so

that regular cardinals abound in nature. There

are well known examples of limit cardinals that

are not regular.

Lemma 10.2. Suppose that i : X → Y is

a cofibration and a local weak equivalence of

sPre(C). Suppose further that A ⊂ Y is an

α-bounded subobject of Y . Then there is an α-

bounded subobject of Y such that A ⊂ B and the

map B ∩X → B is a local weak equivalence.

Proof. Write πB : ZB → B for the natural point-

wise Kan fibration replacement for the cofibration

B ∩ X → B. The map πY : ZY → Y has

the local right lifting property with respect to all

∂∆n ⊂ ∆n.

Suppose given a lifting problem

∂∆n //

��

ZA(U)
πA
��

∆n //

::

A(U)

where A is α-bounded. The lifting problem can be

solved locally over Y along some covering sieve for

U having at most α elements. ZY = lim−→|B|<αZB
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since Y is a filtered colimit of its α-bounded sub-

objects. It follows that there is an α-bounded sub-

object A′ ⊂ Y with A ⊂ A′ such that the original

lifting problem can be solved over A′. The list of

all such lifting problems is α-bounded, so there is

an α-bounded subobject B1 ⊂ Y with A ⊂ B1

so that all lifting problems as above over A can

be solved locally over B1. Repeat this procedure

countably many times to produce an ascending

family

A = B0 ⊂ B1 ⊂ B2 ⊂ . . .

of α-bounded subobjects of Y such that all lifting

local lifting problems

∂∆n //

��

ZBi
(U)
πBi
��

∆n //

::

Bi(U)

over Bi can be solved over Bi+1. Set B = ∪iBi.

Say that a map p : X → Y of sPre(C) is an

injective fibration if p has the right lifting prop-

erty with respect to all maps A → B which are

cofibrations and local weak equivalences.

Lemma 10.3. The map p : X → Y is an injec-

tive fibration if and only if it has the right lift-
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ing property with respect to all α-bounded trivial

cofibrations.

Proof. Suppose that p : X → Y has the right lift-

ing property with respect to all α-bounded trivial

cofibrations, and suppose given a diagram

A //

i
��

X
p
��

B // Y

where i is a trivial cofibration. Consider the poset

of partial lifts

A //

��
X

p
��

A′
88

��

B // Y

This poset is non-empty: given x ∈ B(U)−A(U)

there is an α-bounded subcomplex C ⊂ B with

x ∈ C(U), and there is an α-bounded subcomplex

C ′ ⊂ B with C ⊂ C ′ and i∗ : C ′ ∩ A → C ′ a

trivial cofibration. Then x ∈ C ′ ∪ A, and there is

a diagram

C ′ ∩ A //

i∗ ��

A //

��

X

p

��

C ′ //C ′ ∪ A
��

::

B // Y
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where the indicated lift exists because p has the

right lifting property with respect to the α-bounded

trivial cofibration i∗.

The poset of partial lifts has maximal elements by

Zorn’s Lemma, and one uses the same argument

as above to show that the maximal elements of the

poset must have the form

A
i
��

//X
p
��

B //

>>

Y

Lemma 10.4. Suppose that q : Z → W has

the right lifting property with respect to all cofi-

brations. Then q is an injective fibration and a

local weak equivalence.

Proof. The map q is obviously an injective fibra-

tion, and it has the right lifting property with re-

spect to all cofibrations LU∂∆n → LU∆n, so that

all maps q : Z(U)→ W (U) are trivial Kan fibra-

tions. But then q is a local weak equivalence.

One defines

LUK = hom( , U)×K
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for U ∈ C and simplicial sets K. The functor

K 7→ LUK is left adjoint to the U -sections functor

X 7→ X(U).

Lemma 10.5. A map q : Z → W has the right

lifting property with respect to all cofibrations if

and only if it has the right lifting property with

respect to all α-bounded cofibrations.

Proof. Exercise.

Lemma 10.6. Any simplicial presheaf map f :

X → Y has factorizations

Z
p

  
X

f //

i
==

j !!

Y

W
q

>>

where

1) the map i is a cofibration and a local weak

equivalence, and p is an injective fibration,

2) the map j is a cofibration and p has the right

lifting property with respect to all cofibra-

tions (and is therefore an injective fibration

and a local weak equivalence)
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Proof. For the first factorization, choose a cardinal

λ > 2α and do a transfinite small object argument

of size λ to solve all lifting problems

A //

i
��

X
f
��

B //

>>

Y

arising from locally trivial cofibrations i which are

α-bounded. We need to know that locally triv-

ial cofibrations are closed under pushout, but we

proved this in Lemma 9.14 with a Boolean localiza-

tion argument. The small object argument stops

on account of the condition on the size of the car-

dinal λ.

The second factorization is similar, and uses Lemma

10.5.

Theorem 10.7. Suppose that C is a small Groth-

endieck site. The category sPre(C) with local

weak equivalences, cofibrations and injective fi-

brations, satisfies the axioms for a proper closed

simplicial model category.

Proof. The simplicial presheaf category sPre(C)

has all small limits and colimits, giving CM1.

The weak equivalence axiom CM2 was proved in

Lemma 9.13 with a Boolean localization argument.
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The retract axiom CM3 is trivial to verify — ex-

ercise. The factorization axiom CM5 is Lemma

10.6.

Suppose that π : X → Y is an injective fibration

and a local weak equivalence. Then by the proof

of Lemma 10.6, π has a factorization

X
j //

π !!

W
p
��

Y

where p has the right lifting property with respect

to all cofibrations and is therefore a local weak

equivalence. Then j is a local weak equivalence,

and so π is a retract of p (exercise). Thus π has

the right lifting property with respect to all cofi-

brations, giving CM4.

The simplicial model structure comes from the func-

tion complex

hom(X, Y )n = homsPre(C)(X ×∆n, Y ).

Quillen’s axiom SM7 is a consequence of the fact

that local weak equivalences are closed under finite

products: if f : X → Y and f ′ : X ′ → Y ′ are

local weak equivalences, then the map

f × f ′ : X ×X ′ → Y × Y ′
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is a local weak equivalence. The proof of this state-

ment is a Boolean localization argument (exercise).

Properness is also proved with a Boolean localiza-

tion argument (exercise).

Remark 10.8. Every injective fibration (respec-

tively trivial injective fibration) p : X → Y is a

sectionwise Kan fibration (respectively sectionwise

trivial Kan fibration). In effect, if p : X → Y

is an injective fibration then it has the right lift-

ing property with respect to the trivial cofibrations

LUΛn
k → LU∆n, and if p is a trivial injective fi-

bration then it has the right lifting property with

respect to the cofibrations LU∂∆n → LU∆n. It

follows, in particular, that every injective fibration

is a local fibration.

10.2 Injective fibrant models and descent

We start with an example.

Suppose that A is a sheaf, and let K(A, 0) be the

constant simplicial object associated to A. There

is a bijection

hom(X,K(A, 0)) ∼= hom(π̃0(X), A)
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It follows that the simplicial sheaf K(A, 0) is in-

jective fibrant.

Suppose that X is a simplicial presheaf such that

all higher local homotopy groups vanish in the

sense that π̃n(X) → X̃0 is an isomorphism for

n ≥ 1. Then the map X → K(π0(X), 0) is a lo-

cal weak equivalence. It follows that the composite

X → K(π0(X), 0)→ K(π̃0(X), 0)

is a local weak equivalence, and therefore gives

an “injective fibrant model” for X . Note that all

higher homotopy groups

πn(K(π̃0(X), 0)(U), x), n ≥ 1,

vanish in all sections.

Remark 10.9. This observation is a special case

of (and the starting point for) a result which as-

serts that if X is a simplicial presheaf such that

π̃n(X) → X̃0 is an isomorphism for n ≥ k, then

any injective fibrant model X → Y has the same

property in all sections: πn(Y (U), x) = 0 for n ≥
k, for all x ∈ Y (U) and all U ∈ C — see [7,

Prop. 6.11]. This result is particular to simplicial

presheaves — it does not hold in motivic homo-

topy theory, where every motivic homotopy type
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is representable by a presheaf (see the appendix of

[8]).

An injective fibrant model for a simplicial presheaf

X is a local weak equivalence f : X → Z such that

Z is injective fibrant.

Any two injective fibrant models for a simplicial

presheaf X are equivalent in a rather strong sense:

given models f : X → Z and f ′ : X → Z ′, f has

a factorization f = p ·j where p is a injective fibra-

tion and j is a cofibration and both are local weak

equivalences, and there is a commutative diagram

X
f //

j !!

f ′

��

Z

W
p

>>

}}

Z ′

where the dotted arrow exists since j is a trivial

cofibration and Z ′ is injective fibrant. Note that

all morphisms in the picture are local weak equiv-

alences, and we have the following:

Lemma 10.10. Suppose that f : Z → W is

a weak equivalence of injective fibrant objects.

Then all maps f : Z(U) → W (U) are weak

equivalences of simplicial sets.
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Proof. The map f is a simplicial homotopy equiv-

alence since Z and W are cofibrant and injective

fibrant. In other words, there is a map g : W → Z

and homotopies Z × ∆1 → Z from gf to 1Z and

W × ∆1 → W from fg to 1W . The map g re-

stricts to g : W (U) → Z(U) in each section,

and the homotopies restrict to simplicial set maps

Z(U) × ∆1 → Z(U) and W (U) × ∆1 → W (U).

In particular f : Z(U) → W (U) is a simpli-

cial homotopy equivalence with homotopy inverse

g : W (U)→ Z(U), for each U ∈ C.

Corollary 10.11. Any two injective fibrant mod-

els for a simplicial presheaf X are sectionwise

homotopy equivalent.

Here’s the idea that pervades most applications of

local homotopy theory:

I say that a simplicial presheaf X satisfies de-

scent if some (hence any) injective fibrant model

j : X → Z is a sectionwise weak equivalence.

Injective fibrant objects satisfy descent, in view of

Lemma 10.10.

The question of whether or not a fixed simplicial

presheaf (or later, presheaf of spectra) satisfies de-

scent is called a descent problem, and the assertion
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that it does is usually a serious result which is often

called a descent theorem.

The descent concept has a long history — see [11],

[13].

Examples include the Brown-Gersten descent the-

orem for the algebraic K-theory presheaf of spec-

tra and the Zariski topology, Thomason’s étale de-

scent theorem for Bott periodic algebraicK-theory

with torsion coefficients, and the Nisnevich descent

theorem for torsion K-theory with respect to the

Nisnevich (or cdh) topology. The Lichtenbaum-

Quillen conjecture is a type of descent problem

for algebraicK-theory with torsion coefficients and

the étale topology. These issues are discussed, in

these terms, in [7], and more recently in [10].

We now know that a stack can be characterized

as a sheaf or presheaf of groupoids which satisfies

descent for some ambient topology — see, most

recently, [10]. This phenomenon will be explored

later in these notes.

Generally, one is very to happy to know that a

fixed simplicial presheaf or presheaf of spectra sat-

isfies descent, because one then has techniques for

computing its homotopy groups in all sections from
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sheaf cohomological information, most often through

a descent spectral sequence.

11 Other model structures

11.1 Injective model structure for simplicial sheaves

Write s Shv(C) for the category of simplicial sheaves

on C. Say that a map f : X → Y is a local weak

equivalence of simplicial sheaves if it is a local weak

equivalence of simplicial presheaves. A cofibration

of simplicial sheaves is a monomorphism, and an

injective fibration is a map which has the right

lifting property with respect to all trivial cofibra-

tions.

Theorem 11.1. Let C be a small Grothendieck

site.

1) The category s Shv(C) with local weak equiva-

lences, cofibrations and injective fibrations, sat-

isfies the axioms for a proper closed simplicial

model category.

2) The inclusion i of sheaves in presheaves and

the associated sheaf functor L2 together induce

a Quillen equivalence of homotopy categories

L2 : Ho(sPre(C)) ' Ho(s Shv(C)) : i.
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Proof. The associated sheaf functor L2 preserves

and reflects local weak equivalences. The inclu-

sion functor i preserves injective fibrations and L2

preserves cofibrations. The associated sheaf map

η : X → L2X is a local weak equivalence, while

the counit of the adjunction is an isomorphism.

Thus, we get 2) if we can prove 1).

The completeness axiom CM1 follows from com-

pleteness and cocompleteness for s Shv(C). The

weak equivalence axiom CM2 follows from the

corresponding statement for simplicial presheaves.

The retract axiom CM3 is trivial, and CM4 fol-

lows from the corresponding statement for simpli-

cial presheaves.

A map p : X → Y is an injective fibration (resp.

trivial injective fibration) of s Shv(C) if and only

if it is an injective fibration (resp. trivial injective

fibration) of sPre(C) (exercise).

Choose a regular cardinal β such that β > |B̃| for

all α-bounded simplicial presheaves B. Then the

β-bounded trivial cofibrations of simplicial sheaves

generate the trivial cofibrations of simplicial sheaves,

and the β-bounded cofibrations of simplicial sheaves

generate the cofibrations of simplicial sheaves.
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The factorization axiom CM5 is then proved by

transfinite small object arguments of size λ where

λ > 2β.

The simplicial model structure (aka. function com-

plexes) is inherited from simplicial presheaves, as

is properness.

The injective model structure for simplicial sheaves

(part 1) of Theorem 11.1) first appeared in a letter

of Joyal to Grothendieck [12], while the injective

model structure for simplicial presheaves first ap-

peared in [6].

Example: The category sPre(C) of simplicial pre-

sheaves is also the category of simplicial sheaves for

the “chaotic” Grothendieck topology on C whose

covering sieves are the representable functors

hom( , U), U ∈ C.
The injective model structures, for simplicial pre-

sheaves or simplicial sheaves, therefore specialize

to injective model structures for categories of dia-

grams of simplicial sets. The injective model struc-

ture for diagrams is the good setting for describing

homotopy inverse limits — see [4, VIII.2]. The ex-

istence of this model structure is usually attributed

to Heller [5].
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11.2 Intermediate model structures

There is a projective model structure on sPre(C),

for which the fibrations are sectionwise Kan fibra-

tions and the weak equivalences are sectionwise

weak equivalences. The cofibrations for this the-

ory are the projective cofibrations, and this class

of maps has a generating set S0 consisting of all

maps LU(∂∆n)→ LU(∆n). This model structure

first appeared in [3].

Write CP for the class of projective cofibrations,

and write C for the full class of cofibrations. Ob-

viously CP ⊂ C.

Let S be any set of cofibrations which contains

S0. Let CS be the saturation of the set of all

cofibrations of the form

(B × ∂∆n) ∪(A×∂∆n) (A×∆n) ⊂ B ×∆n

which are induced by members A → B of the set

S. “Saturation” means the smallest class of cofi-

brations containing the list above which is contains

all isomorphisms, and is closed under pushout and

all transfinite compositions. CS is the class of S-

cofibrations.

An S-fibration is a map which has the right lifting
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property with respect to all S-cofibrations which

are local weak equivalences.

Theorem 11.2. The category sPre(C) and the

classes of S-cofibrations, local weak equivalences,

and S-fibrations, satisfies the axioms for a proper

closed simplicial model category.

Proof. The axioms CM1 – CM3 are trivial to

verify.

Any f : X → Y has a factorization

X
j //

f   

Z
p
��

Y

where j ∈ CS and p has the right lifting property

with respect to all members of CS. Then p is an

S-fibration and is a sectionwise hence local weak

equivalence.

The map f also has a factorization

X i //

f !!

W
q
��

Y

where q is an injective fibration and i is a cofi-

bration and local weak equivalence. Then q is an

S-fibration. Factorize i as i = p · j where j ∈ CS
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and p is an S-fibration and a local weak equiva-

lence (as above). Then j is a local weak equiva-

lence, so f = (qp) · j factorizes f as an S-fibration

following a map which is an S-cofibration and a

local weak equivalence.

Exercise: Prove CM4.

The simplicial model structure is the usual one.

Exercise: Prove that the structure is proper.

The case S = S0 gives the local projective struc-

ture of Blander [2].

The model structure of Theorem 11.2 is cofibrantly

generated. This was originally proved by Beke [1],

by verifying a solution set condition. Beke’s ar-

gument was deconstructed in [9], in the form of a

basic and useful trick for verifying cofibrant gen-

eration in the presence of some kind of cardinal-

ity calculus, and that trick is reprised here, in the

proof of Lemma 11.3 below.

Suppose that α is a regular cardinal such that

|Mor(C)| < α and |D| < α for all members

C → D of the set of cofibrations generating CS.

Every α-bounded trivial cofibration i : A → B
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has a factorization

A
ji //

i   

C
pi
��

B

such that ji is an S-cofibration, pi is an S-fibration

and both maps are local weak equivalences. Write

I for the set of all of the trivial S-cofibrations ji
which are constructed in this way.

Lemma 11.3. The set I generates the class of

trivial S-cofibrations.

Proof. Suppose given a commutative diagram

A //

i
��

X
f
��

B // Y

such that i is an α-bounded member of CS and

f is a local weak equivalence. Then, since B is

α-bounded, this diagram has a factorization

A //

i
��

C
j
��

//X
f
��

B //D // Y

where j is a member of the set of cofibrations I .

In effect, by factorizing f = p·u where u is a trivial

S-cofibration and q is a trivial S-fibration, we can
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assume that f is a trivial cofibration. The bounded

cofibration property then implies that there is a

factorization

A //

i
��

E
v
��

//X
f
��

B //F // Y

with v an α-bounded trivial cofibration. Factor-

ize v = pvjv as above, again with pv a trivial

S-fibration and jv a trivial S-cofibration. Then

pv has the right lifting property with respect to i

since it is a trivial S-fibration, and jv is the desired

member of the set I .

Every trivial S-cofibration j : A′ → B′ has a fac-

torization

A′ α //

j   

C ′

q
��

B′

such that α is an S-cofibration in the saturation of

the set I and q has the right lifting property with

respect to all members of I . Then q is also a local

weak equivalence, and therefore has the right lift-

ing property with respect to all members i of the

class CS of S-cofibrations by the previous para-

graph, since all generators of CS are α-bounded.
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It follows that the lifting problem

A′ α //

j
��

C ′

q
��

B′
1
//

==

B′

has a solution, so that j is a retract of α.

Corollary 11.4. A map p : X → Y is an S-

fibration if and only if it has the right lifting

property with respect to all members of the set

I.
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