Lecture 06

12 Chain complexes

Suppose that C is a fixed small site in all that
follows. We shall suppress C in the notation, by
writing s Pre for the category s Pre(C) of simplicial
presheaves on C, and so forth.

Suppose that R is a presheaf of commutative rings
with unit on C. Write Prep for the category of R-
modules, or abelian presheaves which have an R-
module structure. Then s Prep is the category of
simplicial R-modules, Ch (Prep) is the category of
positively graded (ie. ordinary) chain complexes in
Preg, and Ch(Preg) is the category of unbounded
chain complexes in Preg.

Most of the time in applications, R is a constant
presheaf of rings, like Z or Z /n. In particular, Prey
is the category of presheaves of abelian groups,
s Preyz is presheaves of simplicial abelian groups,
and Ch(Z) and Ch_(Z) are categories of presheaves
of chain complexes. The category Prez,, is the cat-
egory of m-torsion abelian presheaves, and so on.



All of these categories have corresponding sheaf
categories, based on the category Shvpy of sheaves
of R-modules. Thus, sShvg is the category of
simplicial sheaves in R-modules, Ch (Shvg) is the
category of positively graded chain complexes in
Shv g, and Ch(Shvg) is the category of unbounded
complexes.

There is a free R-module functor
R : s Pre — s Pregp,

written X +— R(X) for simplicial presheaves X,
where R(X), is the free R-module on the presheaf
X,. This functor is left adjoint to the obvious
forgetful functor

u: sPrep — sPre.

~

The sheaf associated to R(X) is denoted by R(X).

[ shall also write R(X) for the associated (presheaf
of ) Moore chains on X, which is the complex with
R(X),, in degree n and boundary maps

0 = En: (=1)'d; - R(X),, = R(X),_1.

The homology sheaf H,(X, R) is the sheaf associ-
ated to the presheaf H,(R(X)). More generally,
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if A is an R-module, then H,(X, A) is the sheaf
associated to the presheaf H,(R(X)® A).

The normalized chains functor induces a functor
N : sPreg — Chy(Prep),

which is part of an equivalence of categories (the
Dold-Kan correspondence)

N : sPreg ~ Chy (Preg) : T
Recall [2] that N A is the chain complex with
NA, =N ker(d;)
and boundary
0= (—1)"d,: NA, - NA,_1.

Recall also that the obvious natural inclusion NA C
A of NA in the Moore chains is split by collapsing
by degeneracies, and this map induces an isomor-
phism
H.(NA)= H.(A)
of homology presheaves, and hence an isomorphism
ﬁ*(NA) = ﬁ*(A)
of homology sheaves.

Lemma 12.1. Suppose that f : X — Y is a
local weak equivalence of simplicial presheaves.
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Then the induced map f. : R(X) — R(Y) of
simplicial abelian presheaves 1s also a local weak
equivalence.

Proof. It’s enough to show that if f : X — Y
is a local equivalence of locally fibrant simplicial
sheaves, then f, : R(X) — R(Y) is a local equiv-
alence of simplicial abelian sheaves, where R is a
sheaf of rings.

[t’s also enough to assume that the map f : X —
Y is a morphism of locally fibrant simplicial sheaves
on a complete Boolean algebra B, since the in-
verse image functor p* for a Boolean localization
p : Shv(B) — Shv(C) commutes with the free R-
module functor (p, preserves module structures).

But then f : X — Y is a sectionwise weak equiva-
lence, so fi @ R(X) — R(Y) is a sectionwise weak

equivalence, and so f, : R(X) — R(Y) is a local
weak equivalence.

[Of course, f, : R(X) — R(Y) is a sectionwise
equivalence of simplicial sheaves on B, since the
simplicial sheaves R(X) and R(Y") are locally fi-
brant. | []

Remark 12.2. Once upon a time, Lemma 12.1
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was called the Illusie conjecture. There are vari-
ous proofs of this result in the literature: the ear-
liest, by van Osdol [7] in 1977, is one of the first

applications of Boolean localization. See also [3].

Suppose that A is a simplicial abelian group. Then
A is a Kan complex, and we know that there is a
natural isomorphism

m(A,0) = H,(NA)
for n > 0. There is a canonical isomorphism
(A, 0) = 7,(A, a)

which is defined for any a € Ag by [a] — [a + a]
where we have written a for the composite

A" s AV 5 A

The collection of these isomorphisms, taken to-
gether, define isomorphisms

\/

of abelian groups fibred over AO, and these iso-

(A,

morphisms are natural in simplicial abelian group
homomorphisms.



Lemma 12.3. A map A — B of simplicial R-
modules induces a local weak equivalence u(A) —
u(B) of simplicial presheaves if and only if the
induced map NA — NB induces an 1somor-
phism in all homology sheaves.

Proof. If NA — NB induces an isomorphism
in all homology sheaves, then the map 7y(A) —
7o(B) and all maps 7,(A,0) — 7,(B,0) are iso-
morphisms of sheaves. The diagram of sheaves as-
sociated to

7Tn(A, O) X AO4>7Tn(B,O> X B()

! l

Ay By

coincides with the diagram of sheaves associated

to the picture
7~Tn(A, O) X A()*>7~Tn(B,O) X BQ

! |

Ao BO
which is a pullback. ]

Lemma 12.4. Suppose given a pushout dia-
gram

A—C

Lk

B—D
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where the map © 1s a monomorphism and a ho-
mology sheaf isomorphism. Then the induced
map iy 1S a homology sheaf isomorphism.

Proof. The cokernel of the monomorphism 7, is
B/A, which is acyclic in the sense that H,(B/A) =
0. The Moore chains functor is exact, and the short
exact sequence

0C% DB JA—0
of presheaves induces a long exact sequence
.= H,(O) 5 Hy(D) — Hy(BJA) S H,y 1(A) — ...
9 Hy(C) 2 Hy(D) — Hy(BJA) — 0
in homology sheaves. It follows that all maps
H,(C) = H,(D)
are isomorphisms. O

Say that a map f : A — B of simplicial R-
modules is a local weak equivalence (respectively
injective fibration) if the simplicial presheaf map
u(A) — u(B) is a local weak equivalence (respec-
tively injective fibration).

A cofibration of simplicial R-modules is a map
which has the left lifting property with respect to
all trivial injective fibrations.
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In view of Lemma 123, f : A — B is a local
weak equivalence if and only if the induced maps
NA — NBand A — B of normalized and Moore
chains, respectively, are homology sheaf isomor-
phisms. Homology sheaf isomorphisms are often
called quasi-isomorphisms.

If7: A — Bisa cofibration of simplicial presheaves,
then the induced map i, : R(A) — R(B) is a cofi-
bration of simplicial R-modules. The map i, is a
monomorphism, because the free R-module func-
tor preserves monomorphisms.

Analogous definitions are available for maps of sim-
plicial sheaves of R-modules. Say that a map f :
A — B in sShvy is a local weak equivalence
(respectively injective fibration) if the underlying
simplicial sheaf map u(A) — u(B) is a local weak
equivalence (respectively injective fibration). Cofi-
brations are defined by a left lifting property with
respect to trivial fibrations.

If7: A — Bisa cofibration of simplicial presheaves,
then the induced map i, : R(A) — R(B) is a
cofibration of s Shvg. This induced map is also a
monomorphism.



Proposition 12.5. 1) With these definitions,
the category s Preg of simplicial R-modules
satisfies the axtoms for a proper closed sim-
plicial model category.

2) With these definitions, the category s Shvp
of stmplicial sheaves of R-modules satisfies
the axioms for a proper closed simplicial model
category.

3) The inclusion and associated sheaf functors
define a Quillen equivalence

L?: sPrep < sShvp @ i

between the (injective) model structures of
parts 1) and 2).

Proof. The injective model structure on s Pre is
cofibrantly generated. It follows from this and
Corollary 12.4 that every map f : A — B of
s Preg has factorizations

N

such that p is an injective fibration, ¢ is a triv-
ial cofibration which has the left lifting property
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with respect to all fibrations, ¢ is a trivial injec-
tive fibration, j is a cofibration, and both ¢ and
4 are monomorphisms. This proves the factoriza-
tion axiom CM5. It follows as well that every
trivial cofibration is a retract of a map of the form
¢ and therefore has the left lifting property with re-
spect to all fibrations, giving CM4. The remain-
ing closed model axioms for the category s Preg of
simplicial R-modules are easy to verify.

The simplicial structure is given by the function
complexes hom(A, B), where hom(A, B), is the
abelian group of homomorphisms

A® R(A") - B

(this object is a module over the ring of global
sections of R).

Left properness is proved with a comparison of
long exact sequences in homology sheaves, which
starts with the observation that every cofibration
is a monomorphism.

The proof of statement 2), for simplicial sheaves of
R-modules is completely analogous, and the veri-
fication of 3) follows the usual pattern. O
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[ often write
AR K =A® R(K)

(degreewise tensor product) for a simplicial R-module
A and a simplicial presheaf K.
The Dold-Kan correspondence

N : sPrep >~ Chy (Preg) : T

induces an injective model structure on the cate-
gory Chy (Preg) of presheaves of chain complexes
from the corresponding model structure on the cat-
egory s Prep of simplicial modules given by Propo-
sition 12.5.

A morphism f : C — D of Ch,(Preg) is said
to be a local weak equivalence (respectively cofi-
bration, injective fibration) if the induced map
f« : TC' = I'D is a local weak equivalence (respec-
tively cofibration, injective fibration) of s Preg.

Remark: [ also refer to a local weak equivalence
of presheaves of chain complexes (or presheaves
of simplicial abelian groups) as a homology sheaf
isomorphism, or an H,-isomorphism. Such maps
are also called quasi-isomorphisms in the litera-
ture.

Similar definitions can be made for chain com-
plexes in sheaves of R-modules.

11



A morphism f : C — D of Ch,(Shvg) is said
to be a local weak equivalence (respectively cofi-
bration, injective fibration) if the induced map
f« : TC' = I'D is a local weak equivalence (respec-
tively cofibration, injective fibration) of s Shvg.

Then we have the following:

Corollary 12.6. 1) With these definitions, the
category Ch,(Preg) of chain complexes in
R-modules satisfies the axioms for a proper
closed simplicial model category.

2) With these definitions, the category Ch(Shvg)
of chain complexes in sheaves of R-modules
satisfies the axioms for a proper closed sim-
plicial model category.

3) The inclusion and associated sheaf functors
define a Quillen equivalence

L? : Ch.(Preg) & Chy(Shvpg) : i

between the (injective) model structures of
parts 1) and 2).

Observe that every injective fibration p : C' — D
corresponds to an injective fibration p, : I'C’ —
I'D of simplicial modules. The map p, is a Kan fi-
bration in each section, so that the maps p : C),, —
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D,, are surjective in all sections for n > 1.

13 The derived category

Every ordinary chain complex C' can be identified
with an unbounded chain complex C(0) by putting
0 in negative degrees. The right adjoint of the re-
sulting functor is the good truncation D — Trq D
at level 0, where

Ty, D, — ker(0: Dy — D_1) ifn =0, and
D, if n > 0.

If D is an unbounded complex and n € Z, then
the shifted complex D[n] is defined by

Dlnl, = Dpip.

If C'is an ordinary chain complex and n € Z,
define the shifted complex C|n| by

Cln] = Tro(C(0)[m))

Suppose that n > 0. Then C[—n] is the complex
with C|—n|, = C,—, for p > n and C|—n|, =0
for p < n. Also, C'[n] is the complex with C[n], =
Cpin for p > 0 and

Cln)o = ker(0 : C, — Cy_1).
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There is, further, an adjunction isomorphism
hom(C|[—n|, D) = hom(C, D[n])
for all n > 0.

In particular, the functor C' +— C[—1] is a suspen-
sion functor for ordinary chain complexes, while
C' — (/1] is a loop functor. The suspension func-
tor is left adjoint to the loop functor.

A spectrum D in chain complexes consists of chain
complexes D", n > 0, together with chain complex
maps
o:D"[-1] — D"

called bonding homomorphisms. A morphism f :
D — E of spectra in chain complexes consists of
chain complex maps f : D" — E™ which respect
structure in the sense that the diagrams

Dn[—l]LDn—H
-1 |
En[—l] - En+1
commute. [ shall write Spt(Ch( )) to denote
the corresponding category of spectra, wherever it

occurs. For example, Spt(Ch, (Preg)) is the cat-
egory of spectra in chain complexes of R-modules.
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Example: Suppose that £ is an unbounded chain
complex. There is a canonical map

o+ (Tro E)[—1] — Tro(E[-1])

which is defined by the diagram

Ei——F,

ker(@) — E()

0 ker(0)
Replacing E by E[—n| gives maps
o (Tro(E[—n)]))[—1] — Trg(E[—n — 1]).

These are the bonding maps for a spectrum object
Tr(E) with

Tr(E)" = Tro(E|—n]).
Thus, every unbounded chain complex E defines a
spectrum object Tr(F) in chain complexes.

Example: Conversely, if C' is a spectrum object
in chain complexes, the maps

C"(0)[~1] = C"[-1](0) — C"*(0)
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have adjoints C™(0) — C"™"1(0)[1] in the category
of unbounded chain complexes. Write C'(0) for the
colimit of the maps

C%(0) — CHO)[1] = C*0)[2] — ...

in the unbounded chain complex category. Then
it’s not hard to see that Tr(C'(0))" is naturally
isomorphic to the colimit of the diagram

C" — C"1] — C"?2) — ...

and that the adjoint bonding maps Tr(C'(0))" —
Tr(C(0))"* 1] are the isomorphisms determined
by the diagrams

" C" 1] —=C" 2] —. ..

| | i

On+1[1] . On—{—Q[Q] . Cn+3[3] .

There is a canonical map
n:C = Tr(C(0)),
defined by maps to colimits. I write
QC =Tr(C(0)).

Lemma 13.1. The suspension functor C' +—
C[—1] preserves cofibrations of ordinary chain
complexes.
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Proof. It’s enough to show that the functor X
N R(X)[—1] takes cofibrations of simplicial presheaves

X to cofibrations of Ch, (Preg).

But
R(X) = R.(X,),

where R,(X ) is the reduced part of the complex
R(X ) associated to X, = X U {x}, pointed by
x. The functor ¥ — R,Y is left adjoint to the
forgetful functor from s Preg to pointed simplicial
presheaves, and therefore preserves cofibrations.

Also,

W(R.Y) = R,(XY),

where XY is the Kan suspension of the pointed
simplicial presheaf Y, and the Kan suspension pre-
serves cofibrations of pointed simplicial sets (or
presheaves). Finally

N(W(R.Y)) = NR.Y[-1].
[

Say that a map f : & — F' of spectra in chain
complexes is a strict weak equivalence (respec-
tively strict fibration) if all maps f : K" — F"
are weak equivalences (respectively fibrations).
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A cofibration is a map ¢ : A — B of spectrum
objects such that

1) the map A — BY is a cofibration of chain
complexes, and

2) all induced maps
Bn[—l] UA"[—l] An+1 — Bn+1
are cofibrations.

It follows from Lemma 13.1 that if i : A — B is
a cofibration of spectrum objects then all compo-
nent maps ¢ : A" — B™ are cofibrations of chain
complexes.

Lemma 13.2. With the definitions of strict equiv-
alence, strict fibration and cofibration given above,
the category Spt(Ch, (Preg)) satisfies the azx-
woms for a proper closed simplicial model cat-
eqory.

The proof of Lemma 13.2 is a formality — it’s a
standard exercise from stable homotopy theory:.

Say that a map f : A — B of spectrum objects in
chain complexes is a stable equivalence if the in-
duced map f, : QA — (B is a strict equivalence.
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In view of the examples above, this means pre-
cisely that the induced map f, : A(0) — B(0) of
unbounded complexes is a homology isomorphism.
Also a map g : E — F' of unbounded complexes
induces a stable equivalence g, : Tr(£) — Tr(F)
if and only if g is a homology sheaf isomorphism.

A map p: C — D of spectrum objects is a stable
fibration if and only if it has the right lifting prop-
erty with respect to all maps which are cofibrations
and stable equivalences.

Proposition 13.3. The classes of cofibrations,
stable equivalences and stable fibrations give the
category Spt(Ch, (Preg)) the structure of a proper
closed simplicial model category.

Proof. The proof follows the “Bousfield-Friedlander
script” [1] — see also [2, X.4]. It is a formal con-
sequence of the following assertions:

A1 The functor ) preserves strict weak equiva-
lences.

A2 The maps ngc and Q(nc) are strict equiva-
lences for all spectrum objects C'.

A3 The class of stable equivalences is closed un-
der pullback along all stable fibrations, and is
closed under pushout along all cofibrations.
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Only the last of these statements is potentially in-
teresting, but it is a consequence of long exact se-
quence arguments in homology in the unbounded
chain complex category. Omne uses Lemma 13.1
to show the cofibration statement. The fibration
statement is proved by showing that every stable
fibration p : C' — D is a strict fibration, and so
the induced map C'(0) — D(0) of unbounded com-
plexes is a local epimorphism in all degrees. ]

The model structure of Proposition 13.3 is the sta-
ble model structure for the category of spectrum
objects in chain complexes of R-modules. The as-
sociated homotopy category

Ho(Spt(Ch, (Preg)))

is the derived category for the category of R-modules
(presheaves and /or sheaves).
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