
Lecture 06

12 Chain complexes

Suppose that C is a fixed small site in all that

follows. We shall suppress C in the notation, by

writing sPre for the category sPre(C) of simplicial

presheaves on C, and so forth.

Suppose that R is a presheaf of commutative rings

with unit on C. Write PreR for the category of R-

modules, or abelian presheaves which have an R-

module structure. Then sPreR is the category of

simplicialR-modules, Ch+(PreR) is the category of

positively graded (ie. ordinary) chain complexes in

PreR, and Ch(PreR) is the category of unbounded

chain complexes in PreR.

Most of the time in applications, R is a constant

presheaf of rings, like Z or Z/n. In particular, PreZ
is the category of presheaves of abelian groups,

sPreZ is presheaves of simplicial abelian groups,

and Ch(Z) and Ch+(Z) are categories of presheaves

of chain complexes. The category PreZ/n is the cat-

egory of n-torsion abelian presheaves, and so on.
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All of these categories have corresponding sheaf

categories, based on the category ShvR of sheaves

of R-modules. Thus, s ShvR is the category of

simplicial sheaves in R-modules, Ch+(ShvR) is the

category of positively graded chain complexes in

ShvR, and Ch(ShvR) is the category of unbounded

complexes.

There is a free R-module functor

R : sPre→ sPreR,

written X 7→ R(X) for simplicial presheaves X ,

where R(X)n is the free R-module on the presheaf

Xn. This functor is left adjoint to the obvious

forgetful functor

u : sPreR → sPre .

The sheaf associated to R(X) is denoted by R̃(X).

I shall also write R(X) for the associated (presheaf

of) Moore chains on X , which is the complex with

R(X)n in degree n and boundary maps

∂ =

n∑
i=0

(−1)idi : R(X)n → R(X)n−1.

The homology sheaf H̃n(X,R) is the sheaf associ-

ated to the presheaf Hn(R(X)). More generally,
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if A is an R-module, then H̃n(X,A) is the sheaf

associated to the presheaf Hn(R(X)⊗ A).

The normalized chains functor induces a functor

N : sPreR → Ch+(PreR),

which is part of an equivalence of categories (the

Dold-Kan correspondence)

N : sPreR ' Ch+(PreR) : Γ.

Recall [2] that NA is the chain complex with

NAn = ∩n−1i=0 ker(di)

and boundary

∂ = (−1)ndn : NAn → NAn−1.

Recall also that the obvious natural inclusionNA ⊂
A of NA in the Moore chains is split by collapsing

by degeneracies, and this map induces an isomor-

phism

H∗(NA) ∼= H∗(A)

of homology presheaves, and hence an isomorphism

H̃∗(NA) ∼= H̃∗(A)

of homology sheaves.

Lemma 12.1. Suppose that f : X → Y is a

local weak equivalence of simplicial presheaves.
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Then the induced map f∗ : R(X) → R(Y ) of

simplicial abelian presheaves is also a local weak

equivalence.

Proof. It’s enough to show that if f : X → Y

is a local equivalence of locally fibrant simplicial

sheaves, then f∗ : R̃(X)→ R̃(Y ) is a local equiv-

alence of simplicial abelian sheaves, where R is a

sheaf of rings.

It’s also enough to assume that the map f : X →
Y is a morphism of locally fibrant simplicial sheaves

on a complete Boolean algebra B, since the in-

verse image functor p∗ for a Boolean localization

p : Shv(B) → Shv(C) commutes with the free R-

module functor (p∗ preserves module structures).

But then f : X → Y is a sectionwise weak equiva-

lence, so f∗ : R(X)→ R(Y ) is a sectionwise weak

equivalence, and so f∗ : R̃(X) → R̃(Y ) is a local

weak equivalence.

[Of course, f∗ : R̃(X) → R̃(Y ) is a sectionwise

equivalence of simplicial sheaves on B, since the

simplicial sheaves R̃(X) and R̃(Y ) are locally fi-

brant.]

Remark 12.2. Once upon a time, Lemma 12.1
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was called the Illusie conjecture. There are vari-

ous proofs of this result in the literature: the ear-

liest, by van Osdol [7] in 1977, is one of the first

applications of Boolean localization. See also [3].

Suppose that A is a simplicial abelian group. Then

A is a Kan complex, and we know that there is a

natural isomorphism

πn(A, 0) ∼= Hn(NA)

for n ≥ 0. There is a canonical isomorphism

πn(A, 0)
∼=−→ πn(A, a)

which is defined for any a ∈ A0 by [α] 7→ [α + a]

where we have written a for the composite

∆n → ∆0 a−→ A

The collection of these isomorphisms, taken to-

gether, define isomorphisms

πn(A, 0)× A0
∼= //

pr
%%

πnA

��

A0

of abelian groups fibred over A0, and these iso-

morphisms are natural in simplicial abelian group

homomorphisms.
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Lemma 12.3. A map A→ B of simplicial R-

modules induces a local weak equivalence u(A)→
u(B) of simplicial presheaves if and only if the

induced map NA → NB induces an isomor-

phism in all homology sheaves.

Proof. If NA → NB induces an isomorphism

in all homology sheaves, then the map π̃0(A) →
π̃0(B) and all maps π̃n(A, 0) → π̃n(B, 0) are iso-

morphisms of sheaves. The diagram of sheaves as-

sociated to

πn(A, 0)× A0
//

��

πn(B, 0)×B0

��

A0
//B0

coincides with the diagram of sheaves associated

to the picture

π̃n(A, 0)× A0
//

��

π̃n(B, 0)×B0

��

A0
//B0

which is a pullback.

Lemma 12.4. Suppose given a pushout dia-

gram

A //

i
��

C
i∗
��

B //D
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where the map i is a monomorphism and a ho-

mology sheaf isomorphism. Then the induced

map i∗ is a homology sheaf isomorphism.

Proof. The cokernel of the monomorphism i∗ is

B/A, which is acyclic in the sense that H̃∗(B/A) =

0. The Moore chains functor is exact, and the short

exact sequence

0→ C
i∗−→ D → B/A→ 0

of presheaves induces a long exact sequence

. . .→ H̃n(C)
i∗−→ H̃n(D)→ H̃n(B/A)

∂−→ H̃n−1(A)→ . . .
∂−→ H̃0(C)

i∗−→ H̃0(D)→ H̃0(B/A)→ 0

in homology sheaves. It follows that all maps

H̃n(C)
i∗−→ H̃n(D)

are isomorphisms.

Say that a map f : A → B of simplicial R-

modules is a local weak equivalence (respectively

injective fibration) if the simplicial presheaf map

u(A)→ u(B) is a local weak equivalence (respec-

tively injective fibration).

A cofibration of simplicial R-modules is a map

which has the left lifting property with respect to

all trivial injective fibrations.
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In view of Lemma 12.3, f : A → B is a local

weak equivalence if and only if the induced maps

NA→ NB and A→ B of normalized and Moore

chains, respectively, are homology sheaf isomor-

phisms. Homology sheaf isomorphisms are often

called quasi-isomorphisms.

If i : A→ B is a cofibration of simplicial presheaves,

then the induced map i∗ : R(A)→ R(B) is a cofi-

bration of simplicial R-modules. The map i∗ is a

monomorphism, because the free R-module func-

tor preserves monomorphisms.

Analogous definitions are available for maps of sim-

plicial sheaves of R-modules. Say that a map f :

A → B in s ShvR is a local weak equivalence

(respectively injective fibration) if the underlying

simplicial sheaf map u(A)→ u(B) is a local weak

equivalence (respectively injective fibration). Cofi-

brations are defined by a left lifting property with

respect to trivial fibrations.

If i : A→ B is a cofibration of simplicial presheaves,

then the induced map i∗ : R̃(A) → R̃(B) is a

cofibration of s ShvR. This induced map is also a

monomorphism.
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Proposition 12.5. 1) With these definitions,

the category sPreR of simplicial R-modules

satisfies the axioms for a proper closed sim-

plicial model category.

2) With these definitions, the category s ShvR
of simplicial sheaves of R-modules satisfies

the axioms for a proper closed simplicial model

category.

3) The inclusion and associated sheaf functors

define a Quillen equivalence

L2 : sPreR � s ShvR : i

between the (injective) model structures of

parts 1) and 2).

Proof. The injective model structure on sPre is

cofibrantly generated. It follows from this and

Corollary 12.4 that every map f : A → B of

sPreR has factorizations

C
p

  

A

i
>>

f //

j   

B

D
q

>>

such that p is an injective fibration, i is a triv-

ial cofibration which has the left lifting property
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with respect to all fibrations, q is a trivial injec-

tive fibration, j is a cofibration, and both i and

j are monomorphisms. This proves the factoriza-

tion axiom CM5. It follows as well that every

trivial cofibration is a retract of a map of the form

i and therefore has the left lifting property with re-

spect to all fibrations, giving CM4. The remain-

ing closed model axioms for the category sPreR of

simplicial R-modules are easy to verify.

The simplicial structure is given by the function

complexes hom(A,B), where hom(A,B)n is the

abelian group of homomorphisms

A⊗R(∆n)→ B

(this object is a module over the ring of global

sections of R).

Left properness is proved with a comparison of

long exact sequences in homology sheaves, which

starts with the observation that every cofibration

is a monomorphism.

The proof of statement 2), for simplicial sheaves of

R-modules is completely analogous, and the veri-

fication of 3) follows the usual pattern.
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I often write

A⊗K = A⊗R(K)

(degreewise tensor product) for a simplicialR-module

A and a simplicial presheaf K.

The Dold-Kan correspondence

N : sPreR ' Ch+(PreR) : Γ.

induces an injective model structure on the cate-

gory Ch+(PreR) of presheaves of chain complexes

from the corresponding model structure on the cat-

egory sPreR of simplicial modules given by Propo-

sition 12.5.

A morphism f : C → D of Ch+(PreR) is said

to be a local weak equivalence (respectively cofi-

bration, injective fibration) if the induced map

f∗ : ΓC → ΓD is a local weak equivalence (respec-

tively cofibration, injective fibration) of sPreR.

Remark: I also refer to a local weak equivalence

of presheaves of chain complexes (or presheaves

of simplicial abelian groups) as a homology sheaf

isomorphism, or an H̃∗-isomorphism. Such maps

are also called quasi-isomorphisms in the litera-

ture.

Similar definitions can be made for chain com-

plexes in sheaves of R-modules.
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A morphism f : C → D of Ch+(ShvR) is said

to be a local weak equivalence (respectively cofi-

bration, injective fibration) if the induced map

f∗ : ΓC → ΓD is a local weak equivalence (respec-

tively cofibration, injective fibration) of s ShvR.

Then we have the following:

Corollary 12.6. 1) With these definitions, the

category Ch+(PreR) of chain complexes in

R-modules satisfies the axioms for a proper

closed simplicial model category.

2) With these definitions, the category Ch+(ShvR)

of chain complexes in sheaves of R-modules

satisfies the axioms for a proper closed sim-

plicial model category.

3) The inclusion and associated sheaf functors

define a Quillen equivalence

L2 : Ch+(PreR) � Ch+(ShvR) : i

between the (injective) model structures of

parts 1) and 2).

Observe that every injective fibration p : C → D

corresponds to an injective fibration p∗ : ΓC →
ΓD of simplicial modules. The map p∗ is a Kan fi-

bration in each section, so that the maps p : Cn →
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Dn are surjective in all sections for n ≥ 1.

13 The derived category

Every ordinary chain complex C can be identified

with an unbounded chain complex C(0) by putting

0 in negative degrees. The right adjoint of the re-

sulting functor is the good truncation D 7→ Tr0D

at level 0, where

Tr0Dn =

{
ker(∂ : D0 → D−1) if n = 0, and

Dn if n > 0.

If D is an unbounded complex and n ∈ Z, then

the shifted complex D[n] is defined by

D[n]p = Dp+n.

If C is an ordinary chain complex and n ∈ Z,

define the shifted complex C[n] by

C[n] = Tr0(C(0)[n]).

Suppose that n > 0. Then C[−n] is the complex

with C[−n]p = Cp−n for p ≥ n and C[−n]p = 0

for p < n. Also, C[n] is the complex with C[n]p =

Cp+n for p > 0 and

C[n]0 = ker(∂ : Cn → Cn−1).
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There is, further, an adjunction isomorphism

hom(C[−n], D) ∼= hom(C,D[n])

for all n ≥ 0.

In particular, the functor C 7→ C[−1] is a suspen-

sion functor for ordinary chain complexes, while

C 7→ C[1] is a loop functor. The suspension func-

tor is left adjoint to the loop functor.

A spectrum D in chain complexes consists of chain

complexesDn, n ≥ 0, together with chain complex

maps

σ : Dn[−1]→ Dn+1

called bonding homomorphisms. A morphism f :

D → E of spectra in chain complexes consists of

chain complex maps f : Dn → En which respect

structure in the sense that the diagrams

Dn[−1] σ //

f [−1]
��

Dn+1

f
��

En[−1] σ
//En+1

commute. I shall write Spt(Ch+( )) to denote

the corresponding category of spectra, wherever it

occurs. For example, Spt(Ch+(PreR)) is the cat-

egory of spectra in chain complexes of R-modules.
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Example: Suppose that E is an unbounded chain

complex. There is a canonical map

σ : (Tr0E)[−1]→ Tr0(E[−1])

which is defined by the diagram

...

��

...

��

E1
//

��

E1

��

ker(∂)

��

//E0

��

0 // ker(∂)

Replacing E by E[−n] gives maps

σ : (Tr0(E[−n]))[−1]→ Tr0(E[−n− 1]).

These are the bonding maps for a spectrum object

Tr(E) with

Tr(E)n = Tr0(E[−n]).

Thus, every unbounded chain complex E defines a

spectrum object Tr(E) in chain complexes.

Example: Conversely, if C is a spectrum object

in chain complexes, the maps

Cn(0)[−1] = Cn[−1](0)→ Cn+1(0)
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have adjoints Cn(0)→ Cn+1(0)[1] in the category

of unbounded chain complexes. Write C(0) for the

colimit of the maps

C0(0)→ C1(0)[1]→ C2(0)[2]→ . . .

in the unbounded chain complex category. Then

it’s not hard to see that Tr(C(0))n is naturally

isomorphic to the colimit of the diagram

Cn → Cn+1[1]→ Cn+2[2]→ . . .

and that the adjoint bonding maps Tr(C(0))n →
Tr(C(0))n+1[1] are the isomorphisms determined

by the diagrams

Cn //

��

Cn+1[1] //

��

Cn+2[2] //

��

. . .

Cn+1[1] //Cn+2[2] //Cn+3[3] // . . .

There is a canonical map

η : C → Tr(C(0)),

defined by maps to colimits. I write

QC = Tr(C(0)).

Lemma 13.1. The suspension functor C 7→
C[−1] preserves cofibrations of ordinary chain

complexes.
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Proof. It’s enough to show that the functor X 7→
NR(X)[−1] takes cofibrations of simplicial presheaves

X to cofibrations of Ch+(PreR).

But

R(X) = R∗(X+),

where R∗(X+) is the reduced part of the complex

R(X+) associated to X+ = X t {∗}, pointed by

∗. The functor Y 7→ R∗Y is left adjoint to the

forgetful functor from sPreR to pointed simplicial

presheaves, and therefore preserves cofibrations.

Also,

W (R∗Y ) ∼= R∗(ΣY ),

where ΣY is the Kan suspension of the pointed

simplicial presheaf Y , and the Kan suspension pre-

serves cofibrations of pointed simplicial sets (or

presheaves). Finally

N(W (R∗Y )) ∼= NR∗Y [−1].

Say that a map f : E → F of spectra in chain

complexes is a strict weak equivalence (respec-

tively strict fibration) if all maps f : En → F n

are weak equivalences (respectively fibrations).
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A cofibration is a map i : A → B of spectrum

objects such that

1) the map A0 → B0 is a cofibration of chain

complexes, and

2) all induced maps

Bn[−1] ∪An[−1] A
n+1 → Bn+1

are cofibrations.

It follows from Lemma 13.1 that if i : A → B is

a cofibration of spectrum objects then all compo-

nent maps i : An → Bn are cofibrations of chain

complexes.

Lemma 13.2. With the definitions of strict equiv-

alence, strict fibration and cofibration given above,

the category Spt(Ch+(PreR)) satisfies the ax-

ioms for a proper closed simplicial model cat-

egory.

The proof of Lemma 13.2 is a formality — it’s a

standard exercise from stable homotopy theory.

Say that a map f : A→ B of spectrum objects in

chain complexes is a stable equivalence if the in-

duced map f∗ : QA→ QB is a strict equivalence.
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In view of the examples above, this means pre-

cisely that the induced map f∗ : A(0) → B(0) of

unbounded complexes is a homology isomorphism.

Also a map g : E → F of unbounded complexes

induces a stable equivalence g∗ : Tr(E) → Tr(F )

if and only if g is a homology sheaf isomorphism.

A map p : C → D of spectrum objects is a stable

fibration if and only if it has the right lifting prop-

erty with respect to all maps which are cofibrations

and stable equivalences.

Proposition 13.3. The classes of cofibrations,

stable equivalences and stable fibrations give the

category Spt(Ch+(PreR)) the structure of a proper

closed simplicial model category.

Proof. The proof follows the “Bousfield-Friedlander

script” [1] — see also [2, X.4]. It is a formal con-

sequence of the following assertions:

A1 The functor Q preserves strict weak equiva-

lences.

A2 The maps ηQC and Q(ηC) are strict equiva-

lences for all spectrum objects C.

A3 The class of stable equivalences is closed un-

der pullback along all stable fibrations, and is

closed under pushout along all cofibrations.
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Only the last of these statements is potentially in-

teresting, but it is a consequence of long exact se-

quence arguments in homology in the unbounded

chain complex category. One uses Lemma 13.1

to show the cofibration statement. The fibration

statement is proved by showing that every stable

fibration p : C → D is a strict fibration, and so

the induced mapC(0)→ D(0) of unbounded com-

plexes is a local epimorphism in all degrees.

The model structure of Proposition 13.3 is the sta-

ble model structure for the category of spectrum

objects in chain complexes of R-modules. The as-

sociated homotopy category

Ho(Spt(Ch+(PreR)))

is the derived category for the category ofR-modules

(presheaves and/or sheaves).
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