Lecture 07

14 Cocycles

Let M be a closed model category such that

1) M is right proper in the sense that weak equiv-
alences pull back to weak equivalences along
fibrations, and

2) the class of weak equivalences is closed under
products: if f: X — Y is a weak equivalence,
soisanymap f X 1: X xZ —=Y x Z

Examples include any of the model structures on
s Pre, sShv, sPrep or sShvp that we've seen,
where the weak equivalences are local weak equiv-
alences. This can be verified by using Boolean lo-
calization arguments.

Suppose that X,Y are objects of M, and write
H(X,Y) for the category whose objects are all

pairs of maps (f, g)

xdLdz4%y

where f is a weak equivalence. A morphism
a:(f.9) = (f.9)
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of H(X,Y) is a commutative diagram

L~
X oy
!z

[ say that H(X,Y) is the category of cocycles, or
cocycle category from X to Y.

Example: Every set X has an associated (homo-
topically) trivial groupoid whose objects are the
elements of X and whose morphisms are pairs of el-
ements of X. Suppose that a presheaf map U — x
is a local epimorphism. Then the canonical sim-
plicial presheaf map BC(U) — x* is a local weak
equivalence (in fact, it’s a local trivial fibration),
and BC(U) is called the Cech resolution associ-
ated to the covering U — *.

Given a covering U — * and a (pre)sheaf of groups
(G, a normalized cocycle on U with values in G is,
precisely, either a groupoid morphism C(U) — G
or a simplicial presheaf map BC(U) — BG. Such
a map defines a cocycle

x < BC(U) — BG

in the sense described above. Normalized cocycles
were the original examples of such cocycles.
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Write moH (X, Y') for the class of path components
of H(X,Y). There is a function

¢ mH(X,Y)— [X,Y]
defined by (f,g) — g- f %

Lemma 14.1. Suppose that o : X — X' and
B:Y — Y are weak equivalences. Then the
function

(o, B)s : moH(X,Y) = moH (X', Y")
18 a bijection.
Proof. An object (f, g) of H(X',Y')isamap (f, g) :

Z — X' x Y’ such that f is a weak equivalence.
There is a factorization

Z—J W

%‘ l(pX/’pY’)

X' xY’

such that j is a trivial cofibration and (pyr, py’) is

a fibration. The map pys is a weak equivalence.
Form the pullback

W* (ax B)«

(P Py) l l(P Py ')

XXY?XﬁX’xY’
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Then the map (p%, p}-) is a fibration and (a x ).
is a local weak equivalence (since o X (3 is a weak
equivalence, and by right properness). The map
Py is also a weak equivalence.

The assignment (f, g) — (p%, p}) defines a func-
tion

ToH(X',Y") = mH(X,Y)
which is inverse to («, 3). O

Lemma 14.2. Suppose that Y s fibrant and X
18 cofibrant. Then the canonical map

¢ mH(X,Y)— [ X,Y]
18 a bijection.

Proof. The function 7(X,Y) — [X,Y] relating
naive homotopy classes to morphisms in the ho-

motopy category is a bijection since X is cofibrant
and Y is fibrant.

If f,g: X — Y are homotopic, there is a diagram

X
1 f
Do iy
1 1T%

X

S

|

A

S



where h is the homotopy. Thus, sending f : X —
Y to the class of (1x, f) defines a function

Y w(X,Y) > mH(X,Y)
and there is a diagram

(X, V) moH(X,Y)

¢

X, Y]
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[t suffices to show that ) is surjective, or that any
object X L 7% visin the path component of
some a pair X & X 5 v for some map k.

The weak equivalence f has a factorization

A Vg

N

X

where 7 is a trivial cofibration and p is a trivial
fibration. The object Y is fibrant, so the dotted
arrow @ exists in the diagram

Since X is cofibrant, the trivial fibration p has a



section o, and so there is a commutative diagram

/1/X fo
X2 oY
Vp\v.»'g

Then the composite 8o is the required map k. [

Theorem 14.3. Suppose that the model cate-
gory has the properties 1) and 2) listed above,

and that X,Y are objects of M. Then the
canonical map

¢ mH(X,Y)— [X,Y]
18 a bigection for all X and Y .

Proof. There are weak equivalences 7 : X' — X
and j : Y — Y’ such that X’ and Y are cofibrant
and fibrant, respectively, and there is a commuta-
tive diagram

moH(X,Y)—2~[X,Y]
(Lﬁ*l glj*

ToH(X,Y") —2[X, Y]
(w,l)*Tg glﬂ*

moH (X', Y") % X', Y]

I

The functions (1, 7). and (m, 1), are bijections by
the first Lemma, and the bottom map ¢ is a bijec-
tion by the second Lemma. O
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Remark 14.4. Cocycle categories have appeared
before, in the context of Dwyer-Kan hammock lo-
calizations [3], [2]. One of the main results in the
area, which holds for arbitrary model categories
M, says roughly that the nerve BH(X,Y) is a
model for the function space of maps from X to Y
if Y is fibrant. This result implies Theorem 14.3 if
the target object Y is fibrant. On the other hand,
[ shall demonstrate below that the most powerful
applications of Theorem 14.3 involve target objects
Y which are not fibrant in general.

15 Sheaf cohomology

Suppose that A is a sheaf of abelian groups, and
let A — J be an injective resolution of A, thought
of as a Z-graded chain complex, concentrated in
negative degrees.

Write A|—n] for the chain complex consisting of A
concentrated in degree n, and consider the chain
map A[—n| — J[—n].

Recall that K (A, n) = I'A|—n] defines the Eilenberg-
Mac Lane simplicial sheaf associated to A. Let

K(J,n) = I Tro(J[—n))



where Tro(J[—n]) is the good truncation of J[—n)|
in non-negative degrees.

Suppose that C' is an ordinary chain complex and
that I is an unbounded chain complex which is 0
in non-negative degrees. Form the bicomplex

hom(C, I),, = hom(C_,, I,)
with the obvious induced differentials:

d' = 0F : hom(C_,, I,) = hom(C_,_1,1,)
" _( )pﬁj* hom(C_p, ) — hom(C_p, q— 1)

Then hom(C), I) is a third quadrant bicomplex with
associated total complex

Tot_, hom(C, I) @ hom(C_, I,)

for n > 0, which is concentrated in negative de-
grees.

Exercise: Show that there are natural isomor-
phisms

H_,(Tothom(C, I)) = «(C(0), I[—n])
(O, TIO ][—n]),
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where 7w(C(0), I[—n]) denotes chain homotopy classes
of maps from the unbounded complex C'(0) canoni-
cally associated to C' to the shifted complex I[|—n],
and 7(C, Trg I|—n]) is chain homotopy classes of
maps in the bounded complex category:.

Example: If A — J is an injective resolution of
an abelian sheaf A, then the bicomplex hom(C, J)
determines a spectral sequence with

EYY = Ext!(H,(C), A) = 7(C,Tro J[—p — q]).

Lemma 15.1. Every local weak equivalence f :
X — Y induces an isomorphism

Ten(NZY, Trg J[—n]) = man(NZX, Tro J[—n))
in chatn homotopy classes for all n > 0.

Proof. The map f induces a homology sheaf iso-
morphism NZX — NZY , and then a comparison
of spectral sequences

B = Ext!(H,(X), A) = 74(NZX, Trg J[-p—q])
gives the desired result. O
If two chain maps f,g : NZX — Ty J[—n] are



chain homotopic, then there is a right homotopy

Z

b

X K(Jn) x K(J.n)

for some path object Z over K(J,n) in the projec-
tive model structure for C°’-diagrams of simplicial
sets (see Section 11). Choose a sectionwise trivial
fibration m : W — X such that W is projective
cofibrant. Then f,m is left homotopic to g.m for
some choice of cylinder object W &® I for W, again
in the projective structure. This means that there
is a diagram

W———=X

AT

X-"W-—=WaIl—"—~K(Jn)

A

where the maps s, 7, 71 are all part of the cylinder
object structure for W ® I, and are sectionwise
weak equivalences. It follows that

(]-7 f*) ~ <7T> f*ﬂ-) ~ (T‘-Sv h) ~ (W,g*ﬂ') ~ (179*)
in moH (X, K(J,n)). It follows that there is a well
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defined abelian group homomorphism
¢ wn(NZX, Trg J[—n]) — moH (X, K(J,n)).
This map is natural in X.

Lemma 15.2. The map
¢ wn(NZX, Trg J[—n]) — moH (X, K(J,n)).
18 an 1somorphism.

Proof. Suppose that X Lz K(J,n) is an
object of H(X, K(J,n)). Then there is a unique
chain homotopy class [v] : NZX — J[—n] such
that v, f] = [g] since f is a local weak equivalence.
This chain homotopy class [v] is also independent
of choice of representative for the component of
(f,g). We therefore have a well defined function

Y moH (X, K(J,n)) = 7a(NZX, Trg J[—n)).

Then the composites v - ¢ and ¢ - 1) are identity
morphisms. ]

We have proved

Theorem 15.3. Suppose that A is a sheaf of
abelian groups on C, and let A — J be an in-
jective resolution of A in the category of abelian
sheaves. Let X be a simplicial presheaf on C.
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Then there is an isomorphism
7-‘-ch(]\]ZAXva Tl"() J[—TL]) = [Xv K(A7 n)]
This 1somorphism s natural in X.

Suppose that A is an abelian (pre)sheaf on C and
that X is a simplicial presheaf. Write

H"(X,A)=[X, K(A,n),
and say that this group is the n'* cohomology
group of X with coeffients in A.

The following basic result is then an immediate
consequence of Theorem 15.3 (but has another,
simpler proof — exxercise):

Corollary 15.4. Suppose that f : X — Y in-
duces an isomorphism

H.(X) = H.(Y)

in all homology sheaves. Then the induced map
in cohomology

H(Y, A) — H*(X, A)

18 an 1somorphism for all coefficient presheaves

A.

Proof. The induced map Z(X) — Z(Y') is a local
weak equivalence. ]
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There is also a torsion coeffients version:

Corollary 15.5. If f : X — Y nduces a ho-
mology sheaf isomorphism

H.(X,Z/n) = H,(Y,Z/n)

then f induces an isomorphism

H*(Y,A) — H* (X, A)
for all n-torsion presheaves A.
Remark 15.6. 1) The associated sheaf map

K(A,n) — K(A,n)

is a local weak equivalence, so that

H"(X,A) = H'(X, A).

2) One can (and does) define sheaf cohomology
H"(C, A) for an abelian sheaf A on a site C by

H"(C,A) = H_,(T.J)

where A — J is an injective resolution of A con-
centrated in negative degrees and I', is global sec-
tions (ie. inverse limit). But I',Y = hom(x, Y') for
any Y, and so

H"(C,A) = Wch(Z*,TrO J[—n]) =[x, K(A,n)]
by Theorem 15.3.
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3) There is a universal coefficients spectral se-
quence

EP? = Ext!(H,(X), A) = H"(X,A)

for abelian presheaves A and simplicial presheaves
X. There is a corresponding spectral sequence

EY = Ext!(H,(X,Z/n), A) = H'"(X, A)
for n-torsion presheaves A.

Cup products
Suppose that

XX - K(An), Y<VY — K(B,m)

are cocycles. Then the adjoint simplicial abelian
presheaf maps

7ZX' — K(An), ZY' — K(B,m)
have a (simplicial abelian group) tensor product
(X' xY)Z2ZX' QZY' — K(A,n)® K(B,m)
and there is a natural weak equivalence
K(A,n)® K(B,m)~ K(A® B,n+m).

in simplicial abelian groups, hence in simplicial
abelian presheaves.
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Proving this last claim is an exercise. Use the weak
equivalence

K(A,n) ~Z, (SN ® A

where Z,(K) denotes the reduced complex of a
pointed simplicial set K .

The adjoint
XxY &X' xY' - K(A® B,n+m)

represents the external cup product of the classes
represented by the two cocycles. We have defined
an external cup product

H"(X,A) x H"(Y,B) = H""™(X x Y, A® B).

If A happens to be a presheaf of rings this con-
struction specializes to the cup product pairing

H"(X,A) x H"(X,A) - H""™(X x X, A)
2 grimix, A).
where A : X — X x X is the diagonal map.

Cohomology operations

A cohomology operation is a map
K(A,n)— K(B,m)
in the homotopy category:.
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The Steenrod operation Sq' is a morphism
K(Z/2,n) — K(Z/2,n + 1)

in the ordinary homotopy category. The constant
presheaf functor preserves weak equivalences, and
so Sq' induces a morphism

K(T*Z/2,n) — K(T*Z/2,n + 1)

in the homotopy category of simplicial presheaves
on an arbitrary small site C. It therefore induces
a homomorphism

Sq': HY(X,Z/2) — H""(X,Z/2)

which is natural in simplicial presheaves X. The
collection of Steenrod operations {Sq'} for simpli-
cial presheaves has the same basic list of properties
as the Steenrod operations for ordinary spaces.

Steenrod operations for mod 2 étale cohomology
were first introduced by Breen [1]; the definition
given here for mod 2 cohomology of arbitrary sim-
plicial presheaves is a vast generalization. The first
calculational application was in questions concern-
ing Hasse-Witt classes for non-degenerate symmet-
ric bilinear forms in the mod 2 Galois cohomology

of fields — see [5] and [6].
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That said, the definition of Steenrod operations
which is given here has its uses, but it is now rela-
tively naive. Voevodsky introduced and made very
effective use of a much more sophisticated con-
struction for motivic homotopy theory in his proof
of the Milnor conjecture [11], [12].

16 Descent spectral sequences
Proposition 16.1. Suppose that A is a presheaf
of abelian groups, and that

j: K(An) — GK(An)

is an injective fibrant model of K(A,n). Then
there are isomorphisms

H" Aly) 0<j5<
T GK (A n)(U) = { /8 Al =
0 ] >n.

for all U € C.

Exercise 16.2. Suppose given a diagram

xX-ox

N

where p and p’ are local fibrations and f is a local
weak equivalence. Suppose that Z — Y is a map
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of simplicial presheaves. Show that the induced
map

Zxy X I Z xy X

is a local weak equivalence — use Boolean local-
1zation.

Suppose that U € C and write X |y for the restric-
tion of X along the functor

C/U —C.

Lemma 16.3. The restriction functor X +—
Xy preserves injective fibrations and local weak
equivalences, and therefore preserves injective
fibrant models.

Proof. The restriction functor X +— X|y has a left
adjoint j;; where

MV =] Y(v).
VU
Then j;; clearly preserves cofibrations and section-
wise weak equivalences. The functor j;; also pre-
serves local trivial fibrations (exercise) and there-
fore preserves local weak equivalences.

Restriction preserves sectionwise equivalences and
local trivial fibrations, and therefore preserves local
weak equivalences. ]
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Proof of Proposition 16.1. There are isomorphisms
T GK(A,n)(U) =[x, GK(A,n)(U)]
=[x, GK(Aly,n)lejw
~ H"(C/U, Alp).
Note that GK (A, n)|y is an injective fibrant model

of K(Aly,n) by Lemma 16.3, giving the second
and third isomorphisms.

Observe that the associated sheaf map

n: K(A,0) = K(A,0)
is an injective fibrant model for the constant sim-
plicial presheaf K(A,0), and

T K(A,0)(U) =0
for 7 > 0.
There is a sectionwise fibre sequence
K(An—-1) >WK(A,n—1)
— WK(A,n—1)=K(A,n)

where WK (A,n — 1) is sectionwise contractible.
Take an injective fibrant model

WK(An—1)—2-GWK(A,n—1)

i |

K(A, n)—j>GK(A, n)
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where the maps labelled 5 are local weak equiva-
lences, GK(A,n) is injective fibrant and p is an
injective fibration. Let F' = p~1(0). Then F is
injective fibrant and the induced map

K(An—-1)—F

is a local weak equivalence, by Exercise 16.2. Write

GK(A,n—1) for F.
We have sectionwise fibre sequences
GK(A,n—-1)(U) - GWK(A,n—1)(U)
— GK(A,n)(U)
for all U € C. The map
GWK(A,n—1)— *

is a trivial injective fibration, and is therefore a
sectionwise trivial fibration. It follows that

T,GK(An)(U) = 7 1GK(A,n—1)(U)
for 5 > 1, so that
m,GK(A,n)(U) = H"(C/U, Aly)
for 1 < 7 < n by induction on n. O

Example: Suppose C is the big site (Sch|g)e for
a scheme S with the étale topology and that U is
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an S-scheme in this site. Then C/U is isomorphic
to the site (Sch|y)e. If A is a sheaf on the big
étale site for S, and if K(A,n) - GK(A,n) is
an injective fibrant model for K(A,n), then the
presheaves of homotopy groups for GK (A, n) have

the form
HY (U, A 0< i<
7, GE (A n)(U) = { o (U Al) 0= jsn
0 ] >n.

for all U € C.

Similar statements obtain for all other geometric
topologies on categories of S-schemes.
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Suppose that X is a presheaf of locally connected
pointed Kan complexes, and form the Postnikov
tower

PX L GPX

PX-GP X

X“-RX-—-GRX

where all maps labelled j are injective fibrant mod-
els and the maps p are injective fibrations.

The fibre of GP,X — GP,_1X is sectionwise
equivalent to GK (7, X, n), where

X = Tp(X, %)

is the n'™ homotopy group sheaf, based at the
global base point.

Now take U € C and consider the tower of fibra-
tions

The fibre GK (7, X, n)(U) of the map
GP,X(U)— GP, 1X(U)
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has homotopy groups
N {H”j(C/U, #X|y) 0<j<n

o ] >n.
and so the tower of fibrations spectral sequence
(with the Thomason re-indexing trick [10, 5.54])
determines a spectral sequence with

ENU) = H(C/U, 7, X|v)

This is the (unstable) descent spectral sequence
— it is actually a presheaf of spectral sequences.
One sometimes sees this spectral sequence referred
to as either a cohomological or topological descent
spectral sequence.

There are two issues:

1) the spectral sequence might or might not con-
verge to

T im GP, X (U)

2) it can be a bit of work to show that the map
X — @n G P, X is a local weak equivalence.

Both issues can be resolved (ie. the spectral se-
quence converges and the map of 2) is a local weak
equivalence) if X is locally connected in the sense
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that mo X = % and there is a uniform bound on co-
homological dimension for all sheaves 7.X|y. See
[4].

There are also “finite” descent spectral sequences,
which are Bousfield-Kan spectral sequences aris-
ing from function complexes hom(V, Z), where
V' — x is a local weak equivalence and Z is in-
jective fibrant. In particular, V' could be the Cech
resolution C'(U) — * which is associated to a local
epimorphism U — % of sheaves (or presheaves).

Example: Suppose that L/k is a finite Galois
extension of a field £ with Galois group GG. Then,
by Galois theory, there is an isomorphism

G x Sp(L) = Sp(L) x Sp(L)
of k-schemes which induces an isomorphism
EG x¢Sp(L) = C(Sp(L))

on simplical sheaves (even simplicial schemes) on
any of the étale sites for the field k. It follows that
the canonical map

EG x¢ Sp(L) — X

is a local weak equivalence for the étale topol-
ogy. Thus, if Z is an injective fibrant simplicial
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presheaf, then the induced map
Z(k) = hom(x,Z) - hom(EG x¢g Sp(L), Z)
is a weak equivalence of simplicial sets. At the

same time, the Bousfield-Kan spectral sequence for
the function complex on the right has the form

Ey' = H (G, mZ(L)) = m_Z(k).
This is a finite Galois descent spectral sequence for
the homotopy groups of the global sections space
Z(k) of Z. It is also referred to as a homotopy

fixed points spectral sequence, since the function
complex

hom(EGx¢,Sp(L), Z) = holim ¢ Z(L)
is the traditional homotopy fixed points complex
for the action of G' on the space Z(L).

On the other hand, the full Galois (or étale) coho-
mological descent spectral sequence for Z has the
form

Eyt = HYQ,mZ) = msZ(k),
(provided that it converges to the right thing),
where €2 is the absolute Galois group of k.

One often says that a simplicial presheaf X on an
étale site for k satisfies finite descent if the map

X (k) = hom(x, X) — hom(EG xg Sp(L), X)
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X is a weak equivalence for every finite Galois ex-
tension L/k. The question of whether a given
simplicial presheaf X (like an algebraic K-theory
presheaf) satisfies finite descent is also sometimes
called the homotopy fixed points problem.

Warning: You might be tempted (many were)
to say that finite descent for X implies that X
satisfies descent for the étale topology on k, but
you would be wrong. Such claims hold only in
very special cases — see [7], [10], [8], [9].
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