
Lecture 07

14 Cocycles

LetM be a closed model category such that

1)M is right proper in the sense that weak equiv-

alences pull back to weak equivalences along

fibrations, and

2) the class of weak equivalences is closed under

products: if f : X → Y is a weak equivalence,

so is any map f × 1 : X × Z → Y × Z

Examples include any of the model structures on

sPre, s Shv, sPreR or s ShvR that we’ve seen,

where the weak equivalences are local weak equiv-

alences. This can be verified by using Boolean lo-

calization arguments.

Suppose that X, Y are objects of M, and write

H(X, Y ) for the category whose objects are all

pairs of maps (f, g)

X
f←− Z

g−→ Y

where f is a weak equivalence. A morphism

α : (f, g)→ (f ′, g′)
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of H(X, Y ) is a commutative diagram

Zf
ww

g
''

α
��

X Y

Z ′f ′
gg

g′
77

I say that H(X, Y ) is the category of cocycles, or

cocycle category from X to Y .

Example: Every set X has an associated (homo-

topically) trivial groupoid whose objects are the

elements ofX and whose morphisms are pairs of el-

ements of X . Suppose that a presheaf map U → ∗
is a local epimorphism. Then the canonical sim-

plicial presheaf map BC(U) → ∗ is a local weak

equivalence (in fact, it’s a local trivial fibration),

and BC(U) is called the Čech resolution associ-

ated to the covering U → ∗.
Given a covering U → ∗ and a (pre)sheaf of groups

G, a normalized cocycle on U with values in G is,

precisely, either a groupoid morphism C(U)→ G

or a simplicial presheaf map BC(U)→ BG. Such

a map defines a cocycle

∗ '←− BC(U)→ BG

in the sense described above. Normalized cocycles

were the original examples of such cocycles.
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Write π0H(X, Y ) for the class of path components

of H(X, Y ). There is a function

φ : π0H(X, Y )→ [X, Y ]

defined by (f, g) 7→ g · f−1.

Lemma 14.1. Suppose that α : X → X ′ and

β : Y → Y ′ are weak equivalences. Then the

function

(α, β)∗ : π0H(X, Y )→ π0H(X ′, Y ′)

is a bijection.

Proof. An object (f, g) ofH(X ′, Y ′) is a map (f, g) :

Z → X ′ × Y ′ such that f is a weak equivalence.

There is a factorization

Z
j //

(f,g) $$

W
(pX′ ,pY ′)��

X ′ × Y ′

such that j is a trivial cofibration and (pX ′, pY ′) is

a fibration. The map pX ′ is a weak equivalence.

Form the pullback

W∗
(α×β)∗ //

(p∗X ,p
∗
Y )
��

W
(pX′ ,pY ′)��

X × Y
α×β

//X ′ × Y ′
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Then the map (p∗X , p
∗
Y ) is a fibration and (α×β)∗

is a local weak equivalence (since α× β is a weak

equivalence, and by right properness). The map

p∗X is also a weak equivalence.

The assignment (f, g) 7→ (p∗X , p
∗
Y ) defines a func-

tion

π0H(X ′, Y ′)→ π0H(X, Y )

which is inverse to (α, β)∗.

Lemma 14.2. Suppose that Y is fibrant and X

is cofibrant. Then the canonical map

φ : π0H(X, Y )→ [X, Y ]

is a bijection.

Proof. The function π(X, Y ) → [X, Y ] relating

naive homotopy classes to morphisms in the ho-

motopy category is a bijection since X is cofibrant

and Y is fibrant.

If f, g : X → Y are homotopic, there is a diagram

X
f

$$

1

zz
d0
��

X X ⊗ Isoo h // Y

X
1

dd

g

::

d1

OO
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where h is the homotopy. Thus, sending f : X →
Y to the class of (1X , f ) defines a function

ψ : π(X, Y )→ π0H(X, Y )

and there is a diagram

π(X, Y )
ψ //

∼= ''

π0H(X, Y )

φ
��

[X, Y ]

It suffices to show that ψ is surjective, or that any

object X
f←− Z

g−→ Y is in the path component of

some a pair X
1←− X

k−→ Y for some map k.

The weak equivalence f has a factorization

Z
j //

f   

V
p
��

X

where j is a trivial cofibration and p is a trivial

fibration. The object Y is fibrant, so the dotted

arrow θ exists in the diagram

Zf
ww

g
''

j
��

X Y

Vp
gg

θ

77

Since X is cofibrant, the trivial fibration p has a
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section σ, and so there is a commutative diagram

X1
ww

θσ
''

σ
��

X Y

Vp
gg

θ

77

Then the composite θσ is the required map k.

Theorem 14.3. Suppose that the model cate-

gory has the properties 1) and 2) listed above,

and that X, Y are objects of M. Then the

canonical map

φ : π0H(X, Y )→ [X, Y ]

is a bijection for all X and Y .

Proof. There are weak equivalences π : X ′ → X

and j : Y → Y ′ such that X ′ and Y ′ are cofibrant

and fibrant, respectively, and there is a commuta-

tive diagram

π0H(X, Y )
φ //

(1,j)∗ ∼=
��

[X, Y ]

j∗∼=
��

π0H(X, Y ′)
φ // [X, Y ′]

π∗∼=
��

π0H(X ′, Y ′)

(π,1)∗ ∼=
OO

φ

∼= // [X ′, Y ′]

The functions (1, j)∗ and (π, 1)∗ are bijections by

the first Lemma, and the bottom map φ is a bijec-

tion by the second Lemma.
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Remark 14.4. Cocycle categories have appeared

before, in the context of Dwyer-Kan hammock lo-

calizations [3], [2]. One of the main results in the

area, which holds for arbitrary model categories

M, says roughly that the nerve BH(X, Y ) is a

model for the function space of maps from X to Y

if Y is fibrant. This result implies Theorem 14.3 if

the target object Y is fibrant. On the other hand,

I shall demonstrate below that the most powerful

applications of Theorem 14.3 involve target objects

Y which are not fibrant in general.

15 Sheaf cohomology

Suppose that A is a sheaf of abelian groups, and

let A→ J be an injective resolution of A, thought

of as a Z-graded chain complex, concentrated in

negative degrees.

Write A[−n] for the chain complex consisting of A

concentrated in degree n, and consider the chain

map A[−n]→ J [−n].

Recall thatK(A, n) = ΓA[−n] defines the Eilenberg-

Mac Lane simplicial sheaf associated to A. Let

K(J, n) = Γ Tr0(J [−n])
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where Tr0(J [−n]) is the good truncation of J [−n]

in non-negative degrees.

Suppose that C is an ordinary chain complex and

that I is an unbounded chain complex which is 0

in non-negative degrees. Form the bicomplex

hom(C, I)p,q = hom(C−p, Iq)

with the obvious induced differentials:

∂′ = ∂∗C : hom(C−p, Iq)→ hom(C−p−1, Iq)

∂′′ = (−1)p∂I∗ : hom(C−p, Iq)→ hom(C−p, Iq−1).

Then hom(C, I) is a third quadrant bicomplex with

associated total complex

Tot−n hom(C, I) =
⊕

p+q=−n
hom(C−p, Iq)

=
⊕

0≤p≤n
hom(Cp, I−n+p),

for n ≥ 0, which is concentrated in negative de-

grees.

Exercise: Show that there are natural isomor-

phisms

H−n(Tot hom(C, I)) ∼= π(C(0), I [−n])
∼= π(C,Tr0 I [−n]),
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where π(C(0), I [−n]) denotes chain homotopy classes

of maps from the unbounded complexC(0) canoni-

cally associated to C to the shifted complex I [−n],

and π(C,Tr0 I [−n]) is chain homotopy classes of

maps in the bounded complex category.

Example: If A → J is an injective resolution of

an abelian sheaf A, then the bicomplex hom(C, J)

determines a spectral sequence with

Ep,q
2 = Extq(H̃p(C), A)⇒ π(C,Tr0 J [−p− q]).

Lemma 15.1. Every local weak equivalence f :

X → Y induces an isomorphism

πch(N Z̃Y,Tr0 J [−n])
∼=−→ πch(N Z̃X,Tr0 J [−n])

in chain homotopy classes for all n ≥ 0.

Proof. The map f induces a homology sheaf iso-

morphism N Z̃X → N Z̃Y , and then a comparison

of spectral sequences

Ep,q
2 = Extq(H̃p(X), A)⇒ πch(N Z̃X,Tr0 J [−p−q])

gives the desired result.

If two chain maps f, g : N Z̃X → Tr0 J [−n] are
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chain homotopic, then there is a right homotopy

Z
p
��

X

66

(f∗,g∗)
//K(J, n)×K(J, n)

for some path object Z over K(J, n) in the projec-

tive model structure for Cop-diagrams of simplicial

sets (see Section 11). Choose a sectionwise trivial

fibration π : W → X such that W is projective

cofibrant. Then f∗π is left homotopic to g∗π for

some choice of cylinder object W ⊗I for W , again

in the projective structure. This means that there

is a diagram

W π //

1

zz
i0
��

X
f∗
$$

X Wπoo W ⊗ I h //soo K(J, n)

W π
//

1

dd

i1

OO

X
g∗

::

where the maps s, i0, i1 are all part of the cylinder

object structure for W ⊗ I , and are sectionwise

weak equivalences. It follows that

(1, f∗) ∼ (π, f∗π) ∼ (πs, h) ∼ (π, g∗π) ∼ (1, g∗)

in π0H(X,K(J, n)). It follows that there is a well

10



defined abelian group homomorphism

φ : πch(N Z̃X,Tr0 J [−n])→ π0H(X,K(J, n)).

This map is natural in X .

Lemma 15.2. The map

φ : πch(N Z̃X,Tr0 J [−n])→ π0H(X,K(J, n)).

is an isomorphism.

Proof. Suppose that X
f←− Z

g−→ K(J, n) is an

object of H(X,K(J, n)). Then there is a unique

chain homotopy class [v] : N Z̃X → J [−n] such

that [v∗f ] = [g] since f is a local weak equivalence.

This chain homotopy class [v] is also independent

of choice of representative for the component of

(f, g). We therefore have a well defined function

ψ : π0H(X,K(J, n))→ πch(N Z̃X,Tr0 J [−n]).

Then the composites ψ · φ and φ · ψ are identity

morphisms.

We have proved

Theorem 15.3. Suppose that A is a sheaf of

abelian groups on C, and let A → J be an in-

jective resolution of A in the category of abelian

sheaves. Let X be a simplicial presheaf on C.
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Then there is an isomorphism

πch(N Z̃X,Tr0 J [−n]) ∼= [X,K(A, n)].

This isomorphism is natural in X.

Suppose that A is an abelian (pre)sheaf on C and

that X is a simplicial presheaf. Write

Hn(X,A) = [X,K(A, n)],

and say that this group is the nth cohomology

group of X with coeffients in A.

The following basic result is then an immediate

consequence of Theorem 15.3 (but has another,

simpler proof — exxercise):

Corollary 15.4. Suppose that f : X → Y in-

duces an isomorphism

H̃∗(X) ∼= H̃∗(Y )

in all homology sheaves. Then the induced map

in cohomology

H∗(Y,A)→ H∗(X,A)

is an isomorphism for all coefficient presheaves

A.

Proof. The induced map Z(X)→ Z(Y ) is a local

weak equivalence.
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There is also a torsion coeffients version:

Corollary 15.5. If f : X → Y induces a ho-

mology sheaf isomorphism

H̃∗(X,Z/n) ∼= H̃∗(Y,Z/n)

then f induces an isomorphism

H∗(Y,A)→ H∗(X,A)

for all n-torsion presheaves A.

Remark 15.6. 1) The associated sheaf map

K(A, n)→ K(Ã, n)

is a local weak equivalence, so that

Hn(X,A) ∼= Hn(X, Ã).

2) One can (and does) define sheaf cohomology

Hn(C, A) for an abelian sheaf A on a site C by

Hn(C, A) = H−n(Γ∗J)

where A → J is an injective resolution of A con-

centrated in negative degrees and Γ∗ is global sec-

tions (ie. inverse limit). But Γ∗Y = hom(∗, Y ) for

any Y , and so

Hn(C, A) ∼= πch(Z̃∗,Tr0 J [−n]) ∼= [∗, K(A, n)]

by Theorem 15.3.
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3) There is a universal coefficients spectral se-

quence

Ep,q
2 = Extq(H̃p(X), Ã)⇒ Hp+q(X,A)

for abelian presheaves A and simplicial presheaves

X . There is a corresponding spectral sequence

Ep,q
2 = Extq(H̃p(X,Z/n), Ã)⇒ Hp+q(X,A)

for n-torsion presheaves A.

Cup products

Suppose that

X
'←− X ′ → K(A, n), Y

'←− Y ′ → K(B,m)

are cocycles. Then the adjoint simplicial abelian

presheaf maps

ZX ′ → K(A, n), ZY ′ → K(B,m)

have a (simplicial abelian group) tensor product

Z(X ′×Y ′) ∼= ZX ′⊗ZY ′ → K(A, n)⊗K(B,m)

and there is a natural weak equivalence

K(A, n)⊗K(B,m) ' K(A⊗B, n + m).

in simplicial abelian groups, hence in simplicial

abelian presheaves.
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Proving this last claim is an exercise. Use the weak

equivalence

K(A, n) ' Z∗(S1)∧n)⊗ A

where Z∗(K) denotes the reduced complex of a

pointed simplicial set K.

The adjoint

X × Y '←− X ′ × Y ′ → K(A⊗B, n + m)

represents the external cup product of the classes

represented by the two cocycles. We have defined

an external cup product

Hn(X,A)×Hm(Y,B)→ Hn+m(X × Y,A⊗B).

If A happens to be a presheaf of rings this con-

struction specializes to the cup product pairing

Hn(X,A)×Hm(X,A)→ Hn+m(X ×X,A)
∆∗−→ Hn+m(X,A).

where ∆ : X → X ×X is the diagonal map.

Cohomology operations

A cohomology operation is a map

K(A, n)→ K(B,m)

in the homotopy category.
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The Steenrod operation Sqi is a morphism

K(Z/2, n)→ K(Z/2, n + i)

in the ordinary homotopy category. The constant

presheaf functor preserves weak equivalences, and

so Sqi induces a morphism

K(Γ∗Z/2, n)→ K(Γ∗Z/2, n + i)

in the homotopy category of simplicial presheaves

on an arbitrary small site C. It therefore induces

a homomorphism

Sqi : Hn(X,Z/2)→ Hn+i(X,Z/2)

which is natural in simplicial presheaves X . The

collection of Steenrod operations {Sqi} for simpli-

cial presheaves has the same basic list of properties

as the Steenrod operations for ordinary spaces.

Steenrod operations for mod 2 étale cohomology

were first introduced by Breen [1]; the definition

given here for mod 2 cohomology of arbitrary sim-

plicial presheaves is a vast generalization. The first

calculational application was in questions concern-

ing Hasse-Witt classes for non-degenerate symmet-

ric bilinear forms in the mod 2 Galois cohomology

of fields — see [5] and [6].
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That said, the definition of Steenrod operations

which is given here has its uses, but it is now rela-

tively naive. Voevodsky introduced and made very

effective use of a much more sophisticated con-

struction for motivic homotopy theory in his proof

of the Milnor conjecture [11], [12].

16 Descent spectral sequences

Proposition 16.1. Suppose that A is a presheaf

of abelian groups, and that

j : K(A, n)→ GK(A, n)

is an injective fibrant model of K(A, n). Then

there are isomorphisms

πjGK(A, n)(U) ∼=

{
Hn−j(C/U, Ã|U) 0 ≤ j ≤ n

0 j > n.

for all U ∈ C.

Exercise 16.2. Suppose given a diagram

X
f //

p ��

X ′

p′��

Y

where p and p′ are local fibrations and f is a local

weak equivalence. Suppose that Z → Y is a map
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of simplicial presheaves. Show that the induced

map

Z ×Y X
f∗−→ Z ×Y X ′

is a local weak equivalence — use Boolean local-

ization.

Suppose that U ∈ C and write X|U for the restric-

tion of X along the functor

C/U → C.

Lemma 16.3. The restriction functor X 7→
X|U preserves injective fibrations and local weak

equivalences, and therefore preserves injective

fibrant models.

Proof. The restriction functor X 7→ X|U has a left

adjoint j∗U where

j∗U(Y )(V ) =
⊔
V→U

Y (V ).

Then j∗U clearly preserves cofibrations and section-

wise weak equivalences. The functor j∗U also pre-

serves local trivial fibrations (exercise) and there-

fore preserves local weak equivalences.

Restriction preserves sectionwise equivalences and

local trivial fibrations, and therefore preserves local

weak equivalences.
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Proof of Proposition 16.1. There are isomorphisms

π0GK(A, n)(U) ∼= [∗, GK(A, n)(U)]
∼= [∗, GK(A|U , n)]C/U
∼= Hn(C/U, Ã|U).

Note thatGK(A, n)|U is an injective fibrant model

of K(A|U , n) by Lemma 16.3, giving the second

and third isomorphisms.

Observe that the associated sheaf map

η : K(A, 0)→ K(Ã, 0)

is an injective fibrant model for the constant sim-

plicial presheaf K(A, 0), and

πjK(Ã, 0)(U) = 0

for j > 0.

There is a sectionwise fibre sequence

K(A, n− 1)→WK(A, n− 1)

→ WK(A, n− 1) = K(A, n)

where WK(A, n − 1) is sectionwise contractible.

Take an injective fibrant model

WK(A, n− 1)
j //

��

GWK(A, n− 1)
p
��

K(A, n)
j

//GK(A, n)
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where the maps labelled j are local weak equiva-

lences, GK(A, n) is injective fibrant and p is an

injective fibration. Let F = p−1(0). Then F is

injective fibrant and the induced map

K(A, n− 1)→ F

is a local weak equivalence, by Exercise 16.2. Write

GK(A, n− 1) for F .

We have sectionwise fibre sequences

GK(A, n− 1)(U)→GWK(A, n− 1)(U)

→ GK(A, n)(U)

for all U ∈ C. The map

GWK(A, n− 1)→ ∗

is a trivial injective fibration, and is therefore a

sectionwise trivial fibration. It follows that

πjGK(A, n)(U) ∼= πj−1GK(A, n− 1)(U)

for j ≥ 1, so that

πjGK(A, n)(U) ∼= Hn−j(C/U, Ã|U)

for 1 ≤ j ≤ n by induction on n.

Example: Suppose C is the big site (Sch|S)et for

a scheme S with the étale topology and that U is
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an S-scheme in this site. Then C/U is isomorphic

to the site (Sch|U)et. If A is a sheaf on the big

étale site for S, and if K(A, n) → GK(A, n) is

an injective fibrant model for K(A, n), then the

presheaves of homotopy groups for GK(A, n) have

the form

πjGK(A, n)(U) ∼=

{
Hn−j
et (U, Ã|U) 0 ≤ j ≤ n

0 j > n.

for all U ∈ C.

Similar statements obtain for all other geometric

topologies on categories of S-schemes.
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Suppose that X is a presheaf of locally connected

pointed Kan complexes, and form the Postnikov

tower
...

��

...

��

P2X

��

j //GP2X
p
��

P1X

��

j //GP1X
p
��

X //

<<

EE

P0X j
//GP0X

where all maps labelled j are injective fibrant mod-

els and the maps p are injective fibrations.

The fibre of GPnX → GPn−1X is sectionwise

equivalent to GK(π̃nX,n), where

π̃nX = π̃n(X, ∗)

is the nth homotopy group sheaf, based at the

global base point.

Now take U ∈ C and consider the tower of fibra-

tions

GP0X(U)← GP1X(U)← GP2X(U)← . . .

The fibre GK(π̃nX,n)(U) of the map

GPnX(U)→ GPn−1X(U)
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has homotopy groups

πjGK(π̃nX,n)(U)

∼=

{
Hn−j(C/U, π̃nX|U) 0 ≤ j ≤ n

0 j > n.

and so the tower of fibrations spectral sequence

(with the Thomason re-indexing trick [10, 5.54])

determines a spectral sequence with

Es,t
2 (U) = Hs(C/U, π̃sX|U)

This is the (unstable) descent spectral sequence

— it is actually a presheaf of spectral sequences.

One sometimes sees this spectral sequence referred

to as either a cohomological or topological descent

spectral sequence.

There are two issues:

1) the spectral sequence might or might not con-

verge to

πt−s lim←−GPnX(U)

2) it can be a bit of work to show that the map

X → lim←−nGPnX is a local weak equivalence.

Both issues can be resolved (ie. the spectral se-

quence converges and the map of 2) is a local weak

equivalence) if X is locally connected in the sense
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that π̃0X ∼= ∗ and there is a uniform bound on co-

homological dimension for all sheaves π̃X|U . See

[4].

There are also “finite” descent spectral sequences,

which are Bousfield-Kan spectral sequences aris-

ing from function complexes hom(V, Z), where

V → ∗ is a local weak equivalence and Z is in-

jective fibrant. In particular, V could be the Čech

resolution C(U)→ ∗ which is associated to a local

epimorphism U → ∗ of sheaves (or presheaves).

Example: Suppose that L/k is a finite Galois

extension of a field k with Galois group G. Then,

by Galois theory, there is an isomorphism

G× Sp(L)
∼=−→ Sp(L)× Sp(L)

of k-schemes which induces an isomorphism

EG×G Sp(L) ∼= C(Sp(L))

on simplical sheaves (even simplicial schemes) on

any of the étale sites for the field k. It follows that

the canonical map

EG×G Sp(L)→ ∗

is a local weak equivalence for the étale topol-

ogy. Thus, if Z is an injective fibrant simplicial

24



presheaf, then the induced map

Z(k) ∼= hom(∗, Z)→ hom(EG×G Sp(L), Z)

is a weak equivalence of simplicial sets. At the

same time, the Bousfield-Kan spectral sequence for

the function complex on the right has the form

Es,t
2 = Hs(G, πtZ(L))⇒ πt−sZ(k).

This is a finite Galois descent spectral sequence for

the homotopy groups of the global sections space

Z(k) of Z. It is also referred to as a homotopy

fixed points spectral sequence, since the function

complex

hom(EG×G, Sp(L), Z) = holim←−−− G Z(L)

is the traditional homotopy fixed points complex

for the action of G on the space Z(L).

On the other hand, the full Galois (or étale) coho-

mological descent spectral sequence for Z has the

form

Es,t
2 = Hs(Ω, π̃tZ)⇒ πt−sZ(k),

(provided that it converges to the right thing),

where Ω is the absolute Galois group of k.

One often says that a simplicial presheaf X on an

étale site for k satisfies finite descent if the map

X(k) ∼= hom(∗, X)→ hom(EG×G Sp(L), X)
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x is a weak equivalence for every finite Galois ex-

tension L/k. The question of whether a given

simplicial presheaf X (like an algebraic K-theory

presheaf) satisfies finite descent is also sometimes

called the homotopy fixed points problem.

Warning: You might be tempted (many were)

to say that finite descent for X implies that X

satisfies descent for the étale topology on k, but

you would be wrong. Such claims hold only in

very special cases — see [7], [10], [8], [9].
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