
Lecture 08

17 Torsors for groups

Suppose that G is a sheaf of groups. A G-torsor

is traditionally defined to be a sheaf X with a free

G-action such thatX/G ∼= ∗ in the sheaf category.

The requirement that the action G × X → X is

free means that the isotropy subgroups ofG for the

action are trivial in all sections, which is equivalent

to requiring that all sheaves of fundamental groups

for the Borel construction EG ×G X are trivial.

There is an isomorphism of sheaves

π̃0(EG×G X) ∼= X/G.

Also the simplicial sheaf EG×GX is the nerve of

a sheaf of groupoids, which is given in each section

by the translation category for the action of G(U)

onX(U); this means, in particular, that all sheaves

of higher homotopy groups for EG×GX vanish.

It follows that a G-sheaf X is a G-torsor if and

only if the map EG ×G X → ∗ is a local weak

equivalence.
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Example 17.1. The Borel construction

EH ×H H = EH

for a group H is the nerve of the translation cat-

egory for the action H × H → H which is given

by the multiplication of H . There is a unique map

e
h−→ h for all h ∈ H , so that EH ×H H is a con-

tractible simplicial set. If G is a sheaf of groups,

then EG ×G G is contractible in each section, so

that the map

EG×G G→ ∗
is a local weak equivalence, and G is a G-torsor.

This object is often called the trivial G-torsor.

Example 17.2. Suppose that L/k is a finite Ga-

lois extension with Galois group G. Then the étale

covering Sp(L)→ Sp(k) has Čech resolution C(L)

and there is an isomorphism of simplicial schemes

C(L) ∼= EG×G Sp(L).

The simplicial presheaf map

C(L)→ ∗
on Sch|k is a local weak equivalence for the étale

topology, so that Sp(L) represents a G-torsor for

the étale topology on Sp(k), actually for all of the

standard étale sites associated with k.
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The category G− tors is the category whose ob-

jects are all G-torsors and whose maps are all G-

equivariant maps between them.

Remark 17.3. If f : X → Y is a map of G-

torsors, then f is induced as a map of fibres by the

comparison of local fibrations

EG×G X //

$$

EG×G Y
zz

BG

It follows that f : X → Y is a weak equivalence of

constant simplicial sheaves, and is therefore an iso-

morphism. The category of G-torsors is therefore

a groupoid.

Remark 17.4. Suppose that X is a G-torsor,

and that the canonical map X → ∗ has a (global)

section σ : ∗ → X . Then σ extends, by multipli-

cation, (also uniquely) to a G-equivariant map

σ∗ : G→ X,

with σ∗(g) = g · σU for g ∈ G(U). This map

is an isomorphism of torsors, so that X is trivial

with trivializing isomorphism σ∗. Conversely, if

τ : G → X is a map of torsors, then X has a

global section τ (e). Thus a G-torsor X is trivial
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in the sense that it is isomorphic to G if and only

if it has a global section.

Example 17.5. Suppose that X is a topologi-

cal space. The category of sheaves on op|X can

be identified up to equivalence with a category

Top /X of spaces Y → X fibred over X . If G

is a topological group, then G represents the sheaf

G×X → X given by projection. A sheaf with G-

action consists of a map Y → X together with a

G-actionG×Y → Y such that the map Y → X is

G-equivariant for the trivial G-action on X . Such

a thing is a G-torsor if the action G × Y → Y is

free and the map Y/G → X is an isomorphism.

The latter implies that X has an open covering

i : U ⊂ X such that there are liftings

Y

��

U

σ
>>

i
//X

Torsors are stable under pullback along continuous

maps, and the map U ×X Y → U is a G-torsor

over U . The map σ induces a global section σ∗ of

this map, so that the pulled back torsor is trivial,
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and there is a commutative diagram

G× U ∼= //

pr
''

U ×X Y
��

U

where the displayed isomorphism is G-equivariant.

It follows that a G-torsor over X is a principal G-

bundle over X , and conversely.

Example 17.6. Suppose that U is an object of

a small site C. Composition with the canonical

functor C/U → C induces a restriction functor

Shv(C)→ Shv(C/U),

written F 7→ F |U . The restriction functor is exact

and preserves sheaf epimorphisms, and therefore

takesG-torsors toG|U -torsors. The global sections

of F |U coincide with the elements of the set F (U),

so that a G-torsor X trivializes over U if and only

if X(U) 6= ∅, or equivalently if and only if there is

a diagram

X

��
U

>>

// ∗
The mapX → ∗ is a local epimorphism, so there is

a covering family Uα → ∗ (ie. such that
⊔

Uα →
∗ is a local epimorphism) with X(Uα) 6= ∅. In
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other words, every torsor trivializes over some cov-

ering family of the point ∗.

Suppose that the picture

∗ '←− Y
α−→ BG

is an object of the cocycle category H(∗, BG) in

simplicial presheaves, and form the pullback

pb(Y ) //

��

Y
α
��

EG π
//BG

where EG = B(G/∗) = EG×GG and π : EG→
BG is the canonical map. Then pb(Y ) inherits a

G-action from the G-action on EG, and the map

EG×G pb(Y )→ Y (17.1)

is a sectionwise weak equivalence (this is a conse-

quence of Lemma 17.10 below). Also, the square is

homotopy cartesian in sections where Y (U) 6= ∅,
so there is a local weak equivalence

G|U → pb(Y )|U
over all such U . It follows that the canonical map

pb(Y ) → π̃0 pb(Y ) is a G-equivariant local weak

equivalence, and hence that the maps

EG×G π̃0 pb(Y )← EG×G pb(Y )→ Y ' ∗
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are natural local weak equivalences. In particular,

the G-sheaf π̃0 pb(Y ) is a G-torsor.

We therefore have a functor

H(∗, BG)→ G− tors

defined by sending ∗ '←− Y → BG to the object

π̃0 pb(Y ). The Borel construction defines a functor

G− tors→ H(∗, BG) :

the G-torsor X is sent to the (canonical) cocycle

∗ '←− EG×G X → BG.

One checks these functors are adjoint, and hence

induce a bijection

π0H(∗, BG) ∼= π0(G− tors).

In view of the fact that π0(G − tors) is isomor-

phism classes of G-torsors, and we know that

π0H(∗, BG) ∼= [∗, BG],

we have proved

Theorem 17.7. Suppose that G is a sheaf of

groups on a small Grothendieck site C. Then

there is a bijection

[∗, BG] ∼= {isomorphism classes of G-torsors}
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Remark 17.8. 1) Theorem 17.7 was first proved,

by a different method, in [4].

2) The non-abelian invariantH1(C, G) is tradition-

ally defined to be the collection of isomorphism

classes of G-torsors. The theorem therefore gives

an identification

H1(C, G) ∼= [∗, BG].

Example 17.9. Suppose that k is a field. Let C
be the étale site et|k for k, and identify the orthog-

onal group On with a sheaf of groups on this site.

The non-abelian cohomology object H1
et(k,On) is

well known to coincide with the set of isomorphism

classes of non-degenerate symmetric bilinear forms

over k of rank n. Thus, every such form q de-

termines a morphism ∗ → BOn in the simplicial

(pre)sheaf homotopy category, and this morphism

determines the form q up to isomorphism.

Suppose that k is a field such that char(k) 6= 2.

There are isomorphisms

H∗et(BOn,Z/2) ∼= H∗(BOn,Z/2)
∼= H∗et(k,Z/2)[HW1, . . . , HWn]

where the polynomial generator HWi has degree i.

In fact HWi is characterized by mapping to the ith
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elementary symmetric polynomial σi(x1, . . . , xn)

under the isomorphism

H∗(BOn,Z/2) ∼= H∗(Γ∗BZ/2×n,Z/2)Σn

∼= H∗et(k,Z/2)[x1, . . . , xn]Σn.

where ( )Σn denotes invariants for the symmetric

group Σn

Every symmetric bilinear form α determines a map

α : ∗ → BOn in the simplicial presheaf homotopy

category, and therefore induces a map

α∗ : H∗et(BOn,Z/2)→ H∗et(k,Z/2),

and HWi(α) = α∗(HWi) is the ith Hasse-Witt

class of α.

One can show that HW1(α) is the pullback of the

determinant BOn → BZ/2, and HW2(α) is the

classical Hasse-Witt invariant of α.

The Steenrod algebra is used to calculate the rela-

tion between Hasse-Witt and Stiefel-Whitney classes

for Galois representations. This calculation uses

the Wu formulas for the action of the Steenrod al-

gebra on elementary symmetric polynomials. See

[4], [5].

Here’s the missing lemma:
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Lemma 17.10. Suppose that I is a small cat-

egory and that p : X → BI is a simplicial set

map. Let the pullback diagrams

pb(X)(i) //

��

X
p
��

B(I/i) //BI

define the I-diagram i 7→ pb(X)(i). Then the

resulting map

ω : holim−−−→ i∈I pb(X)(i)→ X

is a weak equivalence.

Proof. The simplicial set

holim−−−→ i∈I pb(X)(i)

is the diagonal of a bisimplicial set whose (n,m)-

bisimplices are pairs

(x, i0 → · · · → in → j0 → · · · → jm)

where x ∈ Xn, the morphisms are in I , and p(x)

is the string

i0 → · · · → in.

The map

ω : holim−−−→ i∈I pb(X)(i)→ X
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takes such an (n,m)-bisimplex to x ∈ Xn. The

fibre over x can be identified with the simplicial

set B(in/I), which is contractible.

18 Torsors for groupoids

What’s a set-valued functor X : I → Set?

The functor X consists of sets X(i), i ∈ Ob(I)

and functions α∗ : X(i) → X(j) for α : i → j in

Mor(I) such that α∗β∗ = (α · β)∗ for all compos-

able pairs of morphisms in I and (1i)∗ = 1X(i) for

all objects i of I .

The sets X(i) can be collected together to give a

set

π : X =
⊔

i∈Ob(I)

X(i)→
⊔

i∈Ob(I)

= Ob(I)

and the assignments α 7→ α∗ can be collectively

rewritten as a commutative diagram

X ×π,s Mor(I) m //

pr
��

X

π
��

Mor(I)
t

//Ob(I)

(18.1)

where s, t : Mor(I) → Ob(I) are the source and
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target maps, respectively, and

X ×π,s Mor(I)
pr //

��

Mor(I)

s
��

X π
//Ob(I)

is a pullback. Then the notation is awkward, but

the composition laws for the functor X translate

into the commutativity of the diagrams

X ×π,s Mor(I)×t,s Mor(I) 1×m//

m×1
��

X ×π,s Mor(I)

m
��

X ×π,s Mor(I) m
//X

(18.2)

and

X
e∗ //

1
''

X ×π,s Mor(I)
m
��

X

(18.3)

Here, mI is the composition law of the category

I , and the map e∗ is uniquely determined by the

commutative diagram

X

1
��

π //Ob(I) e //Mor(I)

s
��

X π
//Ob(I)

where the map e picks out the identity morphisms

of I .
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Thus, a functor X : I → Set consists of a func-

tion π : X → Ob(I) together with an action

m : X ×π,s Mor(I) → X making the diagram

(18.1) commute, such that the diagrams (18.2) and

(18.3) also commute. This is the internal descrip-

tion, which can be used to define functors on cat-

egory objects within specific categories.

Specifically, suppose that G is a sheaf of groupoids

on a site C. then a sheaf-valued functor X on G

consists of a sheaf map π : X → Ob(G), together

with an action morphismm : X×π,sMor(G)→ X

in sheaves such that the diagrams corresponding

to (18.1), (18.2) and (18.3) commute in the sheaf

category.

Alternatively, X consists of set-valued functors

X(U) : G(U)→ Sets

with x 7→ X(U)x for x ∈ Ob(G(U)), together

with functions

φ∗ : X(U)x → X(V )φ∗(x)

for each φ : V → U in C, such that the assignment

U 7→ X(U) =
⊔

x∈Ob(G(U))

X(U)x, U ∈ C,
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defines a sheaf and the diagrams

X(U)x
α∗ //

φ∗
��

X(U)y
φ∗
��

X(V )φ∗(x) (φ∗(α))∗
//X(V )φ∗(y)

commute for each α : x → y of Mor(G) and all

φ : V → U of C.

From this alternative point of view, it’s easy to

see that a sheaf-valued functor X on G defines a

natural simplicial (pre)sheaf homomorphism

p : holim−−−→ G X → BG.

One makes the construction sectionwise.

NB: This story is a direct generalization of what

we saw for sheaves Y with actions by sheaves of

groups H . The Borel construction EH ×H Y is

the homotopy colimit holim−−−→HY .

I say that a sheaf-valued functor X on a sheaf of

groupoids G is a G-torsor if the canonical map

holim−−−→ G X → ∗

is a local weak equivalence.

A morphism f : X → Y of G-torsors is a nat-

ural transformation of G-functors, namely a sheaf
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morphism

X
f //

��

Y

��

Ob(G)

fibred over Ob(G) which respects the multiplica-

tion maps.

The diagram

X //

π
��

holim−−−→ G X
p
��

Ob(G) //BG

is homotopy cartesian in each section by Quillen’s

Theorem B [2, IV.5.2] (more specifically, Lemma

5.7), since G is a (pre)sheaf of groupoids, and is

therefore homotopy cartesian in simplicial sheaves.

It follows that a morphism f : X → Y of G-

torsors specializes to a weak equivalence X → Y

of constant simplicial sheaves, which is therefore

an isomorphism. It follows that the category

G− tors

of G-torsors is a groupoid.

Clearly, everyG-torsorX has an associated canon-

ical cocycle

∗ '←− holim−−−→ G X
p−→ BG,
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and this association defines a functor

φ : G− tors→ H(∗, BG)

taking values in the simplicial sheaf cocycle cate-

gory.

Now suppose given a cocycle

∗ '←− Y
g−→ BG

in simplicial sheaves and form the pullback dia-

grams

pb(Y )(U)x //

��

Y (U)
g
��

B(G(U)/x) //BG(U)

of simplicial sets for each x ∈ Ob(G(U)), U ∈ C,

and set

pb(Y )(U) =
⊔

x∈Ob(G(U))

pb(Y )(U)x.

Then the resulting simplicial presheaf map pb(Y )→
Ob(G) defines a simplicial presheaf-valued functor

on G. There is a sectionwise weak equivalence

holim−−−→ G pb(Y )→ Y ' ∗
by Lemma 17.10, and the diagram

pb(Y ) //

��

holim−−−→ G pb(Y )

��

Ob(G) //BG
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is sectionwise homotopy cartesian. It follows that

the natural transformation

pb(Y )→ π̃0(pb(Y ))

of simplicial presheaf-valued functors on G is a lo-

cal weak equivalence. Thus, there are local weak

equivalences

holim−−−→ G π̃0 pb(Y ) ' holim−−−→ G pb(Y ) ' Y ' ∗,

and the sheaf-valued functor π̃0 pb(Y ) on G is a

G-torsor. These constructions are functorial on

H(∗, BG) and so there is a functor

ψ : H(∗, BG)→ G− tors.

Theorem 18.1. The functors φ and ψ induce

a homotopy equivalence

B(G− tors) ' BH(∗, BG).

Corollary 18.2. The functors φ and ψ induce

a bijection

π0(G− tors) ∼= [∗, BG].

There are multiple possible proofs of Corollary 18.2

(see also [7]), but it is convenient here to use a trick

for diagrams of simplicial sets which are indexed by

groupoids.
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Suppose that Γ is a small groupoid, and let sSetΓ

be the category of Γ-diagrams in simplicial sets.

Let sSet/BΓ be the category of simplicial set mor-

phisms Y → BΓ. The homotopy colimit defines a

functor

holim−−−→ Γ : sSetΓ → sSet/BΓ.

This functor sends a diagram X : Γ → sSet to

the canonical map holim−−−→ ΓX → BΓ. On the other

hand, given a simplicial set map Y → BΓ, the

collection of pullback diagrams

pb(Y )x //

��

Y

��

B(Γ/x) //BΓ

defines an Γ-diagram pb(Y ) : Γ → sSet which is

functorial in Y → BΓ.

Lemma 18.3. Suppose that Γ is a groupoid.

Then the functors

pb : sSet/BΓ � sSetΓ : holim−−−→ Γ

form an adjoint pair: pb is left adjoint to holim−−−→ Γ.

Proof. Suppose that X is a Γ-diagram and that

p : Y → BΓ is a simplicial set over BΓ. Suppose

given a natural transformation

f : pb(Y )n → Xn.
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and let x be an object of Γ. Then an element of

(pb(Y )x)n can be identified with a pair

(x, a0 → · · · → an
α−→ x)

where the string of arrows is in Γ and p(x) is the

string a0 → . . . an. Then f is uniquely determined

by the images of the elements

f (x, a0 → · · · → an
1−→ an)

in Xn(an). Since Γ is a groupoid, an element y ∈
X(an) uniquely determines an element

(y0, a0)→ (y1, a1)→ . . . (yn, an)

with yn = y. It follows that there is a natural

bijection

homΓ(pb(Y )n, Xn) ∼= homBΓn(Yn, (holim−−−→ ΓX)n).

Extend simplicially to get the adjunction isomor-

phism

homΓ(pb(Y ), X) ∼= homBΓ(Y, holim−−−→ ΓX).

Proof of Theorem 18.1. It follows from Lemma 18.3

that the functor ψ is left adjoint to the functor

φ.
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Example: Suppose that H is a groupoid and that

x ∈ Ob(H). The groupoid H/x has a terminal

object and hence determines a cocycle

∗ '←− B(H/x)→ BH.

If a ∈ Ob(H) then in the pullback diagram

pb(B(H/x))(a) //

��

B(H/x)

��

B(H/a) //BH

the object pb(B(H/x))(a) is the nerve of a groupoid

whose objects are the diagrams

a
α←− b

β−→ x

in H , and whose morphisms are the diagrams

bα
xx

β
&&

��
a x

b′ β′
88

α′
ff

In the presence of such a picture, β · α−1 = β′ ·
(α′)−1. There are uniquely determined diagrams

bα
xx

β
&&

��
a x

a β·α−1

77

1

gg

for each object a
α←− b

β−→ x. It follows that there
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is a natural bijection

π0 pb(B(H/x)(a) ∼= homH(a, x)

and that

pb(B(H/x))(a)→ π0 pb(B(H/x))(a)

is a natural weak equivalence.

It follows that there are weak equivalences

holim−−−→ a∈H pb(B(H/x))(a) ' //

'
��

B(H/x) ' ∗

holim−−−→ a∈H homH(a, x)

so that the functor a 7→ homH(a, x) defines an

H-torsor. Here, the function

β∗ : homH(a, x)→ homH(b, x)

induced by β : a→ b is precomposition with β−1.

To put it a different way, each x ∈ H deter-

mines a H-torsor a 7→ homH(a, x), which we’ll

call homH( , x) and there is a functor

H → H − tors

which is defined by x 7→ homH( , x).

Observe that the maps homH( , x) → Y classify

elements of Y (x) for all functors Y : H → Set.
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In general, every global section x of a sheaf of

groupoidsG determines aG-torsor homG( , x) which

is constructed sectionwise according to the recipe

above. In particular, this is the torsor associated

by the pullback construction to the cocycle

∗ '←− B(G/x)→ BG.

The torsors homG( , x) are the trivial torsors for

the sheaf of groupoids G. There is a functor

j : Γ∗G→ G− tors

which is defined by j(x) = homG( , x).

Observe that torsor (iso)morphisms

homG( , x) //

%%

X

��

Ob(G)

are in bijective correspondence with global sections

of X which map to x ∈ Ob(G) under the structure

map X → Ob(G). Such maps are trivializations

of the torsor X .

These constructions restrict nicely. If φ : V → U

is a morphism of the underlying site C then com-

position with φ defines a functor

φ∗ : C/V → C/U,
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and composition with φ∗ determines a restriction

functor

φ∗ : Pre(C/U)→ Pre(C/V )

which takes F |U to F |V for any presheaf F on C.

All restriction functors take sheaves to sheaves and

are exact. Thus, φ∗ takes a G|U -torsor to a G|V
torsor. In particular,

φ∗ homG|U ( , x) = homG|V ( , xV )

for all x ∈ G(U). The functor φ∗ also preserves

cocycles.

The upshot is that there is a presheaf of groupoids

G−Tors on the site C with

G−Tors(U) = G|U − tors

and a presheaf of categories H(∗, BG) with

H(∗, BG)(U) = H(∗, BG|U).

and there are functors

G
j //

%%

G−Tors
φ
��

H(∗, BG)

where φ induces a sectionwise weak equivalence

φ∗ : B(G−Tors)
'−→ BH(∗, BG)
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by Theorem 18.1, and the displayed map is defined

by sending an object x ∈ G(U) to the cocycle

B(G|U/x)→ BG|U .

The images hom( , x) of the functor j : G →
G−Tors are the trivial torsors, and maps (iso-

morphisms) hom( , x)→ X ofG-torsors are global

sections ofX . EveryG-torsorX has sections along

some cover, since holim−−−→ GX → ∗ is a local weak

equivalence, so every G-torsor is locally trivial.

Proposition 18.4. Suppose that G is a sheaf of

groupoids on a small site C. Then the induced

maps

BG
j∗ //

''

B(G−Tors)

φ∗
��

BH(∗, BG)

are local weak equivalences of simplicial sheaves.

Proof. The functor j is fully faithful in all sections

(exercise), and the map

j∗ : π̃0BG→ π̃0B(G−Tors)

is a sheaf epimorphism. But the fact that j is fully

faithful in all sections means that the presheaf map

j∗ : π0BG→ π0B(G−Tors)

is a monomorphism in all sections.
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19 Stacks and homotopy theory

Write Pre(Gpd(C)) for the category of presheaves

of groupoids on a small site C.

Say that a morphism f : G→ H of presheaves of

groupoids is a weak equivalence (respectively fibra-

tion) if and only if the induced map f∗ : BG →
BH is a local weak equivalence (respectively in-

jective fibration). A morphism i : A → B is a

cofibration if it has the left lifting property with

respect to all trivial fibrations.

The fundamental groupoid functor X 7→ π(X) is

left adjoint to the nerve functor. It follows that

every cofibration A → B of simplicial presheaves

induces a cofibration π(A) → π(B) of presheaves

of groupoids. The class of cofibrations A → B is

closed under pushout along arbitrary morphisms

A→ G, because cofibrations are defined by a left

lifting property.

There is a function complex construction for pre-

sheaves of groupoids: the simplicial set hom(G,H)

has for n-simplices all morphisms

φ : G× π(∆n)→ H.
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There is a natural isomorphism

hom(G,H) ∼= hom(BG,BH),

which sends the simplex φ to the composite

BG×∆n 1×η−−→ BG×Bπ(∆n) ∼= B(G×π(∆n))
φ∗−→ BH.

The following result appears in [3]:

Proposition 19.1. With these definitions, the

category Pre(Gpd(C)) satisfies the axioms for

a right proper closed simplicial model category.

Proof. The inductive model structure for the cat-

egory sPre(C) is cofibrantly generated. It follows

easily that every morphism f : G → H has a

factorization

G
j //

f   

Z
p
��

H

such that j is a cofibration and p is a trivial fibra-

tion.

The other factorization axiom can be proved the

same way, provided one knows that if i : A → B

is a trivial cofibration of simplicial presheaves and
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the diagram

π(A) //

i∗
��

G

i′
��

π(B) //H

is a pushout, then the map i′ is a local weak equiv-

alence. But one can prove the corresponding state-

ment for ordinary groupoids, and the general case

follows by a Boolean localization argument (exer-

cise).

The claim is proved for ordinary groupoids by ob-

serving that in all pushout diagrams

π(Λn
k) //

i∗
��

G

i′
��

π(∆n) //H

the map i∗ is an isomorphism for n ≥ 2 and

is the inclusion of a strong deformation retrac-

tion if n = 1. The classes of isomorphisms and

strong deformation retractions are both closed un-

der pushout in the category of groupoids.

All other closed model axioms are trivial to ver-

ify, as is right properness. The simplicial model

axiom SM7 has an elementary argument, which

ultimately follows from the fact that the funda-

mental groupoid functor preserves products.
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One can make the same definitions for sheaves of

groupoids: say that a map f : G→ H of sheaves

of groupoids is a weak equivalence (respectively

fibration) if the associated simplicial sheaf map

f∗ : BG → BH is a local weak equivalence (re-

spectively injective fibration). Cofibrations are de-

fined by a left lifting property, as before.

Write Shv(Gpd(C)) and observe that the forgetful

functor i and associated sheaf functor L2 induce an

adjoint pair

L2 : Pre(Gpd(C)) � Shv(Gpd(C)) : i

According to the definitions, the forgetful functor

i preserves fibrations and trivial fibrations. More-

over, the canonical map η : BG → iL2BG is

always a local weak equivalence. The method of

proof of Proposition 19.1 and formal nonsense now

combine to prove the following

Proposition 19.2. 1) With these definitions,

the category Shv(Gpd(C)) of sheaves of group-

oids satisfies the axioms for a right proper

closed simplicial model category.

2) The adjoint pair

L2 : Pre(Gpd(C)) � Shv(Gpd(C)) : i
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forms a Quillen equivalence.

One could say that the model structures of Propo-

sition 19.1 and 19.2 are the injective model struc-

tures for presheaves and sheaves of groupoids on a

site C, respectively. Of course, part 2) of Propo-

sition 19.2 says that these model structures are

Quillen equivalent.

Part 1) of Proposition 19.2 was first proved in [10].

This was a breakthrough result, in that it enabled

the following definition:

Definition: A sheaf of groupoids H is said to be

a stack if it satisfies descent for the injective model

structure on Shv(Gpd(C)). This means that every

injective fibrant model j : H → H ′ should be a

sectionwise weak equivalence.

Observe that if j : H → H ′ is a fibrant model

in sheaves (or presheaves) of groupoids, then the

induced map j∗ : BH → BH ′ is a fibrant model

in simplicial presheaves. Thus, H is a stack if and

only if the simplicial presheafBH satisfies descent.

Every fibrant object is a stack, because fibrant ob-

jects satisfy descent. This means that every fi-

brant model j : G → H of a sheaf of groupoids
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G is a stack completion. This model j can be

constructed functorially, since the injective model

structure on Shv(Gpd(C)) is cofibrantly gener-

ated. We can therefore speak unambiguously about

“the” stack completion of a sheaf of groupoids G

— the stack completion is also called the associ-

ated stack.

Similar definitions can also be made for presheaves

of groupoids. This means, effectively, that stacks

can be identified with homotopy types of presheaves

or sheaves of groupoids, within the respective in-

jective model structures.

Example: Suppose that G×X → X is an action

of a sheaf of groups G on a sheaf X . Then the

Borel construction EG×GX is the nerve of a sheaf

of groupoids EGX . The stack completion

j : EGX → [X/G]

is called the quotient stack. Many stacks which

arise in nature are quotient stacks. In particular,

G ∼= EG∗, so that [∗/G] is sectionwise equivalent

to the stack associated to the group G.

A G-torsor over X is a G-equivariant map P → X

where P is a G-torsor. A morphism of G-torsors
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over X is a commutative diagram

P θ //

��

P ′

��

X

of G-equivariant morphisms, where P and P ′ are

G-torsors. Write G− tors/X for the correspond-

ing groupoid.

If P → X is a G-torsor over X , then the induced

map of Borel constructions

∗ '←− EG×G P → EG×G X

is an object of the cocycle category

H(∗, EG×G X),

and the assignment is functorial. Conversely, if the

diagram

∗ '←− U → EG×G X
is a cocycle, then the induced map

π̃0 pb(U)→ π̃0 pb(EG×G X)
ε−→∼= X

is a G-torsor over X . The two functors are adjoint,

and we have proved

Lemma 19.3. There is a weak equivalence

B(G− tors/X) ' BH(∗, EG×G X).

31



In particular, there is an induced bijection

π0(G− tors/X) ∼= [∗, EG×G X ].

Lemma 19.3 was proved by a different method in

[6]. There is a generalization of this result, hav-

ing essentially the same proof, for the homotopy

colimit holim−−−→ G X of a diagram X on a sheaf of

groupoids G. See [8].

Remark 19.4. A diagram

G
p←− H

q−→ G′

of morphisms of sheaves of groupoids such that the

induced maps

BG
p∗←− BH

q∗−→ BG′

are local trivial fibrations is called a Morita mor-

phism, and sheaves of groupoids G, K are said to

be Morita equivalent if there is a string of Morita

morphisms connecting them.

Clearly ifG andK are Morita equivalent then they

are weakly equivalent. Conversely, if f : G → H

is a weak equivalence, take the cocycle

G
(1,f)−−→ G×H
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and find a factorization

G
j //

(1,f) $$

K
(p1,p2)
��

G×H
such that j is a weak equivalence and (p1, p2) is a

fibration. Then the induced map

BK
(p1∗,p2∗)−−−−→ BG×BH

is an injective hence local fibration, and the pro-

jection maps BG×BH → BG and BG×BH →
BH are local fibrations since BG and BH are lo-

cally fibrant. It follows that the maps

G
p1←− K

p2−→ H

define a Morita morphism.

It also follows that sheaves of groupoids G and

H are weakly equivalent if and only if they are

Morita equivalent. The same holds for presheaves

of groupoids with the obvious expanded definition

of Morita equivalence.

Example: A gerbe is traditionally defined to be

a locally connected stack. Alternatively, a gerbe is

a presheaf of groupoids G such that π̃0BG = ∗.
Weak equivalence classes of gerbes are classified by
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path components of a cocycle category taking val-

ues in presheaves of 2-groupoids — see [8], [9]. Sets

of such weak equivalence classes form the various

flavours of Giraud’s non-abelian H2 functors [1].

Lemma 19.5. Suppose that G is a fibrant sheaf

of groupoids. Then the morphisms

BG
j∗ //

''

B(G−Tors)

φ∗
��

BH(∗, BG)

are sectionwise weak equivalences of simplicial

sheaves.

Proof. The morphism j is already fully faithful in

all sections. Thus, it suffices to show that all maps

j∗ : π0BG(U)→ π0B(G−Tors)(U)

is surjective for all U ∈ C. For this, it suffices to

assume that the site C has a terminal object t and

show that the map

π0BG(t)→ π0BH(∗, BG)(t) = π0BH(∗, BG)

is surjective.

In every cocycle

∗ s←− U
f−→ BG
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the map s is a local weak equivalence, so there is

a homotopy commutative diagram

U f
''

s

��
BG

∗ x
77

since BG is injective fibrant. This means that the

cocycles (s, f ), (s, xs) and (1, x) are all in the same

path component of H(∗, BG).

Lemma 19.6. Suppose that G is a sheaf of

groupoids. Then the maps j : G → G − Tors

and φj : G → H(∗, BG) are models for the

stack completion, up to sectionwise weak equiv-

alence.

Proof. Suppose that i : G→ H is a fibrant model

for G. Then i∗ : BG → BH is a local weak

equivalence, so that the induced map

i∗ : BH(∗, BG)→ BH(∗, BH)

is a sectionwise equivalence. Thus, it follows from

Lemma 19.5 that BH(∗, BG) is sectionwise equiv-

alent to an injective fibrant object, namely BH ,

and therefore satisfies descent.

Remark 19.7. The presheaf of categories H(∗, BG)

is a fine example of what should be meant by a
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stack in categories: such an object should be a

presheaf of categories D such that the nerve BD

satisfies descent.
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[1] Jean Giraud. Cohomologie non abélienne. Springer-Verlag, Berlin, 1971.
Die Grundlehren der mathematischen Wissenschaften, Band 179.

[2] P. G. Goerss and J. F. Jardine. Simplicial Homotopy Theory, volume 174
of Progress in Mathematics. Birkhäuser Verlag, Basel, 1999.
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