
Lecture 10

21 Localization for simplicial presheaves

Suppose that C is a small Grothendieck site, and

that S is a set of cofibrations A→ B in the cate-

gory sPre(C) of simplicial presheaves on C.

I’m going to assume throughout this section that

I is a simplicial presheaf on C with two disjoint

global sections 0, 1 : ∗ → I . The object I will be

called an interval, whether it looks like one or not.

The examples of intervals that we are most likely

to care about include the following:

1) the simplicial set ∆1 with the two vertices 0, 1 :

∗ → ∆1,

2) Bπ(∆1) with the two vertices 0, 1 : ∗ → π(∆1)

in the fundamental groupoid π(∆1) of ∆1,

3) the affine line A1 over a scheme S with the

rational points 0, 1 : S → A1.

The basic idea behind the flavour of localization

theory which will be presented here, is that one

wants to construct, in a minimal way, a homotopy
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theory on simplicial presheaves for which the cofi-

brations are the monomorphisms, all of the maps

in the set S become weak equivalences, and the

interval object I describes homotopies.

I sometimes write

�n = I×n.

There are face inclusions

di,ε : �n−1 → �n, 1 ≤ i ≤ n, ε = 0, 1,

with

di,ε(x1, . . . , xn−1) = (x1, . . . , xi−1, ε, xi, . . . , xn−1).

Then there are subobjects ∂�n and uni,ε of �n

which are defined, respectively, by

∂�n = ∪i,ε di,ε(�n−1),

and

uni,ε = ∪(j,γ)6=(i,ε) d
j,γ(�n−1).

The interval I is used to define homotopies. A

naive homotopy between maps f, g : X → Y is a

commutative diagram

X
0
��

f

$$
X × I h // Y

X

1

OO

g

::
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Naive homotopies generate an equivalence relation:

write

π(X, Y ) = πI(X, Y )

for the set of naive homotopy classes of maps X →
Y .

The class of anodyne cofibrations (or anodyne ex-

tensions) is the saturation of the set of inclusions

Λ(S) specified by

(C ×�n) ∪ (D × un(i,ε)) ⊂ D ×�n (21.1)

where C → D is a member of the set of generating

cofibrations for sPre(C), and

(A×�n) ∪ (B × ∂�n) ⊂ B ×�n (21.2)

with A→ B in the set S.

An injective morphism is a simplicial presheaf

map p : X → Y which has the right lifting prop-

erty with respect to all anodyne extensions, and a

simplicial presheafX is injective if the mapX → ∗
is an injective morphism.

A weak equivalence is a map f : X → Y which

induces a bijection π(Y, Z) → π(X,Z) for all in-

jective Z. A cofibration is just a monomorphism,

and a fibration is a map which has the right lifting

property with respect to all trivial cofibrations.
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It is an exercise to show that a map f : Z → W

is a weak equivalence if and only if it is a naive

homotopy equivalence. This means that there is a

map g : W → Z and naive homotopies f ·g ' 1W
and g · f ' 1Z .

Lemma 21.1. 1) Suppose that C → D is an

anodyne cofibration. Then the induced map

(C ×�1) ∪ (D × ∂�1) ⊂ D ×�1 (21.3)

is anodyne.

2) All anodyne cofibrations are weak equiva-

lences.

Proof. Show that that if C → D is in Λ(S), then

the induced map (21.3) is in Λ(S). Then the proof

of statement 1) is finished with a colimit argument.

Suppose that i : C → D is an anodyne cofibration

and that Z is an injective argument. Then the

lifting exists in any diagram

C //

i
��

Z

D

>>

so that the map

i∗ : π(D,Z)→ π(C,Z)
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is surjective. If f, g : D → Z are morphisms such

that there is a homotopy h : C × I → Z between

fi and gi, then the lifting exists in the diagram

(C ×�1) ∪ (D × ∂�1)
(h,(f,g))

//

��

Z

D ×�1
H

55

(by part 1)) and the mapH is a homotopy between

f and g. It follows that the function

i∗ : π(D,Z)→ π(C,Z)

is injective.

We shall sketch the proof of the following:

Theorem 21.2 (Cisinski). With the definitions

given above, the simplicial presheaf category sPre(C)

has the structure of a left proper cubical model

category.

The cubical model structure involves the cubical

set (the cubical function complex) hom(X, Y )

whose n-cells are the maps X × �n → Y . This

construction is supposed to satisfy a cubical ver-

sion of Quillen’s simplicial model axiom SM7. This

is, however, an easy consequence of the proof of the

rest of the Theorem.

There is a properness assertion as well:
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Theorem 21.3. Suppose that all cofibrations in

the set S pull back to weak equivalences along

all fibrations p : X → Y with Y fibrant. Then

the model structure of Theorem 21.2 on sPre(C)

is proper.

The condition in the statement of Theorem 21.3

means that, in every diagram

A×Y X i∗ //

��

B ×Y X //

��

X
p
��

A
i

//B // Y

with p a fibration such that Y is fibrant, if i is a

member of S then i∗ is a weak equivalence.

Theorems 21.2 and 21.3 are special cases of more

general results, which can be found in [7] (also [6]).

In particular, [7] is where you should look for a

proof of Theorem 21.3. Theorem 21.2 was origi-

nally proved by Cisinski [1], although he did not

express it as it appears here. The main ideas of

the proof are due to Cisinski.

1) Cardinality tricks

Suppose that T is some set of cofibrations of A-

sets, and choose a regular cardinal α such that

α > |T | and that α > |D| for all C → D in T .
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Suppose that λ > 2α is regular.

Every f : X → Y has a functorial system of fac-

torizations

X
is //

f ##

Es(f )
fs
��

Y

for s < λ defined by the lifting property for maps

in T , and which form the stages of a transfinite

small object argument.

Specifically, given the factorization f = fsis form

the pushout diagram⊔
D C

//

��

Es(f )

��⊔
DD

//Es+1(f )

where D runs through all diagrams

C //

i
��

Es(f )

��

D // Y

with i in T . Then fs+1 : Es+1(f ) → Y is the

obvious induced map. Set Et(f ) = lim−→s<t
Es(f )

at limit ordinals t < λ.
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Then there is a functorial factorization

X
iλ //

f ##

Eλ(f )
fλ
��

Y

with Eλ(f ) = lim−→s<λ
Es(f ). Also fλ has the right

lifting property with respect to all C → D in T ,

and iλ is in the saturation of T .

Write L(X) = Eλ(X → ∗).

Lemma 21.4. 1) Suppose that t 7→ Xt is a di-

agram of simplicial presheaves, indexed by

ω > 2α. Then the map

lim−→
t<ω

L(Xt)→ L(lim−→
t<ω

Xt)

is an isomorphism.

2) The functor X 7→ L(X) preserves cofibra-

tions.

3) Suppose that γ is a cardinal with γ > α,

and let Fγ(X) = the subobjects of X having

cardinality less than γ. Then the map

lim−→
Y ∈Fγ(X)

L(Y )→ L(X)

is an isomorphism.
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4) If |X| < 2µ where µ ≥ λ then |L(X)| < 2µ.

5) Suppose that U, V are subobjects of X. Then

the natural map

L(U ∩ V )→ L(U) ∩ L(V )

is an isomorphism.

Proof. It suffices to prove all statements withL(X)

replaced by E1(X). There is a pushout diagram⊔
T (C × hom(C,X)) //

��

X

��⊔
T (D × hom(C,X)) //E1X

Then, in sections,

E1X =
⊔
T

((D(a)−C(a))× hom(C,X))tX(a).

so 5) follows. The remaining statements are exer-

cises.

Corollary 21.5. Every simplicial presheaf map

f : X → Y has a functorial factorization

X
j //

f   

Z
p
��

Y

where j is anodyne and p is injective.
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Suppose that α > |Λ(S)| and that α > |D| for all

C → D in Λ(S). Suppose that λ > 2α

Here is the bounded cofibration condition:

Lemma 21.6. Suppose given a diagram

X
i��

A // Y

of cofibrations such that i is a weak equivalence

and |A| < 2λ. Then there is a subobject B ⊂ Y

with A ⊂ B such that |B| < 2λ and B∩X → B

is an equivalence.

Proof. The proof is due to Cisinski. It is inno-

vative in the sense that it uses nothing but naive

homotopy.

The map i∗ : LX → LY is a cofibration (by the

previous lemma) and is a naive homotopy equiv-

alence of injective objects. There is a map σ :

LY → LX such that σ · i∗ ' 1 via a naive homo-

topy h : LX ×�1 → LX . Form the diagram

(LY ×�0) ∪ (LX ×�1)
(σ,h)

//

��

LX

LY ×�1
H

55

The other end of the homotopy H gives a map σ′
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such that σ′ · i∗ = 1, and i∗σ
′ ' i∗σ ' 1. We can

therefore assume that σ · i∗ = 1.

Suppose that As ⊂ Y and |As| < 2λ. Then

|LAs × �1| < 2λ. Also, there is a 2λ-bounded

subobject As+1 such that As ⊂ As+1 and there is

a diagram

LAs ×�1 //

��

LAs+1

��

LY ×�1
K
//LY

where K : i∗σ ' 1.

This is the successor ordinal step in the construc-

tion of a system s 7→ As with s < λ (recall that

λ > 2α) and A = A0. Let B = lim−→s
As. Then, by

construction, B is 2λ-bounded and the restriction

of the homotopy K to LB × �1 factors through

the inclusion j∗ : LB → LY .

There is a pullback

L(B ∩X)
j̃ //

ĩ ��

LX
i∗��

LB
j∗

//LY

and i∗σ(LB) ⊂ LB. It follows that there is a

map σ′ : LB → L(B ∩ X) such that σ′ · ĩ = 1.

K restricts to a homotopy LB × �1 → LB (by

construction), and this is a homotopy ĩσ′ ' 1.
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2) Trivial cofibrations are preserved by

pushout

Note first that anodyne extensions are closed under

pushout.

Lemma 21.7. Suppose given a diagram

C
f,g //

i ��

E

D

where i is a cofibration, and suppose that there

is a naive homotopy h : C × �1 → E from

f to g. Then g∗ : D → D ∪g E is a weak

equivalence if and only if f∗ : D → D ∪f E is a

weak equivalence.

Proof. There are pushout diagrams

C
d0 //

i ��

C ×�1 h //

i∗��

E
i∗��

D
d0∗
//D ∪C (C ×�1)

h′
//

j ��

D ∪f E
j∗��

D ×�1
h∗

// (D ×�1) ∪h E

where the top composite is f . The maps d0∗, j and

j∗ are anodyne cofibrations. Thus f∗ = h′ · d0∗
is a weak equivalence if and only if h′ is a weak

equivalence, and h′ is a weak equivalence if and
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only if h∗ is a weak equivalence. Thus, f∗ is a weak

equivalence if and only if h∗ is a weak equivalence.

Similarly, g∗ is a weak equivalence if and only if h∗
is a weak equivalence.

Lemma 21.8. Suppose that i : C → D is a

trivial cofibration. Then the cofibration

(C ×�1) ∪ (D × ∂�1)→ D ×�1

is a weak equivalence.

Proof. The diagram

C × ∂�1 //

��

D × ∂�1 //

��

LD × ∂�1

��

C ×�1 //D ×�1 //LD ×�1

induces a diagram

(C ×�1) ∪ (D × ∂�1) //

��

(C ×�1) ∪ (LD × ∂�1)
��

D ×�1 //LD ×�1

in which the horizontal maps are anodyne exten-

sions, and hence weak equivalences.

There is a factorization

C i′ //

i !!

D′
p��
D
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where i′ is anodyne and p is both injective and a

weak equivalence. In the induced diagram

(C ×�1) ∪ (LD′ × ∂�1) //

��

(C ×�1) ∪ (LD × ∂�1)
��

LD′ ×�1 //LD ×�1

the top horizontal map is induced by the homotopy

equivalence

LD′ × ∂�1 → LD × ∂�1,

and is therefore an equivalence by Lemma 21.7.

The bottom horizontal map is also a homotopy

equivalence. The left hand vertical map is an equiv-

alence by comparison with the map

(C ×�1) ∪ (D′ × ∂�1)→ D′ ×�1

which is an anodyne extension.

Lemma 21.9. The class of trivial cofibrations

is closed under pushout.

Proof. If j : C → D is a cofibration and a weak

equivalence, then every map α : C → Z with Z

injective extends to a map D → Z.

In effect, there is a homotopy h : C × �1 → Z

from α to a map β · j for some map β : D → Z,
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and then the homotopy extends:

(C ×�1) ∪ (D × {1}) (h,β)//

��

Z

D ×�1
H

55

Note that the vertical map is an anodyne exten-

sion.

Now suppose given a pushout diagram

C //

j
��

C ′

j′
��

D //D′

Then the diagram

(C ×�1) ∪ (D × ∂�1) //

��

(C ′ ×�1) ∪ (D′ × ∂�1)
��

D ×�1 //D′ ×�1

is a pushout. The left vertical map is a trivial

cofibration by Lemma 21.8, and therefore has the

left lifting property with respect to the map Z →
∗. Thus, if two maps f, g : D′ → Z restrict to

homotopic maps on C ′, then f ' g.

3) Many injective maps are fibrations

Lemma 21.10. Suppose that the map p : X →
Y is injective and that Y is injective. Then p

is a fibration.
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Proof. Suppose given a diagram

A α //

i ��

X
p��

B
β
// Y

(21.4)

where i is a trivial cofibration. Then there is a

map θ : B → X such that θ · i = α since X is

injective.

The constant homotopy A × �1 pr−→ A
α−→ X ex-

tends to a homotopy h : B × �1 → Y as in the

diagram

(A×�1) ∪ (B × ∂�1)
(pαprA,(β,pθ)) //

��

Y

B ×�1
h

33

since the vertical map is a trivial cofibration (Lemma

21.8) and Y is injective. It follows that there is a

homotopy

A×�1 αprA//

i×i ��
X
p
��

B ×�1
h
// Y

from the original diagram to a diagram

A α //

i ��

X
p��

B
pθ
//

θ
>>

Y
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Find the indicated lifting in the diagram

(A×�1) ∪B(αprA,θ)//

��

X
p
��

B ×�1
h

//

55

Y

to show that the required lifting exists for the orig-

inal diagram (21.4).

Corollary 21.11. Every injective object is fi-

brant.

4) Final approach

Lemma 21.12 (CM4). Suppose that p : X →
Y is a fibration and a weak equivalence. Then

p has the right lifting property with respect to

all cofibrations.

Proof. Suppose first that Y is injective. Then p is

a naive homotopy equivalence, and has a section

σ : Y → X (exercise).

The map σ is a trivial cofibration so the lift exists

in the diagram

(Y ×�1) ∪ (X × ∂�1)
(σ·pr,(1X ,σ·p)) //

��

X
p
��

X ×�1

H
22

p×1
// Y ×�1

pr
// Y
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since the left vertical map is a weak equivalence by

Lemma 21.8. It follows that the identity diagram

on p : X → Y is naively homotopic to the diagram

X
σ·p//

p ��

X
p��

Y
1
//

σ
==

Y

Thus, any diagram

A //

j ��

X
p��

B // Y

is naively homotopic to a diagram which admits

a lifting. It follows that p has the right lifting

property with respect to all cofibrations.

If Y is not injective, form the diagram

X
j //

p
��

Z
q��

Y
jY
//L(Y )

where j is an anodyne cofibration, q is injective,

and jY is an injective model for Y . Then q is a

fibration by Lemma 21.9 and is a weak equivalence,

so that q has the right lifting property with respect

to all cofibrations, by the previous paragraph.
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Factorize the map X → Y ×L(Y ) Z as

X i //

&&

W
π��

Y ×L(Y ) Z

where π has the right lifting property with respect

to all cofibrations and i is a cofibration. Write

q∗ for the induced map Y ×L(Y ) Z → Y . Then

the composite q∗π has the right lifting property

with respect to all cofibrations and is therefore a

homotopy equivalence. The cofibration i is also

a weak equivalence, and it follows that the lifting

exists in the diagram

X
1X //

i ��

X
p��

Z q∗π
//

==

Y

so that p is a retract of a map which has the right

lifting property with respect to all cofibrations.

Corollary 21.13. A map p : X → Y is a fi-

bration and a weak equivalence if and only if it

has the right lifting property with respect to all

cofibrations.

Proof of Theorem 21.2. The cofibration/trivial fi-

bration factorization statement of CM5 is also a
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consequence of Corollary 21.13: every map f :

X → Y has a factorization

X
f //

i ��

Y

W
p

AA

where i is a cofibration and p is a fibration and a

weak equivalence.

The trivial cofibration/fibration factorization state-

ment follows from the bounded cofibration condi-

tion: every f : X → Y has a factorization

X
f //

j ��

Y

Z
q

CC

where j is a cofibration and a weak equivalence

and q is a fibration. In order to conclude that j is

a weak equivalence, we need to know that trivial

cofibrations are closed under pushout, but this is

Lemma 21.9.

All simplicial presheaves are cofibrant for the present

model structure. Left properness therefore follows

from general nonsense about categories of cofibrant

objects — see [3, II.8.5].
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Examples:

1) Homotopy theory of simplicial presheaves

Suppose that S is a generating set of trivial cofi-

brations A→ B for the inductive model structure

on sPre(C), and that I = ∆1 is the standard in-

terval.

An injective model j : X → L(X) is an injective

fibrant model since all anodyne extensions are triv-

ial cofibrations for the injective structure and all

injective objects are injective fibrant. Thus, every

weak equivalence (for the “new” model structure)

is a local weak equivalence. If f : X → Y is

a local weak equivalence, then L(X) → L(Y ) is

a local weak equivalence between injective fibrant

models, and is therefore a (standard) homotopy

equivalence; it follows that f is a weak equivalence

in the “new” sense.

2) Motivic homotopy theory

Suppose that S is a scheme of finite dimension

(typically a field), and let (Sm|S)Nis be the cat-

egory of smooth schemes of finite type over S,

equipped with the Nisnevich topology. A cover-

ing family for the Nisnevich topology is an étale

covering family φi : Vi → U in the category of
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S-schemes such that every map Sp(K) → U lifts

to some Vi, for all fields K. Nisnevich originally

called this topology the “completely decomposed

topology” or “cd-topology” [9], because of the way

it behaves over fields — see [4].

The motivic model structure on sPre(Sm|S)Nis
can be constructed in two ways:

a) Let S consist of the generating set of the trivial

cofibrations for the injective model structure on

sPre(Sm|S)Nis, plus the 0-section ∗ → A1, and

let I = ∆1.

b) Let S be the generating set of trivial cofibrations

for the injective model structure on sPre(Sm|S)Nis
and let I = A1 with the global sections 0, 1 : ∗ →
A1.

It’s an exercise to show that the two model struc-

tures coincide: show that every anodyne cofibra-

tion of one structure is a trivial cofibration of the

other, and so the two structures have same injec-

tive objects. It follows that the two classes of weak

equivalences coincide.

The motivic model structure is called the A1-model

structure in [8]. Strictly speaking, the Morel-Voe-

vodsky model structure is on the category of sim-
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plicial sheaves on the smooth Nisnevich site, but

the model structures for simplicial sheaves and sim-

plicial presheaves are Quillen equivalent by the

usual argument [5]. There are many other mod-

els for motivic homotopy theory, including model

structures on presheaves and sheaves (not simpli-

cial!) on the smooth Nisnevich site [5], and all the

models arising from test categories [6].

3) Localized model structures

Suppose that f : A→ B is a cofibration of simpli-

cial presheaves on a site C. Let S consist of the gen-

erating set of trivial cofibrations for the injective

model structure on sPre(C), plus the cofibration

f . Let I = ∆1. The resulting model structure

is the f -local model structure on sPre(C). The

motivic model structure on sPre(Sm|S)Nis is a

special case of this construction, as are all of the

standard f -local theories for simplicial sets.

4) Quasi-categories

The quasi-category model structure on the cate-

gory sSet of simplicial sets is the model structure

given by the theorem for the set S of inner ano-

dyne extensions

Λn
k ⊂ ∆n, 0 < k < n,
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and the interval I = Bπ(∆1).

Theorem 21.14. Suppose that f : ∗ → A is

a global section of a simplicial presheaf A on a

small site C. Then the f -local model structure

on sPre(C) is proper.

Proof. We only need to verify right properness.

According to Theorem 21.3, and since the standard

injective model structure on sPre(C) is proper, it

is enough to show that the map f∗ is a weak equiv-

alence in all pullback diagrams

F
f∗ //

��

A×Y X //

��

X
p
��

∗
f

//A α
// Y

such that p is a fibration and Y is fibrant.

The map t : A → ∗ is a weak equivalence and

Y is fibrant, so there is a map v : ∗ → Y and a

homotopy h making the diagram

∗ f //

0 ��

A
0��

α

((∆1 //A×∆1 h // Y

∗
1

OO

f
//A

1

OO

t
// ∗

v

@@
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commute. All instances of the maps 0 and 1 pull

back to weak equivalences along p since the stan-

dard injective model structure is proper. It there-

fore suffices to show that the map f∗ in the pull-

back diagram

Fv
f∗ //

��

A× Fv //

��

X
p
��

∗
f

//A
vt

// Y

is a weak equivalence, where Fv is the fibre of p

over v, but this is obvious since f∗ is anodyne.

Corollary 21.15. The motivic model structure

on the category sPre(Sm|S)Nis of simplicial pre-

sheaves on the smooth Nisnevich site is proper.
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