Lecture 12

24 T-spectra

Suppose that T' is a pointed simplicial presheaf on
a small site C.

A T-spectrum X is a collection of pointed sim-
plicial presheaves X", n > 0, with pointed maps
o TANX" = X" Amap f: X = Y of
T-spectra consists of pointed simplicial presheaf
maps f : X" — Y which respect structure in the
sense that the diagrams

TAX"-7- X"
=Y
T A YnT)YTH—l

commute. Write Spt,(C) for the category of T-
spectra.

Say that amap f : X — Y of T-spectra is a strict
weak equivalence (respectively strict fibration) if
all maps f : X" — Y™ are local weak equiva-
lences (respectively injective fibrations) of pointed
simplicial presheaves on C.

A cofibration of T-spectra is amap 2 : A — B
such that



oi : AY — B' is a cofibration of simplicial
presheaves, and

e all maps
(T A B") Ugppan) A" — B
are cofibrations of simplicial presheaves.

[f K is a pointed simplicial presheaf and X is a 7T-
spectrum, then X A K has the obvious meaning;:

(XAK)=X"AK.

The function compler hom(X,Y') for T-spectra
X and Y is the pointed simplicial set with

hom(X,Y), = { X AA” > Y 1.

Lemma 24.1. With these definitions, the cat-
egory of Sptp(C) of T-spectra on C satisfies the
definitions for a proper closed simplicial model
category.

The proof is the usual thing.

Suspensions and shifts work in Sptp(C) just like
for ordinary spectra:

e Given a pointed simplicial presheaf K, the sus-
pension spectrum 27 K is the T-spectrum

KTANKT°NK,...
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with 7" =T A --- AT (n-fold smash power).
The functor K — XFK is left adjoint to the
0-level functor X — X°.

The suspension spectrum X5°SY is also denoted
by St and is called the T'-sphere spectrum.

e Given a T-spectrum X, n € Z,

n+k
X[n]k: X n+k>0
* n+k<0

Lemma 24.2. Suppose given the diagram

ANX—X

i | |

A Y

in spectra, where 7 1s a cofibration and i 1S a
levelwise cofibration. Then the induced map j :
ANX — A s a cofibration.

The proof of Lemma 24.2 is set theoretic. The
Lemma itself is a holdover from old approaches to
constructing the stable category, and is not really
needed now — see [1]

What now follows is a general set of tricks that
applies to any set S of cofibrations ¢ : A — B of

Spt(C).



Suppose that « is a cardinal such that a > | Mor(C)].
Suppose also that « > |B]| for all morphisms 7
A — B appearing in the set S and that a > |.5].
Choose a cardinal A such that A > 2°.

Suppose that f : X — Y is a morphism of Spt4(C).
Define a functorial system of factorizations

X = E,(f)

T

Y

of the map f indexed on all ordinal numbers s < A
as follows:

1) Given the factorization (fs,4s) define the fac-
torization (fsi1,7s11) by requiring that the di-
agram

\/D A @2 Es(f)

Vi |

\/D B— Es+1<f)
is a pushout, where the wedge is indexed over
all diagrams D of the form

AR E(f)

i\ | s

with 2 : A — B in the set S. Then the map



1s+1 1s the composite
X = By(f) = Exa(f)

2) If sis a limit ordinal, set E(f) = ling, _ ~ E(f).

Set E\(f) = lim Es(f). Then there is an in-
duced factorization

X2 E\(f)

f\ J,f)\

Y

of the map f. Then 7, is a cofibration. The map
£ has the right lifting property with respect to the
cofibrations 7 : A — B in S by a standard argu-
ment, since any map « : A — E)\(f) must factor
through some E,(f) by the choice of cardinal \.

Write L(X) = FE)(c) for the result of this construc-
tion when applied to the canonical map ¢ : X — x.
Then we have the following:

Lemma 24.3. 1) Suppose thatt — X is a di-
agram of level cofibrations indexed by any
cardinal v > 2%. Then the natural map

lin L(X) — L(lﬂl Xi)

<y t<7y

18 an 1somorphism.



2) The functor X — L(X) preserves level cofi-
brations.

3) Suppose that C is a cardinal with { > «,
and let F:(X) denote the filtered system of
subobjects of X having cardinality less than
(. Then the natural map

lig  L(Y) = L(X)
YeF:(X)

1S an isomorphism.
4) If | X| < 2% where w > « then |L(X)| < 2.

5) Suppose that U,V are subobjects of a presheaf
of T'-spectra X. Then the natural map

LUNV)— LU)NLV)
18 an 1somorphism.

Proof. The argument is the same as for Lemma
22.4. O

Basic Assumptions: Suppose that .S is a set of
cofibrations such that

1) A is cofibrant for alli: A — B in S,
2) S includes the set I of generating maps
YFCl—n| = XFDl—n], n >0,
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for the strict trivial cofibrations of Spt,(C),
which are induced by the a-bounded trivial
cofibrations C' — D of pointed simplicial pre-
sheaves, and

3) .S includes all cofibrations
(AND)U(BAC)— BAD, m >0,
for A — B in S and all a-bounded pointed
cofibrations C' — D of simplicial presheaves.

A map p: X — Y is said to be injective if it has
the right lifting property with respect to all maps
of §. An object X is injective if the map X — x
is injective. By construction, LX is injective for
every object X. Every injective object is strictly
fibrant.

Say that a map f : X — Y of Spt(C) is an L-
equivalence if it induces a bijection

[,z = X, Z]
in morphisms in the strict homotopy category for
every injective object Z.
Every strict equivalence X — Y is an L-equivalence.

Lemma 24.4. Suppose that 1 : A — B is a
cofibration with A cofibrant. Then i 1s an L-
equivalence if



1) i induces a trivial fibration
i* *hom(B,Z) — hom(A, 7)
for all injective Z, or

2) all injective Z have the right lifting prop-
erty with respect to v and with respect to the
cofibration

(ANAVYU(BAOALY) — BAAL

Proof. The first claim is trivial.

The second claim is almost as easy: we must show
that the induced function

i om(B,Z) = w(A, Z)

in naive homotopy classes is a bijection for all in-
jective Z. This suffices, because A and B are cofi-
brant and Z is strictly fibrant.

Every morphism A — Z extends to a morphism
B — Z because Z — * has the right lifting prop-
erty with respect to 2. It follows that ¢* is surjec-
tive.

Given f,g : B — Z, if there is a homotopy h :
ANAL — Z from f|a to g|a, then there is a



diagram
(BAOAL)U (A AL DY 7

|

BAAL

where the indicated lifting exists because Z is in-
jective and the vertical map is a member of §.
But then f and g are homotopic, so that ¢* is in-
jective. []

Corollary 24.5. All cofibrations appearing in
the set S are L-equivalences.

Proof. Every cofibration ¢ : A — B appearing in
the set S induces a trivial fibration

i - hom(B, Z) — hom(A, 7)
by construction. O

A map f : Z — W between injective objects is
an L-equivalence if and only if it is a strict equiv-
alence. To see this, use cofibrant replacement and
the fact that an L-equivalence between cofibrant
injective objects is a homotopy equivalence.

A cofibrant replacement foramap f: X — Y is



a commutative diagram

in which the maps mx and 7y are trivial strict fi-
brations, X is cofibrant and j is a cofibration. Any
two cofibrant replacements for a fixed map f are
strictly equivalent, by a standard argument. The
map f is an L-equivalence if and only if it has a
cofibrant replacement j which is an L-equivalence.

Note that if some cofibrant replacement j for f
induces a trivial fibration

7* :hom(Y, Z) — hom(X, Z)
for all injective objects Z, then all cofibrant re-
placements for f have this property.
Lemma 24.6. All cofibrations in the saturation
of the set S are L-equivalences.

Proof. The saturation of the set .S is the family
of cofibrations which has the left lifting property
with respect to all injective maps X — Y.
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If the cofibration j : C' — D is coproduct of mem-
bers of S' (hence with C' and D cofibrant), then

7° +hom(D, Z) — hom(C, Z)
is a product of trivial fibrations and is therefore a
trivial fibration.

Suppose given a pushout diagram

C—C

{1l

D—=D

where j is a coproduct of members of S and C” is
cofibrant. Then from the pullback diagram

hom(D', Z)—hom(D, 7)

r ’

hom(C’, Z) —hom(C, 7)
we see that 7™ is a trivial fibration for all injective

Z.

Suppose given a pushout diagram

C——F

i

D—DU¢ E

with 7 as above and F arbitrary. Then there is a
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factorization

of a with 7 a strictly trivial fibration and 7 a cofi-
bration, and there is an induced commutative di-
agram

E “~DUc E

Wi o

E?DUCE

The map 7 is a strict equivalence, so that m, is
a strict equivalence by properness. The map j,
induces a trivial fibration

(7,)* - hom(D U¢ E, Z) — hom(E, Z)

for all injective Z, by the previous paragraph. It
follows that some cofibrant replacement of the map

j. E—= DU E

induces a corresponding function complex weak
equivalence.

Suppose given a string of morphisms

X() X1 X2 — .
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such that each f; is an L-equivalence. Take a “cofi-
brant replacement”

Ag-"- Ay -2 A,

wol “l lm

in which Ay is cofibrant, all 7, are cofibrations and
all 7m; are trivial strict fibrations. Then all maps ¢
induce trivial fibrations

ir. - hom(Ay, Z) - hom(A;_1, Z)

for all injective Z, so the cofibration Ay — h_rgl A,
induces a trivial fibration

hom(lig A;, Z) — hom(Ay, Z).

for all injective Z. The map

is a (sectionwise) weak equivalence, and it follows
that some cofibrant replacement for the map Xy —
ligi X; induces a trivial fibration in all function
complexes taking values in injective objects Z.

It follows that every member ¢ : A — B of the
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saturation of S has a factorization

A7

N

B
such that 7 is injective and j is a member of the
saturation of S which is also an L-equivalence.
The map ¢ has the left lifting property with re-
spect to all injective maps such as 7, so that 7 is a
retract of j. O

Corollary 24.7. 1) The natural map j : X —
LX 1is an L-equivalence.

2) A map f: X — Y is an L-equivalence if
and only if the induced map Lf : LX — LY
1S a strict equivalence.

Lemma 24.8. Suppose that v > «. Suppose
further that 1 : X — Y s a level cofibration
and a strict equivalence and that A C'Y s an
v-bounded subobject. Then there is a y-bounded
subobject B C'Y with A C B such that the level
cofibration BN X — B 1s a strict equivalence.

Proof. First of all, consider the diagram of cofibra-
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tions
XO
P
Then by Lemma 10.2 (the bounded cofibration
condition for simplicial presheaves) there is a sub-
object BY C YV such that B is v-bounded, AY C
B and B'N X" — BYis alocal weak equivalence.

Form the diagram
TANA"—TAB"—TAY"

h ;
Then the induced map
AU TABY = Y!

factors through a y-bounded subobject C' C Y.
There is a ~-bounded subobject B C Y such

that C! ¢ B! and B! N X! — B! is a local weak
equivalence. The composite

TAB = A'Up 0 TAB— Ctc B!
is the bonding map up to level 1 for the object B.

Construct the remaining objects B", n > 1, in-
ductively according to this recipe. O
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Lemma 24.9. Suppose given a cofibration 1 :
X — Y which 1s an L-equivalence, and suppose
that A C'Y is a 2*-bounded subobject, where \
is chosen as above. Then there is a 2*-bounded
subobject B C'Y with A C B and such that the
cofibration BN X — B s an L-equivalence.

Proof. Write By = A, and set k = 2.
Consider the diagram

LX

LBy~ LY

Then the maps are level cofibrations (Lemma 24.3.2)
and LX — LY is a strict equivalence by assump-
tion. The object LBy is r-bounded by Lemma
24.3.4, so there is a k-bounded subobject Cy C LY
with LBy C C] such that Ci N LX — Cfis a
strict equivalence, by Lemma 24.8. Since C is k-
bounded there is a xk-bounded subobject By C Y
with By C Bj such that C; C LB; (Lemma
24.3.3). Proceeding inductively we find x-bounded
subobjects

CicCyC...
of LY and k-bounded subobjects

ByCcBiCByC...
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indexed by ¢ < k, such that C and By are defined
at limit ordinals s by colimits, and

LB; C Ciy1 C LBiy

and C; N LX — C} is a level weak equivalence.

Write B = llngiq B;. Then B is k-bounded, and

L(B) = @L(Bi) = @Ci

1<K 1<K
by Lemma 24.3.1 and construction. Also
L(BNX)=LB)NLX) = h_rgL(Bi) N L(X)
1<K
= hﬂ C; N L(X)
1<K

by Lemma 24.3.1 and 24.3.5 and construction. It
follows that the map

BNX —1B

is an L-equivalence. ]

Say that a cofibration is L-trivial if it is an L-
equivalence.

Lemma 24.10. The set of k-bounded L-trivial
cofibrations 1s a generating set for the class of
L-trivial cofibrations.
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Proof. Run the solution set argument of Lemma
22.5 using Lemma 24.9 for the set of k-bounded
cofibrations. Recall that the x-bounded cofibra-
tions generate the class of cofibrations. O

Say that a map p : X — Y is an L-fibration if it
has the right lifting property with respect to all L-
trivial cofibrations. Observe that every L-fibration
is a strict fibration, since S contains a generating
set for the class of strict trivial cofibrations.

Lemma 24.11. A map p : X — Y 1is an L-
fibration and an L-equivalence if and only if p
18 a trival strict fibration.

Proof. We need only show that p is a trivial strict
fibration if it is an L-fibration and an L-equivalence,
but this is the usual proof: find a factorization

X-w
N
Y

where 7 is a cofibration and 7 is a trivial strict
fibration. But then j is an L-equivalence so the
lifting exists in the diagram

XX
i|
W-——Y

(e
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so that p is a retract of . ]

Theorem 24.12. Suppose that S s a set of
cofibrations which satisfies the list of basic as-
sumptions above. Let the L-equivalences and L-
fibrations be defined relative to the set S. Then
with these definitions the category Spty(C) sat-
1sfies the azxioms for a closed simplicial model
category.

Proof. Every map f : X — Y has a factorization
X -Lw

PN

Y

such that p is an L-fibration and j is a cofibration

and an L-equivalence, by Lemma 24.6 and Lemma
24.10.

Every map f : X — Y has a factorization

X .z

N

Y
such that ¢ is a cofibration and ¢ is a strictly trivial
fibration. But then ¢ is an L-fibration and an L-
equivalence.

The rest of the closed model axioms are trivial to
verify.
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For the closed simplicial model structure, we need
to show that if © : A — B is a cofibration and an
L-equivalence, then all maps

i NOA" : ANOAT — B AOA"

are L-equivalences. By replacing by a cofibrant
model if necessary, it is enough to assume that
A is cofibrant. Then one uses the usual patch-
ing argument for the category of cofibrant objects
in the L-model structure for Spt,(C) to compare
pushouts of the form

ANOAYT —ANAY,

| |

ANANT — ANOAT

to show inductively that the question reduces to
showing that the map

1Vi:AVA—- BVDEB

is an L-equivalence. But ¢ V ¢ has the left lifting
property with respect to all L-fibrations, and must
therefore be an L-trivial cofibration. ]

Lemma 24.13. The L-structure on Spty(C) is
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left proper: given a pushout diagram

AL ¢

I

in which i 1s a cofibration, iof f is an L-equivalence
then f. is an L-equivalence.

Proof. The original diagram may be replaced up
to strict weak equivalence by a pushout diagram

AL ¢

|
B—-D

*

in which f’ is a cofibration and an L-equivalence.
But then f7 is also an L-trivial cofibration and is
in particular an L-equivalence. ]

Lemma 24.14. Every injective object 1s L-fibrant,
so that the L-fibrant T -spectra coincide with the
injective T'-spectra.

Proof. Suppose that X is injective, and suppose
given a diagram

N

e X

.
B S

Sy
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where the morphism 7 is a cofibration and an L-
equivalence. Then o = ' - j for some map o' :
LA — X since X is injective, and so there is a
diagram

AL pad.x

1

B— LB
J

which factorizes the original. The map Li is a
strict equivalence by Corollary 24.7.

One finishes the argument in the usual way: L2
has a factorization

LA-“-W

P

LB
where ¢’ is a cofibration, p is a strict fibration and
both maps are strict weak equivalences. Then X is
strictly fibrant so there is a map o : W — X such
that o -4 = ¢/, and thereisamap § : B — W
such that p-0 =jand 0 -i=14-j. O

Now we can go further, to give a general recogni-
tion principle for L-fibrations. The most complete
statement (Theorem 24.17 below) depends on right
properness for the L-structure, which will be ad-
dressed in a subsequent section.
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Lemma 24.15. Suppose that p : X — Y s
a strict fibration between L-fibrant T'-spectra.
Then p is an L-fibration.

Proof. Suppose given a diagram
A—X (24.1)

i

B—Y
where 7 is a cofibration and an L-equivalence. Then
the induced map i, : LA — LB is a strict equiv-
alence, as are the L-fibrant model maps 7 : X —
LX and 7 : Y — LY. The induced diagram

LA—LX

z*i ip*

LB—LY
has a factorization

LAZA Vv, PX X

I
LB—=Vy 5~LY

JB

such that 74 and jp are strict trivial cofibrations
and px and py are strict fibrations. In the pullback
diagram

VX XLX X—X
jX*i ljx

Vx LX

bx

23



the map jx. Is a strict equivalence. The corre-
sponding map jy, in the diagram

LA JA VX 1 VX XLXX

L i

LB s Vy v Vy XLyY

is also a strict equivalence. It follows that the in-
duced map

VX XLXX%VY XLyY

is a strict equivalence, and that the diagram (24.1)
has a factorization

AHVX XX X—X

R

BHVY XLy Y—Y

in which the middle vertical map is a strict equiva-
lence. The result follows by a standard argument:
one factorizes the middle vertical map as a trivial
strict cofibration followed by a trivial strict fibra-
tion. []

Proposition 24.16. Suppose that p : X — Y
18 a strict fibration. Then p is an L-fibration if
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the diagram |
X—-~LX (24.2)

|

Y—LY
18 strictly homotopy cartesian.

Proof. Suppose that the diagram (24.2) is strictly
homotopy cartesian. There is a factorization

LX- .7

P

LY

of LP such that j is an L-equivalence and ¢ is an
injective fibration. But then Z is injective, hence
L-fibrant, so that j is a strict equivalence. It also
follows from Lemma 24.15 that ¢ is an L-fibration.
By pulling back ¢ along ¢, we see from the hypoth-
esis that the induced map

X%YXL}/Z

is a strict equivalence. Every trivial strict fibration
is an L-fibration, and it follows that p is a retract
of an L-fibration, and hence is itself an L-fibration.

[l

Theorem 24.17. Suppose that the L-structure
of Theorem 2/4.12 s right proper. Suppose that
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p: X — Y is a strict fibration. Then p is an
L-fibration if and only if the diagram

X-“LX (24.3)

|

Y—LY
18 strictly homotopy cartesian.

Proof. We already have Proposition 24.16.

Suppose that themap p : X — Y isan L-fibration,
and take a factorization

T
q

Ty

of the map Lp such that ¢ is an L-fibration and
j is an L-trivial cofibration. Then 5 is an L-
equivalence between L-fibrant T-spectra, so that j
is a strict equivalence on account of Lemma 24.11.

The induced map i, : Y Xy Z — Z is an L-
equivalence by the right properness assumption,
so that the canonical map 60 : X — Y Xy Z is
an L—equivalence and the map

YXLyZ

\/
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is an equivalence of fibrant objects for the model
structure on Spt,(C)/Y which is induced by the
L-structure on Spt(C). Form the diagram

Vi Vs

ml im

YXLyZ

\/

where 7 and my are trivial strict fibrations and V}

and V4 are cofibrant. Then 6 is a weak equiv-
alence between objects of Spty(C)/T which are
both fibrant and cofibrant, and is therefore a (fi-
brewise) homotopy equivalence, and hence a strict
weak equivalence. O

References

[1] J.F. Jardine. Local Homotopy Theory. Springer Monographs in Mathemat-
ics. Springer-Verlag, New York, 2015.

27



