Lecture 13

25 Descent theorems

1) The Brown-Gersten descent theorem

Suppose that S is a Noetherian scheme of finite dimension. Let $Zar|_{S}$ be the Zariski site of S.

Theorem 25.1. Suppose that X is a simplicial presheaf on $Zar|_S$ such that

- 1) the space $X(\emptyset)$ is contractible,
- 2) all stalks of X are contractible in the sense that the map $X_x \to *$ is a weak equivalences for each $x \in S$, and
- 3) the diagram

$$\begin{array}{ccc} X(U \cup V) {\longrightarrow} X(U) \\ \downarrow & \downarrow \\ X(V) {\longrightarrow} X(U \cap V) \end{array}$$

associated to each pair of open subsets U, V of S is homotopy cartesian.

Then the map $X(U) \to *$ is a weak equivalence for each open subset U of S.

Proof. We show that $\pi_q X(U)$ is trivial for each $q \geq 0$ and each choice of base point $x \in X(U)$ under the assumption that $X(U) \neq \emptyset$ and $U \neq \emptyset$.

Suppose that $\alpha \in \pi_q X(U)$. Pick a maximal open subset $V \subset U$ such that $\alpha \mapsto 0$ in $\pi_q X(V)$. There are such subsets since $\pi_q X_x = 0$ for all $x \in U$, and S is Noetherian.

Say that a closed irreducible subset $C \subset S$ is bad if there is such an α, U, V such that $C \cap U \neq \emptyset$ and $C \subset S - V$. If some $V \neq U$ there are bad subsets C: this would be a closure in S of an irreducible component of U - V.

Pick a maximal bad subset C, with associated data $\alpha \in \pi_q X(U)$, maximal open $V \subset U$ such that $\alpha \mapsto 0$ in $\pi_q X(V)$, and such that C intersects U but misses V.

Take $y \in C \cap U$. There is an open subset $W \subset U$ such that $y \in W$ and $\alpha \mapsto 0$ in $\pi_q X(W)$. A long exact sequence argument says that there is an element $z \in \pi_{q+1} X(V \cap W)$ such that

$$\partial(z) = \alpha|_{V \cup W} \in \pi_q X(V \cup W).$$

Pick a maximal open subset $V' \subset V \cap W$ such that $z \mapsto 0$ in $\pi_{q+1}X(V')$.

Then C is a component of S-V'. In effect, C is contained in some component D of S-V'. If $D\cap V=\emptyset$ then $y\in C\cap U\subset D\cap U$ so that D is bad (for α) and C=D by the maximality of C. If $D\cap V$ is non-empty then $D\cap U\neq\emptyset$ so that $D\cap (U\cap V)\neq\emptyset$ since D is irreducible, while $D\cap V'=\emptyset$ and D is bad (for z), and C=D by maximality of C.

Suppose that C, C_1, \ldots, C_k is a list of the irreducible components of X - V', and let F be the closed subset of X - V' defined by the union

$$F = C_1 \cup \cdots \cup C_k$$
.

Then C - F is a non-trivial open subset of C as is $W \cap C$, and it follows that the intersection

$$(W-F)\cap C=(W\cap C)\cap (C-F)=W\cap (C-F)$$

is a non-trivial open subset of C (which is outside V) since C is irreducible. At the same time,

$$X - F = V' \cup (C - F),$$

so that

$$W - F = V' \cup (W \cap (C - F))$$

and
$$V \cap (W - F) = V'$$
.

It follows that, in the diagram

$$\pi_{q+1}X(V\cap W) \xrightarrow{\partial} \pi_q X(V\cup W)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\pi_{q+1}X(V\cap (W-F)) \xrightarrow{\partial} \pi_q X(V\cup (W-F))$$

the element $z \in \pi_{q+1}X(V \cap W)$ maps to zero in $\pi_{q+1}X(V \cap (W-F))$, so that $\alpha \in \pi_qX(U)$ restricts to 0 in $\pi_qX(V \cup (W-F))$. This contradicts the maximality of V, and it follows that there are no bad closed irreducible subsets in X.

We have therefore shown that there is a weak equivalence $X(U) \to *$ if $X(U) \neq \emptyset$. I claim that $X(S) \neq \emptyset$, and it follows that all X(U) are not empty.

Suppose that $X(S) = \emptyset$. Pick a maximal nonempty open subset $U \subset S$ such that $X(U) \neq \emptyset$. Take $x \in S - U$ and pick an open subset $V \subset S$ with $y \in V$ and $X(V) \neq \emptyset$. The open subsets Uand V exist because all stalks of X are non-empty. Then there is a homotopy cartesian diagram

$$\begin{array}{ccc} X(U \cup V) \longrightarrow X(U) \\ \downarrow & \downarrow \\ X(V) \longrightarrow X(U \cap V) \end{array}$$

in which X(U), X(V) and $X(U \cup V)$ are non-

empty contractible spaces. Then a homotopy lifting argument shows that $X(U \cup V)$ is non-empty. This contradicts the maximality of U if $U \neq S$. \square

The following result is the Brown-Gersten descent theorem:

Theorem 25.2. Suppose that X is a simplicial presheaf on $Zar|_S$ such that

- 1) the map $X(\emptyset) \to *$ is a weak equivalence, and
- 2) the diagram

$$\begin{array}{ccc} X(U \cup V) {\longrightarrow} X(U) \\ \downarrow & \downarrow \\ X(V) {\longrightarrow} X(U \cap V) \end{array}$$

associated to each pair of open subsets U, V of S is homotopy cartesian.

Let $j: X \to Z$ be an injective fibrant model. Then j is a sectionwise equivalence.

Proof. It suffices to show that the induced map $j: X(S) \to Y(S)$ is a weak equivalence. The map $X(U) \to Y(U)$ is global sections of the restriction of $j|_U$ to the Zariski site $Zar|_U$, for all open subschemes $U \subset S$, and the restricted map $j|_U$ is an injective fibrant model by Lemma 16.3.

Find a factorization

such that i is a sectionwise equivalence and p is a sectionwise Kan fibration. Then the simplicial presheaf Y satisfies conditions 1) and 2) of the statement of the Theorem, and the local weak equivalence $p: Y \to Z$ is an injective fibrant model for Y.

Suppose that $x \in Z(S)$ is a vertex of Z(S), and form the pullback diagram

$$F_x \longrightarrow Y \\ \downarrow \qquad \downarrow p \\ * \longrightarrow Z$$

in simplicial presheaves. Then the simplicial presheaf F_x satisfies the conditions of Theorem 25.1, and is therefore sectionwise contractible.

In particular, the map $F_x(S) \to *$ is a weak equivalence, so that $F_x(S)$ is non-empty, and the vertex x lifts to Y(S). This is true for all vertices of Z(S), so the induced map $\pi_0 Y(S) \to \pi_0 Z(S)$ is surjective.

All fibres $F_{p(y)}$ associated to all vertices $y \in Y(S)$ are sectionwise contractible. It follows that the map $\pi_0 Y(S) \to \pi_0 Z(S)$ is injective, and that all homomorphisms

$$\pi_n(Y(S), y) \to \pi_n(Z(S), p(y))$$

are isomorphisms.

2) The Nisnevich descent theorem

Following [4], we use the notation $(Sm|_S)_{Nis}$ to denote the category of smooth S-schemes with the Nisnevich topology.

An elementary distinguished square is a pullback diagram in $(Sm|_S)_{Nis}$

$$\phi^{-1}(U) \longrightarrow V \qquad (25.1)$$

$$\downarrow \qquad \qquad \downarrow \phi$$

$$U \xrightarrow{j} T$$

such that j is an open immersion, ϕ is étale, and such that the induced morphism

$$\phi^{-1}(T-U) \to T-U$$

of closed subschemes (with reduced structure) is an isomorphism. Remark 25.3. An elementary distinguished square is completely specified by a diagram

$$Z \times_T V \longrightarrow V$$

$$\cong \downarrow \phi_* \qquad \qquad \downarrow \phi$$

$$Z \longrightarrow T$$

such that ϕ is étale and i is a closed immersion. In effect, if Z is reduced, then $Z \times_T V$ is reduced since ϕ_* is étale [3], and is therefore the reduced closed subscheme of V on the closed subset $\phi^{-1}(Z)$.

Example 25.4. If U and V are open subschemes of a smooth S-scheme T, then the diagram of inclusions

$$\begin{array}{c} U \cap V \longrightarrow V \\ \downarrow & \downarrow \\ U \longrightarrow U \cup V \end{array}$$

is an elementary distinguished square in $Sm|_{S}$.

Example 25.5. Suppose that $x \in S$ is a closed point of S, and suppose that $\phi: U \to S$ is an étale morphism such that there is a section

$$\begin{array}{c}
U \\
\downarrow^{\phi} \\
\operatorname{Sp}(k(x)) \xrightarrow{x} S
\end{array}$$

over the residue field k(x) of x. If $\phi(z) = x$, then z and x have the same (maximal) dimension [3,

I.3.16], so that z is closed in U. The set-theoretic fibre $\phi^{-1}(x)$ is therefore a finite set of closed points, of the form

$$\phi^{-1}(x) = \{y, y_1, \dots, y_k\}.$$

Let V be the open subset $U - \{y_1, \ldots, y_k\}$ of U, and let $\phi|_V$ be the restiction of ϕ to V. Then there is a diagram

$$Sp(k(x)) \xrightarrow{y} V \downarrow^{\phi|_{V}}$$

Then $\phi|_V$ induces an isomorphism

$$\operatorname{Sp}(k(y)) \cong \operatorname{Sp}(k(x)),$$

and $\operatorname{Sp}(k(y))$ is the reduced closed fibre of $\phi|_V$ over the closed subscheme $\operatorname{Sp}(k(x))$ of S. Let U be the open subscheme $S - \{x\}$ of S, with inclusion $j: U \subset S$. Then the pullback diagram

$$\begin{array}{ccc}
\phi|_V^{-1}(U) \longrightarrow V & & \downarrow \phi_V \\
\downarrow & & \downarrow \phi_V \\
U \longrightarrow & S
\end{array}$$

is an elementary distinguished square.

Every elementary distinguished square defines a Nisnevich cover $\{j: U \subset T, \phi: V \to T\}$ of

X, because every map $\mathrm{Sp}(k) \to X$ with k a field factors through one of the two maps.

Following [4], say that a simplicial presheaf X has the BG-property if

- 1) the space $X(\emptyset)$ is contractible, and
- 2) X takes elementary distinguished squares (25.1) to homotopy cartesian diagrams

$$X(T) \xrightarrow{j^*} X(V) \qquad (25.2)$$

$$\downarrow^{\phi^*} \qquad \downarrow$$

$$X(U) \longrightarrow X(\phi^{-1}(U))$$

If X has the BG-property and U, V are open subschemes of a smooth S-scheme T, then the diagram

$$\begin{array}{ccc} X(U \cup V) \longrightarrow X(V) \\ \downarrow & \downarrow \\ X(U) \longrightarrow X(U \cap V) \end{array}$$

is homotopy cartesian, so that the restriction of X to the Zariski site $Zar|_T$ satisfies the conditions of Theorem 25.2. It follows in particular that the canonical map

$$X(U \sqcup V) \to X(U) \times X(V)$$

is a weak equivalence for all smooth S-schemes U, V, which means precisely that the simplicial presheaf X is additive — see [1].

Lemma 25.6. Suppose that Z is an injective fibrant simplicial presheaf on the smooth Nisnevich site $(Sm|_S)_{Nis}$. Then Z has the BG-property.

Proof. Every open immersion $j:U\to T$ is a cofibration of simplicial presheaves, and all induced inclusions

$$(U \times \Delta^n) \cup (T \times \Lambda^n_k) \subset T \times \Delta^n$$

are trivial cofibrations. It follows that the map $j^*: Z(T) \to Z(U)$ is a Kan fibration.

The square (25.1) is a pushout in the category of sheaves (and simplicial sheaves) for the Nisnevich topology on the smooth site $Sm|_{S}$. Thus, if Z' is an injective fibrant simplicial sheaf, then the diagram of simplicial set maps

$$Z'(T) \xrightarrow{j^*} Z'(V)$$

$$\downarrow^{\phi^*} \qquad \downarrow$$

$$Z'(U) \longrightarrow Z'(\phi^{-1}(U))$$

is a pullback in which both vertical maps are Kan fibrations, and is therefore homotopy cartesian.

If Z is an injective fibrant simplicial presheaf, there is a local weak equivalence $\eta:Z\to Z'$ such that Z' is an injective fibrant simplicial sheaf. The map η is a sectionwise weak equivalence, and the property of taking elementary distinguished squares to homotopy cartesian diagrams is an invariant of sectionwise equivalence.

The map η induces a weak equivalence

$$Z(\emptyset) \to Z'(\emptyset) \cong *$$

of simplicial sets.

It makes perfect sense to talk about simplicial presheaves X on the small Nisnevich site $(et|_S)_{Nis}$ which have the BG-property: one restricts the discussion to S-schemes $T \to S$ which are étale over S. Then a simplicial presheaf Y on the smooth site $(Sm|_S)_{Nis}$ has the BG-property if and only if the restrictions to the small sites $(et|_T)_{Nis}$ have the BG-property, for all smooth S-schemes $T \to S$.

Now here is the analogue of Theorem 25.1 for the Nisnevich topology:

Theorem 25.7. Suppose that X is a simplicial presheaf on the small Nisnevich site $(et|_S)_{Nis}$ such that

- 1) X has the BG-property, and
- 2) the map $X \to *$ is a local weak equivalence for the Nisnevich topology.

Then X is sectionwise contractible in the sense that the map $X(U) \to *$ is a weak equivalence of simplicial sets for each étale S-scheme $U \to S$.

Proof. It suffices to show that the global sections map $X(S) \to *$ is a weak equivalence. The restriction of X to the site $(et|_T)$ for each étale S-scheme $T \to S$ also satisfies conditions 1) and 2), and the map $Z(T) \to *$ would be a weak equivalence for each T.

Write \mathcal{O}_x for the local ring $\mathcal{O}_{x,S}$ of $x \in S$, and let $x : \operatorname{Sp}(\mathcal{O}_x) \to S$ be the canonical map.

Suppose that $\phi: T \to S$ is an S-scheme, and write

$$T_x = \operatorname{Sp}(\mathcal{O}_x) \times_S T.$$

Let x^p be the left adjoint of the direct image functor

$$x_* : \operatorname{Pre}(et|_{\operatorname{Sp}(\mathcal{O}_x)})_{Nis} \to \operatorname{Pre}(et|_S)_{Nis},$$

where

$$x_*(Y)(T) = Y(T_x).$$

The global sections simplicial set $x^pX(\mathcal{O}_x)$ is the Zariski stalk of X at the point x. The functor x^p preserves local weak equivalences for the Nisnevich topology, since it is defined by a site morphism.

It is a consequence of Lemma 25.8 below that x^pX satisfies the BG-property on $Sm|_{Sp(\mathcal{O}_x)}$.

Suppose that \mathcal{O}_x has dimension 0, so that \mathcal{O}_x is an Artinian local ring. It well known that the functor

$$U \mapsto U \times_{\operatorname{Sp}(\mathcal{O}_x)} \operatorname{Sp}(k(x))$$

defines an equivalence of categories

$$et|_{\operatorname{Sp}(\mathcal{O}_x)} \to et|_{\operatorname{Sp}(k)}.$$

Every diagram

$$Sp(k(x)) \longrightarrow Sp(\mathcal{O}_x)$$

with ϕ étale therefore determines a section σ : $\operatorname{Sp}(\mathcal{O}_x) \to U$ of the map ϕ . It follows that the global sections functor takes sheaf epimorphisms on the Nisnevich site $(Sm|_{\operatorname{Sp}(\mathcal{O}_x)})_{Nis}$ to surjections. In effect, if $p: F \to F'$ is a sheaf epi and $\alpha \in F'(\mathcal{O}_x)$ there is an étale map $\phi: U \to \operatorname{Sp}(\mathcal{O}_x)$ having a section σ such that $\phi^*(\alpha)$ lifts to F(U), and

then $\alpha = \sigma^* \phi^*(\alpha)$ lifts to $F(\mathcal{O}_x)$. It follows that the global sections functor $X \mapsto X(\mathcal{O}_x)$ takes local weak equivalences to weak equivalences of simplicial sets.

Thus, if $x \in S$ has dimension 0, and the simplicial presheaf X satisfies the conditions of the Theorem, then $X(\mathcal{O}_x)$ is contractible. This is true for all schemes S which are Noetherian and of finite dimension.

We show by induction on the dimension of $x \in S$ that $X(\mathcal{O}_x)$ is contractible. Take an element $x \in S$ and assume that $X(\mathcal{O}_y)$ is contractible for all points y (in "all" schemes S) of smaller dimension.

Write x for the closed point of $\operatorname{Sp}(\mathcal{O}_x)$, and suppose given an element $\alpha \in \pi_k x^p X(\mathcal{O}_x)$. Then α is 0 locally for the Nisnevich topology, so that, following the prescription of Example 25.5, there is an étale morphism $\phi: V \to \operatorname{Sp}(\mathcal{O}_x)$ with a diagram

$$V \times_{\operatorname{Sp}(O_x)} \operatorname{Sp}(k(x)) \longrightarrow V$$

$$\cong \downarrow \qquad \qquad \downarrow^{\phi}$$

$$\operatorname{Sp}(k(x)) \longrightarrow \operatorname{Sp}(\mathcal{O}_x)$$

such that $\phi^*(\alpha) = 0$ in $\pi_k x^p X(V)$. Write $U = \operatorname{Sp}(\mathcal{O}_x) - \{x\}$. Then all points of U and all points

of $\phi^{-1}(U)$ have dimension smaller than that of x, and x^pX satisfies the assumption of the Theorem. It follows from Theorem 25.1 that the spaces $x^pX(U)$ and $x^pX(\phi^{-1}(U))$ are contractible. Then x^pX satisfies the BG-property, and it follows that the map

$$\phi^*: x^p X(\mathcal{O}_x) \to x^p X(V)$$

is a weak equivalence. But then $\alpha = 0$ in $\pi_k x^p X(\mathcal{O}_x)$.

All homotopy groups and the set of path components of $x^pX(\mathcal{O}_x)$ are therefore trivial if the space $x^pX(\mathcal{O}_x)$ is non-empty.

For this, we can find a diagram

$$Sp(k(x)) \xrightarrow{x} S$$

with ϕ étale and such that $X(V) \neq \emptyset$, since all Nisnevich stalks of X are non-empty. Pull back the map ϕ over $\operatorname{Sp}(\mathcal{O}_x)$ to create a picture

$$\begin{array}{c}
V_x \\
\downarrow \phi_x
\end{array}$$

$$\operatorname{Sp}(k(x)) \xrightarrow{x} \operatorname{Sp}(\mathcal{O}_x)$$

with $x^p X(V_x) \neq \emptyset$. Now cut out all closed points of V_x in the fibre over x except for y to construct a picture

$$V' \otimes_{\mathcal{O}_x} k(x) \longrightarrow V'$$

$$\cong \downarrow \qquad \qquad \downarrow \phi'$$

$$\operatorname{Sp}(k(x)) \xrightarrow{x} \operatorname{Sp}(\mathcal{O}_x)$$

just as before, but with $x^pX(V') \neq \emptyset$. The induced map

$$\phi'^*: x^p X(\mathcal{O}_x) \to x^p X(V')$$

is a weak equivalence once again, so that $x^pX(\mathcal{O}_x)$ is non-empty.

Lemma 25.8. Suppose that the simplicial presheaf X on $(Sm|_S)_{Nis}$ has the BG-property, and let \mathcal{O}_x be the local ring of $x \in S$ with canonical map $x : \operatorname{Sp}(\mathcal{O}_x) \to S$. Then the inverse image x^pX on $(Sm|_{\operatorname{Sp}(\mathcal{O}_x)})_{Nis}$ has the BG-property.

Proof. Suppose that $f: T \to \operatorname{Sp}(\mathcal{O}_x)$ is a \mathcal{O}_x -scheme which is locally of finite type. Then there is an open affine neighbourhood U of x in S and a U-scheme $f': T' \to U$ which is locally of finite type, with an isomorphism of \mathcal{O}_x -schemes

$$T \cong \operatorname{Sp}(\mathcal{O}_x) \times_U T'$$

If f is an open immersion, respectively closed immersion, or étale, then the "thickening" f' can be chosen to have the same property. In particular, if $\phi: V \to \operatorname{Sp}(\mathcal{O}_x)$ is étale and has étale thickening $\phi': V' \to U$ over an open neighbourhood U, then there is an isomorphism

$$x^p X(V) = \varinjlim_{x \in W \subset U} X(W \times_U V'),$$

where W varies over the open neighbourhoods of x which are contained in U.

It follows that if $j: Z \to V$ is a closed immersion in an étale \mathcal{O}_x -scheme $\phi: V \to \operatorname{Sp}(\mathcal{O}_x)$, and $\psi: \tilde{V} \to V$ is an étale morphism with pullback diagram

$$Z \times_V \tilde{V} \longrightarrow \tilde{V} \\ \cong \downarrow \qquad \qquad \downarrow \psi \\ Z \longrightarrow V$$

then there is a thickened diagram

$$Z' \times_{V'} \tilde{V}' \longrightarrow \tilde{V}'$$

$$\cong \downarrow \qquad \qquad \downarrow \psi'$$

$$Z' \longrightarrow J' \qquad \qquad \downarrow \psi'$$

$$U$$

over some open neighbourhood U of x. The corresponding elementary distinguished square

$$\psi^{-1}(V-Z) \longrightarrow \tilde{V}$$

$$\downarrow \qquad \qquad \downarrow \psi$$

$$V-Z \xrightarrow{j} V$$

therefore has a thickening

$$\psi'^{-1}(V'-Z') \longrightarrow \tilde{V}'$$

$$\downarrow \qquad \qquad \downarrow \psi'$$

$$V'-Z' \xrightarrow{j'} V'$$

over U, and the diagram

$$x^{p}X(V) \longrightarrow x^{p}X(V-Z)$$

$$\downarrow \qquad \qquad \downarrow$$

$$x^{p}X(\tilde{V}) \longrightarrow x^{p}X(\psi^{-1}(V-Z))$$

$$(25.3)$$

is a filtered colimit of homotopy cartesian squares

$$X(W \times_U V') \longrightarrow X((W \times_U V') - (W \times_U Z')$$

$$\downarrow \qquad \qquad \downarrow$$

$$X(W \times_U \tilde{V}) \longrightarrow X(\psi^{-1}((W \times_U V') - (W \times_U Z'))$$

The diagram (25.3) is therefore homotopy cartesian.

Here is the Morel-Voevodsky statement of the Nisnevich descent theorem:

Theorem 25.9. Suppose that $f: X \to Y$ is a local weak equivalence of simplicial presheaves on $(Sm|_S)_{Nis}$, and suppose that both X and Y satisfy the BG-property. Then all maps $X(T) \to Y(T)$ in sections are weak equivalences of simplicial sets.

Proof. Suppose that $x \in Y(S)$ is a global section, and let F_x be the sectionwise homotopy fibre of the map f. Then the restriction of F_x to the small site $(et|_S)_{Nis}$ satisfies the hypotheses of Theorem 25.7, and so the map $F_x(T) \to *$ is a weak equivalence for all étale S-schemes T. It follows that the map

$$f: X(S) \to Y(S)$$

in global sections is a weak equivalence.

All restrictions

$$j|_T:X|_T\to Y|_T$$

to $(Sm|_T)_{Nis}$ for smooth S-schemes T satisfy the same assumptions, so that all maps $X(T) \to Y(T)$ are weak equivalences.

The following result is the analogue, for the Nisnevich topology, of Theorem 25.2. The statement is equivalent to Theorem 25.9.

Theorem 25.10. Suppose that X is a simplicial presheaf on $(Sm|_S)_{Nis}$ which satisfies the BG-property, and let $j: X \to Z$ be an injective fibrant model for the Nisnevich topology. Then all maps $X(T) \to Z(T)$ in sections are weak equivalences of simplicial sets.

3) Motivic descent

In all that follows, given simplicial presheaves X, Y, the *internal function complex* $\mathbf{Hom}(X, Y)$ is the simplicial presheaf with

$$\mathbf{Hom}(X,Y)(U) = \mathbf{hom}(X|_{U},Y|_{U})$$

for U in the underlying site C. The natural isomorphism

$$hom(X \times A, Y) \cong hom(A, \mathbf{Hom}(X, Y))$$

is the exponential law for simplicial presheaves A, X and Y. Given an injective fibration $p: X \to Y$ and a cofibration $i: A \to B$, then an adjointness argument implies that the induced map

$$\mathbf{Hom}(B,X) \xrightarrow{(i^*,p_*)} \mathbf{Hom}(A,X) \times_{\mathbf{Hom}(A,Y)} \mathbf{Hom}(B,Y)$$

is an injective fibration which is trivial if either i or p is trivial.

Recall from the examples in Section 22 (Lecture 10) that the motivic model structure on the simplicial presheaf category

$$s \operatorname{Pre}(Sm|_S)_{Nis}$$

can be constructed by specializing Theorem 22.2 to the case where S is the generating set of trivial cofibrations for the injective model structure on

$$s \operatorname{Pre}(Sm|_S)_{Nis}$$

and the interval I is the affine line \mathbb{A}^1 .

In particular, injective (equivalently fibrant) objects for the theory are defined by having the right lifting property with respect to the maps

$$(C \times \square^n) \cup (D \times \sqcap_{(i,\epsilon)}^n) \subset D \times \square^n$$
 (25.4)

where $C \to D$ is a member of the set of generating cofibrations for $s \operatorname{Pre}(\mathcal{C})$, and the maps

$$(A \times \square^n) \cup (B \times \partial \square^n) \subset B \times \square^n \qquad (25.5)$$

with $A \to B$ in the generating set S of trivial cofibrations.

Recall the notation: $\square^n = I^{\times n}$, (which in the present case is the affine plane \mathbb{A}^n), and there are face inclusions

$$d^{i,\epsilon}: \square^{n-1} \to \square^n, \ 1 \le i \le n, \ \epsilon = 0, 1,$$

with

$$d^{i,\epsilon}(x_1,\ldots,x_{n-1})=(x_1,\ldots,x_{i-1},\epsilon,x_i,\ldots,x_{n-1}).$$

Then there are subobjects $\partial \square^n$ and $\square_{i,\epsilon}^n$ of \square^n which are defined, respectively, by

$$\partial \square^n = \bigcup_{i,\epsilon} d^{i,\epsilon}(\square^{n-1}),$$

and

$$\sqcap_{i,\epsilon}^n = \cup_{(j,\gamma) \neq (i,\epsilon)} \ d^{j,\gamma}(\square^{n-1}).$$

Observe that

$$\square^m \times \square^n = \square^{m+n},$$

and that there are induced relations

$$(\partial \Box^{m} \times \Box^{n}) \cup (\Box^{m} \times \partial \Box^{n}) = \partial \Box^{m+n}$$

$$(\Box^{m}_{i,\epsilon} \times \Box^{n}) \cup (\Box^{m} \times \partial \Box^{n}) = \Box^{m+n}_{i,\epsilon}$$

$$(\partial \Box^{m} \times \Box^{n}) \cup (\Box^{m} \times \Box^{n}_{j,\epsilon}) = \Box^{m+n}_{m+j,\epsilon}$$

$$(25.6)$$

Lemma 25.11. A simplicial presheaf X is injective for the motivic model structure if and only if X is an injective fibrant simplicial presheaf (for the Nisnevich topology) and the injective fibration

$$0^*: \mathbf{Hom}(\mathbb{A}^1, X) \to \mathbf{Hom}(*, X)$$

is trivial.

Proof. If X is injective, then X has the right lifting property with respect to all generating trivial cofibrations ((25.5), n = 0), and is therefore injective fibrant.

The object X also has the right lifting property with respect to the maps

$$(C \times \mathbb{A}^1) \cup (D \times *) \to D \times \mathbb{A}^1$$

defined by the set of generating cofibrations $C \rightarrow D$ ((25.4), n = 1). It follows that the map

$$0^*: \mathbf{Hom}(\mathbb{A}^1, X) \to \mathbf{Hom}(*, X)$$

has the right lifting property with respect to all $C \to D$, and is therefore a trivial injective fibration.

For the converse, the map 0* has the right lifting property with respect to all cofibrations

$$(C \times \square^k) \cup (D \times \partial \square^k) \subset D \times \square^k,$$

and so the relations (25.6) can be used to show that X has the right lifting property with respect to all inclusions (25.4). The simplicial presheaf Xalso has the right lifting property with respect to all trivial cofibrations

$$(A \times \square^n) \cup (B \times \partial \square^n) \subset B \times \square^n$$

which are induced by trivial cofibrations $A \to B$. It follows that X is an injective object. \square

Remark 25.12. Suppose that S consists of all generating trivial cofibrations $A \to B$ for the injective structure plus the map $0: * \to \mathbb{A}^1$ and the interval I is Δ^1 .

If Z is injective (ie. fibrant) for this structure, then Z is injective fibrant, and $* \to \mathbb{A}^1$ is a weak equivalence, so that all maps

$$(C \times \mathbb{A}^1) \cup (D \times *) \subset D \times \mathbb{A}^1$$

induced by cofibrations $C \to D$ are weak equivalences. It follows that the map

$$0^*: \mathbf{Hom}(\mathbb{A}^1, Z) \to \mathbf{Hom}(*, Z)$$

is a trivial injective fibration.

Conversely, if Z is injective fibrant and 0^* is trivial, then Z has the right lifting property with respect to all (local) trivial cofibrations (25.5), and the map 0^* has the right lifting property with respect to all cofibrations

$$(C\times\square^k)\cup(D\times\partial\square^k)\subset D\times\square^k.$$

It follows that Z has the right lifting property with respect to the cofibrations (25.5) (use the relations (25.6)).

Suppose that the simplicial presheaf X is injective for the Nisnevich topology. The injective fibration

$$0^*: \mathbf{Hom}(\mathbb{A}^1, X) \to \mathbf{Hom}(*, X)$$

is given in sections corresponding to smooth Sschemes $T \to S$ by the map

$$X(\mathbb{A}^1 \times T) \to X(T)$$

associated to the 0-sections map $T \to \mathbb{A}^1 \times T$. The injective fibration 0^* is a local weak equivalence if and only if it is a sectionwise weak equivalence. The latter is equivalent to the assertion that all projections $\mathbb{A}^1 \times T \to T$ induce weak equivalences

$$X(T) \to X(\mathbb{A}^1 \times T).$$
 (25.7)

Remark 25.13. In general, if the map (25.7) is a weak equivalence for all smooth S-schemes T, we say that X has or satisfies the homotopy property. The term comes from algebraic K-theory: it is a central result of the subject (and a theorem of Quillen [5]) that the algebraic K-theory functor satisfies the homotopy property for all regular Noetherian schemes T. Explicitly, this means that the projection $\mathbb{A}^1 \times T \to T$ induces a weak equivalence

$$K(T) \xrightarrow{\simeq} K(\mathbb{A}^1 \times T)$$

of spaces or spectra for all such T.

The homotopy property is also a central concept for other geometric cohomology theories: the assertion that étale cohomology with torsion coefficients satisfies the homotopy property is a consequence of the smooth base change theorem [3].

The following "motivic descent theorem" is a corollary of the Nisnevich descent theorem (Theorem 25.10):

Theorem 25.14. Suppose that X is a simplicial presheaf on $(Sm|_S)_{Nis}$ such that

- 1) X satisfies the BG-property, and
- 2) every projection $\mathbb{A}^1 \times T \to T$ induces a weak equivalence

$$X(T) \to X(\mathbb{A}^1 \times T).$$

Let $j: X \to Z$ be a motivic fibrant model. Then j is a sectionwise weak equivalence. Conversely, if a motivic fibrant model $j: X \to Z$ is a sectionwise weak equivalence, then X satisfies conditions 1) and 2).

Proof. Suppose that X satisfies conditions 1) and 2), and let $j: X \to Z$ be an injective fibrant model

for the Nisnevich topology. Then j is a sectionwise equivalence by Theorem 25.10. All 0-section maps $T \to \mathbb{A}^1 \times T$ (these are sections of projections) induce weak equivalences

$$Z(\mathbb{A}^1 \times T) \to Z(T).$$

It follows that the injective fibration

$$0^*: \mathbf{Hom}(\mathbb{A}^1, Z) \to \mathbf{Hom}(*, Z)$$

is trivial, so that Z is motivic fibrant.

The converse is a consequence of Lemma 25.11. \Box

References

- [1] J. F. Jardine. Generalized Étale Cohomology Theories, volume 146 of Progress in Mathematics. Birkhäuser Verlag, Basel, 1997.
- [2] J.F. Jardine. *Local Homotopy Theory*. Springer Monographs in Mathematics. Springer-Verlag, New York, 2015.
- [3] James S. Milne. Étale Cohomology, volume 33 of Princeton Mathematical Series. Princeton University Press, Princeton, N.J., 1980.
- [4] Fabien Morel and Vladimir Voevodsky. A¹-homotopy theory of schemes. *Inst. Hautes Études Sci. Publ. Math.*, 90:45–143 (2001), 1999.
- [5] Daniel Quillen. Higher algebraic K-theory. I. In Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pages 85–147. Lecture Notes in Math., Vol. 341. Springer, Berlin, 1973.