Lecture 13

25 Descent theorems

1) The Brown-Gersten descent theorem

Suppose that S is a Noetherian scheme of finite
dimension. Let Zar|g be the Zariski site of S.

Theorem 25.1. Suppose that X s a simplicial
presheaf on Zar|g such that

1) the space X (0) is contractible,

2) all stalks of X are contractible in the sense
that the map X, — * is a weak equivalences
for each x € S, and

3) the diagram
X(UUV)——X(U)

l |

X(V) Xunv)

assoctated to each pair of open subsets U,V
of S is homotopy cartesian.

Then the map X (U) — * is a weak equivalence
for each open subset U of S.



Proof. We show that 7, X (U) is trivial for each
g > 0 and each choice of base point z € X (U)
under the assumption that X (U) # () and U # ().

Suppose that o € m, X (U). Pick a maximal open
subset V' C U such that a — 0in 7, X (V). There
are such subsets since m,X, = 0 for all z € U, and
S is Noetherian.

Say that a closed irreducible subset C' C S is bad
if there is such an «, U, V such that CNU # 0 and
C C S—V. IfsomeV # U there are bad subsets
(" this would be a closure in S of an irreducible
component of U — V.

Pick a maximal bad subset C', with associated data
a € X (U), maximal open V' C U such that
a — 0 in 7, X (V), and such that C' intersects U
but misses V.

Take y € C'NU. There is an open subset W C U

such that y € W and a — 0 in 7, X(W). A
long exact sequence argument says that there is
an element z € m,11 X (V NW) such that

8(z) = OC’VUW € 7TqX(V U W)

Pick a maximal open subset V! C V N W such
that z +— 0 in 7,1 X (V7).
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Then C' is a component of S — V', In effect, C
is contained in some component D of S — V', If
DNV =0theny € CNU C DNU so that
D is bad (for o) and C' = D by the maximality
of C. If DNV is non-empty then DN U # () so
that DN (UNV) £ 0 since D is irreducible, while
DNV'=(and D is bad (for z), and C' = D by
maximality of C.

Suppose that C,C},...,C} is a list of the irre-
ducible components of X — V' and let F' be the
closed subset of X — V' defined by the union

F=CU.---UC.

Then C' — F'is a non-trivial open subset of C' as
is W N C, and it follows that the intersection

(W—F)NC = (WNC)N(C—F) = Wn(C—F)

is a non-trivial open subset of C' (which is outside
V') since C' is irreducible. At the same time,

X-F=V'U((C-F),
so that
W—-F=V'uWn(C-F))
and V(W —-F)=V",



It follows that, in the diagram
Tt X(VAW)—2 1, X(VUW)

l |

T X (VN (W — F))TWqX(VU (W — F))

the element z € 7,1 X(V N W) maps to zero in
T X (VN (W = F)), so that a € 7, X(U) re-
stricts to 0 in 7, X (VU(W —F')). This contradicts
the maximality of V', and it follows that there are
no bad closed irreducible subsets in X.

We have therefore shown that there is a weak equiv-
alence X(U) — * if X(U) # (. 1 claim that
X(S) # 0, and it follows that all X(U) are not

empty.

Suppose that X (S) = (. Pick a maximal non-
empty open subset U C S such that X (U) # 0.
Take x € S — U and pick an open subset V' C S
with y € V and X (V') = (). The open subsets U
and V' exist because all stalks of X are non-empty:.
Then there is a homotopy cartesian diagram

X({UUV)——X(U)

| |

X(V)——X(UnV)
in which X(U), X(V) and X(U U V) are non-
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empty contractible spaces. Then a homotopy lift-
ing argument shows that X (U U V') is non-empty.
This contradicts the maximality of U if U # S. [

The following result is the Brown-Gersten descent
theorem:

Theorem 25.2. Suppose that X is a stmplicial
presheaf on Zar|g such that

1) the map X(0) — * is a weak equivalence,
and

2) the diagram
X(UUV)——X(U)

| |

X(V) X{UnNV)
assoctated to each pair of open subsets U,V
of S is homotopy cartesian.

Let 5 : X — Z be an wnjective fibrant model.
Then j is a sectionwise equivalence.

Proof. 1t suffices to show that the induced map
Jj o X(S) — Y(S) is a weak equivalence. The
map X (U) — Y (U) is global sections of the re-
striction of j|y to the Zariski site Zar|y, for all
open subschemes U C S, and the restricted map
jlu is an injective fibrant model by Lemma 16.3.
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Find a factorization

XY

N

Z
such that ¢ is a sectionwise equivalence and p is
a sectionwise Kan fibration. Then the simplicial
presheaf Y satisfies conditions 1) and 2) of the
statement of the Theorem, and the local weak equiv-
alence p : Y — Z is an injective fibrant model for

Y.

Suppose that © € Z(9) is a vertex of Z(S), and
form the pullback diagram

F,—Y

| b

in simplicial presheaves. Then the simplicial presheaf
F,. satisfies the conditions of Theorem 25.1, and is
therefore sectionwise contractible.

In particular, the map F,(S) — * is a weak equiv-
alence, so that F,(.9) is non-empty, and the vertex
x lifts to Y(S). This is true for all vertices of
Z(9), so the induced map mY (S) — mZ(S) is
surjective.



All fibres F,,)
are sectionwise contractible. It follows that the
map mpY (S) — mZ(.S) is injective, and that all
homomorphisms

T (Y'(S),y) = m(Z(S),p(y))

are isomorphisms. ]

associated to all vertices y € Y'(9)

2) The Nisnevich descent theorem

Following [4], we use the notation (Sm|g)nis to
denote the category of smooth S-schemes with the
Nisnevich topology.

An elementary distinguished square is a pullback

diagram in (Sm|s)nis

o~ HU)—V (25.1)
ls

l

J

such that j is an open immersion, ¢ is ¢tale, and
such that the induced morphism

p (T —-U)—=T-U

of closed subschemes (with reduced structure) is
an isomorphism.



Remark 25.3. An elementary distinguished square
is completely specified by a diagram

Z XT V—V
=5, lo
A T

such that ¢ is étale and ¢ is a closed immersion. In
effect, if Z is reduced, then Z X1V is reduced since
¢ is étale [3], and is therefore the reduced closed
subscheme of V' on the closed subset ¢~ (7).

Example 25.4. If U and V' are open subschemes
of a smooth S-scheme 7', then the diagram of in-
clusions

Ny —-VvV

| |

U Uuuv

is an elementary distinguished square in Sm)|g.

Example 25.5. Suppose that = € S is a closed
point of S, and suppose that ¢ : U — S is an étale
morphism such that there is a section

U

-
Sp(k(2)) =~

over the residue field k(x) of z. If ¢(z) = x, then
(

z and z have the same (maximal) dimension [3,

T
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[.3.16], so that z is closed in U. The set-theoretic
fibre ¢~ !(x) is therefore a finite set of closed points,
of the form

o () ={y,y1, ...y}

Let V' be the open subset U — {y1,...,yr} of U,
and let ¢|y be the restiction of ¢ to V. Then there
is a diagram

V

27 o

Sp(k(x)) =5
Then ¢|y induces an isomorphism

Sp(k(y)) = Sp(k(x)),

and Sp(k(y)) is the reduced closed fibre of ¢|y over
the closed subscheme Sp(k(x)) of S. Let U be
the open subscheme S — {x} of S, with inclusion
g U C S. Then the pullback diagram

oy (U)—V
l lcbv
U——S5

is an elementary distinguished square.

Every elementary distinguished square defines a
Nisnevich cover {j : U C T,¢ : V. — T} of
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X, because every map Sp(k) — X with k a field
factors through one of the two maps.

Following [4], say that a simplicial presheaf X has
the BG-property if

1) the space X () is contractible, and
2) X takes elementary distinguished squares (25.1)

to homotopy cartesian diagrams

-k

X(T)——=X(V) (25.2)

‘| |

X(U)—X(¢7(U))

If X has the BG-property and U, V' are open sub-
schemes of a smooth S-scheme T', then the dia-
gram

XOuUV)——=X(V)
X(U) XUnNV)
is homotopy cartesian, so that the restriction of X
to the Zariski site Zar|p satisfies the conditions

of Theorem 25.2. It follows in particular that the
canonical map

X(UUV) = X(U) x X(V)
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is a weak equivalence for all smooth S-schemes
U,V , which means precisely that the simplicial
presheaf X is additive — see [1].

Lemma 25.6. Suppose that Z 1is an injective
fibrant simplicial presheaf on the smooth Nis-

nevich site (Sm|g)nis. Then Z has the BG-
property.
Proof. Every open immersion j : U — T is a

cofibration of simplicial presheaves, and all induced
inclusions

(Ux AMYU(T xAp) CcT x A"
are trivial cofibrations. It follows that the map
3 Z(T) — Z(U) is a Kan fibration.
The square (25.1) is a pushout in the category of
sheaves (and simplicial sheaves) for the Nisnevich
topology on the smooth site Sm|g. Thus, if Z' is

an injective fibrant simplicial sheaf, then the dia-
gram of simplicial set maps

Z(T) "~ Z'(V)

‘| |

Z'(U)—Z'(¢1(U))

is a pullback in which both vertical maps are Kan
fibrations, and is therefore homotopy cartesian.
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If Z is an injective fibrant simplicial presheaf, there
is a local weak equivalence 1 : Z — Z' such that
7' is an injective fibrant simplicial sheaf. The map
n is a sectionwise weak equivalence, and the prop-
erty of taking elementary distinguished squares to
homotopy cartesian diagrams is an invariant of sec-
tionwise equivalence.

The map n induces a weak equivalence
Z(0) — Z'(0) = *
of simplicial sets. O

[t makes perfect sense to talk about simplicial pre-
sheaves X on the small Nisnevich site (et|g)nis
which have the BG-property: one restricts the dis-
cussion to S-schemes 1" — S which are étale over
S. Then a simplicial presheaf Y on the smooth
site (Sm|g)nis has the BG-property if and only if
the restrictions to the small sites (et|7)y;s have the
BG-property, for all smooth S-schemes T'— S.

Now here is the analogue of Theorem 25.1 for the
Nisnevich topology:

Theorem 25.7. Suppose that X is a stmplicial
presheaf on the small Nisnevich site (et|s)nis
such that
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1) X has the BG-property, and

2) the map X — * is a local weak equivalence
for the Nisnevich topology.

Then X is sectionwise contractible in the sense
that the map X (U) — * is a weak equivalence of
simplicial sets for each étale S-scheme U — S.

Proof. 1t suffices to show that the global sections
map X (S) — * is a weak equivalence. The restric-
tion of X to the site (et|r) for each étale S-scheme
T — S also satisfies conditions 1) and 2), and the
map Z(T) — = would be a weak equivalence for

cach T'.

Write O, for the local ring O, s of z € S, and let
x : Sp(O,) — S be the canonical map.

Suppose that ¢ : T" — S'is an S-scheme, and write
Tx = Sp(ox) X g T.

Let z” be the left adjoint of the direct image func-
tor

T, Pre(et|spo,)) vis — Pre(et|s)nis,

where
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The global sections simplicial set 27 X (O,) is the
Zariski stalk of X at the point x. The functor x?
preserves local weak equivalences for the Nisnevich
topology, since it is defined by a site morphism.

It is a consequence of Lemma 25.8 below that x? X
satisfies the BG-property on Sm/|gp0,)-

Suppose that O, has dimension 0, so that O, is an
Artinian local ring. It well known that the functor

U—U XSp(Oy) Sp(/ﬂ(ﬂ?))

defines an equivalence of categories

et|sp(o,) = etlspr).

Every diagram

U

]

Sp(k(z)) —=Sp(O,)

with ¢ étale therefore determines a section o
Sp(O,) — U of the map ¢. It follows that the
global sections functor takes sheaf epimorphisms
on the Nisnevich site (Sm|sy(o,))nis to surjections.
In effect, if p : F — F’ is a sheaf epi and o €
F'(O,) there is an étale map ¢ : U — Sp(O,.) hav-
ing a section o such that ¢*(a) lifts to F'(U), and
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then a = o*¢*(«) lifts to F(O,). It follows that
the global sections functor X +— X (0, ) takes local
weak equivalences to weak equivalences of simpli-
cial sets.

Thus, if z € S has dimension 0, and the simplicial
presheaf X satisfies the conditions of the Theo-
rem, then X (QO,) is contractible. This is true for
all schemes S which are Noetherian and of finite
dimension.

We show by induction on the dimension of x € S
that X (O,) is contractible. Take an element x €
S and assume that X(0,) is contractible for all
points y (in “all” schemes .S) of smaller dimension.

Write x for the closed point of Sp(O,), and sup-
pose given an element a € mpa? X (O,). Then « is
0 locally for the Nisnevich topology, so that, follow-
ing the prescription of Example 25.5, there is an
étale morphism ¢ : V' — Sp((’)x) with a diagram

Sp(k(z)) ——5——5Sp(Os)
such that ¢*(a) = 0 in mpa? X(V). Write U =
Sp(O,) —{x}. Then all points of U and all points
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of ¢~ }(U) have dimension smaller than that of
x, and zP X satisfies the assumption of the Theo-
rem. It follows from Theorem 25.1 that the spaces

2P X (U) and 2P X (¢~ 1(U)) are contractible. Then
2P X satisfies the BG-property, and it follows that
the map

¢* 2" X (O0,) — 2P X (V)

is a weak equivalence. But then a = 0 in mp2? X (O,).

All homotopy groups and the set of path compo-
nents of 2P X (0, ) are therefore trivial if the space
2P X (O,) is non-empty.

For this, we can find a diagram

V

.

Sp(k(z))—=S

with ¢ étale and such that X (V) # (), since all
Nisnevich stalks of X are non-empty. Pull back
the map ¢ over Sp(O,) to create a picture

Va

e

Sp(k(x)) —~Sp(Os)
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with 2P X (V) # 0. Now cut out all closed points
of V. in the fibre over x except for y to construct
a picture

V' ®0, k(z) v

T

Sp(k(x)) ——Sp(O.)

just as before, but with 22X (V') 2 0. The in-
duced map

¢ 2" X(0,) — 2’ X (V')

is a weak equivalence once again, so that 27 X (O,)
1s non-empty. []

Lemma 25.8. Suppose that the simplicial pre-
sheaf X on (Sm|s)nis has the BG-property, and
let O, be the local ring of x € S with canonical
map x : Sp(O,) — S. Then the inverse image
2’ X on (Smlspo,))Nis has the BG-property.

Proof. Suppose that f : T — Sp(O,) is a O,-
scheme which is locally of finite type. Then there
is an open affine neighbourhood U of x in S and
a U-scheme f’: T — U which is locally of finite
type, with an isomorphism of O,-schemes

= Sp(ox) XU T’
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If fis an open immersion, respectively closed im-
mersion, or ¢tale, then the “thickening” f can be
chosen to have the same property. In particular, if
¢V — Sp(O,) is étale and has étale thickening
@' : V' — U over an open neighbourhood U, then
there is an isomorphism
P X(V) = hg X(W xy V',
xeWcU

where W varies over the open neighbourhoods of
x which are contained in U.

It follows that if 5 : Z — V is a closed immer-
sion in an étale O,-scheme ¢ : V' — Sp(O,), and
Y 1V = V is an étale morphism with pullback
diagram

Z Xy ‘7%‘7
o b

Z V

then there is a thickened diagram

7' Xyt V’H‘N/l

L

7! . V!
j /
N

U
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over some open neighbourhood U of x. The cor-
responding elementary distinguished square

WV = Z)—V

ok

therefore has a thickening

¢/_1<V/ . Z/) 4){//

| v
Vi— gV

J

over U, and the diagram
2P X (V) P X(V — Z) (25.3)

l |

' X(V)—2? X~ (V = Z))
is a filtered colimit of homotopy cartesian squares

X(W XUV/) X((W XUV/>—<W XU Z/>

| |

XW xgV)—=X@p " {((W xg V') = (W xy Z"))

The diagram (25.3) is therefore homotopy carte-
slan. [

Here is the Morel-Voevodsky statement of the Nis-
nevich descent theorem:
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Theorem 25.9. Suppose that f : X — Y is a
local weak equivalence of simplicial presheaves
on (Smls)nis, and suppose that both X and Y
satisfy the BG-property. Then all maps X (T) —
Y (T) in sections are weak equivalences of sim-
plicial sets.

Proof. Suppose that x € Y'(.S) is a global section,
and let F, be the sectionwise homotopy fibre of the
map f. Then the restriction of F). to the small site
(et|s)nis satisfies the hypotheses of Theorem 25.7,
and so the map F,(T') — * is a weak equivalence
for all étale S-schemes T'. It follows that the map

f:X(S)—=Y(9)
in global sections is a weak equivalence.
All restrictions

j’T : X’T — Y|T

to (Sm|r)nis for smooth S-schemes T satisfy the
same assumptions, so that all maps X (T) — Y (T
are weak equivalences. ]

The following result is the analogue, for the Nis-
nevich topology, of Theorem 25.2. The statement
is equivalent to Theorem 25.9.
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Theorem 25.10. Suppose that X is a simpli-
cial presheaf on (Sm|g)nis which satisfies the
BG-property, and let j - X — Z be an injective
fibrant model for the Nisnevich topology. Then
all maps X(T) — Z(T) in sections are weak
equivalences of simplicial sets.

3) Motivic descent

In all that follows, given simplicial presheaves X, Y,
the internal function complex Hom(X,Y') is the
simplicial presheaf with

Hom(X,Y)(U) = hom(X|y,Y|y)

for U in the underlying site C. The natural iso-
morphism

hom(X x A,Y) = hom(A, Hom(X,Y))

is the exponential law for simplicial presheaves A, X
and Y. Given an injective fibration p : X — Y
and a cofibration 7 : A — B, then an adjointness
argument implies that the induced map

Hom(B, X) "% Hom(A, X)X trom(1y)Hom(B,Y)

is an injective fibration which is trivial if either ¢
or p is trivial.
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Recall from the examples in Section 22 (Lecture
10) that the motivic model structure on the sim-
plicial presheaf category

s Pre(Sm|s)nis

can be constructed by specializing Theorem 22.2
to the case where S is the generating set of trivial
cofibrations for the injective model structure on

s Pre(Sm|s)nis
and the interval I is the affine line Al
In particular, injective (equivalently fibrant) ob-
jects for the theory are defined by having the right
lifting property with respect to the maps
(CxOU(Dx;,) CDxO" (254)
where C' — D is a member of the set of generating
cofibrations for s Pre(C), and the maps
(AxO"u(Bxod")c BxO"  (25.5)

with A — B in the generating set S of trivial
cofibrations.

Recall the notation: " = " (which in the
present case is the affine plane A"), and there are
face inclusions

de.0"' 0" 1<i<n, e=0,1,
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with
d"(z1, .. 1) = (T1y o Ti1, €, Ty - oy Tppp).

Then there are subobjects 9" and M7, of [J"
which are defined, respectively, by

o0" = U (0",
and
Mie = Ui 70O,
Observe that
Dm % Dn — Dm%—n,
and that there are induced relations
(OO0™ x O" U (O™ x oO0") = o™ ™
(M x Oy u (@ x o) = I_I;’fj” (25.6)
m n m n _ m-+n
(O™ x O")u (@™ x M7,) =07
Lemma 25.11. A simplicial presheaf X is in-
jective for the motivic model structure if and
only if X is an injective fibrant simplicial pre-
sheaf (for the Nisnevich topology) and the in-
jective fibration

0* : Hom(A', X) — Hom(x, X)

15 trivial.

23



Proof. If X isinjective, then X has the right lifting
property with respect to all generating trivial cofi-

brations ((25.5), n = 0), and is therefore injective
fibrant.

The object X also has the right lifting property
with respect to the maps

(Cx AHYU(D x %) = D x A'

defined by the set of generating cofibrations C' —
D ((25.4), n =1). It follows that the map

0* : Hom(A', X) — Hom(x, X)

has the right lifting property with respect to all
C' — D, and is therefore a trivial injective fibra-
tion.

For the converse, the map 0* has the right lifting
property with respect to all cofibrations

(C x OM U (D x o0 c Dx O,

and so the relations (25.6) can be used to show
that X has the right lifting property with respect
to all inclusions (25.4). The simplicial presheaf X
also has the right lifting property with respect to
all trivial cofibrations

(AxO"U(BxoO")c BxO"
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which are induced by trivial cofibrations A — B.
[t follows that X is an injective object. O

Remark 25.12. Suppose that S consists of all
generating trivial cofibrations A — B for the in-
jective structure plus the map 0 : * — Al and the
interval I is Al

If Z is injective (ie. fibrant) for this structure,
then Z is injective fibrant, and * — Al is a weak
equivalence, so that all maps

(Cx AHYU(D x %) C D x A!
induced by cofibrations C' — D are weak equiva-
lences. It follows that the map

0* : Hom(A', Z) — Hom(x, Z)
is a trivial injective fibration.
Conversely, if Z is injective fibrant and 0* is triv-
ial, then Z has the right lifting property with re-
spect to all (local) trivial cofibrations (25.5), and
the map 0* has the right lifting property with re-
spect to all cofibrations

(C xOM U (D x o0 c Dx O

It follows that Z has the right lifting property with
respect to the cofibrations (25.5) (use the relations
(25.6)).
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Suppose that the simplicial presheaf X is injective
for the Nisnevich topology. The injective fibration

0* : Hom(A', X) — Hom(*, X)

is given in sections corresponding to smooth S-
schemes T' — S by the map

X(A'xT)—= X(T)

associated to the O-sections map 7' — A'xT'. The
injective fibration 0* is a local weak equivalence if
and only if it is a sectionwise weak equivalence.
The latter is equivalent to the assertion that all
projections A' x T" — T induce weak equivalences

X(T) = X(A' x T). (25.7)

Remark 25.13. In general, if the map (25.7) is
a weak equivalence for all smooth S-schemes T
we say that X has or satisfies the homotopy prop-
erty. The term comes from algebraic K-theory: it
is a central result of the subject (and a theorem
of Quillen [5]) that the algebraic K-theory func-
tor satisfies the homotopy property for all regular
Noetherian schemes T'. Explicitly, this means that
the projection A' x T" — T induces a weak equiv-
alence

K(T) = K(A' xT)
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of spaces or spectra for all such T

The homotopy property is also a central concept
for other geometric cohomology theories: the asser-
tion that étale cohomology with torsion coefficients
satisfies the homotopy property is a consequence of
the smooth base change theorem |[3].

The following “motivic descent theorem” is a corol-
lary of the Nisnevich descent theorem (Theorem
25.10):

Theorem 25.14. Suppose that X s a simpli-
cial presheaf on (Sm|s)nis such that

1) X satisfies the BG-property, and

2) every projection Al x T — T induces a weak
equivalence

X(T) = X(A' x T).

Let 5 : X — Z be a motwic fibrant model.
Then j s a sectionwise weak equivalence. Con-
versely, if a motivic fibrant model j : X — Z 1is
a sectionwise weak equivalence, then X satisfies
conditions 1) and 2).

Proof. Suppose that X satisfies conditions 1) and
2),and let j : X — Z be an injective fibrant model
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for the Nisnevich topology. Then 7 is a sectionwise
equivalence by Theorem 25.10. All O-section maps
T — A' x T (these are sections of projections)
induce weak equivalences

Z(A' x T) — Z(T).
It follows that the injective fibration
0* : Hom(A', Z) — Hom(*, Z)
is trivial, so that Z is motivic fibrant.

The converse is a consequence of Lemma 25.11. [J

References

[1] J. F. Jardine. Generalized Etale Cohomology Theories, volume 146 of
Progress in Mathematics. Birkhauser Verlag, Basel, 1997.

[2] J.F. Jardine. Local Homotopy Theory. Springer Monographs in Mathemat-
ics. Springer-Verlag, New York, 2015.

[3] James S. Milne. Etale Cohomology, volume 33 of Princeton Mathematical
Series. Princeton University Press, Princeton, N.J., 1980.

[4] Fabien Morel and Vladimir Voevodsky. A'l-homotopy theory of schemes.
Inst. Hautes Etudes Sci. Publ. Math., 90:45-143 (2001), 1999.

[5] Daniel Quillen. Higher algebraic K-theory. I. In Algebraic K-theory, I:
Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash.,
1972), pages 85—147. Lecture Notes in Math., Vol. 341. Springer, Berlin,
1973.

28



