[ To po:
E, OF THE SERRE SPECTRAL SEQUENCE
SOME MORE BASIC SERRE SPECTRAL SEQUENCE EXAMPLES
POTENTIALLY THE ATIYAH-HIRZEBRUCH LERAY-SERRE SPECTRAL SEQUENCE
EQUIVALENCE OF COHOMOLOGY OF Ap;, WITH SINGULAR COHOMOLOGY
THE SERRE SPECTRAL SEQUENCE FOR App,
SIMPLICIAL SETS AND PRODUCT THEOREM
EXAMPLES OF SYMMETRIC SPACES
BETTER INTERSTITIAL WORDING
EXPAND TREATMENT OF LERAY SPECTRAL SEQUENCE TO GIVE MODERN, FULL-STRENGTH VERSION PIN
DOWN CITATIONS/ ATTRIBUTIONS OF THEOREMS, EXPAND THEOREM / AUTHOR INDICES |



The rational cohomology of homogeneous
spaces

Jetfrey D. Carlson

Version of January 10, 2019



To Mom, Dad, and Drew,
who love me despite my failings,

and to Loring, who had faith I could write it



Contents

Table of contents iii
List of figures vi
Acknowledgments vii
Apology: How this book came to be viii
Introduction 2
1 The rational cohomology of Lie groups 5
2 Spectral sequences 11
2.1 Theideaof aspectralsequence . . . ... ... ... ... ... .. ... .. .. ... 11
2.2 The Serre spectral sequence . . . .. ... .. ... ... o o 14
2.3 Sample applications . . ... ... . L e 23
23.1 Spherebundles . ... ... ... ... ... . L L o 26

2.3.2  Homotopy groups of spheres and Eilenberg—-Mac Lane spaces . .. ... .. 29

2.4 Anaturallemmaonbundles ... .. ... ... .. . o 29

2.5 Filteredobjects. . . . . . . ... 31
2.6 The filtration spectral sequence . . . . . ... ... ... o L oL 33
2.7 Fundamental results on spectral sequences . . .. ... ................. 38
2.8 Thetransgression . . . . . . . . . . . . 39
2.9 Proofs regarding the Serre spectral sequence . . . . ... ... ........ ... .. 40

3 The cohomology of the classical groups 44
3.1 Complex and quaternionic unitary groups . . ... ... ... ... ... . ... ... 44
3.2 Real difficulties . . .. .. ... ... 47

4 Formality and polynomial differential forms 56
41 Formality . . ... ..o 56
4.2 Polynomial differential forms . . . . .. ... ... . o o L o oo 57
4.2.1 Semisimplicial sets . . . .. ... L o o 57

4.2.2 Forms on semisimplicial sets . . . . ... ... ... ... ... .. .. . ... 58

4.3 Comparison with singular cohomology . . ... ... .................. 60
4.4 Simplicial sets . . . ... ... L 61

5 Classifying spaces 62

ii



Contents

5.1
5.2
53
5-4
55

The weak contractibility of EG . . . ... .. ... .. ... .. .. .. ... ...
An ad hoc construction of EG for G compactLie . . . . ... ..............
Milnor’s functorial constructionof EG . . . . . ... ... ... .. .. L oL
Segal’s functorial constructionof EG . . . . . . ... ... ... . L L oL
The Borel construction

6 The cohomology of complete flag manifolds

The cohomology of a flag manifold . . . . . ... ... ... ... .. ... .. ....
The acyclicity of G/Ng(T) . . . .« . o o oo e
Weyl-invariants and the restricted action a maximal torus . . . ... ... ... ...

6.1
6.2
6.3

7 The cohomology of classifying spaces

The Serre spectral sequence of S' — ES' — BS! . .. ... ... ... ... ... ..
The Serre spectral sequence of T — ET — BT . . ... ... ... ...........
The Koszul complex .
The Serre spectral sequenceof G = EG—BG . . ... ... ..............

7.1
7.2
7.3
74

7-5

7.4.1
7.4.2
7-4-3

Statements . . .
Two proofs . . .
Complements .

Characteristic classes .
Maps of classifying spaces . . . . ... ... ... L o
Maps of classifying spacesof tori . . ... ... ... ... ... .. . ..
Maps of classifying spaces of connected Lie groups . . . ... ... ... ...

7.6.1
7.6.2

8 The cohomology of homogeneous spaces

The Borel-Cartan machine . . . . ... ... ... ... .. ... .. ... .. .. ...,
The fiber sequence . . . .. ... ... ... ... o
Chevalley’s and Cartan’s theorems . . . . . ... .................
The structure of the Cartan algebra, I . . . ... .. ... ... .. ... .. .. ....
Cohomology computations, I . . . .. ....... ... ... . ... ... . ... ..
Cohomology-surjective pairs . . . . .. ......................
Pairsofequalrank . . . .. ... ... ... .. L o
The structure of the Cartan algebra, II: formal pairs . . . ... ... .. ... .....
Cohomology computations, II: symmetric spaces . . ... ...............
Cohomology computations, III: informal spaces . . .. ... ..............

8.1

8.1.1
8.1.2

8.3.1
8.3.2

8.6.1
8.6.2

Sp(5)/SU(5) . .
SU(6)/SU(3)? .

Cohomology computations, IV: G/S' . . .. ... .. .. . L
Valediction . . . . . ..
Cartan’s approach to the Cartan algebra . . .. ... .. ... ... .. ....
The Eilenberg-Moore approach . . .. ... ... ...............
Biquotients and Sullivanmodels . . . . ... ... ....... .. ......

8.8.1
8.8.2
8.8.3
8.8.4

Further reading

A Algebraic background
A.1 Commutative algebra .

iv

62
65
67
69
73

75
75
77
79

82
82
85
85
90
90
92
95

101
101
102

105
106
106
107
113
115
115
119
123
129
131
131
133
136
139
139
140
142
145

147



Contents v

A.2 Commutative graded algebra . . . . . ... ... ... ... .. .. . L. 148
A1 Freegradedalgebras . . . .. .. ... ... .. .. L o oL 150

A.2.2 Poincaré duality algebras . . . ... ... ... ... .. oo oL 151

A.2.3 Polynomials and numbers associated to a graded module . . ... ... ... 152

A.3 Differential algebra . . . . . .. ... L L 153
A.3.1 Differential graded algebras . . . . . ... ... ... ... o o L. 154

A.3.2 The algebraic Kiinneth theorem . .. ... ... ... ... ........... 154

A.q Splittings . . . . . Lo 155

B Topological background 157
B.1 Algebraic topology grabbag . . . ... ... ... . L o o 157
B.xx Cellcomplexes . . ... ... . e 157

B.2 Covers and transfer isomorphisms . . . .. ... .. ... ... ... .. .. ... 160
B.3 Fiberbundles . ... ... .. ... .. e 161
B.3.1 Principalbundles . . . . ... ... . oo 162

B.3.2 Fibrations . . . . .. . ... 163

B.4 Thestructure of Liegroups . . ... .. ... ... .. ... .. .. . 163
B.4.1 Themaximaltorus . ... ... ... ... ... 165

C Borel’s proof of Chevalley’s theorem 167
C.1 Sheaf cohomology . . . . . . .. ... 167
C.2 The Leray spectral sequence . . . . . ... ... . ... . ... .. 170
C3 Borel'sproof . . . ... . . e 171
Bibliography 175
Index of theorems 179
Dramatis personae 181
Index of symbols 182

Index of terms 184



List of Figures

2.1.1
2.2.4
2.2.7
2.2.8
2.2.10
2.2.18
2.2.20
2.3.2
2.3.4
2.3.9
2.3.10
2.7.1
3.1.3
3.2.2
3.2.3
3.2.7
5.3.1
7.1.2
7.1.3
7.1.4
7.3.1
747
8.1.4
8.3.3
8.3.18
8.6.3
8.6.4
8.6.5
8.6.6
8.6.7
8.6.8

8.7.4

The differentialsout of EI° . . . . .. .. ... ... ... 13
The maps induced by F — E — B in the Serre spectral sequence. . . . . . ... .. 15
The Serre spectral sequence of S> - E — S . . . ... .. ... 16
Even support impliescollapse . . . . .. ... ... ... .. . o oo 17
Lacunary considerations . . . . . ... ... .. L L o 18
The Serre spectral sequence of S' — 3 —S2 . ... ... ... L ... 20
The transgression . . . . . ... ... L 21
The contradiction of Borel and Serre . . . . . ... ... .. ... ... ... .... 24
The original contradiction of Borel and Serre . . . . . ... ... ........... 24
The Gysinsequence . . . . . ... ... ... .. .. .. e 26
The Wang sequence . . . . . .. ... .. .. . e 26
The conditions (B),, (F),, (E), in Zeeman’s theorem . . . .. ... ... ....... 39
The Serre spectral sequence of U(n) — U(n +1) — S¥+1 . ... ... ... .. 45
The differential d, 1 for "2 — Vo(R") — S"~1 . . .. ... ... ... ... 48
The reflection of e; through ot . . .. . .. ... ... ... ... 49
The Serre spectral sequence of S"~/ — Vi(R") - Vi1(R")overFo. . . ....... 51
Some low-dimensional joins . . . . ... ... L Lo L oo 67
The nonzero region for S' — ES' — BS'. . .. ... ... 83
Cochain subcomplexes for S' — ES' - BSY . . . . ... .. ... .. L. 83
Isomorphisms on the E; page for S' — ES' — BS'. . . . ... ... ... ..... 84
The nonzero region for S* - ES® - BS3. . . .. ... ... L 86
Nonzero differentials for G- EG - BG .. ... .. ... .. ... ....... 95
The differential of the Chevalley algebra . . . . . .. ... ... ... .. .. ... .. 108
The Serre spectral sequence of U(4) — U(4)gp2) = BSp(2) . . . . ... .o oo 116
The E, page for U3)/T2 . . . . o oo e e e 122
The Ejg page for Sp(5)/SU(5) . . . . . o o oo 132
The Ey page for Sp(5)/SU(5) . . . . o v it 133
The E, page for Sp(5)/SU(5) . . . . . o o o i i 133
The Eqg page for SU(6)/SU(3)% . . o v i i i e e e e e e 135
The Eqp page for SU(6)/SU(3)% . . v v v i i et e e e e e e e e 135
The Eo page for SU(6)/SU(3)%. . . . v v v oo e e e e e e e e 136
The Serre spectral sequence of Sp(1) x U(2) — (Sp(1) x U(Z))S —BS ....... 138

Vi



Acknowledgments

The credit for my being able to produce this monograph, which began as my dissertation, belongs
to my advisor Loring W. Tu, whose friendship and guidance throughout the years made my
career possible, and whose editorial advice made this book readable.

I am grateful to many mathematicians for corresponding with me, contributing ideas, correc-
tions, moral support, professional advice, citations, and IETEX advice. All of the following con-
tributed, in ways great or small to this effort: Moon Duchin, Oliver Goertsches, Yael Karshon, Ju-
lianna Tymoczko, Jason DeVito, Larry Smith, Joel Wolf, Paul Baum, George Leger, Marek Mitros,
Jay Taylor, Chris O’Donnell, Mathew Wolak, Michael Atiyah, Steve Halperin, Zach Himes, George
McNinch, Fulton Gonzalez, Svjetlana Terzi¢, and Jun-Hou Fung. My mathematical formation was
due in part to the generous interventions of various mentors throughout the years before Tufts.
Among these I count Bob Cornell and Ed Siegfried from Milton Academy and James Cummings
from CMU.

The original version of this book would also never have been completed without the many
people from Tufts who made my time in grad school worthwhile. These include Genevieve
Walsh, Christoph Borgers, Lenore Feigenbaum, Boris Hasselblatt, Kim Ruane, James Adler, Ellen
Goldstein, Aaron Brown, Emily Stark, Yulan Qing (% F £), Erica Waite, Andy Eisenberg, Charlie
Cunningham, Burns Healy, Brendan Foley, Lise Chlebak, Ayla Sanchez, Kasia Sierzputowska,
Jiirgen Frikel, and Nathan Scheinmann.

Among the people I've met since who supported me professionally and personally in Brazil
are Ivan Struchiner, Cristian Ortiz, Cristina Izuno, Pedro Mendes de Aratjo, Fran Gozzi Felis-
berto Carvalho Junior, Henrique Bursztyn, and Misha Belolipetsky. From my time in Toronto,
I want to thank Yael Karshon, Adina Gamse, Anja Randecker, Tobias Hurth, Yulan again, Max
Fortier Bourque, Kasra Rafi, Joe Adams, C Maor, Martin Leguil, Christian Ketterer, and Geneva
Liwag.

Finally, people I met in real life who also kept me going include Nancy Leung, Shayani
Bhattacharya, Cristina Izuno, Huda Shalhoub, Zhang Yi (5k Z), Kathleen Reilly, Jef Guarante,
Claire Weigand, and Jason Walen.

I've already dedicated this work to my immediate family, Deborah (Z) Kasik, Dan Carlson,
and Drew Carlson. I also wanted to thank my grandmother Elisabeth Kasik, who overcame
great obstacles, loved me unconditionally, and shaped me in a lot of ways as a person, and my
childhood pets Mocha and Simon, but unfortunately I no longer can. You are missed.

vii



Apology: How this book came fo be

This monograph evolved from a dissertation whose purpose was to explore the satisfiability and
consequences of a technical condition on Borel equivariant cohomology called equivariant formal-
ity, as applied to the isotropy action on a homogeneous space G/K, which the author eventually
found required a detailed study of the singular cohomology of that space.

The standard way to compute H*(G/K;R) is to identify it with the Borel equivariant cohomol-
ogy Hy(G;R) and to determine it using the Cartan model. This model is already discused by the
monograph of Guillemin and Sternberg [GSg9] and by the forthcoming text [Tuar] of Tu, among
other places, and a standard discussion involves a level of differential geometry and Lie theory
the present author wanted to avoid in the present work. As applied to compute H*(G/K; R) it is
also discussed in the tomes of Onishchik and of Greub-Halperin—-Vanstone [Onigy, GHV76]. As
it turns out, the Cartan model in the case of the author’s thesis can be concisely constructed from
mostly algebraic considerations, avoiding structure constants and indices, using the Serre spec-
tral sequence and simple algebraic models, in a way which is much more economical and makes
few presuppositions of the reader. The resulting theory is both simple and beautiful. Moreover,
its historical development involved the discovery of spectral sequences, classifying spaces, and
commutative models in rational homotopy theory, and thus an exposition of this historical ques-
tion, surprisingly, gives a perfect opportunity to develop many fundamental notions of algebraic
topology which fit together nicely into a second graduate course.

The author, having taught himself this material, initially put his own development in his
dissertation operating on the spurious assumption that committee members would appreciate
having all the background in one place. By the time he realized this was incorrect, he was already
committed to producing a document that could serve as a reference.”

The existing literature

To explain our insistence on presenting yet another version of an old if insufficiently publicized
story, some discussion of other expositions is in order.

The primary literature predominantly dates to a movement from 194953 clustered around
Henri Cartan, and is presented rather telegraphically, littered with references to results whose
proofs were never published, and reliant on an early version of sheaf theory which is now vir-
tually forgotten. (These works will be cited in historical commentary throughout, especially in
Chapter 8 and a version of this early account of sheaf theory and Borel’s original derivation of
the Cartan model are written up in Appendix C.) There are also long surveys by André and by

It may also be that realizing his dissertation was the only published document he was ever likely to have complete
creative control over, he went somewhat overboard. The present account is somewhat more streamlined than the thesis
itself.

viii
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Rashevskii [And62, Ras69] summarizing the results of this school in greater detail, but still aimed
at the professional, but the main secondary sources in English are the books of Onishchik and of
Greub-Halperin—Vanstone [Onig4, GHV76].

Onishchik is relatively concise at under 300 pages, and surprisingly difficult to lay hands on.
With a view toward classifying pairs (G, K) of compact, connected Lie groups with respect to the
diffeomorphism, homeomorphism, or homotopy type of G/K, it develops Lie theory, a real ver-
sion of Sullivan’s rational homotopy theory, the Weil algebra, the theory of symmetric invariants,
and the Cartan model. The Weil algebra appears ex nihilo, as it were, without reference to the con-
nection and curvature forms associated to a principal bundle which were Weil’s motivation. It is
notable that through diligent use of filtration arguments, Onischik manages to completely avoid
invoking spectral sequences. His end goal is classfication problems relating transitive actions

The book of Greub, Halperin, and Vanstone, on the other hand, comprises nearly 600 pages.
It develops the necessary background in great generality, finally arriving at the target results on
the cohomology of homogeneous spaces in Ch. XI [GHV76, p. 457]. The development is an earlier
language than that now current® and the notation, which is highly nonstandard, is, as Samelson
notes in his otherwise favorable review [Sam77], not indexed. The book’s thoroughness and the
generality of the formulations result perforce in an ouroboric format where the topological results
at the end are notational permutations of algebraic results obtained toward the beginning. Hence
the most possible is said about any topic touched, and reading a proof involving a topological
space is a recursive process with three to four iterations.? The list of notations used by Onishchik
is unfortunately incomplete.

Our approach

The present book cannot hope and would not presume to compete with the existing secondary
literature in terms of scope or depth. What it can do, by way of contrast, is present the material as
briefly and directly as possible, through a purely topological lens, assuming minimal prerequi-
sites, and with a complete index of notation. Thus the goal of this monograph is to arrive along a
quasigeodesic path at Chevalley’s and Cartan’s respective theorems on the cohomology of princi-
pal bundles G — P — B and homogeneous spaces G/K, showing both how one computes this in
general and in many specific examples. There are many other paths one could go down along the
way, and throughout these detours are clearly marked. The Serre spectral sequence is developed
from scratch, Lie theory is quoted only when necessary, which is not often, and the results are
seen to follow for essentially algebraic reasons from the presence of the multiplication on a Lie
group and the existence of commutative models. Some language of rational homotopy theory is
thus used, particularly in Chapter 4 where we introduce the algebra of polynomial differential
forms, which allows one to circumvent an approximation of BG by manifolds, the bulk of Lie
theory, and the development of sheaf theory. The hope is that this will inspire a reader to learn

2 Many results are phrased in a sort of first draft of a version of the language of rational homotopy, which was just
coming into being at the time, and for which the later work [FHTo1] of Halperin has become a standard reference.

3 The major pattern is that results on homogeneous space in Ch. XI are a rewriting of those on Lie algebra
cohomology in Ch. X, which specialize analogous results on “P-differential algebras” in Ch. III, bearing the same
relation to results about “P-spaces” in Ch. II. These last are bilinear maps P®S — S of degree 1 of graded vector
spaces, where P is odd-dimensional, which the authors note are exactly the same as modules over the polynomial
algebra \/P; here \/ denotes the symmetric algebra and P the evenly-graded suspension of P. The results of these
early chapters are mostly translatable into results about Sullivan algebras.
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more about rational homotopy theory without requiring her to learn it immediately.

This exposition presents a direct, historically honest account, demonstrates the essential sim-
plicity of the determination of H*(G/K; Q), and offers motivation for the study of rational homo-
topy theory without building up the entire edifice of this general theory, already well-developed
in Felix et al. [FHTo1]. We require throughout only basic Lie theory and differential and algebraic
topology, much less than that contained in the respective books of Brocker—tom Dieck, Tu, and
Hatcher [BtD85, Tu11, Hatoz], and all of which is summarized in the appendices, in the hopes
that the whole be legible to a second-year graduate student interested in topology. The author be-
lieves the resulting account to be the most accessible available account of some essential material
which should be better known.
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Intfroduction

The following definition of the cohomology of a compact space is an extension of de Rham’s
definition of the cohomology of the algebra of their exterior differential forms (E. Cartan sug-
gested that definition in 1928 after he succeeded in understanding a sentence written by H.
Poincaré in 1899).

—Jean Leray [Lery2]

Let M bea fibre bundle over M with projection P and fibre F. Using cohomology groups with
rational coefficients, the author defines, for each dimension p, a characteristic isomorphism of
a factor group of a subgroup of the cohomology group HP (F) onto a group similarly related to
HPYY(M). It is stated that one of these, suitably interpreted, is the characteristic cocycle of the
bundle. [This could only be so if the coefficients of the latter (in 7t,(F)) are replaced by their
images in the homology group of F.] It is also asserted that a knowledge of the cohomology
rings of M and F, and certain undefined generalizations of the characteristic isomorphisms,
lead, in an unstated fashion, to a determination of the additive cohomology groups of M.

—Steenrod’s Math. Review (1946) of Hirsch’s paper on the transgression [Ste48]

It is now abundantly clear that the spectral sequence is one of the fundamental algebraic
structures needed for dealing with topological problems.

—William Massey, 1955 [Mas55, p. 329]

Now we illustrate the advantages of commutative multiplication in a fibration formula. This
is the [ ... ] analogue of the Chevalley—Hirsch—Koszul formula for principal Lie group bundles
which was current in 1950 and ignored later in topology. The evident power and simplicity of
the CHK formula helped prompt me to the present theory after Armand Borel kindly explained
it to me in 1970.

—Dennis Sullivan, 1977 [Suly7]

Homogeneous spaces are of fundamental importance in geometry and equivariant topology—
they are precisely orbits G/K of a transitive smooth action of a Lie group G, equivariant 0-cells—
and accordingly the determination of their cohomology was a major research topic in topology
from the late 1930s to the mid-1970s. Despite the slogan that cohomology is easy to compute and
homotopy is hard, progress toward toward determining H*(G/K; Q) in general required two ma-
jor new ideas, sheaf cohomology and spectral sequences (both due to Jean Leray, around 1945),
which were complicated and poorly understood. Fortunately, great work was put into under-
standing and systematizing this early work and its essential features soon began to emerge.

The main ideas of the present work are few:
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¢ The multiplication on a group constrains its rational cohomology to be exterior (hence free
graded commutative), in Chapter 1.

* The Serre spectral sequence of a fiber bundle allows one to analyze the cohomology of
a fiber bundle in terms of the fiber and the base, in Chapter 2. The related, purely alge-
braic spectral sequence of a filtered differential graded algebra allows one to compare the
cohomology of two algebras by an examination of simpler constituent parts.

¢ All principal bundles are classified by a map to a universal bundle, in Chapter 5.

¢ The structure of the cohomology of the universal bundle is constrained by the structure of
a spectral sequence. This implies for purely algebraic reason that the rational cohomology
ring of a homogeneous space is polynomial (hence free graded commutative).

¢ Rational cohomology can be computed from a commutative cochain algebra, a “model,” in
Chapter 4. Surjections onto free objects split, so a free commutative cohomology ring maps
as a subring into a commutative model of its own cochain algebra.

* A map of bundles induces a map of spectral sequences, and a related map of commutative
models. By comparison, we see in Chapter 8 that the cohomology of a homogeneous space
is carried by a very small model.

Each of these ideas is simple but powerful. Thus the historical question of the cohomology of
a homogeneous space leads naturally into into a development of several key ideas of algebraic
topology.

The key algebraic feature of the theory of differential forms that Leray wanted to emulate
in setting up sheaf theory, which he uses to define his spectral sequence, is commutativity. This
commutativity was isolated in purely algebraic form by Koszul in his thesis on Lie algebra co-
homology, where he observes a spectral sequence always arises from a filtration of a differential
graded algebra, such as the de Rham algebra (2*(M) or the singular cochain algebra C*(X). The
spectral sequence pulls apart such an algebraic object one level at a time, and enables one to
understand it by understanding its parts; if the filtration comes from a filtration of topological
space (the classical examples being simplicial and CW-skeleta), this allows one to understand
the cohomology of the space in terms of those of simpler parts. There is a bit of book-keeping
involved, but it quickly comes to feel natural. The idea is so essential that there is no purpose to
avoiding it, and the author thinks it is best encountered early, so in Chapter 2 we present what
we believe is the simplest possible development.

It was rapidly recognized that the key feature of the sheaves Leray used was that their sec-
tions, like differential forms but unlike singular cochains, commuted up to sign under multiplica-
tion. Henri Cartan, building on unpublished work of Weil and Chevalley, distilled this insight into
a conference paper (1950) in which he produces a commutative model computing H*(G/K; R)
and sketches proofs. This model relies on the differential-geometric notion of a connection and
some of the structure of a Lie algebra, and at least uses terminology from spectral sequences;
it is likely the proofs involved them, but we do not know. In his dissertation, published as an
Annals paper in 1953, Armand Borel produced a version of this model topologically using a map
of fiber bundles, and it is this version we paraphrase here, entirely avoiding structure constants
and indices, using the spectral sequence of a bundle one encounters in a second course in alge-
braic topology (for instance, this one, or the classic book [BT82] of Bott and Tu) and simple and
algebraic models.
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Both these accounts produce finitely generated commutative models of a space. Borel’s insight
is so bold as to be somewhat shocking. He has already determined one spectral sequence (that of
a universal bundle, computed in Section 7.4), and there is a natural mapping into this universal
bundle from another bundle we are interested in, determining a mapping of spectral sequences
converging to H*(G/K). The existence of the mapping determines the differentials of certain
elements which represent generators of the page E; of the spectral sequence of interest, and
in particular determines the coboundaries of certain elements of C*(G/K;R). We know these
elements represent elements in cohomology, but we know little about their cup products on the
cochain level because the cup product is noncommutative. So we replace the singular cochains
C*(G/K;R) with a graded-commutative differential algebra A*(G/K). This is still an uncountable
object we can define but in no way describe explicitly, but we do have a finite set of commuting
elements whose differentials we know. We use this to define an abstract graded-commutative
differential algebra C and an injective mapping to A*(G/K), a finite crystal of pure structure
in an uncountable chaos. The algebra C inherits a filtration from A*(G/K), and so the map
C — A*(G/K), induces a map between the algebraic spectral sequences of their filtrations. The
spectral sequence of C does not change on the first few pages Ey = E; = E, but in the spectral
sequence of A*(G/K), the obscuring mist melts away, until at E,, every element is in the image
of C. This implies by general considerations that the map C — A*(G/K) in fact induces an
isomorphism in cohomology, so that H*(C) =~ H*(G/K;R). The primal chaos of cochains was
structurally supported all along by a skeleton we understand completely.

Not only is this idea beautiful, but it does not require much algebraic sophistication beyond
polynomial and exterior algebras.* The author realized this when he was writing his own thesis,
and it became a personal goal to present this version of the story, the genesis of many ideas
which were to become important in topology and compelling in its own right. His hope is that
this writing makes this material more accessible and its essential simplicity clearer.

4 Homological algebra was being worked out for the first time around the time of Borel’s thesis and does not
figure. A later version of this story stars the Eilenberg—Moore spectral sequence and hence does explicitly involve
Tor, but is independent of this story despite largely sharing its conclusions. A motion toward this history is made in
Section 8.8.2.
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Chapter 1

The rational conomology of Lie groups

It was noted in the thirties the cohomology rings of classical Lie groups, over sufficiently easy
coefficient rings k, become exterior algebras, and one might wonder whether this holds over Lie
groups in general. It has been known since 1941 that it does, due to work of Heinz Hopf ex-
ploiting a natural algebraic structure in the (co)homology of a topological group, a development
that essentially reduced the study of Lie group cohomology to obtaining torsion information and
collating it back into integral cohomology.

We begin by isolating the essential feature of topological groups for our purposes.

Definition 1.0.1. An H-space" is a topological space G equipped with a continuous product map
#: G x G — G containing an element e € G neutral up to homotopy: we demand g — (e, g)
and g — (g, ¢) be homotopic to idg.

Such a map induces a coproduct in cohomology, the composition

H*(G) 2%, H*(G x G) — H*(G)® H*(G)
where the second map arises through the Kiinneth theorem. We denote the coproduct by ;/*.
Because H*(i) and the Kiinneth map are maps of graded k-algebras, it follows u* is a graded
algebra homomorphism, and that if x € H"(G), then u*(x) e @ H/(G) ® H"J(G).
Suppose as well that G is connected. We know pu(—,e) ~ idg; diagrammatically, this is the
homotopy-commutative triangle below on the left, and taking cohomology whilst being casual
about Kiinneth maps yields the commutative diagram on the right.

G—-Gx{e}—~GxG H*(G) <~ H*(G)® H'(G) ~-". H*(G)® H*(G)
\ iy \ TH*(H)
G H*(G)

This means the component of u*(x) lying in H"(G)® H%(G) is x®1. The same argument run
with the identity (e, —) ~ idg yields the component 1® x in H°(G) ® H"(G). So

pr(x)=1®x+x®1 (mod H*(G)®H*(G)).

! The choice of H, due to Serre, is in honor of Heinz Hopf.
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Recall that the cup product —: H*(G) x H*(G) — H*(G) is induced in a similar way by the
diagonal map A: G — G x G taking ¢ — (g, g); to wit, it can be understood as the composition

H*(G)® H*(G) — H*(G x G) 25 H*(G).

As A and y admit some relations on a topological level, we recover some cohomological identities.
Trivially but importantly, u# x u is a map [[*G — []*G taking the quadruple (x,vy,x,vy) to
the pair (u(x,y), u(x,y)) = (Aou)(x,y). If we write 7: G x G —> G x G for the transposition
switching the coordinates, then (x,y,x,y) = (id xt xid)(x, x,y,y) = (id xT x id)(A x A)(x,y), so

Aoy = (uxp)o(id xt xid)o (A x A). (1.2)

Taking the cohomology of (1.2), being casual with Kiinneth maps again, and recalling from Ap-
pendix A.2 the sign convention for a tensor product of cGas, one finds that for all homogeneous
a,be H*(G),

w*(ab) = p* (@) (b),
so that u*: H*(G) — H*(G) ® H*(G) is a ring homomorphism. All this inspires the following
definition.

Definition 1.0.3. A Hopf algebra over k is a graded (not necessarily associative) k-algebra A such
that A° ~ k, equipped with an algebra homomorphism p*: A — A®j A such that

p*(@)=1®a+a®1 (mod E@A)

for each homogeneous a € A. (Here A< Aisthe augmentation ideal (P, A’ = A/A° of elements
of positive degree, as defined in Appendix A.2.)

What we have shown is that, given an H-space G, its cohomology ring H*(G) is naturally a
commutative, associative Hopf algebra. The presence of the coproduct imposes severe constraints
on the algebra structure, especially with regard to algebra generators. Here is Hopf’s structure
theorem.

[PROVE WHAT THE MONOGENIC ONES ARE IN POSITIVE CHARACTERISTIC. ]|

Theorem 1.0.4 (Hopf, chark = 0: Hopf’s theorem [Hop41, Satz I, p. 23]; Borel, chark > 0). Let A
be a commutative, associative Hopf algebra of finite type over a field k. Then it is a tensor product of Hopf
algebras on single generators. As algebras these are

e exterior algebras A[a] with || odd-dimensional,
* polynomial algebras k||, with |a| even-dimensional if char k # 2, and
* truncated symmetric algebras k[a]/ (a?) if if p = chark > 0, with « even-dimensional if p > 2.

Proof [Hato2, Prop. 3C.4, p. 285]. We prove the result for char k = 0 by induction on the number
n of algebra generators, starting with n = 0 so the result is trivial. Inductively suppose we have
shown the result for n generators and A is generated by n + 1. Order these algebra generators
X1,...,%n,y by weakly increasing degree, and let A’ be the subalgebra generated by x1,..., x,.
This is actually a Hopf subalgebra, for p*(x;) = 1®x; + x;®1 + (deg < |y|), so the last term
cannot involve y, and must lie in A’. Since yu* is an algebra homomorphism, we must have
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u*(A’") < A/®A’. Because A is a cca generated by A’ and x, there is a surjective k-algebra
homomorphism

A'@Aly] — A if |y| is odd,

A'®kly] — A if |y| is even.
To see A is free, it is enough to prove these maps are injective.

If ly| is odd, suppose a + by = 0 in A, where a,b € A’. Then 0 = p*(a + by) € A® A projects
under A A —» A®Aly] to

0=a®1+ (bR (yY®1+1®y) = (a+by)®1+bQ®y =b®y.
0

This can only be zero if b is, but then 0 = a4 + Oy, so a = 0 and our relation was trivial.
We leave the case |x| even as an exercise. O

Exercise 1.0.5. Finish the proof in the case || is even. (Hint: Apply p* to a relation and examine
the image in AQ A/(A’,y?) =~ A®Kk[y]/(v?).

Corollary 1.0.6. Let G be a compact, connected Lie group. Then H*(G; Q) is an exterior algebra.

Proof. We already know H*(G) is a free k-CGA, say on V. If V contained any even-degree ele-
ments, then by the theorem, H"(G) would be nontrivial for arbitrarily large n; but it cannot be,
because G is a finite-dimensional CW complex. So V is oddly graded and H*(G) = AV. O

Corollary 1.0.7. Let G be a Lie group and G — E — B a principal G-bundle and suppose H*(E) —
H*(G) surjects and k is a field of characteristic zero. Then there exists a k-cGA isomorphism

H*(E) ~ H*(B)® H*(E).

Proof. By Corollary 2.2.12, one has an H*(B)-module isomorphism H*(E) =~ H*(B) ® H*(G). By
Corollary 1.0.6, H*(G) is a free k-cGa, so by Proposition A.4.4, a lifting of H*(E) —» H*(G)
induces a ring isomorphism H*(B) ® H*(G) — H*(E). O

We can do a bit better in identifying the generators of H*(G).

Definition 1.0.8. We an element x of a Hopf algebra A primitive if p*(x) = 1®x + x® 1. Write
PA = {x € A : x is primitive}

for the primitive subspace and grade this space by P"A = PA n A”". Note that the only primitive
in A? ~ k can be the identity so that P°A = 0 and PA is contained in the augmentation ideal A.
If A = H*(G) is the cohomology ring of an H-space G, we abbreviate PG := PH*(G). Another
way to phrase the definition is to say that PA is the kernel of the k-linear homomorphism

P: A— ARA,
x wrx) - (1®x+x®1).

The indecomposable elements of an augmented ring A are, informally, those of positive de-
gree that cannot be written as sums of products of lower-degree elements; the idea is to find
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Chapter 1. The rational cohomology of Lie groups 8

an analogy for irreducible polynomials for rings with more complex ideal structure. The most
convenient definition turns out to be this: the module of indecomposables is the k-module

QA= A/AA =~ ﬁ%}k

where A is the augmentation ideal and the denominator denoted AA is understood to be the
module spanned by products ab for a,b A of positive-degree elements. Under this definition
we see Q is functorial, since a graded homomorphism A — B takes A —> B and hence AA —
BB. If A is a free k-module, then so is Q(A), so the k-module surjection A —» Q(A) splits by
Proposition A.4.1 and we can consider Q(A) (in a badly noncanonical way) as a k-submodule
of algebra generators for A. Because it satisfies a product rule, an derivation d on A, like a ring
homomorphism, is uniquely determined by its values on such a lifted Q(A), so a linear map on
Q(A) determines at most one derivation of A.

There is a natural k-linear composite map
P(A) —> A —» AJ/AA = Q(A)
linking primitives and indecomposables, which is an isomorphism in the case we care about.

Proposition 1.0.9 (Milnor-Moore). Let A be a commutative, cocommutative Hopf algebra finitely gen-
erated as an algebra over a field k. Then this canonical map takes P(A) — Q(A). In particular, A is
generated by primitive elements.

Proof. The strong statement is more than we need, but we will prove the result in the case A is a
coassociative Hopf algebra over a field k of characteristic # 2 with underlying algebra an exterior
algebra, loosely following Mimura and Toda [MToo, p. 369] for injectivity; this weaker version is
due to Hopf and Samelson.

Write A = AV, for V an oddly-graded vector space. That V — Q(A) is clear, so we just need
to show V can be chosen such that P(A) = V. Pick a basis X of V. By anticommutativity, a basis
of AV is given by monomials y = x1x; - - - x, with x; € X of weakly increasing degree. If n > 1,
then we have

) = [ e) =] (a®1+1@x+(-++)) = 1®y + [x1 ®xz- - x4] + Y ,a®b,

where none of the terms a ® b have a € Qx;. It follows the term x1 ® x5 - - - x,, doesn’t cancel, and
thus u*(y) # y®1+1®y,so P(A) < V.

For the other containment, we induct on dim V. Assume the result is proved for n, and that
dimV = n + 1. Arrange a homogeneous basis x1,...,x,,y of V in weakly increasing degree.
By induction, V' = Q{x,...,x,}, where we may choose x;j primitive, and it remains to show
y is. Since each x; is primitive, we have p*(x;) < A[x;]® A[x;] for each j, so the coproduct u*
descends to a coproduct y* on AV // Alx;], and since this is an exterior algebra on n generators,
by induction, we have u*(y) = 1®y + y®1 in this quotient, so back in AV ® AV, the difference
P(y) = p*(y) — (1Qy +y®1) lies in the ideal (x;®1,1® x;). Varying j, we see {(y) lies in the the
intersection of all these ideals. If we write x; := [ [,; x;, this intersection ideal is that generated
by the tensor products x; ® xj such that I11] = {1, ..., n} is a partition. In fact, since by definition
P(y) € A®A, it lies in the ideal generated by x; ® x; with neither I nor | empty. We are then
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Chapter 1. The rational cohomology of Lie groups 9

done unless |y| = >, |x;|, so assume this equality holds. Then since ¥ (y) is homogeneous and
the generating elements x; ® x; already have the right degree, we can write

py) = D, ayx®x

my={1,...n}

for some scalars a;; € k.

The fact that (p* ®id)p* = (Id® u*)u*, the coassociativity of A, follows for H*(G) from the
associativity of the multiplication on G. It is not hard to see this is equivalent to the condition
(p®id)y = (id® ). Applying this equation to y we obtain

ZEILIIIJ(X[) ®x] = Zal,]xl ®IIJ(XI),

where the sum runs over partitions I11] = {1,...,n} with I # @ # |. These equations expand to

25!1,] 2 Xn ®x12®x] = Za[,] Z XI®X]] ®x]2,

L, J1,]2

where [11] = {1,...,n} as before and in the sums on either side, one has [1 11, = [ and J;11], = ],
and I, ], I1, I, J1,J» # @. Fix a partition [ 1L 11] = {1,...,n}. The coefficients of x;, ® x;, ® x; on
the left-hand side and the right, which must consequently be equal, are a;; and ay, 1,;1;;. These
equalities show all a;; are equal to some single scalar a € k, so

Ply)=a > x;®x; = ap(xy - x),

I]#2

or p(y —axy---x,) = 0. Thus xq,...,x,,y — axy - - - x, is a set of primitive generators of A. ]

Remark 1.0.10. An analogous result holds in characteristic 2 with the weaker assumption on A
that it not necessarily be an exterior algebra, but merely admit a simple system of generators (see
Definition A.2.4). The proof is correspondingly much more difficult.

We will later need as well the fact that a map of H-spaces induces a map of primitives in
cohomology.

Proposition 1.0.11. Let ¢: K — G be a homomorphism of H-spaces. Then the map ¢*: H*(G) —
H*(K) in cohomology takes PG — PK.

Proof. To ask ¢ be a homomorphism is, by definition, to require yg o (¢ x ¢) and ¢ o ux be
homotopic maps K x K — G. In cohomology, then, if z € PG is primitive, we have

Ugp*z = (¢* R®p* ) utz = (9" ®¢p*)(1®z+2zQ1) = 1Q¢*z + ¢*z®1. O
There is a further theorem determining dim PG.

Theorem 1.0.1 (Hopf [Hopyo, p. 119]). Let G be a compact, connected Lie group and T a maximal
torus. Then the total Betti number h*(G) = 24imT,

Proof [Sams2]. By the preceding theorem, H*(G; Q) is an exterior algebra, so from Appendix A.2.3
we see h*(G) = 2! for some I € N. To see that | = dim T, consider the squaring map s: g —> g°
on G. Since s = p o A, it follows that for a primitive a € H*(G) one has

sfa=ANpu'a=AN"(1®a+a®l)=1—a+a—1=2a,
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Chapter 1. The rational cohomology of Lie groups 10

so if [G] € HY™G(G) is the fundamental class, the product of | independent primitives, one
has s*[G] = 2/[G]. Thus the degree of s is 2/. On the other hand, restricting to the abelian
subgroup T =~ (R/Z)4™T, it is easy to see the s-preimage of a generic element of T contains
2dimT points, which, since s is orientation-preserving, should each be counted with multiplicity
1. By a standard theorem on degree [Hato2, Ex. 3.3.8, p. 258] we then know 24mT = degs = 2/,
sol =dimT. O

These results also let us obtain a classical topological fact usually proven through other means.

Corollary 1.0.12 ([BtD85, Prop. V.(5.13), p. 225]). The second homotopy group 12G of a compact Lie
group G is trivial.

Proof. The universal compact cover G of G (see Theorem B.4.5) satisfies 712G =~ 71,G by the long
exact homotopy sequence of a bundle Theorem B.1.4, and G =~ AxK for A a torus and K
simply connected. Using the long exact homotopy sequence of the short exact sequence Z" —
R" — T", one sees myA = 0, and since ;K = 0, successively applying the Hurewicz theorem,
the universal coefficient theorem, and Hopf’s theorem, one finds mK =~ HyK = H?K = 0, so
nzé ~ mA x K = 0. ]

Remark 1.0.13. The multiplication on a Lie group G induces a product on H..(G; Q), the Pontrjagin
product, making it a Hopf algebra as well, the homology ring, which is dual to H*(G; Q). It is this
ring that Hopf originally discovered the structure of, though the way he put it was that the
homology ring of G was isomorphic to that of a product [[S*~! of odd-dimensional spheres.
Serre noted later [FHTo1, p. 216] that this was actually due to a rational homotopy equivalence: there
is a map [[ S*~! — G inducing isomorphisms

m(H sZ"H) ®Q > 1,(G)®Q

on rational homotopy groups. Because the rational Hurewicz map

m([[s ) @0 — H.(]]s*Q)

is an isomorphism when restricted to the span @ Q - [S?"/~!] of the fundamental classes of the
factor spheres, the image of the Hurewicz map 7. (G) ® Q — H(G; Q) contains the homological
primitives P, (G) = PH,(G). In Remark 2.2.23, we will show that this means these primitives are
in the image of the transgression in the homological Serre spectral sequence of any G-bundle.
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Chapter 2

Spectral sequences

One of the main tools in our development is the spectral sequence. This is an algebraic gadget
with a reputation for ferocity that we maintain is undeserved. While it is common in topology
to be able to prove a spectral sequence exists without being able to compute its differentials
explicitly, the cohomology of homogeneous spaces offers many beautiful examples where the
sequence is completely computable.

This section introduces the Serre spectral sequence relating the cohomology rings of the con-
stituent spaces F — E — B of a fiber bundle, or more generally a fibration. In order that the
exposition be self-contained, we prove the structure we need in the later sections of this chapter,
but we do not recommend reading it immediately; while it is important culturally to know at
some point what is going on, and we will eventually need some details of its construction in Sec-
tion 8.1.2, our initial applications do not require these details, and there is enough to assimilate
that it is reasonable to go at it in stages, learning to use the machine before lifting up the hood
to see how it goes.

For reasons of digestibility, we start the section with the statement of Serre spectral sequence
itself and some applications. We will need the filtration spectral sequence of an abstract filtered
differential graded algebra later, of which the Serre spectral sequence is one particular case, so we
develop this, with full proofs, in a long appendix to this chapter. There is value to understanding
why the machine works, but it is not immediately useful for our purposes, and the reader is
advised to defer reading these proofs until the tension becomes unbearable.

We believe this is a good way to introduce oneself to this machine, there are many recountings
of this story, and we do not claim ours is optimal. The author recommends the discussion in his
advisor’s book [BT82, Ch. 3] as still the clearest introduction he has seen to this material.

2.1. The idea of a spectral sequence

A spectral sequence is a tool that allows us to understand an algebraic object in terms of its
constituent parts. The particular example we will use, takes a differential graded algebra A and
recovers the associated graded algebra gr, H*(A) of the cohomology ring H*(A), as defined in
Section 2.5, at the end of a computation whose first steps are forming the simpler associated
graded algebra gr, A with respect to some filtration, and taking its cohomology H*(gr, A). This
seems like it is “just computing cohomology with extra steps,” but it is often useful if the initial
A is too complicated—say, too large—to be understood directly.

For example, the singular cochain algebra C*(X) of a CW complex X will be uncountable if

11



290

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

310

312
313
314
315
316
317
318
319
320
321

322

323

324

Chapter 2. Spectral sequences 12

dim X > 1, but in terms of the CW skeleta X7, recall that there are associated cellular cochains
Cell”(X) := HP(XP, XP~1) =~ HP(XP/XP~)

which can be identified as free groups on the p-cells of the CW structure, and are thus finitely
generated in our cases of interest. The cup product of cochains induces a product on the direct
sum of these groups and there is a differential J given by the connecting maps in the long exact
sequence of a triple (X7 +1 XP XP=1, and one shows in a first course in algebraic topology that
the cohomology of the algebra Cell*(X) is just H*(X). This calculation is actually exactly what
the spectral sequence of the previous paragraph returns if we feed it C*(X), filtered by ideals
corresponding to the p-skeleta X?.

If X is the total space of a fiber bundle F — X — B and we instead use a filtration of C*(X)
induced from the p-skeleta B of the base, we will get a computation that starts, under reasonable
circumstances, with H*(B) ® H*(F), proceeds in a well-determined manner, and returns H*(X)
at the end. This will enable us, in the first place, to often determine H*(X) in terms of H*(F) and
H*(B), which we will use to compute the cohomology of the classical Lie groups, and later to
compute the cohomology of H*(B) in terms of H*(X) and H*(B) which we will use to determine
the cohomology of a classifying space. Later still, we will use maps of spectral sequences to
determine the cohomology of a homogeneous space, which fits into a system of bundles in such
a way that all of the information of the spectral sequence is calculable.

In more detail, a spectral sequence, for us, will be a sequence (E,),>¢ of differential algebras
such that each algebra is the cohomology of the previous: E,; = H*(E,). Particularly, each
algebra is a subquotient of the previous, so they can be considered as “decreasing” in a certain
sense. In the cases we consider, there will always be a number N such that d, = 0 for all > N,
so we will have E, ~ E,;1 =~ E,;» = ---. We will write £, for this last page.

So far, this is a finite sequence of rings. These additionally will be bigraded: E, = @WPO EPA
as an abelian group, and the multiplication will add the bidegrees: so that on any given page the
product of an element of bidegree (p, q) and one of (p’,q') will have bidegree (p + p’,q +¢'). The
bigrading seems at first glance to complicate things, since now each page is an infinite-by-infinite
array of groups—and it certainly does encumber the notation—but in practice being able to
separate out all this information into many components simplifies life, as each of these pieces will
be a finitely-generated abelian group we have a good handle on, and each ring will be generated
by finitely many elements. Since each differential d, is a derivation, it will be determined by
finitely many of these values, and this will actually make computations much more tractable.
Here is a picture of a spectral sequence we will encounter later (Figure 2.2.18), that corresponding
to the Hopf fibration S' — $3 — S2.

1|2z dy Zxz 1 Zxz
0|z " Zx ol z
Ex| 0 2 Eox| 0 P 2

The left diagram is meant to indicate that

E; = Z[x,z]/(x%,22), where x € E%’O and ze Eg’l.
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The arrow d, indicates that d»(z) = x, and the absence of an arrow from 1 and x indicates that
d>(1) = 0 and dp(x) = 0. The differentials are in fact derivations, so for example one can deduce

da(xz) = do(x)z 4+ (=1)%x -da(z) = 0-z+x-x =0

as well. The cohomology as a group, is thus kerd,/imd, = Z{1,x,xz}/Zx = Z{1,xz}, as we
see in the right diagram for E3 = Ey. Implicit in the discussion is the fact that the rest of the
differentials, d, for r > 3, are all zero.

In this picture, we see d, goes one step down and two right. In general, each differential d,
has bidegree (1 —r,r), meaning it runs from a square (p, q) to square (p +r,q — (r — 1)), as seen
in Figure 2.1.1

Figure 2.1.1: The differentials out of E.°

d()T
e |d
1,5 *1
5 E, < |
a2
~
N
ds
W
de
0 N
0 1

Here is a formal statement of the spectral sequence of a filtered differential graded algebra;
the proof will be deferred to Section 2.6.

Theorem 2.1.2. (Koszul). Let (C*®,d, 1) be a filtered differential N-graded algebra such that the associated
filtration of H"(C*) is finite for each n. Then there is an associated filtration spectral sequence in which

* (Eo,do) = (gr, C*, gr,d),
* E, =~ H*(gr,C*),
* Ei = gr, HP(C").

We call this the filtration spectral sequence of the filtered bGa (C*®,d, 7). It is first-quadrant spectral
sequence in that E}" = 0if p < 0 or g < 0. All pages become differential algebras under the bigrading
EI" induced from the bigrading E'" = gr, CPt1 of Eg = gr, C* and the product induced from that of C,
with differential d, of bidegree (r, 1 — r). Moreover, the product on each page is induced by that on the last.
This sequence is functorial in homomorphisms of filtered DGAs.

Our examples will mostly be concrete and topological, but as a purely algebraic application,
here is a proof of the algebraic Kiinneth corollary A.3.3 over a field.
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Proof. As we will not need a notation for coboundaries, we will write B® for instead for the
differential graded algebras with k-flat cohomology. Take C = A® &y B®, bigraded by CP41 =
AP ®y B1, with the differential d = d4 ®id +(—1)7id®dp. We apply Theorem 2.1.2 with the
filtration given by F,C = A®? ®; B*. Then we have Eg = gr, C =~ C on the level of graded groups
by inspection (or Corollary 2.6.8) and dg = gr,d = (—1)”id ®dp, so that

Er = Hj,(A°®B") = A"® H1,, (B*) = A" © H*(B*).
If z € BY represents a class in H7(B*), then for any a € A? we have d(a®2z) = dja®z+a®dpz =
dpa®z, and it follows d; = 64 ®id, so that

ker (AP @ H1(B*) — AP*1® H1(B*))
im (AP~1® HY(B*) — AP @ H1(B*))

PAa ~
EP ~

But H9(B*) is flat, so this is (kerd,/imd,) ® H1(B*) = HF(A®*) ® H1(B*). O

2.2. The Serre spectral sequence

Most of our examples of spectral sequences will arise from a fibration F — E 7> B with B a
CW complex, as gestured at in the previous section. Let B? be the p-skeleton of B. Then (E?) :=
(7~'BP) an increasing filtration of E; set E¥ = & for p < 0. Associated to each pair (E, EF) is a
short exact sequence

0 — C*(E,E?) — C*(E) — C*(EF) - 0 (2.2.1)

of cochain complexes, where for simplicity we suppress the coefficient group k. Because EF~1
EP, each restriction C*(E) —> C*(EP~!) factors through C*(EF), so the increasing topological
filtration (E?) leads to a decreasing algebraic filtration

F,C*(E) = C*(E,EF 1)
of C*(E)." We have [ F,C*(E) = 0, for each singular simplex o: A" — E has image in some E?.?
The associated filtration of H*(E) is given by F,H*(E) = im (H*(E, EP~') — H*(E)). Assume for

convenience that the action of 711B on H*(F) is trivial. Then turning the crank of the associated
filtration spectral sequence of Theorem 2.1.2, one arrives at the following.

Theorem 2.2.2. Let F — E — B be a fibration such that 1B acts trivially on H*(F; k). There exists a
first-quadrant spectral Serre spectral sequence (E;,d;)r=0 of k-DGAs with

E)" = CPHI(E, EP~ % k),
E'" = HP(B; H1(F;k)),
EYT = gr, HPMI(E; k),
for the filtrations (EP) and F,H*(E) indicated above. If H*(F; k) is a free k-module (for instance, if k is a

field), we may also write E; =~ H*(B; k) ® H*(F; k). This construction is functorial in fibrations E — B
and in rings k, in that a map of fibrations or of rings induces a map of spectral sequences.

* The mismatch of p and p — 1 is initially jarring, but worth it to guarantee FpC* (E) = C*(E).
2 The image of A" % E — B is compact, and a compact subset of a CW complex can only can meet only finitely
cells lest it contain an infinite discrete set.
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Most of this is immediate, but the proof of the characterization of the E, page is nontrivial,?
and we defer it to Section 2.9. Critically for us in all that follows, this version of the formulation
applies to principal bundles.

Proposition 2.2.3. Let G be a path-connected group. If G — E — B is a principal G-bundle, then B
acts trivially on H*(G).

Proof. The transition functions are given by right multiplication r, by elements of G, as discussed
in Appendix B.3.1. Since G is path-connected, each r, is homotopic to r; = idg, so the action of
m B on H*(G) is trivial. O

It is important to us to be able to identify the maps in cohomology induced by fiber inclusion
and projection to the base.

Figure 2.2.4: The maps induced by F . E % B in the Serre spectral sequence

0| H*B;H(F) — |0 im 77 e H*E)
Ez ZT EOO
H*(B)
W
i — g “——— H*(E)
=
E>| O Ex| O

Proposition 2.2.5. Let F = E 75 B be a fibration such that 71, B acts trivially on H* (F). The fiber projec-
tion i*: H*(E) — H*(F) is realized by the left-column edge map E3" — E%* < Eg" in Theorem 2.2.2:
to wit, we can write

gr, H*(E) = E3* —» EY* «— EY* > H*(F).

Likewise, the base lift T*: H*(B) — H*(E) is realized by the bottom-row edge map EE’O — E0 s EY:

H*(B) = E3* —» E3? — EY* > gr, H*(E).

3 On the many occasions in graduate courses when I have carried out the Ey calculation for the Serre spectral
sequence, both the students and I have agreed that the material I presented could surely be reorganized into an
actual proof of the desired theorem ...

—Edgar Brown, Jr. [B]o4]
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Here is a picture of the situation;* the proof is again deferred so that we may immediately
embark on some examples and applications.

Example 2.2.6. Consider a sphere bundle over a sphere S> — E — S2. Since H*(S?) = Z[x]/(x?)
for x = [S?] in degree 2, which is a free abelian graded group, we have E}"? = HP(S?; H1(S?)) =
HP(S?)® HY(S?), as appears in Figure 2.2.7.

Figure 2.2.7: The Serre spectral sequence of S — E — S?

2 Z Z 2 z Xz
N g
u
N
0 Z Z 0 1 x
E> 0 2 Ex| O 2

The nonzero squares (p,q) are labeled by their inhabiting group and the zero groups are
unmarked. The differentials out of the bottom row are zero, as they head into the fourth quadrant,
so the only potentially nonzero differentials begin in the second row and go down to the zeroth.
But bidegds; = (—2,3), so these differentials land in odd columns, whereas only even ones are
inhabited. Thus the spectral sequence collapses at E,, = gr, H*(E).

Now we try to reconstruct H*(E) from its associated graded. We know H°(E) =~ Z because
E must be path-connected. The filtration has only one term, so we can also recover this from
looking at the p + g = 0 diagonal of the spectral sequence. Explicitly,

Z. = gr, H'(E) = RRH(E)/FH"(E) = H(E)/{0} = H°(E).

We know H*(E) = Z because E is a 4-manifold, but in terms of the filtration, we have unknown
terms F, = F,H*(E), with successive quotients as indicated below:

HYE)>F >5>F>F >0
0 0 Z 0 0

It follows that 0 = F; = F; and hence that that Z =~ F,/F; = F, = F; = Fy = H*(E), as projected.
As for H?(E), we have

sothatZ = F, = F; and Z = H?(E)/F, = H?(E)/Z. Since these groups are abelian, H*(E) ~ Z®Z.

4 We intend to provide diagrams for spectral sequences despite space constraints.

Unhappily the authors continue the conspiracy of silence according to which the rectangular diagrams, used by all
the experts, never appear in print.

—Mac Lane, reviewing Cartan and Eilenberg’s Homological Algbra [Mac56]
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Now let us see what we can say about the multiplication. If we write H*(F) = Z[z]/(z?) for
the cohomology of the fiber S* and H*(B) = Z[x]/(x?) for the cohomology of the base, then

Exw = E; = Z[x]/(x2) ® Z[Z]/(Zz) = Z[xfz]/(lezz)

as a bigraded ring. As far as H*(E) itself goes, from Proposition 2.2.5, we can identify x with
7*[S?] € H?(E), and pick an element Z € H?(E) = F, representing z = Z + F;. From Proposi-
tion 2.2.5 again, i*Z = [S?] in the cohomology of the fiber S2. Since

XZZ(X+F3)(2+P1)=XVE+P3

in the associated graded and F; = 0, it follows that x — Z = [E] generates H*(E). Since x> € F3 =
0, it follows x — x = 0 in H*(E) and not just in Ey. As for z2, we know

0=z2=C+FR)E+Rh)=Z—Z+H

in the associated graded, but this means only that Z — Z € F; = F,. Since [E] lies in F, H*(E), this
actually doesn’t tell us anything about z — z.

Indeed, we chose Z as a representative of z € H%(E)/Zx, so for any n € Z, the element
Z + nx serves equally well as a generator of H2(E). This element squares to Z — Z + 2n[E], since
x — x = 0, so choosing n appropriately we can replace z with 2’ such that 2’ — 2’ is either 0 or
[E].>

This example shows both the strengths and the limitations of this technique. That E; is E
was helpful; when this happens, one says the spectral sequence collapses at E;. We can generalize
the collapse of the example substantially.

Figure 2.2.8: Even support implies collapse

Corollary 2.2.9. Let F — E — B be a fibration such that the action of 1B on H*(F) is trivial and
H*(B) and H*(F) are both concentrated in even degrees. Then the spectral sequence collapses at E,.

Proof. If H*(B) and H*(F) are both concentrated in even degrees, then so is E; = H*(B; H*(F))
concentrated in even total degree, as in Figure 2.2.8. Since the differentials d, increase total degree
by 1, mapping from even diagonals to odd and vice versa, they must all be trivial, so the sequence
collapses at Ej. O

5 Indeed, these are both options. If E = $2 x §2, then by the Kiinneth theorem B.1.2 we can arrange that 22 = 0. We
will not show this, but the other option is realized by E = (53 x $2)/S!, where S! acts on S? by rotation about a fixed
axis and on $% ¢ C2 by the diagonal action (complex scalar multiplication).
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Thus, for example, the analysis of Example 2.2.6 carries through to any bundle of the form
S21 — E — S% for p,q > 0, so that H*(E) =~ Z{1, x, z, xz} as a graded group for x = 7*[S?] and z
such that i*z = [5%7], and we have x — x = 0. If p # g, we also have z — z = 0 since H*(E) =0,
so that H*(E) =~ H*(S*)® H*(S*) as a graded ring. This genre of reasoning, that something
must stabilize at a certain page—or vanish before a certain page, lest it survive to E,—goes
by the trade name of “lacunary considerations.” One uses such considerations as frequently as
possible because they are usually far simpler than actually computing differentials. Occasionally
this kind of spatial reasoning enables one to understand what happens in a spectral sequence
without having done any algebra at all.

Figure 2.2.10: The differentials to and from Eg’?’ leave the first quadrant

4

Another simple example of a lacunary consideration is the following:

Proposition 2.2.11. Let (E,, d,) be a first-quadrant spectral sequence. If p < r and q < r —1, then
EV = EX.

Proof. Because the bidegree of d, is (r,1 —r), the domain Ef AL of the component of d, with

codomain EF” lies in the second quadrant, and the codomain EF AT OF the component of
d, with domain E}7 lies in the fourth quadrant. See Figure 2.2.10. Since these quadrants are
inhabited only by zero groups, the differentials in and out of E}'? are zero, so E/"! = E/ fl. All
later differentials out of this square must also be zero for the same reason. O

We notice that in the examples S*1 — E — S?/, i*: H*(E) — H*(S1) was surjective and also
the spectral sequence collapsed. This is no coincidence.

Corollary 2.2.12. Let F Y E > Bbea fibration such that the action of 7r1(B) on H*(F) is trivial and
H*(F) is a flat k-module. Then i* is surjective if and only if the spectral sequence of the bundle collapses
at E2.6

Proof. Recall from Proposition 2.2.5 that the fiber projection i*: H*(E) — H*(F) factors as be
realized as H*(E) - H*(E)/F, = E%* — Eg". This map will be surjective if and only if E%" =
cee = Eg" = E(z)”, which means that Eg” = Eg” nkerd, = Eg", so that dzE(z)" = 0, similarly that
d3Eg'. = 0 and so on: all differentials vanish on the left column.

® We do not discuss the general case where 711(B) potentially acts nontrivially on H*(F), but in general Eg" ~
H*(F)™(B), 50 in fact if i* is surjective, then 7ty (B) must act on H*(F) trivially.
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This is the case by definition if the sequence collapses at E,. For the converse implication,
note that by our assumptions, E, =~ H*(B)®; H*(F), and d, vanishes on H*(B) by lacunary
considerations. If i* is surjective, then as we have discussed, the differentials vanish on the left
columns E*. Since d» is an antiderivation vanishing on tensors of the form 1®z and x®1 both,
it is identically zero, so E3 = E; =~ H*(B)® H*(F). But d3 on H*(B) by necessity and on H*(F)
by assumption, so one has d3 = 0 as well. By induction, E; = E. O

Something even stronger can be said.

Theorem 2.2.13 (Leray-Hirsch). Let F <> E > B be a fibration such that the action of 7t1(B) on
H*(F) is trivial, H*(F) is a free k-module, and i* is surjective. Then H*(E) =~ H*(B)® H*(F) as an
H*(B)-module.

This theorem, due to Leray and Hirsch, can be viewed as a strengthening of the Kiinneth
Theorem B.1.2. The proof can be seen as a less structured version of that of Proposition A.4.4.

Proof. From Corollary 2.2.12 we see that gr, H*(E) = E,, @~ H*(B)®H*(F) as a bigraded al-
gebra, but it is not a priori clear what bearing this has on the original multiplicative structure.
Select a graded k-module basis (z;) for H*(F) and lift the elements 1®z; € EY = gr, H*(E)
back to elements z; of H*(E). Then M = *H*(B){z;} is a filtered graded H*(B)-submodule of
H*(E), and there is by Proposition 2.2.5 a natural H*(B)-module homomorphism ¢: E,;, — M.
This homomorphism clearly preserves the filtration induced from the grading of H*(B), so
gr,: H*(B)®H*(F) — H*(B)®H*(F) is defined, and as it takes 1®z; —— 1®z; by con-
struction, it is an H*(B)-module isomorphism. Thus, by Corollary 2.5.2, so is 9. O

Exercise 2.2.14. Derive the topological Kiinneth theorem over a field k by applying Theorem 2.2.13
to the projections of X x Y.

Remark 2.2.15. [EXPLAIN THE SIGNIFICANCE OF THE KUNNETH THEOREM AND THE ZIG-ZAG ARGU-
MENT PER LORING’S BOOK AS LERAY'S MOTIVATION FOR SPECTRAL SEQUENCES, POSSIBLY WITH AN
ORIGINAL LERAY QUOTE. BOREL QUOTE: “THE STARTING POINT IS AN ARGUMENT WHICH OCCURS
REPEATEDLY IN [1945A]. ITS FIRST GOAL WAS TO PROVE THAT THE ‘FORMS ON A SPACE’ (SEE 6) OBEY
SOME OF THE RULES OF EXTERIOR DIFFERENTIAL CALCULUS (CF. THE INTRODUCTORY REMARKS IN
[1945B] QUOTED ABOVE IN 5). ACCORDING TO [1950A] P. 9 OR [1959C], P.10, IT IS THE ANALYSIS OF
THIS ARGUMENT WHICH LED LERAY TO THE COHOMOLOGICAL INVARIANTS OF A CONTINUOUS MAP,
DESCRIBED INITIALLY IN [1946B].”]

Theorem 2.2.16 (Leray [Ler50][FIND THEOREM NUMBER]). Let F — E — B be a fibration and k a ring
such H*(B; k) contains no 2-torsion, the action of 711(B) on H*(F; k) is trivial, and H*(F) =~ k[Z]/(Z)?,
where each degree |zj| is even and positive; in other words, let F have the cohomology of a product of
connected even-dimensional spheres. Then H*(E) =~ H*(B) ® H*(F) as an H*(B)-module.

Proof. By the preceding Leray—Hirsch theorem 2.2.13 it is enough to show the spectral sequence
collapses at Ej, and by Corollary 2.2.12 to show that all differentials vanish on H*(F). Since
this group is spanned by monomials z/ = [ I zj in the generators, it is enough to show each
d,(1®z;) = 0. Suppose inductively that d, 1 = 0, so that E, =~ E; =~ H*(B) ® H*(F). We can write

d,(1®zy) =Zx]®z], x; € H*(B).
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Since d, lowers total degree by one, for every term such that x; # 0 and all j € | we have
|z¢| > |z¢| — 1 = zj, so that z; does not appear as a factor of any term in d,(1®z,). But then

0=d,(0) =d,(1®z]) =2) x;®z7/

since d, is a derivation. Since z, is not a factor of z/, the factor z,z/ is nonzero. The monomials
in the z; form a basis of H*(F), so it follows each x; is 2-torsion; but by assumption, there is no
2-torsion, so d,(1®z;) = > x] ®z/ = 0 itself, concluding the induction. O

After all this collapse, it is about time for an example with a nontrivial differential.

Example 2.2.17. Consider the Hopf fibration S! — S3 — S2, obtained by letting S < C* act
diagonally by complex multiplication on $* < C x C and modding out to get CP!. Of course
H*(S?) = Z[x]/(x?) for x = [S?] and H*(S') = A[z] for z = [S'], which is free abelian, so that
E; =~ H*(S?)® H*(S!). See Figure 2.2.18.

Figure 2.2.18: The Serre spectral sequence of S! — §% — §2

1|2z g, Zxz 1 Zxz
0|z " Zx 0]z
E;| 0 2 Ex| O 2

In this case, we already know the end result should be E,, = H*(S®) = Aly] for y € H3(S).
The only potentially nonzero differential is dp: Zz —> Zx, whose kernel will be H!(S3) = 0
and whose cokernel will be H2(S%) = 0; there is no need to worry about the associated graded
because each diagonal p + g = n has at most one nonzero entry. It follows d; is an isomorphism
and hence d(z) = +tx.

We will use a generalization of this calculation in Section 7.1 to calculate H*(CP™).

The d;, in the previous example stretching from the left column to the bottom row is the
tirst example of an important phenomenon that will play heavily in our computation of the
cohomology of a homogeneous space. It admits the following characterization. In the long exact
homotopy sequence of the Hopf fibration S! — S* — S2, the boundary map 0: 7(S?) — 711(S?)
is an isomorphism. Recall that this sequence can be identified with the long exact sequence of
the pair (S3,S!), where S! is thought of as the fiber over some point * € S?, and that this long
exact sequence is connected to the long exact homology sequence via the Hurewicz map. Modulo
torsion, the cohomology long exact sequence is dual to this long exact sequence.

Exercise 2.2.19. Use Hurewicz maps to check that the dual of 0 is 6: H'(S') > H?(S?,S!) and
the map 7*: H?(S?) =~ H?(S?, %) — H?(S3,S!) is an isomorphism.
Then d; is determined as d, = (71*)~! 0 4. In general (77%)~! 0§ is not a well-defined map,

but a relation on H'*'(B) x H'(F) = E;*' x E)". We will show momentarily that this relation

describes via representatives in E, the fransgression maps d,1: E?;:l — E:ﬂ’o for each r = 2.
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Figure 2.2.20: The transgression

0,5
E 6

AN

S|~ I N| Q| &= O
QU
[e)}

16,0
E6
0/1/2 3 4 5 6

We will discuss the transgression in both the filtration and Serre spectral sequences and prove
the following result in Section 2.8.

Proposition 2.2.21. Let F > E 75 B be a fibration with all spaces path-connected and such that the
action of 711 B on H*(F) is trivial. An element [z] € H"(F) = E(z)'r (Definition 2.8.1) represents an element
of E?g:l, and hence transgresses to the class in E:ﬁ’o represented by some [b] € H™*1(B), if and only if
there exists c € C"(E) in the singular cochain group such that i*c = z and dc = 7*b. This is the picture:

CI(E) —"— Z4(F) c—=z
29+1(B) =~ Z1+1(E), bE— .

s

We will ultimately need this cochain-level description to prove Theorem 8.1.5, but there is
an illuminating way of understanding the transgression which does not require us to descend
this far. Recall from Theorem B.1.4 that associated to a bundle F - E 5> B is an exact triangle of

homotopy groups
deg —1

Thus there is a degree-shifting map linking the homotopy groups of the base and fiber. Viewing
F = E|. as a specific fiber over a point * € B, this sequence arises from the long exact sequence
of relative homotopy groups associated to the pair (E, F),

702 (F) —> 702 (E) —> 70(E, F) 2274 7,(F),

via the homotopy lifting property. The long exact sequence of a pair

H*(F) 28 5*(E, F) — H*(E) — H*(F).
is one of the Eilenberg-Steenrod axioms, but it no longer will do in general to substitute H*(B) =
H*(B, «) for H*(E, F). If it did, we would always have a degree-shifting cohomological map like
the transgression linking the base and the fiber. Nevertheless, 7t is a map of pairs (E, F) — (B, ),
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so one has map of long exact sequences

.. —= HI(F) LHIM(E,F) —~ HI*Y(E) LHqH(F) I

o —> HI(%) — H‘7+1(B,*) 4“>H17+1(B) — H‘Hl(*) ...

Proposition 2.2.22. The transgression is given by the composite relation (7*)~1 0 4.

Proof. A pair ([b],[z]) € H7"!(B) x HY(F) stands in the relation (71*)~! o §, by definition, if 77*[b] =
S[z] in HT*Y(E, F). But [z] € HT*!(E, F) is by definition the class of éc for any cochain ¢ € C7(E)
such that i*c = z. Thus, if elements (z, ¢, b) satisfy the specification put forth in Proposition 2.2.21,
then 7w*[b] = [c] = J[z]. Conversely, if 77%[b] = J[z], then the proof of Proposition 2.2.21 shows
that the extension ¢ of z can be chosen so that 77*b = dc on the nose. O

Thus the transgressed classes in H7~!(F) can be imagined as the images of the connecting
homomorphism 77 = (7171)* 0 § in a fictitious long exact sequence

H*(F) -1 H*(B) — H*(E) - H*(F)

of a bundle corresponding to the long exact sequence of homotopy groups. The transgressive
elements can be said, morally speaking, to be those for which such a sequence holds.

Remark 2.2.23. There is an analogous Serre spectral sequence of a bundle in homology, whose
differentials are of degree (—r,r — 1), and a (partially defined) transgression H,(B) — H,_1(B).
Dually to our definition in cohomology, the transgressed elements of H;F are images of trans-
gressive elements of H,,1B under an incompletely-defined map 7. in the dual fictitious long
exact sequence

H*(B) N H*(F) - H*(E) - H*(B)

Because the Hurewicz homomorphism 7,(X, A) — H.(X, A) from homotopy groups to
homology groups discussed in Theorem B.1.1 is natural, it pieces together into a map from the
homotopy long exact sequence of a pair (E, F) to the homology long exact sequence of that pair.
It follows from the existence of this map of long exact sequences and the long exact homotopy
sequence of a bundle (Theorem B.1.4) that everything in the image of the Hurewicz map 7.F —
H,F is the image of the transgression in every fibration with fiber F, a fact we will have cause to
comment on again in Section 7.4. [FLEsH THIS OUT.] Moreover, when k is a field, the cohomology
transgression 7: H7~!(F) — HY(B) and the homology transgression t,: Hy(B) — H,_1(F) are
dual [Ral]. [FLESH THIS OUT.]

Remarks 2.2.24. (a) Although we will also have occasion to invoke the spectral sequence of a
filtered pGA again in Section 7.4, Theorem 8.1.5, and Appendix C.3, from here on out, “spectral
sequence” simpliciter will connote the cohomological Serre spectral sequence of a bundle. It will
be deployed with sufficient frequency that we allow ourselves also to abbreviate it SSS.

(b) This spectral sequences applies more generally, even if instance that 7B fails to act trivially
on H*(F), with the concession that the coefficients H*(F) must instead be taken as a sheaf of
groups or, at the most concrete, a k[7r; B]-module.
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(c) In the event the fibration F — E 5> B is in fact a fiber bundle, as it will be in all cases that
actually concern us, the Serre spectral sequence is isomorphic from E; on to the Leray spectral
sequence of the map 7r, which we will introduce in Appendix C.2 to complete our account of
Borel’s original 1953 proof of Theorem 8.1.14.

(d) We have stated Serre’s theorem for singular simplicial cohomology, but he initially stated
it for singular cubical homology and cohomology, and it goes through essentially unchanged
for Alexander-Spanier cohomology, Cech cohomology, or cohomology with Apy-cochains as we
introduce in Section 4.2. The skeletal filtration F,C*(E) = ker (C*(E) — C*(7t~'BF)) is actually
due to Kudo. Writing I = [0, 1] for the unit interval, I" — I? for the projection from a cube onto
the first p coordinates, and 7r: E — B for the fibration in question, Serre’s filtration is

FPCSe(E) := {c: I" > E | moc: I" — E — B factors through I" — I7}.

2.3. Sample applications

Starting in Chapter 3 and throughout the book we will see more than enough examples of the
Serre spectral sequence to build a healthy intuition, but before we do this the author wanted to
give some example of its broad applicability. We begin with a number of results Leray announced
in the Comptes Rendus notes where he publicized his creation to the world and a notable early
result of Borel and Serre before citing some results from Serre’s thesis. This material is not needed
for the main development.

The following theorem was the first successful application of spectral sequences by anyone
but Leray. In late 1949, Borel and Serre resolved what had been taken to be a hard problem in
one afternoon.

Theorem 2.3.1. If F — R" 55 B is a fiber bundle over a CW complex B with path-connected fiber F, then
H*(B) =~ 0 = H*(F).

We say the spaces F and B are acyclic in this case.

Proof. Since R" is connected, B must be as well. The homotopy long exact sequence of the bundle
contains the fragment 711(R") — mB — mpF, so B is simply-connected, and Theorem 2.2.2
applies. Since R" is n-dimensional, B is a CW complex of dimension at most n, and F is a
deformation retract of an open subset 7! (U) ~ U x F for contractible open U < B, so H>"*1B =
0 = H>"F'F. Let p,q < n be maximal such that H?(B) and HY(F) are nonzero; we need to
show p = g = 0. By the universal coefficient theorem B.1.1, we have E}" = HP(B; H1(F)) =
HP(B)® H(F) # 0. This is the red square Figure 2.3.2. Now we consider the E, page of the Serre
spectral sequence.
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Figure 2.3.2: Only blue is inhabited, so red does not support a differential

N\

N

Since H”?(B) = 0 = H™(F), the only potentially inhabited squares lie in the rectangle [0, p] x
[0, ], shown in blue in Figure 2.3.2. But differentials to and from the (p, 4)-square end outside of
this rectangle, so we must have Ef = E}7 # 0. But HPT1(R") = 0,50 p = g = 0. O

This is actually weaker than the original statement, which unfortunately uses a bit too much
background for the proof to be self-contained.

Theorem 2.3.3 (Borel-Serre). Let F — R" — B be a bundle with compact fiber F. Then F is a point and
Bis R".

Proof. Since R" is locally path-connected, so is F, and the quotient map reducing each path-
component of F to a point defines another fibration @: R” — B’. Since the base B’ is path-
connected, this is another fiber bundle, this time with connected fiber F,.

Figure 2.3.4: A contradictory permanent cycle

0 @1
Ex| 0O p n

We first show F is a point by contradiction. Note that for a sufficiently small neighborhood
U of any point of B we have @ }(U) ~ U x Fy an open subset of R”, and since F is assumed not
to be a point, it follows from dimension theory that B’ has topological dimension < n — 1. Now
we consider the Leray spectral sequence of the bundle Fy — R" — B’ in Cech cohomology with
compact supports H¥, as derived in Appendix C.2. This works algebraically the same way as the
Serre spectral sequence of the bundle but has

EY" = B (B; HU(F;R)) = HI(B;R) ® H!(F; R)
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and converges to ﬁC(R”;R), which is R in dimension n and zero in all other dimensions. It
follows the total degree n of E, is nonzero so for some p < n — 1 there is a nonzero element of
Eg’n_p . In particular, for some p there is a nonzero element x of HY (B;R). Let p be minimal such
this holds. Since F is compact connected, we have ﬁg(Fo; R) =~ ﬁO(FO; R) = R, represented by the
constant function 1. Now, as seen in Figure 2.3.4, the element x®1 is of minimum total degree
in E; (alternately), it receives no differentials from the nonzero region, so it must persist to E.
But Hf (R™;R) = 0, a contradiction.

We have shown each component Fy of the original fiber F is a point. As F is compact, it
follows it is a finite discrete set, so that R" is the universal cover of B. It follows 771 (B) is a finite
group acting freely freely on R". If 711(B) # 1, then by Cauchy’s theorem, there is an element
v € m1(B) of some prime order p, generating a free Z/p-action on R". Compactifying R" with a
point at infinity, we get a Z/p-action on S" with precisely one fixed point. But this is impossible
by Smith theory [Hsi7s, p. 50], which shows that the fixed point set X = (S")%/? must have
H*(X;F,) =~ H*(S™;IF,) for some sphere 5™ (with m < n). It follows that 7r(B) = 1, so F is
connected. O

Corollary 2.3.5 (Leray [Lerg6a]). Let F — E — B be a fibration such that the action of 711 B on H*(F)
is trivial and H*(F) is a free k-module. Suppose further that F and B are of finite type. Then the Poincaré
series satisfy

p(E) < p(B)p(F),

in the sense that each coefficient of p(B)p(F) — p(E) is nonnegative, with equality if and only if the fiber
inclusion F — E is surjective in cohomology. More specifically, there is a series b(t) € N[[t]] such that

p(E) + (1 +1)b(t) = p(B)p(F) in N[[¢]].

Proof. We take k = Q. Then E; = H*(B; Q) ® H*(F; Q) in the Serre spectral sequence of F — E —
B, showing p(E;) = p(B)p(F). The rank of each E}”, and hence the Poincaré polynomial, can
only decrease by Ey, and it can only fail to decrease if E; =~ E; that is the case if and only if
H*(E;Q) —» H*(F;Q), by Corollary 2.2.12.

On the level of graded vector spaces, through the selection of arbitrary graded linear comple-
ments, we have the following isomorphisms:

E> =~ kerdr ® E2/ier d,,
kerd, ~ imd, ® E3.

Since d, descends to a graded isomorphism E;/kerd, — imd; of degree one, it follows
p(Ey) = p(kerds) @t 'p(imdy) = p(E3) + (1 4+t )p(imdy).

Set by(t) = t~'p(imd,) € N[[t]], so that we get p(Ez) = p(E3) + (1 + t)ba(t). A similar analysis
provides for each r > 2 a series b,(t) € N[[t]] such that p(E;) = p(E;+1) + (1 + t)b,(t). Now, in
each fixed total degree 1, the sequence (E!) stabilizes at a finite r = r(n), so the n' coefficient
of bs(t) is zero for s > r(n). Hence it makes sense to take the limit as r — o of the equations

p(E2) = p(Ers1) + (1+1£) 2o bs(h). u

The Serre spectral sequence allows a vast generalization of the covering result Proposi-
tion B.2.5.
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Proposition 2.3.6. Let F — E — B be a fiber bundle such that the action of 1B on H*(F) is trivial and
h*(B) and h*(F) are finite. Then the Euler characteristics of these spaces satisfy x(E) = x(F)x(B).

Proof. Consider E, = H*(B) ® H*(F) as a single complex with deg(H’B® HTF) = p + q. With
this grading, x(E2) = x(B)x(F). By repeated application of Proposition A.3.1, one finds
X(E2) = x(E3) = --- = x(Ex) = X(E). ]

Proposition 2.3.7. Given a fibration F s E — B such that H*(B) =~ H*(S") and rt1(B) acts trivially
on H*(F), there exists a Wang exact sequence

degn—1

H*(F) H*(F)
* egn

\
H*(E).

Exercise 2.3.8 (Leray [Lerg6a]). Prove Proposition 2.3.7, consulting Figure 2.3.10 and emulating
the proof of Proposition 2.3.11.

[ADD LERAY'S G/S! PROOF AS BEST WE CAN RECONSTRUCT IT.]

2.3.1. Sphere bundles

Figure 2.3.9: The Gysin sequence Figure 2.3.10: The Wang sequence
Y
N\
N\
N
= AN ONONONONON NN n=1 N ™
Y
“ N
NG N
0 NN N NN 0 N
E,| 0O n E,| 0O n

Proposition 2.3.11 (Gysin, in homology [Gys41]; Steenrod, in cohomology [Stea, §11]). Given a

es6  fibration F — E %, B such that H*(F) =~ H*(S"1) and 7t1(B) acts trivially on H*(F), there exists a

657

long exact Gysin sequence of graded groups

H*(B) =5 H*(B)
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The map H*(B) — H*(B) is linear up to a sign and the map .. of degree 1 — n satisfies & (&*(b) —
x) =b— Zy(x).

In the most important case, F is actually a sphere.

Proof (Leray [Lerg6a]). From Figure 2.3.9, it is clear that the only potentially nontrivial differen-

tial is dy,, so E, = E; and E, .1 = Ex. The kernel and cokernel of d,, are respectively Egé”_l and

EL: in sequence form,
0— Eg;”_l Eg,n—l E§+n,0 Ego-i-n,o -0

is exact for each p. But since E,, = gr, H*(E), we have ELF o FiHP*"(E) and AR
HPT"(E)/FHP*"(E), so we can splice these sequences end-to-end: the horizontal file of

1n—1
EPFL"

pn—1 dn Lp+n0 p+1n—1 dp p+n+1,0
E" =5 E; — B

— HP"(E) ——

0
Eélo+n

is exact. Further, E;’O ~ HP(B) = Eé”n_l for all p, so we can roll up this sequence into an exact
triangle as claimed in the statement of the theorem. O

Exercise 2.3.12. Verify the map H*(B) — H*(E) arising from our identifications is indeed ¢* and
the map ¢ has the claimed H*(B)-linearity property.

We say a sphere bundle S"~! — E %, B is oriented with respect to k if the conditions of the
theorem hold. Thus all sphere bundles are oriented with respect to k = IF, or if 7t preserves the
orientation class [S"~!] € H"71(S"71), and not generally. Note that the map H*(B) — H*(B)
comes from the transgression d,,, which takes b ®[F] — (—1)Ilb-d,[F]®1, so it is right mul-
tiplication by (—1)/ld,,[F]. Thus in a sense d,[F] = T[F] is the only cohomology invariant of an
orientable sphere bundle ¢: E — B.

Definition 2.3.13. When S"~! — E — B is a Z-orientable sphere bundle, the class 7[F] € H"(B;Z)
is called the Euler class and written ¢(Z). When S"! — E — B is any sphere bundle, the class
7[F] € H"(B;[F,) is called the n'" Stiefel-Whitney class and written w,,(¢).

Since the Serre spectral sequence is functorial in bundle maps, so are these classes: that is, if
(f, f): (E iy ) — (E i B) is a map of oriented sphere bundles, then

fre(@) = e(@),
Frwn(@) = (@),

The coefficient homomorphism induced by Z — [, induces a map of spectral sequences sending
a generator of H"~1(S"~1;Z) to a generator of H"~1(S"~1;F;), so in fact w, = ¢ mod 2.
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Note that if  is odd, so that F is an even-dimensional cohomology sphere and k is chosen
so that H*(B; k) does not have 2-torsion, then by Theorem 2.2.16, the Euler class vanishes. We
will produce a consquence of this fact in Section 7.5. For now, note that the mapping cylinder
M¢ = BLI(E x I)/((e, 1) ~ &(e)) of §: E — Bis itself a fiber bundle over B with fibers the cones
{b} U (Ep x I) ~ D" over E, ~ S"~1, naturally containing ¢: E x {0} — B as a subbundle. We
can apply to this inclusion the following “fiber-relative” Serre spectral sequence.

Theorem 2.3.14. Let F — E — B be a fibration and E' a subspace of E such that E' < E — B is
also a fibration, with fiber F' such that 711 B acts trivially both on H*(F; k) and H*(F'; k). There exists a
first-quadrant fiber-relative Serre spectral sequence (E,,d,),=o of generally nonunital k-pGas with

E'" = HY (B; H(F, F’;k)),
EZT = gr, HP*(E, E';k).

If H*(F, F'; k) is a free k-module, we may also write E, ~ H*(B; k) ® H*(F, F'; k). This construction is
functorial in maps of fibrations (F,F') — (E,E’) — B of pairs.

Proof. We collapse each fiber of E’ by attaching the mapping cylinder of 7’: E — B to E along
E'. As B is a retract of E up M7t via the inclusion of B on the free end of M7/, the exact sequence
of the pair (E u M7, B) is a split short exact sequence

0 - H*(E u M, B) — H*(E u M) —> H*(B) — 0.

As M’ deformation retracts to B and CB to the cone point, it follows E u M’ ug CB ~ E up CE'.
Thus H*(E U M, B) ~ H*(E U CE') ~ H*(E, E'), so H*(E U M) ~ H*(E, E') ® H*(B).

The inclusion of B as a retract induces a map of fibrations (F v CF — Eu Mn’ — B) —
(* — B — B), inducing a map of spectral sequences which includes H*(B) =~ H*(B; H*(*)) in
E, = H* (B; H*(F u CF)) as the complement of E, = H*(B; H*(Fu CF')) = H*(B; H*(F,F')). As
the spectral sequence of the trivial bundle * — B — B collapses, its image in E. does as well,
representing the image of H*(B) —> H*(E U M7t’) on E.. It follows the spectral subsequence E.
converges to H*(E, E’) as claimed. O

Applying this tool to the relative spectral sequence (D", S"~!) — (Mg, E) Lo, B, so long as
m B acts trivially on H"~1(5"1) we have

E, = H*(B; H*(D",$""")) = H*(B; H*(S")) ~ H*(B)® H"(S") = Eo, =~ H*(MG, E),

since the spectral sequence has only the one nonzero row. It follows there is an element 1 €
H°(B; H"(D",5" 1)) such that ®: b +—> E*(b) — u is H*(B)-linear isomorphism H*(B) —
H**"(M¢,E). This u is called the Thom class. By construction, the inclusion (D",S"~!) ——
(Mg, E) determined by the inclusion of any fiber S"~! — E induces a surjection taking u to a
generator of H"(D",S"~!). We can equally well view u as an element of the cohomology of the
Thom space

T¢ = MC/E,

which we can think of a sort of bundle of discs all sharing one point at infinity. The Thom con-
struction is easily seen to be functorial in orientable sphere bundles, since the mapping cylinder
is, and it follows the Thom class is as well.
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Note from the long exact sequence of the pair (M¢, E) and commutativity of the diagram

ECs Mg —2o (Mg E)

Nk

B— (B, #)

that im 8* = kera* = & (ker ¢*) in positive degree. But ker ¢* is the ideal of H*(B) generated by
e(¢), while ~ ~
B*H*(ME,E) = B*im® = B*(im &* — u) = £*H*(B) — u.

It follows that u = +j*e.
Proposition 2.3.15. The Euler class is the restriction of the Thom class to the zero section.

Proof. That u and e are functorial in orientable sphere bundles, the equation u = +j*e can be seen
as an equality of natural transformations between the identity functor on orientable S"~!-bundles
¢ : E — B and the set-valued functor { — B — H"(B). Thus it will be enough to check the sign
on one example.

[To BE WRITTEN...] O

2.3.2. Homotopy groups of spheres and Eilenberg-Mac Lane spaces

[ADD RESULTS ON RATIONAL HOMOTOPY OF SPHERES AND ON LOOP SPACES]|

2.4. A natural lemmma on bundles

In this section, we use the Serre spectral sequence to prove a lemma on cohomology of bundles
we will use repeatedly to good effect. It seems analogous to the Theorem 2.2.13 thatif F - E — B
is a bundle such that H*(E) — H*(F) is surjective, then H*(E) ~ H*(B) ® H*(F) as an H*(B)-
module. There is a proof by Larry Smith [Smi6y, Cor. 4.4, p. 88] using the Eilenberg-Moore
spectral sequence as well as the Serre spectral sequence, but the following proof only uses what
we have already developed.

Let F be a topological space and §o: Ey — By an F-bundle. From the category of F-bundles
and F-bundle maps, we can form a slice category F-Bun/¢y of F-bundles over ¢y as follows. An
object of F-Bun/¢y is an F-bundle ¢ equipped with a bundle map ¢ — §o; a morphism between
objects ¢’ — ¢p and ¢ — (o is a bundle map ¢’ — ¢ making the expected triangle commute. Such
a map entails the following commuting prism:

i
E— ~E——=F,

h f
‘é’ lé Lé‘o (2.4.1)

p_" . gt p,

f/
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Note that the maps between total spaces yield two functors

F-Bun/g&y —> H*(E()-CGA:
(E — B) — H*(E);
(E— B)— H(B) ® H*(E).

H*(Bo)
If H*(Eg) — H*(F) is surjective, we claim these functors are naturally isomorphic.

Theorem 2.4.1. Let §o: Ey — By be an F-bundle such that the fiber inclusion F — E is H*-surjective,
such that H*(F) is a free k-module, and such that 1t1By acts trivially on H*(F). Then the fiber inclusions
of all F-bundles over ¢y are H*-surjective, and there is a natural ring isomorphism

H*(E) «— H*(B H*(E
(E) < H'(B) ® H'(Ey)

of functors F-Bun/¢o — H*(E()-CGA. Diagrammatically, the commutative diagram (2.4.1) gives rise to

H*(E') i

H*(E)

H*(B') ®p(p,) H* (Eo) pr— H*(B) ®p(p,) H* (Eo).
Verbally, if a fiber inclusion is surjective in cohomology, then cohomology takes pullbacks to
pushouts.

Proof. By the definition of a bundle map, the fiber inclusion F — Ej factors as F — E —
Ey, so the assumed surjectivity of H*(Ey) — H*(E) — H*(F) implies surjectivity of the factor
H*(E) — H*(F).

Because of these surjections, the spectral sequences of these bundles stabilize at their E, pages
by Corollary 2.2.12. Applying H* to the right square of the assemblage (2.4.1) yields

f* f*®id

H*(E) <— H*(Ey) H*(B)® H*(F) =—— H*(By) ® H*(F)
5*1 [gé; which manifests on the E; page as id®1 id®1
H*(B) ? H*(By), H*(B) - H*(By).

The commutativity of the left square means there is an induced map of rings

H*(B)H%)H*(EO) — H*(E),
b®x —  &*(b)f*(x),

whose E; manifestation is the canonical H*(B)-module isomorphism

H*(B) S [H*(By) ® H*(F)] <> H*(B) ® H*(F).

Since this E; map is a bijection, the ring map is an H*(Ey)-algebra isomorphism.
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For naturality, note that the ring map h*: H*(E) — H*(E’) is completely determined its
restrictions to its tensor-factors H*(B) and H*(Ep). The left square and top triangle of (2.4.1)
imply the commutativity of the squares

H*(E') <"~ H*(E) H*(E') <" H*(E)
(C’)*| ‘C* (f’)*‘ ‘f*
H* (B) < H*(B), H* (Eo) — H*(Eo),
so that these factor maps are respectively i*: H*(B) — H*(B’) and idy (g,).- O

2.5. Filtered objects

The rest of this chapter constitutes what should be seen as an appendix to the preceding sections
of the chapter, to fill in missing technical details and be referred back to as necessary. We will
eventually need some level of explicitness in describing the transgression and the construction of
a filtration spectral sequence, but the choice of how much to take on faith lies with the conscience
of the reader.

In all that follows, k will be an ungraded commutative ring with unity. A filtered module is a
pair (C, F,), where C is a k-module and F, is an infinite descending sequence

\%

o=F1=Rh=C>z2Fh>=2hKh=>--

of k-submodules. We also write F, = F,C.7 One can equivalently repackage this information as a
Z-graded k-module () F.C := @z F equipped with an injective endomorphism 7 of degree —1
which is an isomorphism in nonpositive degrees. We denote either of these equivalent phrasings,
slightly abusively, by (C, 7). Say a filtration is Hausdorff if (), F,C = 0, and finite if F,C = 0 for
p sufficiently large. The k-module

gr, C = cokeri = @ F,C/F,1C
p=0

is the associated graded module of (C,i). A filtered k-algebra (C,1) is a k-algebra C such that (C, i)
is a filtered group and F, - F; < F, 4 for all p,q. In this case gr, C becomes a graded k-algebra,
with multiplication defined on individual degrees by
grpC X gqu — 8l C,
(X + Fpi1) - (v + Fg1) = xy + Fpigra1.

Amap f: B— Cissaid to preserve filtrations (B, ) and (C, i) if f(F,B) < F,C. We write such
amapas f: (B,1) — (C,i). Such a map induces an associated graded map gr, f: gr, B — gr, C.
We have the following recurring result on such maps.

7 In general usage, filtrations (F,C) are not required to stabilize in negative degrees or to be exhaustive in the sense
that (7 FyC = C. Since we will never have cause to use such a general filtration, we include these more restrictive
hypotheses in our definition off the bat.
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Proposition 2.5.1. Let f: (B,1) — (C, i) be a filtration-preserving cochain map of filtered groups and
suppose that both filtrations are finite. Then if gr, f is an isomorphism, so also must be f itself.

Proof. Fix a filtration degree p sufficiently large that F, 1B = 0 = F,1B. We have a map

0——F,1B F,B gr, B 0
lf lf 2lgr.f
0——F,1C F,C gr, D 0

of short exact sequences; by the five lemma, it follows F,f: F,B — F,C is an isomorphism. This
begins a decreasing induction on p, which terminates in f: B— C when p = 0. ]

We can also define filtered graded k-modules (C®,i). These are simply direct sums C* =
@z C" of filtered k-modules (C",i,) in each degree, equipped with total filtration F,C* =
@,, F,C". Such an object is said to be finite in each degree (more commonly, bounded) if the filtra-
tion F,C" in each degree is finite. For maps of graded filtered groups, applying Proposition 2.5.1
individually in each degree, one finds the following.

Corollary 2.5.2. Let f: (B®,1) — (C®,1) be a filtration-preserving cochain map of filtered graded groups.
Suppose that both filtrations are finite in each degree. Then if gr, f is an isomorphism, so also must be f
itself.

It is also useful to know that if an associated graded object is free, the original object must be.

Proposition 2.5.3 ([McCo1, Example 1.K, p. 25]). Let (A®,i) be a filtered graded k-algebra, free as a
k-module. If gr, A® is a free bigraded k-cca, then gr, A®* =~ A® as a singly graded k-CGA.

Proof. Select free bihomogeneous generators x € E5 of E,, and for each of these fix a repre-
sentative y € F,H"*9(A) Then the assignment x — y extends to a filtration-preserving map of
graded ccas E,;, — H*(A). The induced map of associated graded algebras E,, = grE, —
gr H*(A) = E,, takes each generator x — x, and hence is an isomorphism, so by Corollary 2.5.2,
the map E,, — H*(A) is an isomorphism as well. O

A filtered differential k-module is a triple (C,d,7) such that (C, d) is a differential group, (C,7)
a filtered group, and d preserves the filtration in the sense that dF, < F,. A homomorphism of
filtered differential k-modules is a cochain map commuting with the filtration. In this case the
differential 4 descends to a differential dy on gr, C, inducing a short exact sequence of differential
k-modules i

0 @EC - @FEC -1 gr,C—0,
pe’Z pe’

where 7 is the degree-(—1) map we have identified with the filtration. This induces a triangular
exact sequence

@ H(E,C) f @ H(F,C)

Hd() (gro C)
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of cohomology groups. Such a triangle is traditionally called an exact couple. If we set d; = jk,
then d? = j(kj)k = 0, so d; is a differential on Hy,(gr, C). Note for later that H(gr, C) is naturally
graded by H(gr, C)" = H*(grp C) and the map 7 induces a filtration F,H(C) = i"H(F,C) on
H(C).

Remark 2.5.4. Note that a map of filtered differential k-modules induces a map of short exact
sequences and a map of exact couples in cohomology (a triangular prism), and so in particular a
map of differential k-modules between the E components.

2.6. The filtration spectral sequence

There is a functor
Al — = Ay Ay —2 S A,

N TN
Ey, E,,

taking an exact couple to the derived couple whose objects are A, = iA; and E, = H(Ey,d;), and
whose maps are given by i = (i | iA;) and j: ia — [ja] and kp: [e] — ke.

Exercise 2.6.1. Check these maps are well-defined and that the derived couple is again exact.
Exercise 2.6.2. Check that a map of exact couples induces a map of derived couples.

One iterates this process, and the sequence (E,,d,) of differential groups so derived is called
the spectral sequence of the exact couple. Bach E, is traditionally called a page.® A homomorphism
of spectral sequences is a sequence (gbr: (Er, d}) — (E,, dr))@n of cochain maps of differential
groups such that each ¢, for r > n is induced by ¢,, which is to say ¢,41 = H(¢,). From
Remark 2.5.4 and Exercise 2.6.2, it follows that a map of filtered differential groups induces a
map of exact couples and iteratively a map of spectral sequences.

In all our applications in this book, the initial exact couple (A;, E1) will be that from Sec-
tion 2.5, namely ((—Bp H(F,C), H(gr, C)), induced by a filtered differential group (C,d, 7). In this
case, the p'" graded component of A, = i" Ay is the image of i" = H(i)": H(F,C) — H(E,_.C).
Since our filtrations all have C = FyC = F_1C = ---, for r > p, the map i, is an injection on the
p™ component. If the filtration F,H(C) is finite, say with F,H(C) = 0, then A, is the direct sum of
the graded components

-+ =H(C) = H(C) = iH(FC) = *H(FC) = -+ > "H(F,.1C) >0=0=---,

which can be identified with the filtrands F,H(C), and i, is injective on every component since
everything is now a submodule of H(C). Thus the 7! triangle becomes a short exact sequence

8 Even more traditionally, it was called a term. The author is not sure when the switch started.
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As jk, = j,0 = 0, it follows E, = E,;; = ---. We will call this terminal value the limiting page,
and denote it £... By exactness,
A, F,H(C)

irAr = 6;) Fp+1H(C) = gt, H(C)

lle

Ew:Er

In such a situation, when E,, =~ gr, H(C), we say that (E,, d,) converges to H(C). One sometimes
writes this as E, — H(C).

There is another important way to look at this spectral sequence: since we ultimately want to
use it to understand the cohomology of C, we should understand the differentials in terms of C
itself. Let’s first try in terms of E;. Each page, by definition, is the cohomology of the previous,
so that for instance E,;; = (kerd,)/(imd,); and here in turn kerd, and imd, are subgroups
of E, = (kerd,_1)/(imd,_1). Thus, the preimages of kerd, and imd, under the quotient map
nt: kerd,_y —» E,, both contain kerd,_;, and by the third isomorphism theorem, we still have
(m'kerd,)/(m 'imd,) = E,,;. Iteratively pulling all the kernels and images back to E;, we get
a sequence of subgroups

—~

imd; <imd, <imds < --- < kerds < kerd, < kerd,
of Eq such that E, . = lZeTr?Zr /ifn\;d,. We can now define E., := () lze\r;l,/ U {rﬁli,, which is defined

independent of the convergence of the sequence.
Let us try to characterize these subgroups.

¢ An element e € E; lies in ifrr\fdl, meaning it represents the trivial class [0], € Ej, if is in im jk,
or equivalently, by exactness, if e € j(ker ).

* An element e € E; lies in lza?il, meaning it represents an element of Ej, if it is in ker jk, or
equivalently, by exactness, if e € k(im 7).

* An element [e], € Ep, meaning it represents the trivial class [0]3 € Eg, if it is in im jpk,
meaning [e]y = [ji~'ke']y for some ¢’ € k~!(imi). This means e — ji~lke’ € imd, = j(keri).
Thus e = ji~ke' + ja for some a € keri, so e € jkeri?. Conversely, if ¢ = ja and i?a = 0, then
ia = ke’ for some ¢’ € 1@?11 by exactness and e = ji~lke' € joka[€']a.

e An element [e]; € E; lies in 1@21;; meaning it represents an element of E3, if joka[e], = [0],
or in other words, if ji—'ke € imd; = j(keri).? Thus ji ke = ja for some a € keri, so
i~'ke —a € kerj = imi and ke € im i2. Conversely, if ke € im i?, then ji ~'ke = 0.

Exercise 2.6.3. Show by induction that imd, = j(keri") and kerd, = k=1(imi").

Thus the operation ji~"k, defined on elements of lza“Jdr, descends to become d,,1. Now we
lift this description back to the associated graded group Ey := gr, C. An element e, of E] =
H(F,C/F,4+1C) is represented by a cocycle in gr, C, which is an element ¢, + F,+1 such that dc,
represents 0 in gr, C, or in other words dc;, € F,;1. Such an element ¢, represents 0 in E; if it lies
in F, 41 + dF,. Let us agree to write for these groups of representatives

Zh = A{cp + Fyi1egr,C: dcy € Fyy1},
B = {dep +Fpi1 € gr, C:cpe Fpl.

9 The particular preimage i~1ke taken does not affect the calculation.
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The maps i, j, k in the original exact triangle arise from the long exact sequence

0-@DF > @F, — gr,C—0,

taking, in individual graded components,

H(Fp41) i H(F,) Cpi1 +dFpy1 H>cpyq + dF,.

k j
H(Fp/Fp41), cp + Fpi1 +dF,

[FIX ARROWHEAD LOCATIONS HERE]
Note that i, j, k respectively change the p-grading by —1,0,1, so that the p-degree of d,, which
is induced from ji~(~Vk on kerd,_1, is 0 + (r—1) +1 = r. Moreover, since the connecting map
k takes a class represented by c € C to one represented by dc, we see each d, is induced by the
original differential d.

Write Z, and B, respectively for the subgroups of Ey comprising representatives of kerd, <
Ey = H(Eo) and of imd, < E;.

e From Exercise 2.6.3, an element ¢ € Ef lies in iﬂ?d, if it can be written as ja with i"a = 0 for
some a € Ay. That is, there is ¢, + dF, such that e = ¢, + dF, + F,11 and ¢, represents zero
in H(F,—,), meaning c, = dc,_, for some c,_, € F,_,.

e From Exercise 2.6.3, an element ¢ € Ef lies in 12e\r?ir if ke can be written as i"a for some
a € Ay If ¢, € F, represents e, that is, dc, + dF, ;1 € H(Fyy1) is ¢pyrq1 + dFpy1 for some
cocycle ¢piri1 € Fpirya-

Summing up, for r > 0 we have
zr = {cp+F1e gr, C :dcyeFypri1},
Bl = {dep++Fpy1 € gr, C:cpreFyy,

the cosets of elements that d respectively sends forward r + 1 steps or has sent forward r steps.
Note how our definitions of Zj; and By were contrived to make this still true for » = 0; in fact
the expressions still make sense for r = —1, yielding respectively gr, C and 0. To produce more
succinct expressions, we adopt the notation F, ., := {c, € F, : dc, € F;}. Expressed in terms of
elements of C, then, we see that for r > —1,

Fpspiri1+ Fpia Fp_spirs

Z) = ~ ,
Ferl Fp+1ap+r+l
r= T = Ir , (2.6.4)
p+1 p—r—p+1
= Bf defrap =+ Fp+1—>p+r+1
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To determine E,,, we extend the notation by setting F.. := N
one has

pez, Fp and oo := ez Fp- Then

Fyovi=[Fpopir=Fpnd'Fx  and  F ., = UUFrap=Fn|JdF o,
r=0 r=0

so quotients involving these expressions will really be about the complex C := F_./Fy, its in-
duced differential 4, and the induced filtrations of C, kerd, imd, and H(C). Taking r — 0 in
(2.6.4), we have

F, .o +F E,_, F,kerd
zé’ozﬂzfz pootTp+1  Fpooo o FpKer

Fp—i—l B Fprioo B Fp+1kerd_’
B, = | Bl - dEcooptFprr | dFoosp F,,imd‘_
Fp+] dF—OO—>p+1 Pp+1 lmd,
zh, Fykerd _
Bl = 2% o p 1 ~ gr, H(C).

Bb, ~ Fyimd +Fpy kerd

When we assume our filtrations are exhaustive (F_,, = C) and Hausdorff (F,, = 0), so that C = C,
we get the better expressions

VASES gr, kerd,
B ~ gr, imd,
Ef, = gr, H(C).

Remark 2.6.5. N.B. that this is not the indexing convention used by most authors. It is common
to define the spectral sequence of a filtration directly, without exact couples, and in this case it is
natural to use Z/ for our Fy - pirand B? for our dF,_, p. Under these conventions, our formula

for E! transforms to the standard expression zP / (Bf_1 + ijll).

Now let us consider a filtered differential graded algebra (C®,d, 7). This is a filtered differential
group such that (C*,d) is a bca and (C*,7) is a filtered graded group. A homomorphism of
filtered differential graded algebras is a filtration-preserving pGa map. In the resulting exact
couple (P H*(C}), H*(gr, C*)), one has i: H”(F;H) — H"(F}) and j: H"(F}) — H"(F;;/F;H)
of degree zero, but connecting map k: H"(F} /F;; ) — H”“(F}; 1) of degree 1. It is standard
to define a complementary grading q := n — p so that F; = Fﬁ 1. Then we get the statement we

made at the beginning of this chapter:

Theorem 2.1.2. (Koszul). Let (C*,d, 1) be a filtered differential N-graded algebra such that the associated
filtration of H"(C*) is finite for each n. Then there is an associated filtration spectral sequence in which

® (EO/ do) = (gr. C.’gro d)’
* E, =~ H*(gr, C*),

o EN ~ gr, HPFI(C®).
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We call this the filtration spectral sequence of the filtered pca (C*®,d, 7). It is first-quadrant spectral
sequence in that E/'" = 0if p < 0 or g < 0. All pages become differential algebras under the bigrading
E;" induced from the bigrading Ey" == gr, CP*1 of Eg = gr, C* and the product induced from that of C,
with differential d, of bidegree (r, 1 — r). Moreover, the product on each page is induced by that on the last.
This sequence is functorial in homomorphisms of filtered DGAs.

Proof. Everything follows from the previous discussion except the statements about convergence,
bidegrees, and product structure. Because the filtrations are finite in each degree, the convergence
result follows in each degree separately from the previous discussion.

For bidegrees of d,, first note that dj is just the internal differential of Eg = gr, C by definition,
which is of bidegree (p,q) = (0,1). The first exact couple (A1, Ey, 1, j, k) is the long exact sequence
associated to the short exact sequence of chain complexes 0 — @ F,C - @ F,C L gr,C—0. As
we said before the proposition, i, j, k respectively increase the complex degree n by 1,0,0, and we
saw before they increase p by —1,0, 1. Thus their respective (p, n)-bidegrees are (—1,0), (0,0), (1,1),
so their (p, g)-bidegrees are (—1,1), (0,0), (1,0). Recalling that the differential d, is represented by
e —> ji*(rfl)ke mod irr’wl\ril on representatives e € kér\dril < E;, we see bideg(d,) = (r,1—7)
and deg(d,) = 1.

As for the multiplication, we consult (2.6.4). If a € F, ., ,11C" and b € prﬂp/HHC”/, then

ab e Fp . Fp/ < Fp+p’ and d(llb) =da-b+ (—1)pll -db € Fp+y+1 . Fp/ + Pp . Fp/+r+1 < Fp+p’+r+1/

soabe Fyy, p+p/+r+1C”+"I has the right filtration behavior and algebra degree, and it the fact
the multiplication on each page is induced by that on the last will be clear once we check this
putative multiplication on E; is well-defined. To do so, we need to see that we could have chosen
another representative congruent to 2 modulo dF, , + Fy11 - p4,4+1 (and similarly for b, but the
argument is symmetric); for this it is enough to note Fy 1 piri1- Fy o pryra1 < Fpipri1 o pyprarst
and dFy - Fy . pripy1 < de+p’—r—>p’+p’-

Since the multiplication adds filtration degrees p and algebra degrees n, it adds the comple-
mentary degree g = n — p as well, so each E;"* is a bigraded algebra. That d, is a derivation on
E, follows from the fact that it is induced from d. O

Exercise 2.6.6. Check that indeed

Fp+1ap+r+l ) Fp’—>p’+r+1 Fp+p’+1—>p+p’+r+1r

<
AFpr - Fyspririn S AFpipropripr-
Given a differential bigraded algebra (A**,d), the horizontal filtration, is given by

F A% = @ A™.
izp
The algebra is also a filtered DGa if in the decomposition d = 3., d* into component maps (see
Appendix A.3.1) one has d* = 0 for £ < 0. In this case, the theorem applied to (A**,d, i) yields a
spectral sequence (E,, d,)** with Ey = gr, A** again. The filtration of H"(A**) is clearly finite in
each total degree n = p + g since the filtration FF A" = @, , A”"~ already is.

izp

Corollary 2.6.7. Let (A**,d, 1) be a filtered, nonnegatively-bigraded DGA. Then in the spectral sequence
associated to the horizontal filtration one has
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(Eo, do) = (A**,d"),

Er = @y H (AP*,d0), di = H(d"),

Ex = Hj Hy (A**),
* Ep, =gr, H*(A*®).
In one recurrent situation, we can say even more about E,.

Corollary 2.6.8. If (A**,d,i) = (A*?,d")® (A%, d°) is free as a k-module and i is the horizontal
filtration, then

o« By~ A, dy =id® d°,
* Ey = AY®@H%(A%),  di=d'®id,
o Ey = HY(A0)® HYy(A%),

* E, =gr, H*(A).

Remark 2.6.9. The algebraic Kiinneth Theorem A.3.2 of this chapter and the universal coefficient
Theorem B.1.1 of the appendices both are special cases of general filtration spectral sequences
that still exist if we do not assume that the modules in question are free over the base ring k or
that k is a principal ideal domain.

2.7. Fundamental results on spectral sequences

A common way to understand the cohomology ring of a filtered DGA is to engage in wishful
thinking: one finds another spectral sequence that one would like to approximate that of the
DGA in question, contrives a map between the idealized sequence and the actual sequence, and
shows it yields an isomorphism on a late enough page. The theoretical justification behind this
chicanery has at most two steps.

Theorem 2.7.1 (Zeeman-Moore, [MToo, Thm. VIL.2.4, p. 375]). Let (¢,): ('E;,'d;,) — (E,, d,) be
a map of bigraded spectral sequences of k-modules such that Ey ~ E}’®EY* and 'E; =~ 'E3° Q'Ey®
decompose as tensor products. Consider the following three conditions:

* (B)n: lpg'o is an isomorphism for p < N and an injection for p = N.

* (F)n: wg’q is an isomorphism for ¢ < N and an injection for g = N.

o (E)n: Wi is an isomorphism for p + g < N and an injection for p +q = N.

o (E)f;: i is, for all r > 2, an isomorphism for p + q < N and an injection for p +q = N.
There are the following implications:

* (F)n and (B)y together imply (E);.

® (F)n—1 and (E)n together imply (B)y.

* (B)ny1 and (E)y together imply (F)y.
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Figure 2.7.1: The conditions (B);, (F), (E), in Zeeman's theorem, isomorphism blue, injection red

n n n
0 0 0
AN n Bl 0 7 E 0 n

We will use this result to prove the Borel transgression theorem Theorem 7.4.5 and then again
in Borel’s derivation Section 8.1.2 of the Cartan algebra. Given an isomorphism of E, pages or
Ey pages then shows that the inducing map of DGAs was a quasi-isomorphism.

Proposition 2.7.2. Let f: A — B be a map of filtered pGas and (¢,): ('E;,'d,) — (E,,d,) the associ-
ated map of filtration spectral sequences. Suppose that both filtrations are finite in each degree (as defined
in Section 2.5) If 1, is an isomorphism for any r > 0, then f*: H*(A) — H*(B) is an isomorphism.

Proof. If any 1, is an isomorphism, then since 'd,p, = ,d,, it follows that all later ¢, and 1, are
isomorphisms. By Corollary 2.6.7, {, is the isomorphism gr, f*: gr, H*(A) — gr, H*(B). For
any given total degree n, we can apply Corollary 2.5.2 to the map ¢, : gr, H"(A) — gr, H"(B)
to conclude H"(f) is an isomorphism. O

Here is a useful splitting-type result for spectral sequences.

Proposition 2.7.3 ([McCo1, Example 1.K, p. 25]). Let (A,d,17) be a filtered differential k-algebra, free
as a k-module, and (E,, d,) the associated spectral sequence. If E, is a free k-cGa , then E,, = H*(A,d)
as a k-CGA.

Proof. This is just an application of Proposition 2.5.3. O]

2.8. The fransgression

Early on in the history of bigraded spectral sequences of the form discussed above, it was noticed
that the maps d,: E¥ 1 — EY from the left column to the bottom row (Figure 2.2.20) have a
special importance.

Definition 2.8.1 (Koszul, 1950 [Kos50, Sec. 18]). Let (E;, d,) be the filtration spectral sequence of a
filtered pGa (C®,d,7). If z € Eg’r_l is in the kernel of each d), for p <7, so that d,z € E?’r is defined
(that is, if z survives long enough to be in the domain of an edge homomorphism), then z is said
to transgress. The transgression is the dotted arrow T in the diagram

E?,V*l( E?,l’*l

r0 < r,0
E1 —E",

0,r—1 0,r—1
1 r :

described as the relation on EQ'O x E givenby x 7z < [x|g, =d;zand z€ E
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It is not ruled out by this convention that 07 z; the important part is just that d,z = 0 for
p < |z|. It is wrong but conventional to write x = 7(z) and think of the transgression as a
partially-defined map z — 7z on E?”—l, either ignoring the ambiguity inherent in viewing d,z
as an element of E; or else removing it by singling out a specific preimage of d,z in E;, which is
sometimes called choosing a transgression.

We may rephrase this in terms of the filtered pGa as follows.

Proposition 2.8.2. Let (E,,d,) be the filtration spectral sequence of a filtered DGA (A®,d,i). An element
z e EY' = H~Y(FyC*/F,C*, dy) transgresses to Tz € E}° = H'(F,C*/F,11C*,do) if and only if there
exists ¢ € FyC"~! such that z represents c and dc € F,C" represents Tz.

When dealing with the Leray or Serre spectral sequences, which on the Ey and E; pages still
can depend on the sheaf resolution or cohomology theory chosen, it is more conventional to
conceive of the transgression as a relation on the E; page. The description at the cochain level
remains unchanged by this.

Historical remarks 2.8.3. According to the concluding notes in Greub et al. [GHV76], instances of
transgressions were first identified by Shiing-Shen Chern [Che46] and Guy Hirsch [Hir48] before
Koszul observed the pattern and coined the term “transgression” in his thesis work.

The filtration spectral sequence is first described in Koszul’s Comptes Rendus note [Kos47a],
and is extracted from Leray’s earlier work as described in a 1946 Comptes Rendus notice [Ler46a].
Koszul was the first other person to work through and understand Leray’s post-war topological
output, and was the chief instigator of the simplifications that made spectral sequences accessible
to the rest of the mathematical community [Miloo]. The term filtration itself and its isolation was
due to Cartan. Exact couples are due to Massey [Mas52, Mas53].

2.9. Proofs regarding the Serre spectral sequence

In this section we prove Theorem 2.2.2 and its elaborations.

Theorem 2.2.2. Let F — E — B be a fibration such that 1t1B acts trivially on H*(F; k). There exists a
first-quadrant spectral Serre spectral sequence (E,,d,);>o of k-DGAs with

EN" = CPHI(E, EF~Lk),
EY" = HP(B; HY(F;k)),
EET = gr, HPY(E;k),

for the filtrations (EP) and F,H*(E) indicated above. If H*(F; k) is a free k-module (for instance, if k is a
field), we may also write E; =~ H*(B; k) ® H*(F; k). This construction is functorial in fibrations E — B
and in rings k, in that a map of fibrations or of rings induces a map of spectral sequences.

Proof. The existence of the sequence is given by Theorem 2.1.2. The convergence will follow if we
can show F,H"(E) = 0 for p > n, but this is so because 71<,_1(E, EP~!) = 7<,_1(B,B*~!) = 0 by
the homotopy lifting property.

The functoriality of the spectral sequence in bundle maps follows from the fact any map
B — B’ between CW complexes can be homotoped to a cellular map f with f(BP) < (B’)". By
the homotopy lifting property, the resulting map f : E — E’ of total spaces will be homotopic to
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the original, but now will satisfy f(E”) < (E')?.*° Thus f*C*(Epfl) < Cu((E")P1), soif ¢’ € C*(E)
annihilates C,((E')?~!), then f*c’ = ¢’ o f, annihilates C,(EP~!), meaning f* (F,C') < F,C. Now
use that the filtration spectral sequence is functorial in filtration-preserving bGa maps.

The functoriality in kmaps follows from the fact a coefficient group homomorphism ¢:
kk —>
kk' induces homomorphisms C"(E;
kk) — C"(E;
kk') and if ¢ is a map of rings, these is a khomomorphism with respect to cup product, obviously
preserving the filtration.

The nontrivial part of the proof involves identifying the E, page. The page E is the associated
graded algebra gr, C*(E) with summands C*(E, EF~1)/C*(E, EP). Considekthe map of complexes
(2.2.1) induced by the inclusion of EP~! in E?, the Snake Lemma identifies these summands
with C*(EP, EP~1). Thus E; = D, H*(EP/EP~1). Since B is formed from BP~! by attaching p-
cells along their boundaries and a fibration over a contractible space is trivial, we have a further
identification

H*(EP/EP~') = Hom (Cell,(E), H*(F; kk)) =: C2 (B; H* (F; kk)).

Once we verify that the differential d; can be identified with the cellular coboundary operator
Scen and the product with the cup product, it will follow immediately that E, ~ H*(B; H*(F;
kk)) as bigraded

kk-modules and it will only remain to verify that the product structure on E, agrees up to sign
with the cup product on H* (B; H*(F;

kk)).

[To BE WRITTEN...] O

Proposition 2.2.5. Let F L ES Bbea fibration such that 1t1B acts trivially on H*(F). The fiber projec-
tion i*: H*(E) — H*(F) is realized by the left-column edge map E3* — E%* < EY* in Theorent 2.2.2:
to wit, we can write

gr, H*(E) = E3* —» EY® «— EY* > H*(F).
Likewise, the base lift 7r* : H*(B) — H*(E) is realized by the bottom-row edge map Ey° — E3Y < E3*:

H*(B) > E3° —» E3® «—— EY* > gr, H*(E).

Proof [McCo1, p. 147]. We have a commutative square

—_— > %
B

—3B

F——
ﬂl<

19 This could also be achieved with a functorial CW replacement, for example the one replacing a space with its
total singular simplicial complex.

 ap—
i

T
e

W<—mM<—"m

-
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where each column (and row) is a fibration, with the original fibration in the middle column, and
the maps between columns are fiber-preserving. These maps induce maps of spectral sequences,
which we can denote as

FEr — E — BEI“

The middle spectral sequence is the Serre spectral sequence of the original fibration, while FE, is
that of F — F — x, which collapses at 'E, = H*(x; H*(F)) = H*(F), and PE, is that of x — B — B,
which also collapses instantly, at ’E, = H*(B; H*(x)) = H*(B). On E, pages, the induced maps
are E5(i*): E; —> TE,, which is the left-column projection H*(B; H*(F)) — H°(B; H*(F)) =
H*(F), and Ex(7t*): BE; — E,, which is the bottom-row inclusion H*(B) — H*(B; H(F)), the
maps we would like to descend to the maps i* = gr, i* and ©* = gr, r* on E, pages. The maps
between E., pages are
H* (F)

14
* 3
FE, 22 or H*(E) E-1 BE,
14

H*(B)/

by the fact that the isomorphism of final page E,, with gr, H*(E) is natural. But that shows that
these maps descend from the E; column and row maps as claimed. O

We will make extensive use of the transgression in the Serre spectral sequence of a bundle in
the last two chapters. On the E; level, an edge homomorphism d, takes (a submodule of) H ~!(F)
to (a quotient of) H"(B), but we will need to know what this means on the cochain level, so we
need a slightly more topological description.

Proposition 2.2.21. Let F L EZX Bbhea fibration with all spaces path-connected and such that the
action of 711 B on H*(F) is trivial. An element [z] € H"(F) = E(z)’r (Definition 2.8.1) represents an element

of Egil, and hence transgresses to the class in E:ﬁ’o represented by some [b] € H™*1(B), if and only if
there exists c € C"(E) in the singular cochain group such that i*c = z and dc = 7*b. This is the picture:
CI(E) —"— Z4(F) C—=z
Z1+1(B) —> ZT+Y(E), b sc.

Proof. Recall that the Serre spectral sequence is the filtration spectral sequence associated to the
filtration F,C*(E) = C*(E,EP~'),"" of the singular cochain algebra, where EF~! := 7n~!B~! and
(BP) is a CW structure on B with one 0-cell.

Consulting Proposition 2.8.2, ¢’ € C"(E) represents a transgressive element if and only if
¢’ € FpC"(E) = C'(E) and ¢’ € F,.1C"*Y(E) = C"*Y(E, E"). Of course 5(5c’) = 0, so éc’ represents
a class in H™*1(E, E"). Since 7 satisfies the homotopy lifting property with respect to spheres,
nt«(E,E") — m.(B, B") is an isomorphism, and 7t<, and hence H, vanish on (E, E") and (B, B")

1 Again, the surprising p — 1 ensures that FpC*(E) = C*(E).
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since B” is the r-skeleton of B, so by the Hurewicz theorem B.1.1, H,41(E,E") — H,4+1(B,B")
can be identified with the isomorphism 7t,.1(E,E") — m,41(B, B"), and by the universal co-
efficient theorem B.1.1, 7*: H'*!(B, B") — H'*!(E,E") is also an isomorphism. Thus there is
b e C"*Y(B,B") such that 7*[b] = [6c'] € H"'(E, E"), meaning 7t*b — éc’ is some coboundary
5c” for ¢ € C"*1(E,E"). Set ¢ := ¢’ + ¢”; then and c presents the same class as ¢’ in Eg'r and
dc = m*b for b e Z'*1(B). Evidently, since 6c € C"(E, E"), its restriction to E” = 7r~1(B") and hence
F = 7~ 1(BY) is zero, so i*c = z represents a class of H"(F).

Conversely, suppose b’ € Z'*1(B) is such that 77*b’ represents dc’ for some ¢’ € C'(E) such
that i*c’ = z is a cocycle in C"(F). In the long exact cohomology sequence of the pair (B, B") we
have the fragment H'*!(B, B") — H"*!(B) — H"*1(B") = 0, so V' differs by a coboundary from a
cocycle b e Z"*Y(B,B"), say b = I’ + §b". Pulling back, w*b = w*b’ + t*5b" = 5(c' + t*b"), where
c == + *b” satisfies i*c = i*¢’ + (71i)*b" = z. O
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Chapter 3

The cohomology of the classical groups

The rational cohomology of a compact Lie group G is as simple as anyone has any right to
expect, and this simplicity can be seen as caused either by the multiplcation on G or by the
existence of invariant differential forms (again a consequence of the multiplication). The Serre
spectral sequence will allow us to compute the rational cohomology of the classical groups, a
major achievement in the 1930s, in a few pages. We will cite general references for this material
throughout the chapter, and diligently recount historical origins when we know them. Proofs,
however, unless explicitly noted otherwise, have been dredged from the author’s own memories
or created anew. We start out with k = Q, which destroys torsion off the bat, but much can be said
with Z and torsion coefficients, and these computations give nice examples of the Serre spectral
sequence, so we include them.

The general structure of the work does not require the results of this chapter, but the example
computations in later sections all do.

3.1. Complex and quaternionic unitary groups

Note that U(n) acts by isometries on C", so that it preserves the unit sphere S*~1. If we view
this action as a left action on the space C™ 1 of column vectors, the first column of an element
g of U(n) determines where it takes the standard first basis vector e; = (1,0)7 € $?*~1, so the

stabilizer of e; is the subgroup
1 0
0" Umn-1)

of elements with first column e;, which we will identify with U(n — 1). Since the first vector
of g € U(n) can be any element of S?*~!, the action of U(n) on S*'~! is transitive, so the orbit—
stabilizer theorem yields a diffeomorphism U(n)/U(n — 1) =~ $?*~!, which is in fact a fiber bundle

Un—1) — Un) — §"71,
Similarly, the action of Sp(n) on H", preserving the unit sphere S*'~1, gives rise to a fiber bundle
Sp(n —1) — Sp(n) — S,
and the action of O(n) on R", preserving S"~!, gives rise to bundles
O(n—1) —0O(n) — §*71,
SO(n —1) —SO(n) — S"~1,

44
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The SSSs of these bundles allow us to recover the cohomology of the classical groups.

Proposition 3.1.1. The integral cohomology of the unitary group U(n) is given by
H*(U(Tl),Z) = A[Z],Zg,...,Zznfl], degz]- =j.

This can be seen as saying that in the SSSs of the bundles (right angles down) in the diagram

u@) u@) U@) - Un) ——=Un +1)
A N A Y AR
st 3 S5 RS gan—1 g+l

the simplest possible thing happens, and the cohomology of each object is the tensor product of
those of the objects to the left of it and below it.

Proof. The proof starts with the case U(1) =~ S!, so that H*(S') =~ A[z]. Inductively assume
H(U(n)) = Alz1,23,...,2z21-1] as claimed. We have a fiber bundle

U(n) — U(n +1) — 2"+,

where the cohomology of the fiber and base are known, so the impulse is to use Theorem 2.2.2.
Since the cohomology of the fiber is free abelian by assumption, the E; page is given by

EE'O ® E(Z),. = A[M2n+1] ®A[Zl, Z3, ... ,Zanl],

and the sequence is concentrated in columns 0 and 2n + 1. Since the bidegree of the differential
d, is (r,1 —r), the only differential that could conceivably be nonzero is d = dy,1, of bidegree
(2n+1,—2n).

Figure 3.1.3: The Serre spectral sequence of U(n) — U(n + 1) — S**1

2n—1 koy—1 Zon—

5 z5 uzs

2123 uz1z3

3 z3 uz3

uzy

o | N ININT b
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But this d sends the square Eg;? .1 = H(U(n)) in the leftmost column into the fourth quadrant,

so dzj = 0 for all j. Because d satisfies the product rule and sends all generators of E, 41 into the
fourth quadrant, it follows d = 0. Thus E; = E, = Az1,23,...,2Z2n—1, U2n+1]-

A priori, this is only the the associated graded algebra of H*(U(n + 1)), but since E, is an
exterior algebra, by Proposition 2.7.3, there is no extension problem. ]

The same proof, applied to the bundles Sp(n — 1) — Sp(n) — S*'~! and starting with Sp(1) ~
S3, yields the cohomology of the symplectic groups. The diagram associated to this induction is

Sp(1) Sp(2) Sp(3) — - ——Sp(n) —=Sp(n +1)

S S G T

3 7 gl . gan—1 G4n+3.
Proposition 3.1.5. The integral cohomology of the symplectic group Sp(n) is given by
H*(Sp(n); Z) = Alz3,27,...,24n—1), degzj=].
The cohomology of the special unitary groups is closely related to that of the unitary groups.
Proposition 3.1.6. The integral cohomology of the special unitary group SU(n) is given by
H*(SU(n);Z) = Alzs,...,z2u—1], degzj=].

Proof. The determinant map yields a split short exact sequence

d
1 - SU(n) — U(n) =5 ! - 1; (3.1.7)

a splitting is given by z — diag(z, 1). This semidirect product structure means U(n) is topologi-
cally a product SU(n) x S!, and it follows from the Kiinneth theorem B.1.2 that

H*(SU(TZ)) at H*(U(n))//H*(Sl) = A[ZLZB/'H/Zanl]/(Zl) = A[Zg,...,Zzn_l]. Il

The information we have accumulated makes it easy to cheaply acquire as well the cohomol-
ogy the complex and quaternionic Stiefel manifolds: the idea is just, in the diagram (3.1.2), to
stop before one gets to U(1).

Proposition 3.1.8. The integral cohomology of the complex Stiefel manifolds V;(C") = U(n)/U(n — j) is
H*(Vi{(C"); Z) = Alzo(n—j)+1 - - - » Zon—3, Z2n-1]-

The integral cohomology of the quaternionic Stiefel manifolds V;(H") = Sp(n)/Sp(n — j) is given by
H*(V;(H");Z) = Alzagn—j)+3/ - - - Zan—5, Zan—1]-

Proof. The spectral sequences of the bundles (3.1.2) dealt with in Proposition 3.1.1 all collapsed at
the E; page, so that in particular the maps H*U(n) — H*U(n — 1) are surjective and the iterated
map H*U(n) — H*U(n — j) is surjective by induction: explicitly, it is the projection

Alz1,23,- -+ Zo(n—j) =11 O Azogu—jy 41/ - - - Z2n—1] —> A[z1,23, .-, Zo(u—j)—1],
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with kernel (z1,2z3, . ..,z2<n,j),1) the extension of the augmentation ideal of the second factor.
One has more or less definitionally the fiber bundle

U(n—j) — Un) — V;(C), (3.1.9)

whose SSS collapses at E; by Section 8.3.1 since we have just shown the fiber projection is sur-
jective. Thus the base pullback H*V;(C") — H*U(n) is injective and H*V;(C") is an exterior
subalgebra of H*U(n) whose augmentation ideal extends to the kernel (zp(,_j)11,---,221-1) Of
the fiber projection. We see H*V;(C") can only be as claimed.

The proof for H*V;(H") is entirely analogous. O

3.2. Real difficulties

The degeneration of spectral sequences that occurs for unitary and symplectic fails for the orthog-
onal groups, because in the analogue of the iterated fiber decompostion (3.1.2) of the orthogonal
groups, one encounters spheres of adjacent dimension, which could lead to nontrivial differ-
entials. Indeed, this does lead to rather complicated 2-torsion, so we pass to simpler coefficient
rings. Even with this simplification, there seems to be a certain unavoidable difficulty in handling
H*SO(n), forcing case distinctions and a rather explicit calculation of a map of homotopy groups.
The proofs here are, in the author’s own opinion, cleaner and more scrutable than those in the
source material, but he would not claim they make an easy read. The reader can be forgiven for
skipping to the next chapter at this point, but it seems only right to say what can be explained
about H*SO(n) and H*Spin(n) at this point, and we will need this material for examples later.
To proceed, we require on a lemma [MToo, Cor. 3.13, p. 121] about the cohomology of a Stiefel
manifold V,(R"). The proof here is a hybrid of Mimura and Toda’s and that in online notes by
Bruner, Catanzaro, and May [BCM]. Recall our notational conventions from Appendix A.2.1.

Lemma 3.2.1. The real Stiefel manifold V = Vo(R") (for n > 4) has

Hn—Z(V) =

Z n even,
Z/2 nodd.

Proof. If we define V5(R") := SO(n)/SO(n — 2) as the set of pairs of orthogonal elements of S"~!,
or equivalently n x 2 matrices with orthonormal columns, then projection g to the first column is
the projection of a bundle

Si’l*Z N VZ(RI’!) _q> Snfl.
The associated Serre spectral sequence is as in Figure 3.2.2, and it is clear the lone potentially
nonzero differential is H"~2(S"2) LN H(sh ).
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Figure 3.2.2: The differential d,_; in the Serre spectral sequence of S"~2 — V,(R") — S"~1

n—-21 z uz
N
N\
0 1 u
0 n—1

In particular, we have H/(V) = 0 for j < n —2, and H;(V) = 0 as well by the universal coefficient
Theorem B.1.1. Since we have assumed n > 4, it follows from the long exact homotopy sequence
of the bundle (Theorem B.1.4) that V is simply-connected, so by the Hurewicz Theorem B.1.1,
mu—2(V) = Hu—2(V), and we can concern ourselves with this group instead. The long exact
homotopy sequence of Theorem B.1.4 contains the subsequence

> [ —

7T 1(S" ) =5 7, 0(S"72) — 72 (V) — aa(S"7Y),
;YZ Sy 0

showing 71, »(V) = Z/im 9, so our task is now to identify im 0. Since 7r,_1(S"!) is cyclic, it is
enough to know what ¢ does to a generator.

Recall that the long exact homotopy sequence of the bundle S"~2 — V — §"~! is derived
from the long exact homotopy sequence of the pair (V, S"~2) through the isomorphism induced
by the map of pairs q: (V,S"2) — (S"71, %), as follows:

TT—1 (V, Sn—2)

/ o L

oo ——11,_1(V) ﬂn—l(sn_l, %) ﬂn,Z(S”_Z) .
q\*x Zi /
TTh—1 (Sn—l)

The top 0 takes the class represented by a map of pairs 1: (D"71,5"2) — (V,5"72) to the
homotopy class of the restriction ¢ | S"2. Since the vertical maps are isomorphisms, such an  will
represent a generator just if g:: (D"~!,5"72) — (S"~1, %) represents a generator of 7, _1(S" 7}, %).
We turn to constructing this .

It will be convenient to consider V = V,(R") as a quotient O(n)/O(n —2)." Write p,: O(n) —
Vo(R"™) for the natural projection of a matrix to the first two columns, realizing this quotient
description, and p;: O(n) — S"~! for projection to the first column alone. Note that p; = gp>

T We introduced it as SO(n)/SO(n — 2), but this is the same; any g € O(n) extending an orthonormal 2-frame
(v,w) € Vo(R") can be made into an element of SO(n) by multiplying the last column by +1.
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and that p; can be seen as the evaluation map g — ge; taking an automorphism g € O(n) <
Autg (R") to its value at the standard basis vector e; = (1,0)" of R”. The preimage of e; under p;
is the stabilizer Stab(e;) < O(n), a block-diagonal {1} x O(n — 1) which we write as O(n — 1). The
image p»(O(n — 1)) ~ S"2 of this subgroup in V is the fiber of the bundle §"2 — V — §"~1
over ¢1. Summarizing:

P1

N

(O(n),0(n — 1)) — (V5" — (5" Ler).

The map : arises from the natural map S"~! — O(n) taking a unit vector v to the reflection
rp: R" — R" through the hyperplane v < R" orthogonal to v. Write r: D"~1 — O(n) for the
restriction of this map to the northern hemisphere D"~! = {v € S""! : v.¢; = 0} of S"~1. Note
that the composition pir takes v — py1(ry) = ro(e1). If S"~2 = dD"! is the equator, made up of
those unit vectors perpendicular to ej, then we claim r takes S"2 to O(n — 1):

(D"1,8"2) 5 (O(n),O(n —1)).

To see this, note that if v € $"72, so that v is perpendicular to ej, then e; is in the hyperplane v+

fixed by 1y, so (p17)(v) = rv(e1) = e1. That means the first column of r, is ej, so that r, € O(n —1).
We set 1 = por: (D"1,5"2) — (V,5"2). To see  represents a generator of 7r,_1(V,S"~2),
we show
gt = qpar = prr: (D"71,8"7%) — (S e1)

represents a generator of 77, 1(S""!,e1) by demonstrating it takes the interior D"~1\S$"~2 home-
omorphically onto S"~1\{e;}. Let v € D""1\S""2. If v = ey, then r,,(e1) = —e1, and otherwise v
and e; together span a 2-plane, which cuts S"~! in a circle and v' in a line, and (p17)(v) = r,(e1)
lies in this plane; see Figure 3.2.3. Since p;r preserves these circles, it is be enough to show that
the restriction of pir to each open upper semicircle is injective, but this is the case because if
the nonzero angle 6 = #(e1,v) lies in the interval (—7/,74), then #(ry(e1), —e1) = 20 lies in
(—7,0) v (0, ).

Figure 3.2.3: The reflection of e; through v+

€

0

To(€)
-
Now, since  represents a generator of 71, _1(V, S"~2), the restriction y = (¢ | $"2): §"2 —

S"~2 represents a generator of im 0. Write S"~3 ¢ S"~2 for the set of those unit vectors v perpen-
dicular to both e and e;. For such a v, the reflection r, will leave the first two coordinates of an
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element of R" invariant, so x(5"3%) = {(61, ez)} e V. Since r, = r_,, the same argument as for pr
shows that x takes the interiors of both north and south hemispheres homeomorphically onto
S"=2\{ey}, so restrictions to these hemispheres are maps

Ty (Dn_2, Sn—2> _ (Sn—ZI 82)

representing generators of 7, »(S"72,e) = 7, (5" 2) such that [x] = [t;] + [t_]. These gener-
ators are closely related: if

a: S22 gn2,

v —> —7,

is the antipodal map, then we have 7_ = 7, oa. Since « is the composition of n — 1 reflections of
R"1, it is of degree (—1)"~1, so that x represents s, := (1+ (—1)""1) times the generator [, ] of
7'(,1_2(5"72).

Since Seven = 2 and s,qq4 = 0, the group H, 2 (V) = m,—2(V) = Z/s,Z is as claimed. O

Remark 3.2.4. Since V(R") is the set of pairs (v, w) with v € S"~! and w L v, it can be seen as the
set of unit vectors in the tangent bundle TS"~!. This is a $"~2-bundle associated to a principal
SO(n — 1)-bundle, and it can be shown that the image of the element 1 of the fiber cohomology
group Z = H"72(5"2) in the base cohomology group H"~1(S"~!) = Z is the Euler class of this
bundle (see Section 7.5); the fact that this number alternates between zero and two can be seen
as a reflection of the fact that the Euler characteristics (Appendix A.2.3) of spheres obey the rule
X(S") = 1+ (=1)".

Corollary 3.2.5 (Stiefel [Sti35]). The nonzero integral cohomology groups of the real Stiefel manifold
V = V,(R") are
0 2n—3 n—2 Z n even, 1 Z n even,
H*(V) = H" (V) = Z, H" (V) = H" (V) =
0 nodd, ZJ2 nodd.

In particular, the differential H"2(S"~2) 4> H"=1(S"=1) shown in Figure 3.2.2) is zero if n is even and
multiplication by 2 if n is odd. The mod 2 cohomology ring of V is

H* (V,‘ Fz) = A[UH,Q, Un—l]

Proof. If n is even, we have 71,_(V) = H,_»(V) infinite cyclic from Lemma 3.2.1, so by universal
coefficients, H"~1(V) is also free abelian, and it follows d = 0 and H"2(V) = Z.

If n is odd, we have Z/2 =~ 71, (V) = H,_»(V), so by universal coefficients, H*~2(V) = 0 and
H""1(V) is the sum of Z/2 and a free abelian group. But H"~1(V) is cyclic, since it is coker d, so
we have H"~1(V) = Z/2.

As for the modulo 2 case, we have 2 = 0 (mod 2), so the map d is always zero and the SSS
collapses. There is no extension problem simply by a dimension count. O

The main point of this argument, for us, is that the map 4 is trivial for n even and an isomor-
phism over Z[%] if n is odd. In the mod 2 case, these differentials are all zero, so we can induct up
with spheres rather than V,(R")s, but we do have an extension problem because exterior algebras
are not free cGas in characteristic 2.
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1231 Corollary 3.2.6. The mod 2 cohomology ring of V. = V;(R") has a simple system v,_1,...,0,_j of
1232 generators (see Definition A.2.4), where degv; = i. That is,

H*(V;F2) = Alvy—1,00-2,+ -+, 0nj]-

1233 Proof. We fix n and prove the result by induction on j € [1,n]. For j = 1, the result is just
1238 H*(S"~') = A[vu—1]. Suppose by induction the result holds for Vj_;(R") and the Serre spectral
1235 sequence of §"~ (=1 — Vi_1(R") — V;_2(R") collapses at E>. Then the E, page of the Serre
1236 spectral sequence of S"7/ — V;(R") — V;_1(R") is (additively)

Ey = Alvy—1,..., 0y (j-1)] ® Alvy—j1],

1237 s0 the induction will go through if and only if E; = E in this spectral sequence as well. The only
1238 potentially nontrivial differential is d,,_(;_1), which vanishes on the base Alvy_q,..., vn,(j,l)] and
1239 50 is determined by the map

. . dy_; .
F[n—]—l(sn—]—l) —j+1 H"J (‘r](RH))
1220 indicated in Figure 3.2.7.

Figure 3.2.7: The Serre spectral sequence of $"~/ — Vi(R") — Vi_1(R") over IF»

n—j| onj
0
N
0 1 Un—j+1 Un—1
0 1—j+1 n—1

1241 To see this map is zero, we identify it with the analogous differential in the Serre spectral se-
122 quence of S"7 — V,(R"*271) — §"+1=/ which we already know to be zero by Corollary 3.2.5. To
1243 do that, consider the following commutative diagram:

S

V2 (R"27]) — Vj(R") —= V;_»(R")

ST — Vi 1 (R") = Vo (R").

1244 Each row and column is a bundle, and the bundle projections are of the form “consider the first
1225 few vectors”; for example, the map Vi(R") — V;_»(IR") simply forgets the last two vectors of a
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j-frame on R", and the fiber over a (j — 2)-frame is the set of 2-frames orthogonal to those j — 2
vectors in R”, and so is a V,(R"7/+2),

The map of columns induces a map (¢,) of spectral sequences from (E,,d,) to the spectral
sequence ('E;,'d,) of the left column, which collapses at 'E;. The bottom row is the bundle whose
Serre spectral sequence we inductively assumed collapses, so ¥,41-j: H"™1 7 (Vi_1(R")) —>
H"*+17i(§"*+17]) is an isomorphism. The relation

0= ,dn+1fjll]n+1fj = ¢n+lfjdn+lfj
then ensures d,, ;1 _; = 0 and we have collapse. O
Taking j = n — 1 yields the result we really were after.

Corollary 3.2.8. The mod 2 cohomology ring of the special orthogonal group SO(n) has a simple system
U1, ...,0n_1 Of generators:

H*(SO(W!), Fz) = A[Ul, 02,... ,Unfl],
where Fy{v,_1} is the image of H"~1(S"~1) — H"~}(SO(n)).

Remark 3.2.9. We used the induction "/ — Vi(R") — V;_1(R") to pick up the cohomology of
the Stiefel manifolds along the way to that of SO(n). We could also have inducted the other way,
using

SO(2) —SO(3) —=SO(4) — --- ——=SO(n) —=SO(n + 1)

[ S S A R

in analogy with (3.1.2). Then the task is to show that the differential H"~!(SO(n)) — H"(S") is
zero. We can still use the collapse of the Serre spectral sequence of S"~! — V,(R"*!) — S" to do
this; the relevant bundle map is

SO(n) — sn-1

SO(n + 1) — Vy(R+1)

St =—=5".

The induction is substantially subtler over Z or even over k = Z[%], because the differentials
no longer must be trivial. We can use the real Stiefel manifolds V>(R") =~ SO(n)/SO(n — 2) as
building blocks now, though, the same way we used spheres before:

-+ —=S0(n — 4) —=SO(n — 2) —=SO(n)

l L a0

Vz(Rn_4) V2 (Rn—Z) V2 (Rn)
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Proposition 3.2.11. Let 2n +1 > 3 be an odd integer and 2j < 2n + 1 an even integer. Then taking
coefficients in k = Z[%], we have

H*(SO(Zn + 1)) = A[Z3, Z7,. .. ,Z4n_1], degz4i,1 =4i—1.

H*(sz(R2n+1)) ~ H*(SO(Zn + 1))/H*(SO(271 —2j + 1)) x> A[Z4(n_j)+3, ey Zan—1]-

Proof. By Corollary 3.2.5, we have H* (Vo(R¥™1)) = A[zs_1], so the objects in (3.2.10) have the
same cohomology as those in (3.1.4) which yielded the same structure (over Z) for H* (Sp(n)).
The result for H*(V;(R")) follows as in Proposition 3.1.8. O

To recover sz,l(RZ”), consider the map of bundles

VZj—Z (Ranl ) S VZj—Z (RZH*] )

| |

VZj—l (RZn) . sz (R2n+1) 5 g2

! l

521171 VZ(RZHJA) - SZn.

The Serre spectral sequence of the middle column collapses at E; by an elaboration of our calcu-
lation above.> Thus we can use the bundle lemma Theorem 2.4.1 to conclude

H* (VZj—l (R2n_1)) = A[€2n,1] ® A[Z4(n_]')+3, R ,Z4n,1] = A[€2n71] ®A[Z4(n_]')+3, ce ,Z4n,5].

Z4n—71]
Taking 1 = j, we recover H*(SO(2n)).

Proposition 3.2.12. Let 2n > 2 be an even integer and 2j —1 < 2n odd. Then taking coefficients in
k= 23],
H* (sz'—l(Rz")) = Alean—1] ® Alzgn—j)43, - - -, Zan-—5),

where deg z; = i and degey,—1 = 2n — 1. In particular,
H* (SO(ZTI)) = A[€2n_1] ®A[Z3, .. ,Z4n_5].

We can state the result for SO(m) more uniformly as follows:

2 The relevant bundle map is this:
SO(2n—2j+1) —SO(2n—1) — sz_z(Rznfl)
SO(2n — 2j +1) == SO(2n + 1) — Vo;(R¥ 1),
By Proposition 3.2.11, both rows yield tensor decompositions in cohomology and the fiber inclusion SO(2n — 1) —

SO(2n + 1) is surjective in cohomology with kernel (z4,_1), which is in the image of H* sz(R2”+1), so the same holds
of the right-hand map we are interested in.
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1275 Corollary 3.2.13. Over k = Z[1], the cohomology ring of SO(m) is

Alz3,z7,...,2an—5] @ Alezp—1], m =2n,
A[Z3, Z7, 0. ,Z4n_5] @A[Z4n_1], m=2n+1,

H*(SO(m); Z[3]) = {

1276 where k - ey, _1 is the image of H*"~1($2"~1) — H2"=1(SO(2n)).
1277 To get the cases V;(R™) where { = m (mod 2), we can use the Serre spectral sequence of
S V(R™) — V1 (R™).

1276 as we did in Corollary 3.2.6. The E; page is H*(V;_1(R™)) ® A[s,—¢], and the only potentially
1279 nonzero differential, d,,_s1, is determined by a map d: H"~*(S"~*) — H"~“+1(V,_;(R™)). By
1260 the last two propositions, the ring H*(V,_1(R™)) is an exterior algebra on generators of degree
1281 at least 2m — 2¢ + 3 if m is odd, and at least m — 1 if m is even. In the former case, d is zero
1282 by lacunary considerations. In the latter, £ > 2, since ¢ is of the same parity as m, so we have
1283 m—{+1 < m+1, with equality if and only if ¢/ = 2. Thus, if £ > 2, then d = 0 by lacunary
1284 considerations, and if ¢ = 2, then we showed d = 0 in Corollary 3.2.5. So no matter what, the
125 sequence collapses at Ep, and then by Proposition A.4.4, we have

H* (Vy(Rm)) ~ H* (Vg_l(Rm» ®A[Sm_g].

1286 To compile these cases into one statement, we introduce some notation. Let S be a free k-
1227 module or basis thereof and ¢ a proposition whose truth or falsehood is easily verifiable. We

1288 Write
A[S] if @ is true,

A[{S : q)}] - {k otherwise.

120 Then, gathering cases and doing some arithmetic on indices, we arrive at the following.

1290 Proposition 3.2.14 ([BCM, Thm. 2.5]). The cohomology of the real Stiefel manifold V,(R™) with coeffi-
1201 cients in k = Z[}] is given by

H*(Vg(Rm)) > Alzgj1:2m—20+1<4j—-1<2m—3] ® Aley—1 : meven] ® Als,,_y : m—{ even].

122 Remark 3.2.15. The author found the useful notation for abbreviating case distinctions in Propo-
1203 sition 3.2.14 in the notes by Bruner, Catanzaro, and May [BCM].5.

1294 It is standard to discuss along with SO(n) its simply-connected double cover Spin(n).
1295 Proposition 3.2.16. The cohomology of Spin(n) for n = 2 satisfies
H*(Spin(n); Z[3]) = H*(SO(n); Z[1)).

1206 Proof. Since 7r: Spin(n) — SO(n) is a connected double cover and 2 is invertible, the isomor-
1207 phism follows immediately from Corollary B.2.2. O

3 It seems uncommon to find another statement of this result without typos. Both the excellent books of Mimura
and Toda [MToo, Thm. III.3.14, p. 121] and of Félix, Oprea, and Tanré [FOTo8, Prop. 1.89, p. 84] have misprints in
their statements of the result Proposition 3.2.14 where the (even, even) case is omitted and another case repeated twice
with different results. For example, Mimura and Toda list two nonisomorphic rings for the case (odd, odd). For those
keeping score, the misprint in [FOTo8] is nonisomorphic to the misprint in [MToo]
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Finally, we will relate without proof the multiplicative structure of H*SO(n) and H*Spin(n)
with [, coefficients. The standard proofs invoke Steenrod squares, which we decided not to
assume as background.

Proposition 3.2.17. The mod 2 cohomology of SO(n) for n > 2 is given by
H*(SO(TZ), Fz) = Fz[vl, ey vn,l]/a,

where the ideal a is generated by the relations

2 02, 2i < n,
o

’_{o, 2i > n.

Shedding excess generators, we can write
H*(SO(H),‘ Fz) = Fz[vl,vg,, . /v[n/zj—l]/b/

where b is the truncation ideal (UZW i]) generated by the least powers of v; of degree exceeding n — 1.

The mod 2 cohomology of Spin(n) admits a simple system of generators containing an element z of
degree 2llogan] _ 1 gpd generators vj for each j € [1,n — 1] which is not a power of 2:

H*(Spin(n);F2) = A[Z2[1"82"Ll’ V] 1<j<mn, j#2.

Hopt’s theorem 1.0.4 allows one to be more specific about the ring structure of H* (Spin(n) ; Fz),
but the description is disappointingly complicated. A simpler description can be obtained for the
countable-dimensional group

Spin := lim Spin(n),
where the colimit is taken along the unique maps Spin(n) — Spin(n + 1) lifting the composition
Spin(n) — SO(n) — SO(n + 1) of the covering map with the canonical inclusion, which exist
because the spinor groups are simply-connected. As by construction the diagrams

Spin(n)>--> Spin(n + 1)

|

SO(n)———SO(n +1)
commute, Spin can be seen as a simply-connected double covering of SO := | JSO(n).
Theorem 3.2.18 ([BCM, Thm. 6.10, p. 55]). The mod 2 cohomology ring of Spin is given by
H*(Spin; Fy) = Fa[vgp41 : 1 = 1]

and that of SO by
H*(SO; F2) = Fa[vpp41 : n > 0],

the map H*SO — H*Spin induced by Spin — SO being the obvious surjection.

Historical remarks 3.2.19. The lemma 3.2.1 is due to Eduard Stiefel also the namesake of the Stiefel
manifolds and the Stiefel-Whitney classes. A comprehensive account of this material, also in-
cluding explicit computations for the cohomology of the exceptional groups, can be found in the
much-recommended book of Mimura and Toda [MToo]. As an indication of the nontriviality of
computing H*SO(n), we point out that while the cohomology ring H* (SO(n); k) for k any field
follows immediately from what we have done in this section and extracting the additive structure
of the integral cohomology is not hard afterward, the recovery of the integral cohomology ring from
this data seems to only have been completed in 1989 [Pitg1].
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Chapter 4

Formality and polynomial differential forms

In this chapter we define and develop two concepts from rational homotopy theory to the extent
we will need them. Formality will let us exchange a cochain algebra for its cohomology, in a
manner of speaking, and the algebra of polynomial differential forms will give us a functorial
commutative model for rational singular cohomology.

4.1. Formality

The real cohomology of a Lie group exhibits a remarkable property. Like the rational singular
cohomology, it is an exterior Hopf algebra, but unlike rational cohomology, it admits a classical
commutative model. Since G is among other things a smooth manifold, by de Rham’s theorem, one
can compute H*(G;R) as the cohomology of the de Rham algebra ()*(G) of differential forms, an
R-cpca. If Z is an R-basis for the primitive elements of H*(G;R) = H*(G; Q) ®g R, then we can
pick out one closed form w; € ()*(G) representing each z;, and because ()*(G) is a commutative
graded algebra, we have an exterior subalgebra A[&] of (*(G) representing H*(G; R). That is to
say, we have can define an algebra section of the projection Z*(G) — H*(G;R), or, put another
way, we have found a quasi-isomorphism

(H*(GR),0) — (Q*(G),d)

to the de Rham algebra from its own cohomology, viewed as a cpGa with zero differential.

Of course, one can of course always find a vector space of representative forms, but the ability
to make these to form a subring on the nose, rather than up to homotopy, is rather special. This
behavior will be sufficiently useful to us that we formalize the situation.’

Definition 4.1.1. A differential graded k-algebra (A, d) is said to be formal if there exists a zig-zag
of k-DGA quasi-isomorphisms

(B1,d1) e (A, d)
N SN S

(H*(A),0) (B, dy) (Bu, dn)

connecting (H*(A),0) and (A, d). A simply-connected topological space X is said to be k-formal
if there exists a formal k-DGa with cohomology H*(X; Q). A zig-zag of k-DGA quasi-isomorphisms
from (A, d) to the singular cochain algebra (C*(X;k), ) is called a model of X.

1 Pun unintended, but retained.
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Example 4.1.2. We will find in Section 7.4 that for a compact, connected Lie group G, the co-
homology H*(BG;Q) of its classifying space BG (see Chapter 5) is a symmetric algebra, hence
a free cca. In Section 4.2, we will produce a commutative model, Ap for BG, and then, as
for H*(G;R) and Q*(G), it will follow by Proposition A.4.3 that after assigning generators,
H*(BG; Q) lifts to back to a subalgebra of cocycles of (Ap(BG)), inducing a quasi-isomorphism
(H*(BG),0) — Apr(BG) and showing BG is formal.

Example 4.1.3. Elie Cartan demonstrated that symmetric spaces G/K are formal, in fact showing
that the collection of harmonic forms on a symmetric space forms a subring of the differential
forms Q°(G/K) consisting of one element from each class in H*(G/K). We will produce a version
of this proof in Proposition 8.5.2.

It is a remarkable fact about fields k of characteristic zero that they allow one to construct
small models. Moreover one can easily piece such models together. We have already found such
a model of G. The overall plan of the rest of this work is to find such a simple model for the
classifying space BK of a connected Lie group, to be defined and constructed in Chapter 5, and
use these models to construct a simple model of a homogeneous space G/K. However, BK will
not be a manifold, but will almost always be infinite-dimensional, so the methods of differential
topology will not directly apply. Instead, we will find a Q-cpGa computing the rational singular
cohomology of any topological space.

4.2. Polynomial differential forms

The obvious stumbling block to defining differential forms on an arbitrary topological space X is
the absence of a smooth structure. There are at least two ways around this. The first historically,
due to Leray and summarized in Historical remarks C.3.2, is to abstract the features of the de
Rham algebra and prove that analogous objects exist over any sufficiently regular space.” This
approach led Leray to sheaf theory and spectral sequences. The second approach is to replace X
with a homotopy equivalent space that does admit forms, and it is that tack we take here.

We can at least define smooth forms on a single n-simplex

A" ={(to, ..., ta) e R"H :Et]- =1},

since this is just a manifold with corners. It is reasonable to say a form is continuous if it is
smooth on the interior of A", its restriction to the interior of each face A" ! is smooth, etc. Doing
this yields a perfectly reasonable complex of forms. Of course the simplex is contractible, so the
cohomology of this complex will be trivial.

If X is a polyhedron | JA,, meaning a union of simplices (glued whole face to whole face)
then one can define a smooth form on X to be given by a collection of smooth forms w, on A,
such that whenever Ag is a face of A,, then Wl Ay = Wp- This amounts to decomposing X into
a union of simplices, defining forms on each, and asking these forms respect the gluings. We
should make this more precise, so we will review simplices a bit.

4.2.1. Semisimplicial sets

A polyhedron X may be embedded, in the case of utmost extremity, as a piecewise affine subspace
of a sufficiently high-dimensional vector space V: form the abstract vector space V = R - Xy with

2 Compact metrizable will do.
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basis the vertex set Xy of X and on an n-simplex ¢ in X with vertices xo, .. ., x,, send the element
with barycentric coordinates f in ¢ to the vector Z}LO tix;in V.

This canonical embedding is evidently monstrously inefficient, and one can usually get away
with a much smaller vector space V. It is still the case that an individual embedded affine sim-
plex ¢ ~ A" in V is the convex hull of its n + 1 vertices vy, ...,v,;, SO we may parameterize an
embedded simplex as a tuple [vy, ..., v,] without losing information about the embedding. This
0 has n + 1 faces, given by Jjc = [vo, - - .,5]-, ...,0y] for 0 < j < n, where the hat denotes omis-
sion,” and any subsimplex is described by a composition of these vertex omissions. A subsimplex
is determined by which vertices are omitted, independent of what order they are forgotten in,
so there are some relations among the omission operations ¢;. These relations are all generated
by the familiar relation 0;0; = 0;_10; for i < j responsible for the fact the boundary operator ¢
defining singular and simplicial homology satisfies 6> = 0.

Viewing the polyhedron as a sort of construction kit snapping together pre-packaged parts,
one sees that (up to piecewise linear homeomorphism) it is fully specified by a listing of its
simplexes and the omission/inclusion operations between them. We extract this specification,
writing K, for the set of n-simplices of X.

Definition 4.2.1. A semisimplicial set K, = (Ky),en is family of sets K, indexed by nonnegative
integers, equipped with functions 0J;: K, — Kj,—1 for 0 < j < n satisfying 0;0; = 0;_10; for i <j.

This semisimplicial set is no longer a geometric object in any meaningful sense; it’s closer to
the truth to think of it as a set of labels and gluing instructions. To get X back out of K,, one
follows the instructions, producing a distinct geometric simplex A" for each ¢ € K, and including
the simplex corresponding to d;o as its jh face. In coordinates, the inclusion of A"~! as the j
face of A" < R"*! is given by

it AT — A", (0<j<n)
f— (to,...,ti-1,0,tj, ..., ty_1)

and explicitly, one recovers X from K, as

v K, x A"
X =~ UneN /(8]'(7,?) - (0_/ ij?> . (4.2.2)

Not every semisimplicial set K, comes from a polygon to begin with—for example, there is
nothing in the definition preventing us from having d;c = J;T = Jyv a common face of three
distinct simplices—but this process produces a topological space even so.

Definition 4.2.3 (Milnor, Segal). Given a semisimplicial set K,, the result |K,| of the process
(4.2.2) is called the (fat) geometric realization of K,.

4.2.2. Forms on semisimplicial sets

Now that we have a more exact way of describing how simplices fit together, we are able to
describe forms on polyhedra. A differential form on A" should be a formal linear combination of
terms

frdth Ao A dt

and each fj is the restriction of a real-valued C* function on a neighborhood of A" in R+,

3 The convention is due to Eilenberg and Mac Lane.
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Definition 4.2.4. Write C*(A") := lim ,_ ., C*(U). The R-cpGaA of smooth differential forms on
A" is -

(ApRr), = C®(A") % Aldt°, ..., dt"] /(dto Yo ).

The differential d is the exterior derivative given on generators by
of .. -
df = » —=dt/, d(dr) =0.
= St d(at)
The restriction to the j* face is defined on generators by

i7: (Apr)n — (ADR)n-1,

In full detail, for k < j we have i]’.“dtk = dtt, for k > j we have i]’?‘dtk = dt*1, and i*dt = 0.
Note that the restrictions are bGa homomorphisms and i]’?‘i,;k = i;{“_li]f" for j < k, so (Apr). is a
semisimplicial set. We call such an object a semisimplicial cDGA.

Given a semisimplicial set K,, to define a smooth differential form consistently on |K,|, is to
give an element w, € (Apr), for each ¢ € K, in such a way that Woo = i]’-kcug.

Definition 4.2.5. A semisimplicial map ¢o: K, — L. between semisimplicial sets is a collection
(¢u: Ky —> Ly) of functions satisfying 0;¢, = ¢,0; for all j < n. We write the collection of such
maps as Homg(K,, L.).

The algebra of smooth differential forms on a semisimplicial set is

ADR(KO) = Homss (Ko/(ADR)o)/

a L wo"-
This inherits a “simplexwise” R-cDGA structure via

(¢ +9) (@) = (@) +9(0), (P A P)(0) =P(0) Ay(0), (dPp)(0) =d(¢(0)).

Moreover this algebra is contravariantly functorial in that a semisimplicial map »: K, — L,
induces s»*: Apr(L.) — Apr(K.) via precomposition, taking A : L, — (Apr)e to Ao : K, —
Le — (ADR)e.

The distinguished coordinates on a simplex make it possible to isolate a subalgebra of especial
interest in (ApRr)e-

Definition 4.2.6. The semisimplicial Q-cpGa of polynomial differential forms is the semisimpli-
cial differential graded subalgebra of (Apgr). defined by

(APL)n = Q[tO/ .. -/tn] % A@[dtof' . '/dtn]/(l . Z tj,Zdtj) .

The polynomial differential forms on a semisimplicial complex are given by

APL(K.) = Homss (K., (APL).).
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We claim, and will show that these forms compute cohomology in the standard sense.

Recall that the simplicial homology of X = |K,| with coefficients in Z is given by taking the
homology of the chain complex C4(X) of finite formal sums >} /,0" of n-simplices under the
differential 0 = >(—1)/ dj, and the simplicial cohomology with coefficients in an abelian group
k is given by the dual complex Ci(X) := Homg (C5(X),k) = Map(K,, k). This definition does
not depend directly on the space X, and only on the sets of simplices, so it is an instance of the
following definition.

Definition 4.2.7. Let K, be a semisimplicial set and k an abelian group. The homology H. (K., k)
of K, is the homology of the chain complex @ k - K;, of free k-modules equipped with the k-linear
differential ¢ defined on a basis element ¢ € K, by do := Z?:o(—l)j 0j0.

The cohomology H*(K,, k) of K, is the cohomology of the cochain complex @ Map(Kj, k) of
free k-modules equipped with the dual differential

0: Map(Ky, k) — Map(K, 41, k),
n+1

cr— (0 Z (—1)e(0j0)).

j=0
If k is a ring with unity, Map(K,, k) becomes a DGA under the cup product
Map (K, k) x Map(Ky,, k) — Map(Ky4n, k)

(¢ — ¢)(0) = c(&110) - (5",

The cup product induces a product on H*(K,, k) making it a cGa.

The cup product on the level of cochains is not commutative, so it is not immediately obvious
if this cohomology relates in any way to those of our new algebras of forms. We can show
isomorphisms on the level of semisimplicial sets, but for now we prefer to return to the level of
spaces.

4.3. Comparison with singular cohomology

Singular cohomology can be seen as an instance of simplicial cohomology.

Definition 4.3.1. Given any topological space X, the total singular complex is the semisimplicial
set C.(X)
Cu(X) :== Top(A", X),

the set of singular simplices in X, with face maps given by restriction dj = ¢i;: A"~! SRR’
The total singular complex is functorial in that a continuous map X — Y induces a semisimpli-
cial map C,(X) — C.(Y) by precomposition.

Then singular homology and cohomology with constant coefficients are just the homology
and cohomology of C,(X) under Definition 4.2.7. Moreover, the total singular complex gives us
a way to define Apr and Apr, on an arbitrary space.

Definition 4.3.2. Given any topological space X, we define
ADR(X) = ADR(C.(X)) and API(X) = APL (C.(X))

These constructions are functorial in X because Apg, Apr, and C, are.
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[ WE NEED TO COMPARE THESE TO SINGULAR COHOMOLOGY. I AM CONSIDERING TWO TACKS AT
PRESENT:

¢ SHOW THEY ARE COHOMOLOGY THEORIES AND SHOW INTEGRATION INDUCES AN ISOMORPHISM
ON THE COHOMOLOGY GROUPS OF A POINT.

® DIRECTLY CONSTRUCT A ZIGZAG OF DGA QUASI-ISOMORPHISMS CONNECTING THEM TO C*(X).

Historical remarks 4.3.3. Sullivan attributes the idea of forms on simplices to Whitney and Thom
[TRACK DOWN CITATIONS].

4.4. Simplicial sets

[ WE NEED TO INTRODUCE SIMPLICIAL SETS AND THIN GEOMETRIC REALIZATION FOR SECTION 5.4. ]
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Chapter 5

Classifying spaces

In this section, we carry out the construction of the universal principal G-bundle EG — BG,
which we use essentially as a tool to convert actions into closely related free actions. The existence
of this bundle is more important than the details of its construction in almost everything that
follows, but we may at some points use the fact that EG admits commuting right and left actions
of G.

5.1. The weak contracfibility of EG

The original purpose of the universal principal G-bundle EG — BG was to be a principal G-
bundle such that all others G — E — B arose as pullbacks. Moreover, it was seen that under these
conditions, isomorphism classes of principal G-bundles over a given CW complex B correspond
bijectively to homotopy classes of maps B — BG. Thus a map B — BG of base spaces inducing
E as a pullback of EG “classifies” the bundle E — B, and so is called the classifying map of the
bundle; and BG is called a classifying space for principal G-bundles.

The fact that EG is weakly contractible—which is much of why we care about the universal
bundle—turns out to be a consequence of that demand. In this subsection, we explain the rele-
vance of this demand. It will simplify the argument to know that all maps of principal G-bundles
are pullbacks.

Proposition 5.1.1. Consider a principal G-bundle map

P——E
X —f> B.
The pullback bundle f*E — X is isomorphic to P — X as a principal G-bundle.

Proof. Recall from Appendix B.3 that the total space f*E = X is the pullback in Top of the
diagram X — B < E. Since P also admits a map to such a diagram, there is a continuous map
P — f*E commutatively filling in

P //”’;:i;;;—_——§\\\5§

E——E

N

X ——B.
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For any x € X, by assumption, the maps of fibers P|y — E|¢,) < (f*E)|y are G-equivariant
homeomorphisms, so P — f*E is a bijective G-map. To see its inverse is continuous, it is enough
to restrict attention to an open U < X trivializing both P and f*E, so we need only show the
inverse of a continuous G-bijection ¢ filling in the diagram

UXGL—UXG
u

is continuous. By commutativity, we may write ¢(x,1) = (x,9(x)) for a continuous y: U — G,
so that ¢(x,g) = (x,9(x)g) by equivariance. Then ¢~!(x,g) = (x,1(x)"'g), and since ¥ and
¢ +— g~ ! are continuous, so is ¢~ L. ]

Thus the EG — BG we seek needs to be a final object in the category of principal G-bundles.
Recall that Top admits CW approximations, so that up to homotopy, we may assume the base
space of our principal G-bundle P — X is a CW complex. Then X is built one level at a time
from a discrete set X° of vertices by gluing disks D"*! to the n-skeleton X" along attaching
maps @, : 0D ~ §" — X", s0 we can view P as being constructed inductively from principal
G-bundles over these attached cells.

We require one intuitively plausible lemma, which we will not prove.

Lemma 5.1.2 ([Ste51, Cor. 11.6, p. 53]). Let B be a contractible, paracompact Hausdorff space and E — B
an F-bundle for some fiber F. Then E is isomorphic as an F-bundle to B x F.

By the lemma, principal G-bundles over disks are trivial, so P|x.+1 is the identification space of
P|x» with some bundles D! x G — D!*1, the identifications given by G-maps S x G —> P|xx.

The task of constructing a G-map P — EG can now be undertaken one cell at a time. To start,
P|xo is a disjoint union of copies of G, and any homeomorphic map of these to fibers of EG — BG
will work. Suppose inductively that a G-map P|x» — EG has been built, and we want to extend
this to the space P|x» U (D"! x G), where D"*! x G is attached by a G-map S" x G —> P|x». We
can do anything we want over the interior of D"*!, and we know what must happen over P|xx,
so our only constraint is the composition of the preexisting G-map and the attaching map,

P: §" x G — P|x» — EG.
Thus the task is really to extend an arbitrary G-map S" x G —> EG over the interior of D"*! x G:

Dn+1 < G

§"x G

S .
m .

But a G-map ¢: D" x G — EGis uniquely determined by its restriction to the standard section
D" x {1} since P(x,g) = §(x,1)g, so it is necessary and sufficient to extend the restriction
S" — EG to a map D"*! — EG. If it is possible to do so, then restrictions of the latter map
to concentric spheres of decreasing radius form a nullhomotopy of the map S — EG, so the
condition finally turns out to be that 77, (EG) = 0.
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Proposition 5.1.3. A principal G-bundle EG — BG is universal just if 7t,.(EG) = 0: for every principal
G-bundle G — P — B, there is a G-bundle map

G=——=0G

|

P—* EG

L

B—~BG
realizing P as the pullback x*EG.

Thus the collapse EG — = of the total space is a weak homotopy equivalence, and so if EG
is a CW complex, then it is actually contractible by Whitehead’s theorem B.1.6.

[SHOW THAT BG 1S A CLASSIFYING SPACE.]

Now seems as good a time as any to derive a corollary we will use repeatedly later.

Corollary 5.1.4. If G is a path-connected group, then BG is simply-connected.

Proof. The long exact homotopy sequence Theorem B.1.4 of G - EG — BG contains subse-
quences
0 = 7011 (EG) — 7u41(BG) — 714(G) — 1 (EG) =0,

yielding isomorphisms 7t,,+1(BG) = 7, (G) for all n, and in particular for n = 0. O

We have not shown existence yet, but it is easy to show uniqueness in a strong sense, using
a construction that will be useful again later. For G-spaces X, Y, there is a diagonal G-action on
X x Y," which gives rise to the following mixing diagram:

X XxY Y
(5.1.5)
x/G <2 X 2 Y oy

Exercise 5.1.6. Show that if X — X/G in (5.1.5) is a G-bundle (automatically principal), then wx
is a bundle with fiber Y.

Proposition 5.1.7. Given any two principal G-bundles G — E; — Bj with t.E; = 0 (j € {1,2}), there
is a string of weak homotopy equivalences connecting By with By.

Proof (Borel [Bors3, Prop. 18.2]). Consider the mixing diagram (5.1.5) for X = E; and Y = E,.
The fiber of @k, is E;, which is weakly contractible, so from the long exact homotopy sequence
of this bundle we conclude @, is a weak homotopy equivalence; and symmetrically for wg,. [

Exercise 5.1.8. Show that the homotopy isomorphism B, = (wEl)*(a)E;)* is unique in the sense
that if we have a third universal principal G-bundle Ez — B3, then B13 = B12 © B23. Hint: Consider
the orbit-space of E; x E; x E3.

! This is the product in the category of G-spaces.
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Exercise 5.1.9. Prove a weak homotopy equivalence By — B, directly using the universal prop-
erty of G - E; — Bo.

Remark 5.1.10. The reader has probably seen the Eilenberg—-MacLane space K(7t,1) for 7t a non-
topological group characterized up to homotopy as a CW complex with 7.K(7,1) = mK(m,1) =
7t the only nonzero homotopy group. This is the case of our BG with G = 71 a discrete group.
Proposition 5.1.7 and Exercise 5.1.9 show K(7,1) is unique up to homotopy.

5.2. An ad hoc construction of EG for G compact Lie

As we have seen in the previous section, the specification for EG is somewhat loose; it is really a
G-homotopy type rather than any one single space. In this section we construct an avatar which
will serve most of our needs.

Example 5.2.1. Embedding C" — C"*! as C" x {0}, the direct union is the countable direct sum
C”* = @y C, which can be seen as the subspace of the countable direct product [ [ C such that
all but finitely many coordinates are 0. Within C® lies the unit co-sphere

S*={ZeC” :szz- =1}

Write C% := C*\{0}. The scalar multiplication of C on C® restricts to a free action of C* on C¥
and of S! on S*, with the same orbit space

CP* := C¥/C* ~ §*/St,

called infinite complex projective space. The fiber space S — CP® can be seen as the increasing
union of restrictions $%*~1 — CP"~!, where we conceive $¥*~1 as S® ~ C". Each CP" admits an
open cover by contractible affines, so these restrictions are all principal S!-bundles, and S* —
CP® is as well.

We claim this bundle satisfies the requirements to be ES! — BS!. Because S® is the union of
the unit spheres $>"~! ¢ C", by a compactness argument, any map S” — S® must lie inside
some sufficiently large S”, and 7,,S" = 0 for m < n. Thus S is weakly contractible. There is a
natural CW structure on S® where two hemispheres D" attach to each S"~! to form S, so we
know from Whitehead’s theorem S is contractible, but in fact, it is possible to see so directly as
well.

Proposition 5.2.2. The unit co-sphere S is contractible.

Proof. There is a homotopy taking the subspace §" := §* n ({0} x C*) ~ S* with first coordinate
zero to the point e; = (1,0), given by

h(Z) = (sint)e; + (cost)Z;

this is just a renormalization of the straight-line homotopy. Now it will be enough to find a
homotopy from S* to S'. Write s: Z — (0, Z) for the shift homeomorphism. One’s first inclination
is to take
fi@) = A -1HZ+t-s(2).

If we can show f;(5) avoids 0 € C*, then the renormalization f; == f;/|f| will suit our purposes.
Now note any Z € C® has a last nonzero coordinate z,, so the n' and (n + 1) coordinates
((1 — t)zy, tz,) of fi(Z) will never simultaneously be zero, and the linear maps f; € End¢c C* are
injective. Thus f; is an isotopy. O
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Example 5.2.3. Replacing C with the quaternions H (respectively, the reals R) and S! with Sp(1) ~
S? (resp., O(1) ~ S° =~ Z/2), one finds a universal Sp(1)-bundle ESp(1) — BSp(1) is

§* — §¥ — HP”
and a universal O(1)-bundle EO(1) — BO(1) is
S" — §* — RP™.

Any closed subgroup K < G acts freely on EG by a restriction of the G-action, so one has
a natural map EG — EG/K with fiber K. It is intuitively plausible that this is also a fiber
bundle, and this is actually the case in the event G is a Lie group: by Theorem B.4.4, G —» G/K
is a principal K-bundle, and the local trivializations ¢: (EG)|y —> U x G of EG — BG and
Gly = V x K of G — G/K combine to yield local trivializations ¢~(U x G|y) — U x V x K
making EG — EG/K a principal K-bundle, so that EG can serve as EK and EG/K as BK.

To make use of this observation, we can use the classic result Theorem B.4.8, due to Peter
and Weyl, that every compact Lie group has a faithful finite-dimensional unitary representation.
Thus, if we can find EU(n), we will have bundles EG — BG for all compact Lie groups G. Here
is one construction.

Example 5.2.4. The infinity-sphere S* can be seen as the collection of orthonormal 1-frames in
C* and CP® as the space of 1-dimensional vector subspaces of C*. Analogously, one can form
the infinite complex Stiefel manifolds V,,(C*) of orthonormal n-frames in C*, which is to say,
sequences (vy,...,v,) of n mutually orthogonal vectors of length one, topologized as a subspace
of [ [, S%, and the infinite complex Grassmannian G, (C*) of n-planes in C*. Just as S* projects
onto CP*, so does each V,(C®) project onto G,(C®) through the span map (vy,...,v,) —
2. Cv;. The unitary group U(n) acts freely on V,,(C*); if one considers an element of S* as an
infinite vertical vector, or a o0 x 1 matrix, then an element of V,,(C®) can be seen as an o x n
matrix, and right multiplication by an n x n matrix in U(n) produces another co x n matrix
spanning the same column space, so that the fiber of the span map V,(C*) — G,(C®) is
homeomorphic to U(n). With a little work, it can be seen that U(n) — V,(C*) — G,(C®) is a
tiber bundle.

Moreover, an analogue of the contraction of S* in Example 5.2.1 shows V,(C®) to be con-
tractible: the idea is to first conduct the isotopy f; of S® consecutively n times, taking S* into
{0}" x S* and hence V,,(C*®) into V,,({0}" x C*), and then use a renormalized straight-line ho-
motopy generalizing h; to take V,({0}" x C®) to the identity matrix I, € C"*" ¢ C**", rep-
resenting the standard basis of the subspace C" < C®. Write g; for the resulting homotopy
Vi (C*) x I — C**". In the same way that our first guess for S* failed to have image strictly
unit-length, this map g;, while it preserves linear independence, does not preserve orthogonal-
ity. But if we postcompose to g; the Gram—-Schmidt orthonormalization procedure, which is a
well-defined projection

{n-tuples of linearly independent vectors in C*} — V,(C%),

we achieve the desired homotopy.
One analogously finds that V,(R*) — G,(R*) and V,,(H*) — G,(H®) respectively satisfy
the hypotheses for EO(n) — BO(n) and ESp(n) — BSp(n). The double cover V,,(R*)/SO(n) =:

Gn(R™) of G4(R®), the oriented Grassmannian consisting of all oriented n-planes in R*, is a
BSO(n).
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5.3. Milnor’s functorial construction of EG

These pleasing constructions do not generalize. In 1955, Milnor [Mil56] found a functorial con-
struction of EG — BG that works for any topological group G, not even assumed Hausdorff.

To lay the groundwork, the join X « Y of two topological spaces X and Y is the quotient of the
product X x Y x I with an interval by identifications (x,y,0) ~ (x,¥,0) and (x,y,1) ~ (x',y,1)
for all x,x" € X and all y,y’ € Y. We may think of this as an (X x Y)-bundle over I that has been
collapsed to X over 0 and to Y over 1, and consider X and Y to be included as these particular

end-subspaces.

I*] S’ S Sl*SO

Figure 5.3.1: Some low-dimensional joins

Examples 5.3.2. The join I = I of two intervals is a 3-simplex A3, the join S°  S% is a circle S!, and
the join S! * S¥ is a 2-sphere S2.

It is not hard to see that generally X # pt is the cone CX on X and, as in the examples
above, X x S¥ is the suspension SX of X, so the process of iteratively joining points generates
the simplices A" and that of iteratively joining copies of S° yields spheres S". One can also see
S? ~ S « S! geometrically. The unit sphere in C? has a singular foliation by

T, := {(zcosr,wsinr) : z,w € S'},

for r € [0,7/2], which are tori S! x S! for r € (0,7/) and circles for r € {0,7/}: the S! factor
corresponding to the w-coordinate collapses at r = 0 and the S! corresponding to the z-coordinate
collapses at r = /2.

One important property of joins is that they are (bi)functorial: continuous maps X — X’ and
Y — Y’ uniquely induce a map X * Y — X’ %Y’ in a manner respecting composition of maps.
Another key feature is that they are more connected than their factor spaces, as one already sees
in the sphere examples above, in the following sense.

Definition 5.3.3. A nonempty space X is (—1)-connected, and, for each n € N, is n-connected if
mi(X) =0forallj<n

The relevant fact is that one can find an CW-replacement of an n-connected space such that
after the basepoint, the next smallest cell is of dimension n + 1. (This is true but content-free if
n=-1)

Corollary 5.3.4. If X is n-connected and Y is m-connected, then X =Y is (m + n + 2)-connected.
We decompose this into two lemmas.

Lemma 5.3.5. Let X and Y be spaces homotopy equivalent to CW complexes. Then X =Y is homotopy
equivalent to the reduced suspension £(X A'Y) of the smash product of X and Y.
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Proof. Fix basepoints xp € X and yo € Y. The subspace x¢ * Y 2 Y deformation retracts to x and
the subspace X = yp = X deformation retracts to y; their intersection xg * yo is also contractible,
so their union A is as well. Thus the reduced join (X Y)/A is homotopy equivalent to X = Y. But
A is comprised of elements [x,y,t] € X * Y with x = xp or y = yp or t € {0, 1} which are precisely
the things one mods out of X x Y x [ to get (X A Y). O

Recall that reduced suspension is equivalent to smashing with S!. Then Corollary 5.3.4 follows
by applying the following lemma twice to X A Y A St

Lemma 5.3.6. If X is m-connected and Y is n-connected, then X A'Y is (m + n + 1)-connected.

Proof. Replace X and Y with weakly homotopy equivalent CW complexes, such that the smallest
cells besides the basepoints are of dimensions m + 1 and 1 + 1 respectively. Then X x Y decom-
poses into cells o x T for ¢ and T respectively cells in X and Y, and X v Y is the union of cells
{xo} x T and cells o x {yo}. The cells of the inherited CW structure on X A Y = X xY/XVvY
are the 0-cell representing the collapsed X v Y and the images of the other ¢ x T, the minimum
dimension of which is (m + 1) + (n + 1). O

It follows that if X is n-connected, then the n-fold iterated join *" X is (n(m + 2) — 2)-
connected. Including %" X as the second factor of %" X = X« (k" X), we can form the direct
limit

EX :=lim %" X.
Because for all n we have EX ~ (#"*1 X) x EX, it follows that every 71,(EX) = 0. We will show in
the next section that EX is actually contractible. Note that E(—) is functorial: a continuous map
¢: X — Y induces a continuous map Eyp: EX — EY.

Now let G be a topological group. To construct a G-action on EG, we first provide a different
description of it. For any topological space X, write CX for the unreduced cone on X, the quotient
of the product X x I obtained by pinching X x {0} to a point. Then X *Y can be seen as the
subspace of CX x CY consisting of elements [x, t1,, t,] such that t; + f, = 1 and X as the subspace
where t, = 0. Similarly, the triple join X # Y % Z can be seen as {[x, t1,y,t2,2,t3] e CX x CY x CZ :
tH+ty+1t3 = 1}, and X =Y as the subspace where t3 = 0, and the infinite join EG can be seen as

{([g-, jen € H CG : only finitely many ¢; # 0 and Z tj = 1} (5.3.7)

Write these elements briefly as e = [( gj),f]. A free, continuous right action of G on EG is given

by
(). 7] -8 = [(8;8). ]
Set BG := EG/G, with the quotient topology.
We still must show p: EG — BG: e — ¢G is a fiber bundle. Much like projective space,
EG admits an open cover by sets U; = tj_l(O,l]. On Uj, the gj-coordinate is well-defined and
continuous, so

¢j = (p.gj): U — p(Uj) x G
is a contmuous bijection. To see the inverse qb is continuous, note that the continuous map

er—e-g; !(e) determines the unique representatlve ¢’ of eG such that 8; 1(¢') = 1, and since p
is open, the restriction of p to this set of representatives is a homeomorphlsm p; onto its image
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p(U;), with inverse eG eg; (e). Now we can write 4> as (eG,g) — pj’l(eG) - g, which is
plainly continuous. Where defmed ¢io 47] is given by

(G, 8) — ¢i(p; 1(¢G) - 8) = (G, gi(p;}(eG) - g)),

which is continuous, so the transition function on U; n Uj, is also continuous; explicitly in terms
of any representative e of ¢G, this transition function sends g — g;(e)gj(¢) 'g. Thus EG — BG
is a principal G-bundle.

The classifying space construction B is also functorial, because if y: G — H is a continuous
homomorphism, Ei is fiber-preserving and equivariant in a sense—

Ep([3;,11- ) = Evlg3. 1) = [9(;8),1] = [(g), 7] - w(g) = Ep([5;, 7)) - 9(3)

—so that Ey descends to a well-defined continuous map By: BG — BH.
Remark 5.3.8. The spaces EG can actually be seen to be contractible by an argument due to Dold.

Historical remarks 5.3.9. The notation for EG and BG descends from a proud historical precedent.
The way to denote a bundle F — E > B equipped with a local trivialization with transition
functions taking values in G < Homeo(F), as late as the 1960s [Ste51, BH58, BH59, BH60], was a
quintuple (E, B, F, p, G), with the last two entries often omitted. This arrowless notation requires
one to remember which object lives in which position, but does have the benefit that if a bundle
is named ¢, it has canonically associated with it an entourage of ready-named objects

(Eg, Bg, Fg, 7'(5, Gg) = (;

The standard name for the universal principal G-bundle under this convention is, naturally
enough,
(EG, BG, G, G, G)

In subsequent decades, perhaps as the functorial nature of E: G — EG and B: G — BG is
embraced, one can see the subscripts of Eg and Bg gradually move up until one has the EG —
BG of modern day.

5.4. Segal’s functorial construction of EG

Although we only need one functorial construction of EG, there is another that is very attractive,
uses ideas we have already seen, and whose generalizations had an important impact on later
directions in algebraic topology.

The conditions ¢; > 0 and > t; = 1 in (5.3.7) describe, of course, a simplex, so writing | =
[jo,- -, ju] for a decreasmg tuple of indices j € N with t; # 0, what we have done is represent
each element of EG uniquely as a pair (3,f) € G/ x A", To see how these pieces fit together, we
consider elements (§,f) € G/ x A" If t; = 0, then the tuple is represented in EG by the same
tuple with g; omitted. If we write ¢,/ = [jo, ..., Jor---,jn], and 0y: G/ — G/ for the coordinate
projection omitting g;, then this identification can be expressed as

(003, F) ~ (3,if)  forge G/, fe A",

which is just the relation one has in defining the geometric realization (Definition 4.2.3). In fact,
since projection d; are given by entry omission, it is clear the G/ fit into a semisimplicial set,
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namely ./'G, where (A'G)n = []j_p1 G/ and 0, is projection as above, and then it becomes
clear that
= |-#Gl.

This change of viewpoint actually makes it easier to see that EG is contractible. Let ¢ be the
semisimplicial subset .#'G consisting of elements all of whose entries are 1 € G. There is a unique
map ¢ of semisimplicial sets .#'G — ¢ defined on the 0" level by sending each element of G
to 1 € GI"*1]. Let A[1] be the semisimplicial set with two 0-simplices (0) and (1) and n-simplices
nonincreasing length-(n + 1) sequences of 0’s and 1’s.” The maps id 4 and € prescribe a map of
simplicial sets 4G x A[1] — 4G determined on the O-level by

(8¢) x (0) —> (g0),
(ge) x (1) — (1j31).

Compatibility with the face maps means this prescription actually specifies the map completely;
for example, forg > p>m> (>,

(hj, hj) x (1,0) — (111, 1),
(8¢, hj) x (0,0) — (8o, h),
(8e,hj) x (1,1) — (Loy1,1j51),
(ag, by, cm, g hj) x (1,1,1,0,0) — (1441, 1py1, Liusr, oo Bj)-

Taking geometric realizations yields a map

which is the identity on the subcomplex EG x {(0)} and sends the subcomplex EG x {(1)} to |e|.
But [e| = lim *"{1} = A® is an infinite-dimensional simplex, hence contractible.

Exercise 5.4.1. Write an explicit nullhomotopy of A®.
Theorem 5.4.2 (Dold). The Milnor model of EG is contractible.

[SIMPLICIAL HOMOTOPY INDUCES HOMOTOPY Is [?, COR., P. 360]]

The semisimplicial set 4G realizing to EG descends to a semisimplicial set (.#G)/G with
realization BG, whose levels are unions of G//G. An element [] of G//G is represented equally
well by ¢ and (g;h) for any other 1 € G, and it would be nice to have unique representatives. One
observation to make is that the ratios gjggl are invariant under the substitution § — §- 5, so
an element of G/ is uniquely determined by its list of ratios (gj, gjjl, s 8in18jn) € G". Let us see
explicitly what the face operators do downstairs, for | = [3,2,1,0]:

be,c,1) — (b,c),
abc,c,1) — (ab,c),
abc,bc,1) — (a,bc),
abc,bc,c) —> (a,b).

— (
(a,b,c) «— (abc,be,c,1) E (5.4.3)
—

2 The idea is that @ = (1,0) represents the nontrivial edge and every other simplex is degenerate, with image one
of the endpoints or this edge. The geometric realization, as we have defined it, will only be homotopy-equivalent to I,
but this is all right.
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Thus dp and 0, respectively omit the first and last entry, as before, but the other 8j multiply two
consecutive entries.

This generalizes substantially. We may consider a monoid G as a category in at least two
different ways. One way is to construct the category % ¢ whose objects are the elements of G and
whose morphisms are given by the multiplication table: there is a unique morphism f¢: h — gh
for every g,h € H. If G is a group, then for every pair of objects h,x € G, there is a unique
morphism ¢,;,-1: h — x. In other words, the space of morphisms is G x G. This category is
clearly equivalent to the category * with one object and one morphism, for the unique functor
%G — * is surjective on objects and bijective on each hom-set. Another to consider G as a
category is to construct the category ¢ with one object * such that the morphism set ¢+, *)
endowed with composition is just G. There is a natural functor 7 €c — ¢ between these
categories, taking every object to * and each morphism /, to g € €5 (%, *).

Associated to every category, and these in particular, is a semisimplicial set, as per Defini-
tion 4.2.1, whose levels are its strings of composable arrows.

Definition 5.4.4. Given a topological category &, we write ¢ for its class of objects and ¢; for
its class of morphisms.?> The nerve N¢ of € is the simplicial space N with levels

(N%)o = %o, (NE)w = {(fu-1,---, fo) € €' : source(fj41) = target(f;)}.

If we write down ¢ as a graph, then elements of (N%),) correspond to paths - LI ORI

In other words, ]? is an element of ¢, if the composition f, f,_1 - - - f2f1 is defined. The face maps

are .
oof = (fur++ . o)
Of = (fur fisifi f), 0<j<n, (5.4.5)
onf = (fazt -+ f1)-

and the degeneracies are

S]f = (fnr T /fj-‘rl/idtarget(f]')lfjl e /fl)' (546)

We write B¢ := |[N%/| for the geometric realization of the nerve, and call it the classifying space
of €.

To make it clearer that the nerve is indeed a semisimplicial set, recall that we initially came
by the relations 0;0; = 0;0;;1 for i < j by analyzing what happened when we removed entries
from an (n + 1)-tuple. To put the nerve back in that framework, note that face map also removes
one of n + 1 things from f, namely f,, fi, or one of the n — 1 commas separating entries. Thus
the only cases to be checked are (i,j) = (n —1,n—1) and (7,j) = (0,0).

Exercise 5.4.7. Check these cases.*

3 In the cases we consider, these will just be sets.

4 In practice, one usually specifies a simplicial set X by describing the sets X, of n-simplices and then defining the required
face and degeneracy maps. Mercifully, the required relations are often obvious, and even if they are not, it is still advisable to
assert that they are, after privately verifying that they do in fact hold.

—Emily Riehl [Rie11].
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A continuous functor between topological categories induces a continuous simplicial map of
simplicial spaces and so a continuous map between classifying spaces. We have already seen an
example of this.

Example 5.4.8. Our semisimplicial set .#'G realizing EG is the nerve of the topological category
%nG whose space of objects is N x G, and whose nonidentity morphisms are unique arrows
(¢,8) «— (j,h) for £ > jand any g, h € G. If we agree to write these morphisms as (g, 1), we can
write a pair of composable arrows (1, c) < (£,8) < (j, h) as (cm, 8¢, hj) € GUtmM < (AG), and so
on. With this notational convention, omitting the first or last coordinate corresponds to dropping
the first or last arrow and projecting out a middle coordinate corresponds to composition since
nonempty hom-sets contain only one element.

Example 5.4.9. Our semisimplicial set .#'G/G realizing EG is the nerve of the topological category
%~G whose space of objects is N with hom-sets Home;, (j, 1) = G for j < n, the identity for j = n,
and empty if j > n. If we think of these arrows as left multiplication by g, then the face operators
in (5.4.3) exactly meet the specification set by (5.4.5).

We will show that B¢ — B%( is a model for EG — BG and in the process provide another
proof that the Milnor model of EG is contractible.

Proposition 5.4.10. The functor B preserves products.

Proof. An object in a product € x Z of categories is a pair (c, d) of objects of each and a morphism
is a pair (f,g) of arrows. It follows N(% x ) = N% x N2 as a set and we set J; = (0;,0;) in
N(% x 2); this is the product simplicial set. By [CREATE IN SIMPLICIAL SET SECTION AND CITE],
then, we have

B(¢ x 2) = |N€ x N2)| = [IN€| x INZ| = B¢ x BZ. O

Proposition 5.4.11. Let Fy, Fi: € — 2 be continuous functors between topological categories. A natu-
ral transformation Fy — Fy induces a homotopy B¢ x 1 — BZ from BF, to BF;.

Proof. Let €1 be the category with two objects 0,1 linked by one nonidentity arrow 0 — 1. Then
the data of a natural transformation ¢: Fy — F; is exactly that of a functor H: € x €51 — Z.
Explicitly
H(X,j) = FX,
H(f,id;) = Fif forje {0,1},
H(Idx,o — 1) = (19)( F()X i F1X).

Taking classifying spaces, since B€ x I = B€ x B61 ~ B(€ x €1) by Proposition 5.4.10, we see
H induces a map B¢ x I — BZ as claimed. O

Proposition 5.4.12. A adjunction between topological categories induces a homotopy equivalence of clas-
sifying spaces.

Particularly, an equivalence ¢ = Z induces a homotopy equivalence B¢ ~ BZ.

Proof. An adjunction of topological categories is a pair of continuous functors F: ¥ — % and
G: 92 — € such that there are natural transformations #: idy — GF and e¢: FG — idy
satisfying universal properties that we don’t actually need here. By Proposition 5.4.11, these
induce homotopies from idgs to BG o BF and from BF o BG to idgy, as was to be shown. O
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Theorem 5.4.13 (Segal). B% ¢ is contractible.

Proof. We have already seen that € — xisan equivalence.> Thus, by Proposition 5.4.12, B¢ ~
Bx ~ . 0

It is not always the case that B% ¢ —> B%; is a bundle map, although it is if G is a Lie group,
as we will always assume. But this model is still relevant.

Proposition 5.4.14. There exists a homotopy equivalence BG — B%.

Proof. We define a continuous functor 65G — € taking ((,g) — (£,1)) — (g ~ h). This
is not an equivalence® but is a continuous G-equivariant functor, so it induces a G-map EG —
Bé:. (It is a homotopy equivalence simply because both spaces are contractible, but this does
not imply it is a G-homotopy equivalence.)

[THIS IS A HOLE WHICH STILL REMAINS TO BE FILLED.] O

Historical remarks 5.4.15. [To BE WRITTEN...]: [ COMMENTARY ON THE GEOMETRIC COBAR CONSTRUC-
TION, STEENROD—ROTHENBERG, AND GROUP COHOMOLOGY. ]

5.5. The Borel consfruction

We have now constructed, for every topological group G, a universal principal G-bundle G —
EG — BG such that EG is weakly contractible. Given a left G-space X, we can construct the
mixing diagram (5.1.5) of EG and X. The product space EG x X, equipped with the diagonal
action, is another G-space weakly homotopy equivalent to X, but the new action is free since

(e,x) =g-(e,x) = (eg™',gx) = e=eg ™"

and the G-action on EG is free. The middle entry on the bottom of the diagram, the orbit space
of this new, free action, serves as a sort of “homotopically correct” substitute for X/G when the
action of G is not free, and a useful auxiliary even when it is.

Definition 5.5.1 (Borel [BBF' 60, Def. IV.3.1, p. 52]). The orbit space
Xe=EG®X = EGxX -
¢ =EGQ /(eg,x) ~ (e,8),
of the diagonal action of G on EG x X is the homotopy quotient of X by G (or the Borel construc-
tion). We denote the elements of X by ¢ ® x, since eg® x = e® gx.

The homotopy quotient is functorial, in that a continuous G-map X — Y induces a con-
tinuous map Xg — Y in a manner respecting composition. Every G-space X admits a G-
map X — =* to a single point (equipped with the unique possible G-action), inducing, since
kG = EGCé)* ~ EG/G = BG, a canonical map

eRx — e@x < eG.

The fiber of this map over eG is the set {e®x : x € X} ~ X.

5 As an explicit pseudoinverse, one may take the map # — 1; any point g € G will do.
6 Tt is surjective on objects and faithful, but not full because if ¢ # h, then Horn%;N ((n,8), (n,h)) is empty, while
Hom(gG (g, h) is not.
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Definition 5.5.2. The bundle X — X — BG is the Borel fibration of the action of G on X.

Proposition 5.5.3. Let G act freely on a CW complex X. Then the projection Xg — X/G is a weak
homotopy equivalence.

Proof. The map e®x — Gx from X — X/G has fiber EG/Stab(x) in general. If G acts freely
on X, then all fibers are EG. Since EG is contractible, the long exact homotopy sequence of the
bundle EG — Xg — X/G shows the map is a weak homotopy equivalence. By Whitehead'’s
theorem, it is a homotopy equivalence. O

To use this map as an auxiliary, we will want to be able to replace the map X — X/G with
X — X; and X/G — BG with Xg — BG as needed when the action on X is free. The first is
natural: one has a triangle

Xg /eTx
N

X/G, Kx,

7

X

N

X

which commutes on the nose. The map ): X/G — BG in question, on the other hand, is the
classifying map of G — X — X/G, which exists from the abstract considerations of Proposi-
tion 5.1.3, but which we do not typically have any concrete description of. It is not a priori clear it
should have anything to do with the projection X; — BG of the Borel fibration. To see it does,
quotient the G-map

idx x: EGx X — EG x EG

by the diagonal G-action. The projections to the either factor on both sides in the resulting ho-
motopy quotient yield the following diagram (this is a map of bottom rows of mixing diagrams

(5.1.5)).

BG EG%)X — X/G eK fe®@xt Kx
d®F X
BG <= EG(?}EG ~—— BG eK <——e® x(x) —— x(Kx)

Here the map Xg — X/G and the maps along the bottom are weak homotopy equivalences
because they are fibrations with fiber EG; this was the proof in Proposition 5.1.7 of the uniqueness
of BG. It follows that we can indeed replace x: X/G — BG with the projection Xg — #c = BG
up to homotopy.

Proposition 5.5.4. If G — X — X/G is a principal bundle, then the weak homotopy equivalence Xc —
X/G identifies X — X with X — X/G and the classifying map X /G — BG with the Borel fibration
X¢ — BG up to homotopy.

Remark 5.5.5. The singular cohomology H*(Xg;) of the homotopy quotient X is the (Borel equiv-
ariant cohomology H(X;) of the action of G on X [BBF"60, IV.3.3, p. 53], a classical tool in the
study of group actions and one of the topics of the thesis this book derives from. The equivariant
cohomology of a point is HE(x) = H*(BG). As this is the coefficient ring of Borel cohomology,
we will abbreviate this ring by HE later on.
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Chapter 6

The cohomology of complete flag manifolds

The algebraic relation between a compact group and its maximal torus informs all discussion of
invariant subalgebras going forward, and is epistemologically prior to much of our discussion
of the cohomology of homogeneous spaces, being treated with sui generis methods that do not
apply in the general case.

The quotient G/T of a compact, connected Lie group by its maximal torus T, called a complete
flag manifold, was among the first homogeneous spaces other than groups and symmetric spaces
whose cohomology was understood. This material will be cited in Section 8.3.2.It is fundamental,
and but for the discussion of the Serre spectral sequence in Theorem 2.2.2, could have gone earlier.

6.1. The cohomology of a flag manifold

The cornerstone result is the following.

Theorem 6.1.1. Let G be a compact, connected Lie group and T a maximal torus in G. Then the cohomol-
ogy of H*(G/T) is concentrated in even dimensions.

[cITE BOTT-SAMELSON]

Proof sketch 1. Associated to G is a complexified Lie group G* which is a complex manifold, and
which contains a Borel subgroup B, a complex Lie group containing T and such that

G®/B ~ G/T.

Thus G/T admits a complex manifold structure and hence a CW structure with even-dimensional
cells. This actually shows H*(G/T;Z) is free Abelian. O

We reproduce Borel’s original 1950 proof. This argument was first published somewhat tele-
graphically in Leray’s contribution [Ler51] to the 1950 Bruxelles Colloque, and is elaborated in
Borel’s thesis [Bor53]. It invokes two facts we shall not prove about invariant differential forms,
which are these.

Proposition 6.1.1. Suppose a compact, connected Lie group G acts on a manifold M. Then every coho-
mology class in H*(M; R) is represented by a G-invariant differential form w. Such a form is determined
uniquely by its value wy € ATy M, an alternating multlinear form on the tangent space of one point x of
M.

75
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Sketch of proof. Given a closed form w, note that since G is path-connected, for any ¢ € G the
left translation £3 on Q*(M) induces an isomorphism on cohomology, so w — (Zw is an ex-
act form dt,. Using an invariant probability measure y on G, average w — (Gw = d7y and get
w—§glswdp = df;tgdy, showing w is cohomologous to an invariant form." Thus inclusion
of invariant forms induces a surjection in de Rham cohomology. It is an injection because the

composition Q*(M)€ — Q*(M) Jo ik, Q*(M)FC is the identity. O

Proposition 6.1.2. Let G be a compact, connect Lie group and K a closed subgroup. The alternating
multlinear form wix € A(g/t)" representing a G-invariant form w € Q*(G/K) is invariant under the
action Ad*|k of K induced by the conjugation action on K on G.

Proof. The adjoint action of G on g is the derivative at 1 € G of the conjugation action x — gxg~!.
The action of K on G/K induced by conjugation is identical to the left action k.gK = (kg)K, since
the right k=1 is absorbed by K, so (4;)* = Ad*(k) on Q*(G/K). Now

Ad*(k)w\lK = (Ad*(k)w)lK = (E;:CU)H( = WiK- ]

Borel'’s proof of Theorem 6.1.1. By Theorem B.1.1, we may use R coefficients. Write / = rk G and
n = dim G — rk G. We prove the result by a double induction on ¢ and n. If / = 0, then G is
discrete, and we are done. Inductively suppose we have proven the result for all groups of rank
{—1.1fn=0,thenrtk G = dim G, so G = T is a torus and we are done.

Now suppose inductively we have proven the result for £ and n — 1. Note that without loss
of generality, by Theorem B.4.5, G can be taken to be of the form A x K with A a torus and K
simply-connected. Since A is a factor of the maximal torus T of G, one has G/T = K/(T n K), and
rkK=rkG—-rkA < lifrk A #0.

Otherwise G = K is simply-connected. We claim there exists an element x € G such that
x ¢ Z(G) and x* € Z(G). Indeed, 1 € Z(G) lies in every maximal torus T. There is y; € T
with y% = 1, and since a torus is divisible for all m > 0 there are y,, with ]/%1 = Ym—1. If these
simultaneously lay in all tori, then Z(G) would fail to be discrete, so there is some first m such
that y,, ¢ Z(G) and we may take x = y,_1. Let K be the identity component of the centralizer
Zg(x) of x. Because x lies in the maximal torus T of G, we know rkK = rk G, and because
x ¢ Z(G), the dimension dim Z(x) = dim K is strictly less than dim G. Thus H*(K/T) is evenly
graded by the inductive assumption.

The tangent space g/t = T1x(G/K) to the identity coset 1K in G/K can be identified with an
orthogonal complement £ to £ in g in such a way that the isotropy action of K on Tix(G/K)
corresponds to the adjoint action of K on £*.

By Proposition 6.1.1, each de Rham cohomology class on G/K contains a left G-invariant
element, which is then determined by its restriction to Tix(G/K) = £1. Such a restriction is, by
Proposition 6.1.2, an alternating Ad*(K)-invariant multilinear form on £*. Because x? is central,
Ad(x) € GL(g) is an involution; thus g splits as the 1-eigenspace ¢ and an orthogonal (—1)-
eigenspace, which must be £1. Since Ad(x) acts as multiplication by —1 on £, a nonzero Ad*(x)-
invariant alternating form on £ can only have even degree. As x € K, it follows we must have
H*(G/K) concentrated in even degree.

Now we can apply the Serre spectral sequence to K/T — G/T — G/K. Both H*(K/T) and
H*(G/K) are evenly-graded, so by Theorem 2.2.2, so also is G/T. In fact, by Corollary 2.2.9, the

! Particularly, this is sketchy because we have not shown how to choose T such that ¢ — ¢ is measurable.
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spectral sequence collapses at E; and H*(G/T) = H*(G/K)® H*(K/T) as an H*(K/T)-module.
O

Corollary 6.1.3. Let G be a compact, connected Lie group and T a maximal torus in G. Then the Euler
characteristic of x(G/T) is positive.

6.2. The acyclicity of G/Ng(T)

In this section we prove another result whose importance will not immediately be clear, but
which recurs in Section 6.3.

Proposition 6.2.1. Let G be a compact, connected Lie group, T a maximal torus in G, and N = Ng(T)
the normalizer. Then dim G/N is even and G/N is Q-acyclic:

H*(G/N;Q) = H°(G/N;Q) = Q.

Proof [MToo, Thm. 3.14, p. 159]. The torus T acts on G/N on the left, fixing the identity coset 1N
(since T < N); we claim this is the only such fixed point. Indeed, let t € T be a topological gener-
ator. If an element gN € G/N is fixed under multiplication by ¢, it is fixed under multiplication
by all powers of t, and thus, by continuity, by all of T, so that T¢N = ¢N, or ¢~ !Tg < N. Since T
is a connected component of N and 1 = g~ !1¢g € T, it then follows ¢~'Tg = T, or g € N.

Because T fixes 1N, there is an induced isotropy action of T by isometries on the tangent
space g/n = Tin(G/N) to G/N at the identity coset 1N, which can be identified with the or-
thogonal complement n' < g. Because T acts by isometries on the vector space nt =~ R™, it
leaves invariant e-spheres S™~! about the origin. The exponential exp: nt — G/N will map a
sufficiently small sphere isometrically and T-equivariantly into G/N, and this T-invariant image
sphere S"~! divides G/N into a T-invariant disk D" and a T-invariant complement M. Since T
is path connected, the map /; is homotopic to the identity, so x(¢;) = x(id) on both S"~! and
M. As only 1N € G/N is fixed by multiplication by T, and this point lies in the interior of D™, it
follows /; acts without fixed points on S"~! and M. By the Lefschetz fixed point theorem B.1.10,
then,

x(M) = x(5™ ) =

0.
It follows m is even. Note that by excision H*(G/N,M) =~ H*(D™,S"!) ~ H*(S8™), so that
the relative Euler characteristic x(G/N, M) is (—1)" = 1. The long exact sequence of the pair
(G/N, M) then gives
X(G/N) =x(M) +x(G/N,M) =0+1=1.

As G/T — G/N is a finite cover with fiber W = N/T and H°(G/T) = 0 by Theorem 6.1.1, it
follows from Proposition B.2.1 that

HY(G/N) =~ H(G/T)V = 0.
Thus 1*(G/N) = x(G/N) = 1, so it must be that H*(G/N) = H°(G/N) = Q. O

We have the following useful corollary.
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Corollary 6.2.2 (Weil [D1c uP ciTATION]). Let G be a compact, connected Lie group, T a maximal torus
in G, and W the Weyl group of G. Then

x(G/T) = [W|.

Proof. Since G/T — G/N is a |W|-sheeted covering and x(G/N) = 1 by Proposition 6.2.1, it
follows from Proposition B.2.5 that

x(G/T) = x(G/N) - [W| = [W]. M

This means in a homogeneous space G/K, one can for cohomological purposes replace K with
the normalizer of its maximal torus.

Corollary 6.2.3. Let G be a compact, connected Lie group, K a closed, connected subgroup of lesser rank,
S a maximal torus of K, and N = Nk(S) the normalizer of this torus in K. Then the natural projection
G/N — G/K induces a ring isomorphism

H*(G/K) > H*(G/N).

Proof. There is a fiber bundle K/N — G/N — G/K, whose fiber K/N is acyclic by Proposi-
tion 6.2.1, so 711 (G/K) acts trivially on H*(K/N) = H°(K/N) =~ Q, and the Serre spectral sequence
of this bundle collapses on the E; page, yielding an H*(G/K)-module isomorphism

gr, H*(G/N) = H*(G/K)®Q = H*(G/K).

Because the bigraded algebra H*(G/N) is concentrated in the bottom row, the associated graded
construction leaves it unchanged, so this is a ring isomorphism. O

There is also the following further result, later generalized by Chevalley.

Corollary 6.2.4 (Leray). The ring H*(G/T) is isomorphic to the reqular representation of the Weyl group
W.

Proof. One characterization of the regular representation W ~—— Aut(Q[W]) of a group W is
through the character w — trw|qgw; of the representation: a representation V' is W-isomorphic
to the regular representation just if

IW| w=1,
trw\v =
0 w # 1.

Consider the standard right action® of W = Ng(T) on G/T given by ¢T - nT := gnT. Since
gnT =QT <= nT=g¢g 9T =T — neT,

no element of W other than the identity has any fixed points. Now, this right action induces
an representation of W in H*(G/T). For w # 1, since there are no w-fixed points, w has Lef-
schetz number x(w) = 0; but since H*(G/T) is evenly graded by Theorem 6.1.1, this means that
tr w|y+ (g 1) = 0. On the other hand, x(1) = x(G/T) = |W| by Corollary 6.2.2. O

2 N.B. The proof of this result in [MToo, Prop. VIL3.25, p. 399] is not quite right, as it tries to use the left multipli-
cation action.



1973
1974

1975

1976

1977
1978

1979

1980
1981
1982

1983

1984
1985

1986

1987
1988
1989
1990
1991
1992
1993

1994

1995

1996

1997

1998

1999
2000
2001
2002
2003

2004

Chapter 6. The cohomology of complete flag manifolds 79

We also can show that the Euler characteristic of a generic compact homogeneous space is
Zero.

Corollary 6.2.5. Let G be a compact, connected Lie group and K a closed, connected subgroup of lesser
rank. Then x(G/K) = 0.

Proof. Let S be a maximal torus of K and T be a maximal torus of G containing S. Then we
have a fiber bundle T/S — G/S — G/T. Since the base is simply-connected, it follows from
Proposition 2.3.6 that

x(G/S) = x(G/T)x(T/S) = x(G/T) -0,
this last since a torus T/S is a product of circles and x(S!) = 1 —1 = 0. Let N = Ng(S) be the
normalizer in K of its maximal torus S. Since N — S is a covering with fiber Wk, so also is
G/S — G/N, so by Proposition B.2.5,

x(G/N) = X(G/S)/jwy| = o.
Now by Corollary 6.2.3 we have x(G/K) = x(G/N) = 0. O

Historical remarks 6.2.6. The Euler characteristic dichotomy that x(G/K) > 0 or = 0 depending as
rk G = rkK or rk G > rk K is due to Hopf and Samelson [HS40, p. 248].

6.3. Weyl-invariants and the restricted action a maximal torus

In Appendix B.4, we pointed that the maximal torus of a compact, connected Lie group and its
Weyl group carry much of its algebraic structure. In this section, we show something analogous
holds for the orbit space X/K of a free action and the orbit space X/S of the restricted action by
that group’s maximal torus S. To do so, we use Theorem 6.1.1 and the result of Section 7.2, which
we will prove later.

To start, we state a natural enhancement of the motivating observation Proposition 5.5.3 about
free homotopy quotients.

Lemma 6.3.1. Let K be a group, S a subgroup, and X and Y free K-spaces admitting a K-equivariant map
X — Y. Then these diagrams commute:

Xg — Xk Xk == X/K
CET
}(/S — }(/1(, }q<‘431>.]//}(;

so up to homotopy, Xx —> Yx is equivalent to X/K — Y /K and Xg — Xk to X/S — X/K.

In this statement, the horizontal maps in the first square can be realized as the “further
quotient” maps e® x — e®x: EK®g X —» ES®k X and xS — xK: X/S —» X/K.

Definition 6.3.2. In the rest of this section, we let K be a compact, connected Lie group, S a
maximal torus, N = Nk(S) the normalizer of S in K, and W = N/S the Weyl group of K.

Write K-Top for the category of topological spaces with continuous K-actions and K-equivariant
continuous maps, K-Free for the full subcategory of free K-actions, ()-CGA for the category of (ho-
momorphisms between) graded commutative Q-algebras, and H:-CGA for subcategory of graded
commutative H¢-algebras.
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Observation 6.3.3. Suppose K acts on the right on a space X. Then W acts on the right on the
orbit space X/S by xS -nS = xnS, and so on the cohomology H*(X/S). Given a K-equivariant
map X — Y, the induced map X/S — Y/S is W-equivariant, so the map H*(X/S) «— H*(Y/S)
is as well.

Lemma 6.3.4. Suppose a finite group W acts on spaces X and Y and there is a W-equivariant continuous
map X —> Y inducing a surjection H*(X) «— H*(Y). Then the map H*(X)" «— H*(Y)W is also
surjective. ?

Proof. The restriction to elements b € H*(Y)" has image in H*(X)" by W-equivariance: if w - b =
b for allwe W, then w- ¢(b) = p(w - b) = ¢(b) is invariant as well.

To see the restriction is surjective, let 2 € H*(X)". Then it has a preimage b € H*(Y), not a
priori W-invariant. However, the W-average b= ﬁ D wew W - b certainly is, and by equivariance,
@(b) = a. Since a was assumed invariant, this average is just a again. O

Lemma 6.3.5 (Leray, 1950). There is a natural isomorphism
H*(X/K) — H*(X/S)"
of functors (K-Free)°P — Q-CGA.
Proof. The quotient map X/S — X/K factors as
X/S — X/N — X/K.

The factor X/S — X/N is a regular covering with fiber W, which induces by Proposition B.2.1
an isomorphism H*(X/N) = H*(X/S)". The fiber of the factor X/N — X/K is K/N, and
H*(K/N) = H*(K/S) by Corollary 6.2.3.

Naturality follows because the diagram

X X/S X/N —— X/K

]

Y Y/S Y/N —=Y/K

commutes and because, by Observation 6.3.3, the map X/S — Y/S is W-equivariant. O

This lemma makes available a natural phrasing of an important, well-known result [Hsi7s,
Prop. IIL1, p. 31].

Corollary 6.3.6. Let K be a compact, connected Lie group with maximal torus S. Then there is a natural
isomorphism of functors (K-Free)°P — HE-CGA on spaces X with free K-action taking
H*(BS) ® H*(X/K)— H*(X/S).
(BS) 8 H'(X/K) = H'(X/$)
Proof. We use Lemma 6.3.1 to replace X/S — X /K with Xg — Xk for the rest of the proof. Note
that (o: BS — BK is a (K/S)-bundle. Because H*(K/S) is evenly-graded by Theorem 6.1.1 and
H¢ is evenly-graded by the result of Section 7.2, the E; page of the spectral sequence associated

to o is concentrated in even rows and columns, meaning it collapses by Corollary 2.2.9 and so
the fiber inclusion K/S —— BS is surjective on cohomology by Corollary 2.2.12.
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Recall from the beginning of Section 2.4 the category F-Bun/{y of bundles over ¢p. The con-
struction (—)s—,x: X — (Xs — Xk) is a functor K-Top — F-Bun/¢: that is, there is a map of
K/S-bundles

Xs BS
¢ o
Xk BK.

Here the map Xs — BS is the projection of the Borel fibration and likewise for Xx — BK, Now
the natural isomorphism follows by Theorem 2.4.1. O

Corollary 6.3.7. Let K be a compact, connected Lie group with maximal torus S and Weyl group W. Then
H*(BK) ~ H*(BS)".

Proof. Take X = = in Corollary 6.3.6. O

We will use this result to find explicit generators of H*(BK) in many examples to come.

Remarks 6.3.8. (a) The results Lemma 6.3.5 and Corollary 6.3.6 are classical and very well known,
except that the naturality of these isomorphisms is never stated. This minor detail was actually
critical to the author’s dissertation results working.

(b) Lemma 6.3.5 can fail if there exist elements of H*(X/S;) annihilated by scalar multiplication
by |W|. For example, consider the action of G = {+1} & R* by scalar multiplication on X = S* &
R®. Then X/G ~ RP*, and the maximal torus T is trivial, so Wg = G, and X/T = X = S* again.
With Z coefficients, one finds

H*(X/G;Z) = Z[c1]/(2¢c1), degci =2,
H*(X/T;Z)"¢ = H*(8%;2)¢ = Z.

Similarly, with I, coefficients,

H*(X/G,Fz) = Fz[wﬂ, degw1 = 1,
H*(X/T;F,)"e = HY(S%;F,)¢ = If,.

Historical remarks 6.3.9. Leray had proved a version of Lemma 6.3.5 for classical G [Ler4gb] already
in 1949, and proved the general version in his Colloque paper [Lers51i, Thm. 2.2]. The author is
indebted to Borel’s summary of Leray’s topological output [Borg8] for guiding him to these
references. [D1G ur WEIL CR REFERENCE (CHECK DIEUDONNE).]
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The cohomology of classifying spaces

The Serre spectral sequence of G — EG — BG allows us to compute the cohomology of the
classifying spaces BG. This computation, due to Borel, can be seen (ahistorically) as a motivation
for the definition of the Koszul complex, and through it, the definition of Lie algebra cohomology.
Later we will use the result of this spectral sequence calculation, and the Koszul complex, to
compute the cohomology of G/K.

7.1. The Serre spectral sequence of S! — ES! — BS?

The ideological mainspring of all the spectral sequence calculations we will do in the rest of this
document is a sequence that is only two pages long, the Serre sequence of the universal principal
circle bundle S — ES' — BSl.! We use our knowledge of H*(S') and H*(ES') to work out
H*(BSY).

Proposition 7.1.1. The cohomology of BS' = CP* is given by
H*(CP*) ~ Z[u], degu =2.

Proof. By Proposition 2.2.3, 711BS! acts trivially on H*(S!), so we can use untwisted coefficients
in Theorem 2.2.2.> Thus we can write

EY" = HP(BS'; H1(S'; Z))

As the total space ES! is contractible, its cohomology ring H*(ES?) is that of a point, a lone Z in
dimension zero, and the associated graded ring E,, again Z because the filtration is trivial.

The cohomology H*(S!) is an exterior algebra A[z1], where z; € H!(S!) is the fundamental
class, so in particular it is a graded free abelian group, and

EVT =~ HP(BSY) @ H'(SY).

Since the second factor is nonzero only for g € {0,1}, the entire sequence is concentrated in these
two rows.

t We earlier, in Section 5.2, identified S* — CP® as a model, but the calculation does not actually require this
“geometric” datum.

2 In fact, from the homotopy long exact sequence of S' — ES! — BS!, it follows that 71,BS! =~ Z is its only
nonzero homotopy group, so CP* ~ BS! is an Eilenberg-Mac Lane space K(Z,2). In particular, BS! is in particular
simply-connected.

82
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Figure 7.1.2: The potentially nonzero region in the Serre spectral sequence of S — ES! — BS!

Thus d = d; is the only differential between nonzero rows, so E3 = Ey = Z and d must kill
everything else in E». Because the rows E; = 0 except for g € {0,1} and d decreases q by 1, the
complex (E;, d) breaks, for each p € Z, into short complexes

0—E)' — E;**° 0.

Because the SSS is concentrated in the first quadrant, all groups in the short complex are defini-
tionally zero for p < —2. For p = —2, we have the very short complex

0—EY -0,

red in Figure 7.1.3, witnessing the apotheosis of Eg’o ~ 7 to HY(ES') = E,. This in fact happens
for any SSS where the fiber and base are path-connected, and must happen, since HY = Z for all
three spaces.

For p = —1, we have the very short sequence

0—EPX -0,

green in Figure 7.1.3. The middle object must zero because otherwise it would survive to E3 = E;,
which would mean H!(ES!) # 0. (Then again, we already knew this because BS! is simply-
connected and H is always free abelian, so that the universal coefficient theorem B.1.1 yields
H'(BS') = H{(BS') = my(BS")® = 0.)

Figure 7.1.3: The first few subcomplexes of E, in the Serre spectral sequence of S! — ES! — BS!

For p > 0, the total degrees p + 1 and p + 2 are positive, so that both groups in the short
complex must die in E3. The only way this can happen is if the d linking them is both injective
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2086 and surjective, so an isomorphism: that is,
pl _ op+2,0
Ey” ~E, forall p = 0.

2087 The first occurrence of this, for p = 0, is blue in Figure 7.1.3. On the other hand, the simple fact
28 that HO(S1) =~ Z ~ H'(S!) as abstract groups implies, on tensoring with H?(BS!), that likewise

pO o ppl
Ey” ~Ey .

2080 Assembling these isomorphisms, all groups in even columns p = 0,2,4,... (red in Figure 7.1.4),
2000 and all groups in odd columns (green) are isomorphic. The base cases E(z)’O = HY%ES!) = Z and
2091 E;’O = mBS! = 0 then determine all the other entries: zero in odd columns and Z in even.

Figure 7.1.4: The partitioning by isomorphism class of groups E}"? in the Serre spectral sequence
of S' - ES! — BS!

0 1 2 3 4 5 6 7

2092 Reading off the bottom row E3° ~ H*(BS')®@ H(S') = H*(BS!), we find the cohomology
2003 groups of BS! = CP* are

H(CP) = Z n even,
0 nodd.
2094 Recall that the differential d = d; was an antiderivation restricting to an isomorphism H*(S!) —

205 H2(BS?). If we write u = dz € H?>(BS?) for the image of the fundamental class of S!, then since
209 du = 0, applying the product rule yields

A 1z) = (k+ 1) du -ufz + - dz = 2

0 u

2007 for k = 0. Since this 4 is an isomorphism Egk’l SN E§k+2’0 and z and u are nonzero, it follows by
2008 induction that u* generates H?(CP*) for all k. O

2099 We could more easily have found the graded group structure of H*(CP®) through cellu-
20 lar cohomology after pushing down the increasing union S* = S' US> US> U -+ to a strictly
2101 even-dimensional CW structure CP* = e® ue? Uet U - -+, but the spectral sequence also makes
2102 computing the ring structure almost trivial.

2103 For later reference, note that, topology aside, the calculation we just made is a manifestation
2104 of the following algebraic fact. Define B to be the graded ring Z[u|, where degu = 2, and assign
2105 it the trivial differential. Let A be the graded ring B® A[z], where degz = 1. Make A a Z-cbGa
2106 extending (B, 0) by assigning as differential the unique antiderivation d that vanishes on 0 and
2107 satisfies

dz = u.
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Then (A, d) is acyclic: H'(A) = Z and H"(A) = 0 for n > 0. The reason we were able to deduce
H*(CP*) = Z[u] is that Z[u] is the unique B that makes an A = B® A[z] constructed as above
acyclic.

7.2. The Serre specftral sequence of T — ET — BT

The circle is the one-dimensional case of the torus T" = 1_[” st By the Kiinneth theorem, one has

H*(T") = éH*(Sl) = é/\[z] = Alzy,...,2,] = AHYT"),

where z; is the fundamental class of the j™ factor circle and H(T") = Z{zy, ..., z,} is the primitive
subspace as discussed in Proposition 1.0.9.

To understand H*(BT), there are at least two options. The first is an analysis analogous to,
but more intricate than, that in the last section: one sees easily dy: H'(T) — H?(BT) must be
an isomorphism and then puts more work into showing that means d> is injective on the entire
first column Eg” ~ H*(T) and that E3 = E,, = Z. The second invokes the functoriality of the
universal principal bundle construction G — (G — EG — BG) to make the problem trivial. As
the functors E and B preserve products, one has the bundle isomorphism

T ;>H51

|

ET —~=]]ES!

|

BT =~ []BS!,

so that BT = [[" CP* and H*(BT) = ® Z[uj] = Z[u, ..., uy].
The bundle isomorphism in fact induces a Kiinneth isomorphism of SSSs, so that

n

E, = @ (S[Ll]] ®A[Z]]) = S[ﬁ]@/\[i],
j=1

with differential d; the unique antiderivation taking z; — u; for each j (and hence annihilating
S[i]). Thus
(S[ﬁ’] ®A[Z], z— u]-)

is another example of an acyclic cpca. We will investigate the natural algebraic generalization of
this phenomenon in the next section.

7.3. The Koszul complex

In the spectral sequences of universal bundles T — ET — BT, the cohomology H*(T) of the
fiber is an exterior algebra and the cohomology H7 of the base is a polynomial algebra on the
same number of generators, and the algebra generators of fiber and base cancel one another in a
one-to-one fashion in the spectral sequence.
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For another such example, consider the Lie group Sp(1). Recall that his group can be seen as
the multiplicative subgroup of quaternions of norm 1, and hence is a homeomorphic 3-sphere,
and that one can take ESp(1) = | JS*~! = S* and BSp(1) = HP*. Now, E, page of the Serre
spectral sequence of the universal bundle

Sp(1) — ESp(1) — BSp(1)

is thus ES°@EY* =~ H*(BSp(1)) ® H*(S). As with the spectral sequence of S! — ES' — BS!,
then, there are only two nonzero rows, now the 0th and the 3, so the only nontrivial differential
can be dy.

Figure 7.3.1: The potentially nonzero region in the Serre spectral sequence of S®> — ES® — BS3

Because E, = Es = Z is trivial, all the differentials ds in and out of the other shaded boxes
must be diffeomorphisms. Since the E, = E4 page is a tensor product, the two entries in each
column must be the same, so as in the S! case, one has isomorphisms

HP(BS®) = EP® ~ EJ**0 ~ HP+(BS?)

for each p. We know H°(BS®) = Z and since there are no nonzero differentials to or from the
next three boxes, these are zero. If we write z for a generator of H3(S%) and q = dyz € H*(BS?),
then as in the S! case, we find dy(zq") = ¢q"*!, so that finally H*(BS®) = Z[q]. This example is
very closely analogous to the S! example: in particular, the E; = E4 page was of the form

Zlql®Alz], [zl =3, gl =4,

and there was only one nonzero differential, dy

This example and the torus examples share the property of being tensor products of a very
simple kind of spectral sequence, and we claim that for all compact, connected Lie groups G, the
spectral sequence of G — EG — BG is such a tensor product. To facilitate future reference, we
axiomatize this situation.

Definition 7.3.2. Let A[v] be the exterior k-algebra on one element v of odd degree ¢ and S[dv]
the symmetric algebra on one element dv of degree ¢ + 1. Then

K|v] = S[dv] ® Alv]

is a k-algebra. The exterior factor Az naturally has a grading defined by |1| = 0 and |v| = ¢, and
S[dv] inherits the natural grading |(dv)"| = n(¢ + 1), so K[v] is bigraded by

Klv],,4 = Sldv], ® A[v],
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and singly graded by total degree:
Klv],:= @ K[v]pg= P S[dv], ®Alv],.

n=p+q n=p+q

The map d: v — dv uniquely defines a derivation of (total) degree one on K|[v] since d(dv) = 0,
explicitly given by
d(v- (dv)") = (do)"*.

It should be clear from our discussions of the Serre spectral sequences of S' — ES! — BS!
and Sp(1) — ESp(1) — BSp(1) that the cohomology of K[v] with respect to d is trivial. More
complicated examples arise from tensoring these primordial contractible complexes.

Definition 7.3.3. Let V. = ;. V2j-1 be a positively- and oddly-graded free graded k-module.
The grading on V induces a grading on AV making it a free cGa. Let 2V = V,_; be the suspen-
sion, the even regrading of V achieved by moving each graded level up one degree: symbolically,
(ZV); = V;_1. There is a naturally induced grading on the symmetric algebra SZV, making it a
free cGa.

Let KV := SEV®AV. As an algebra, this is just the tensor product of the K[v,] for any basis
v, of V. Because S![ZV]@® A![V] generates KV as a k-algebra, to characterize a derivation on KV,
it is enough to describe it on this submodule. The natural derivation is that which restricts on
AV to the defining isomorphism

d=x: A[V] SV 5 s zv]

of ungraded free k-modules; consequently, dS![ZV] = 0 and hence d(SZV) = 0. It is called the
Koszul differential and the complex (KV,d) is the Koszul algebra of V. As d is just the sum of
the differentials on the K[v,], so (KV,d) = &),(K[ve],dy) is a tensor product of the elementary
Koszul cpcas. It admits a natural bigrading

(KV),, == (SZV), ® (AV),.

additively extending the gradings on V and XV. In addition to the associated single grading
KVyy = @y_p4q KVpq, there is also another useful grading, setting

K"V] = é SI[ZV]® A" I[V],
j=0

the submodule of KV spanned by products of n > 0 generators. This grading of KV, called the
multiplicative grading, induces a grading of the cohomology of KV such that H™"(KV) is the
image of the cocycles in K™"[V].

From the Serre spectral sequence of T — ET — BT, we expect this cohomology to be trivial.

Proposition 7.3.4 (Koszul). Let V be a free k-module and KV the Koszul complex. If k is of characteristic
zero and contains Q, or if V is of finite rank, then KV is acyclic.

3 The notation is meant to suggest the suspension X of a topological space X, which satisfies H"+1(£X) =~ H"(X).
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First proof [Car51, Thm. 1]. Assume that Q < k, so that all naturals n > 1 are invertible in k.
The inverse isomorphism h = d~!: SI[ZV] — Al![V] extends uniquely, just as d does, to an
antiderivation of KV of degree —1. We claim it is a chain homotopy of (KV,d).

The composition dh is the projection K~![V] — S![V] and hd the projection K~}[V] — Al[V],
so hd + dh = id on K~![V]. Inductively assume that also L = dh + hd = nid on K™"[V] and write
a decomposable (e.g., basis) element of K~("*1[V] as ab, for a € K~'[V] and b € K~"[V]. Then by
the product rule, the base case, and the inductive assumption,

L(ab) = (La)b+ aL(b) = ab+ nab = (n + 1)ab,

concluding the induction. For any n-cocycle a we then have na = (hd 4+ dh)a = dha, so each
d-cocycle is a coboundary for n > 1. Thus H*(KV) = H*(KV) > k. O

This argument same argument incidentally also shows the h-cohomology of KV is trivial.

Second proof. Assume V is of finite rank over k. Find a k-basis v; of V, so that V = (P kov; and
2V = @D kdv;. Then we have algebra isomorphisms

KV = SEVRAV = S [P kdv;| @ A[P kvj| = (X) (S[dv;]® Alv]]) = X) K],

and this also holds on the level of cpGas, as discussed in Definition 7.3.3. As everything in sight
is a free k-module, the simplest version of the algebraic Kiinneth formula Corollary A.3.3 holds,
and

H3(KV) ®Hd( [0,]) = k®™Y ~ k. O

As the Koszul algebra will be our chosen cpGa model for a universal bundle G — EG — BG,
we will introduce a notation for its filtration spectral sequence.

Definition 7.3.5. Let V be a positively- and oddly-graded free graded k-module. Filter its corre-
sponding Koszul algebra (KV,d) by the p-grading induced by the factor SZV. We denote by EV,
the associated filtration spectral sequence. Explicitly, for V = kv one-dimensional, we have

(E[v]y, d;) = (K[v],0) forr < |v], E[0]jo111 = (K[?],d), E[v]pj42 = E[0]e =k,
and if (v;) is a homogeneous basis for V, then EV, = (X) E[v]. on every page.

The Koszul complex, which makes its first appearance in thesis work of Koszul dealing with
the Lie algebra cohomology which had been recently defined by Chevalley and Eilenberg, was
soon discovered to have uses in commutative algebra. Here is a more general definition.

Definition 7.3.6. Let A be a unital commutative ring over k. Given a sequence @ = (a;);cj of
elements of A, we can form the k-algebra A[zj]je) = ®)jc; Alzj] and the tensor algebra

KAé_i = A[Z]]]EI%A

Viewing A as a cca graded in degree zero, we can make K44 a cDGA by extending the k-linear
map @jc; k- zj — A given by zj — a; to an antiderivation d and assigning the |zj| = —1. Then
degd =1 and

K;lnﬁ = An[Z]‘]je]®A.
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We call this grading the resolution grading. The k-cpGa (Kad, d) is the Koszul complex associated
to the sequence 4.
Given an A-module M, the tensor product module
KA(ﬁ,M) = KA‘_Z’CI?M = (A[Z]] (?A) CI?M = AP[Z]'] (?M,
inherits a differential, vanishing on M, given by
d(zj®1) = 1®a; Gel,

and the resulting chain complex is again called a Koszul complex.

Koszul complexes K4 (4, M) being defined by sequence of ring elements, their potential acyclic-
ity is related to properties of this sequence.

Definition 7.3.7. Let A be a unital commutative ring over k. A finite or countable sequence (a;)
of elements of A is called a regular sequence if for each n, the image of a, is not a zero-divisor
in the quotient ring A/(ay,...,a,—1). Given an A-module M, the same sequence is called M-
regular (or an M-sequence) if each a, annihilates no nonzero elements of the quotient module
M/(ay,...,a,_1)M. An ideal a < A is called a regular ideal if it can be generated by a regular
sequence.

Regular sequences do not normally remain regular under permutation, but do if all elements
lie in the Jacobson radical of A, and in particular if A is a local ring and the elements a; are
non-units [Eisgs, Cor. 17.2, p. 426].

Proposition 7.3.8. Let A be a connected CGA and a; elements of the augmentation ideal A; then the
sequence (a;) is regular just if each permutation is.

Since we really care only about cohomology rings, order in a regular sequence shall never be
an issue for us. The connection between Koszul complexes and regular sequences is the following.

Proposition 7.3.9 ([Seroo, IV.A.2, Prop. 3, p. 54]). Given a Noetherian commutative ring A, a sequence
a of elements of the Jacobson radical of A, and a finitely-generated A-module M, the following conditions
are equivalent:

1. H"(Ka(@,M)) = 0forn>1;

2. HY(Ka(@, M)) = 0;

3. the sequence @ is M-regular.

The last relevant fact about Koszul complexes is that they compute Tor.

Proposition 7.3.10. Let A = S[d]| be a free commutative k-cGa generated by a sequence @ of elements of
even degree, and let B be an A-cGA. Then the Koszul complex K4 (d, B) associated to @ computes Tor, in
that

HP(Ka@®B) = Tor) (k,B),  p=>0.
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Proof. The base ring k is an A-algebra in a natural way via A — A/ A = k. Since the generators
are independent, by Proposition 7.3.9, the Koszul complex (K4, d) is acyclic, with

H*(Kad) = HY(Kad) = k[d]/(7) = k.

—

It follows that K% d, with the resolution grading from Definition 7.3.6, is an A-module resolution
of k, so that the —p™ cohomology of the sequence

- — K’ ®B — K,;'a ®B — K4 ®B — 0
aa (1? aa (1? Al (j?
computes Torﬁ(k,B). O

Note that in fact Tor2(k, B) is a bigraded cGa. The product descends from the product on
A[zj] ® B, and the second component of the grading from the grading (® B7 on B. We set

Tor ,""(k, B) = Tor; (k, BT) = H? (A[zj] ® BY).

Historical remarks 7.3.11. Regular sequences were introduced by Serre in 1955 as E-sequences [Bor67,
p- 93], and this terminology apparently hung on for quite a while [Bau68, Def. 3.4]. Smith [Smi67,
p- 79] uses ESP-sequence and calls a graded ideal generated by such a sequence a Borel ideal.

7.4. The Serre spectral sequence of G — EG — BG

“...the behavior of this spectral sequence ...is a bit like an Elizabethan drama, full of action,
in which the business of each character is to kill at least one other character, so that at the end
of the play one has the stage strewn with corpses and only one actor left alive (namely the
one who has to speak the last few lines).”+ —]J. F. Adams

7.4.1. Statements

We have found H*(BT) for all tori and by Corollary 6.3.7, we know that H*(BG;Q) can be
viewed as the Weyl-invariant subring H*(BT; Q)", so theoretically, we understand H*(BG) now.
In practice, and especially if one wants to understand the torsion—something we will eventually
punt on—there is more work to be done.

In the torus computation, the algebra generators H'(T) = PH*(T) of H*(T) (the primitives, as
defined in Definition 1.0.8) and H?(BT) =~ QH*(BT) of H*(BT) (the indecomposables, as defined
in Definition 1.0.8) were linked bijectively by nontrivial differentials and were annihilated, and
the algebraic repercussions of this bijection sufficed to force E,, = Z. To work with merely
generators greatly simplifies any computation, so one might hope that such a pattern holds as
well for nonabelian groups. The proof of this result is due to Borel in his thesis [Bor53]. Our
moderately modernized version is based somewhat unfaithfully on the treatments contained in
Mimura and Toda [MToo, p. 379-80] and Hatcher [Hat, Thm. 1.34].

The ultimate goal is the following, to be borne in mind as we regress further and further into
the algebraic abstraction required for its proof in the next subsection. The transgression in the
Serre spectral sequence is described in Proposition 2.2.21 and will return again in the proof of
Theorem 8.1.5.

4 This memorable analogy is repurposed from a famous description of the Adams spectral sequence [Aday6].
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Theorem 7.4.1 (Borel [Bors3, Théoreme 19.1]). Let G be a compact, connected Lie group and let k be a
ring (such as a field of characteristic zero) such that H*(G; k) =~ APG is an exterior algebra on odd-degree
generators (by Proposition 1.0.9, these are the primitives). Then H*(BG; k) =~ k[tPG] is a polynomial
ring on generators TPG =~ LPG of degree one greater, given by a choice of transgression on PG.

In all this, it is to be remembered that the transgression on H”(G) is really a only a map from
a submodule of Eg’fl < Eg’p ~ HP(G) to EZE’O, which is a quotient of Eé’“’o = HP*1(BG), so that
when we lift this maps to E,, what we get is for each p a relation T € H?(G) x HP*1(BG), rather
than a map, and what it retains of the homomorphism d,, 1 is additivity: if (z;,y;) are finitely
many elements of 7, then so also is (3]zj, > y;). Despite the imprecision, it is useful notationally
and psychologically to write T as a map in the event that the precise lift to E; is irrelevant, and
we engage in this abuse already in the statement of Theorem 7.4.1 above.

That said, an precise rephrasing of Borel’s result can be obtained as follows. Writing Q(BG)
for the space of indecomposables (defined in Definition 1.0.8), and noting that we have a well-
defined isomorphism APG =~ H*(G) and an isomorphism H*(BG) = S[Q(BG)] only defined up
to some arbitrary lifting, the transgression in the spectral sequence of G — EG — BG nevertheless
descends to a sequence of well-defined isomorphisms

PPG = QFFY(BG)
summing to the isomorphism?>
T: PG — Q(BG).

Setting V = PG and constructing the Koszul complex KV, this T uniquely extends uniquely to
the Koszul differential. Because H*(BG) is free on Q(BG), on the level of cGas, we recover

E, = H*(BG)® H*(G) = KV

and can consider T as an antiderivation Ez — Ez, sometimes called a choice of transgression,
which we will use extensively in Chapter 8. By construction, it satisfies the following proposition.

Proposition 7.4.2. A choice of transgression T lifts the edge homomorphisms d, in the sense that for each
r = 0, the following diagram commutes:

H*(G) —% H*(BG)

|

B
As the differences produced by starting with a different choice of transgression turn out to
be immaterial, we will at times identify Q(BG) with a graded subspace of H*(BG). We also
need one corollary about the original, unlifted transgression to prove Cartan’s theorem later in
Theorem 8.1.5 and Theorem 8.1.14.

5 T owe this description to Paul Baum’s thesis [Bau62, p. 3.3].
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Corollary 7.4.3 (Borel). Let G — E 5> B be a principal G-bundle classified by x: B — BG. Write T
for the transgression of the universal bundle G — EG — BG. In the spectral sequence of 7, each primitive
z € PH*(G) transgresses to x*1z.

Proof. This follows from the existence of the bundle map from G — E — B to G — EG — BG,
which induces a spectral sequence map as in Theorem 2.2.2 intertwining the edge homomor-
phisms. ]

7.4.2. Two proofs

We provide two proofs of Borel’s key Theorem 7.4.1 on classifying spaces. The first is an imme-
diate application of the following algebraic result to the Serre spectral sequence of the universal
bundle G — EG — BG. It invokes the notion of transgression discussed in Section 2.8.

Theorem 7.4.4 (Borel [Bor53, Thm. 13.1].). Let k be a commutative ring and P an oddly-graded free
k-module. Suppose (E,,d,) is a spectral sequence of bigraded k-algebras such that

* E; admits a tensor decomposition EE’O ® Eg’ with Eg" =~ AP the exterior algebra on P and
o the final page E, = EX ~ k is trivial.

Then P admits a homogeneous basis of transgressive elements and EE’O >~ k[TP] is the symmetric algebra
on these transgressions.

This in turn is the n = oo case of the following more general theorem involving simple systems
of generators as discussed in Definition A.2.4.

Theorem 7.4.5 (Borel transgression theorem). Let k be a commutative ring and (E,,d,) is a spectral
sequence of bigraded k-DGAs with
Er~E’®EY = B°®F*

a tensor product of connected k-DGAs up to total degree n + 2. Suppose that
© E5"2 = @,y geno EX' = EX =k, and that

* there exists a free k-module P < FS", oddly graded,

bijective in degrees < n,
such that the induced map AP — F* is < ]' o g
injective in degree = n+ 1.

Then

* P admits a transgressive basis, and

bijective in d <n+l,
* writing Q = TP < B*, the induced map SQ — B* is ‘Z] ‘eC z?e z-n egrees "
injective in degree = n + 2.

We need the fiddly degree bounds because the proof itself is inductive. We would actually
not need to induct if we knew in advance the exterior generators transgress, and the proof is
substantially easier in that special case, so we will prove it first. The essential idea is the same
in both cases. We already know an acyclic algebra of the form AP ® SXP, namely the Koszul
complex KP = AP® SXP of Section 7.3, and the strategy behind the proof of both results will be
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to use our knowledge of the transgressions to construct a map of spectral sequences EP, — E,
that shows E, >~ KP as a bigraded S¥.P-module, at least in a prescribed range of degrees. This can
be seen as a natural generalization of our analysis of the Serre spectral sequence of a universal
torus bundle T — ET — BT. Recall that we constructed the Koszul algebra KP in analogy with
the E; cpGa of that spectral sequence; now we reverse the process.

Theorem 7.4.6 (Borel “little” transgression theorem). Let k be a commutative ring. Suppose (E,,d,)
is a spectral sequence of bigraded k-algebras such that

¢ E; admits a tensor decomposition Eg’o ® Eg",
* the k-algebra Eg" >~ A(zy) is free as a k-module and admits a simple system of generators z,,
* these z, transgress in the spectral sequence, and
e the final page Eq, = EX = k is trivial.
Then E;_’O >~ k[Tz,] is the symmetric algebra on the transgressions of the z,.

As Zeeman noted, this result will apply to the case AP = H*(G) to yield the structure the-
orem 7.4.1 for H*(BG) as soon we know the odd-degree generators P in that spectral sequence
transgress. Thus there is the following easier proof.

Alternate proof of Theorem 7.4.1. Considering the homology Serre spectral sequence of the universal
bundle G — EG — BG, Remark 1.0.13 shows the homological primitives PH,(G) < H,(G) are
all in the image of the transgression. Because H.(G) =~ H*(G) and H.(BG) =~ H*(BG) on the
level of graded vector spaces and the homological and cohomological transgressions are dual
(Remark 2.2.23), this means all elements of PG transgress in the cohomological Serre spectral
sequence. Thus, by Theorem 7.4.6, we have H*(BG) = k[TP]. O

Here is the promised proof of the little transgression theorem.

Proof of Theorem 7.4.6 ([Zee58][McCo1, Thm. 3.27, p. 85]). Select a homogeneous k-basis v, of P
and for each v, lift the transgression d‘va|+1va to an element tv, of Elzv“|+1’0. We construct a map
of spectral sequences A,: EP, — E,, where the source is the filtration spectral sequence of KP
defined in Definition 7.3.5, by

)LQZ EP2 —> Ez,
1 (:) Oy /> 1 (:) Oy
dv, ®1 — 10, ®1.

and A,41 = H*(A,). To see this is a cochain map, one need only check on generators of each page
EP,, which are (represented by) 1®v, and dv,®1 for v, € P>"=1. There is nothing to see for
the symmetric generators dv, ®1 as all differentials vanish on SX.P = EP2°’O and EE’O and their
descendants. As for exterior generators, d, vanishes by construction on generators (descending)
from the complement in P of the graded component P'~!, and writing [x], an element on the rt
page represented by x on the second to be maximally careful, one has d,[1® v, |, = [dv, ®1], for
v, € P71 by construction, so

M [1®0,], = Ar[do, ®1], = [Az(dva®1)]y = [t0, ®1], = d,[1®0,], = d; A [1Qv,],.
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Because SZP is a free k-CGA in any characteristic and we extended A multiplicatively from a
map on the generators XP, the row restriction )\5’0: SYP — EE'O is a ring homomorphism. The
column restriction )\g’: AP — AP is a linear isomorphism, because both AP and AP admit a
k-basis of ordered monomials in the v,. (If the characteristic of k is not 2, then AP = AP, so
this column map is a ring isomorphism, but it need not be in characteristic 2, because then it
is not required that vﬁ = 0 in AP.) The limiting map Ay : EPy, — E is by construction the
identity map on k, so the Zeeman-Moore comparison theorem 2.7.1 applies to tell us the ring
map A3°: SEP — E3? is a linear isomorphism. O

Our proof of the big transgression theorem is an adaptation of the proof of Mimura and
Toda [MToo, p. 379-80].°

Proof of Theorem 7.4.5. The proof is an induction on 7. In the n = 0 case, we assume ES? = k and
P = 0. The conclusion that a basis of P transgresses is vacuously true, and since B! = Eé’o =
2 = 0, we do indeed have SQ = k — B* bijective in degrees 0 and 1 and injective in degree 2.
For the induction step, note from Definition A.2.4 of a simple system of generators that on
the level of graded k-modules we have AP =~ AP, and that from the view of differentials in this
spectral sequence, the two are indistinguishable. Thus, when P < F*® transgresses to Q < B®,
we can define a map EP, — E, from the filtration spectral sequence of the Koszul algebra KP,
as defined in Definition 7.3.5, sending AP — AP and SXP — SQ. Then we use the Zeeman—
Moore comparison theorem 2.7.1 on this map:

¢ the hypothesis on AP — F* in the present theorem is the condition (F),,
e the hypothesis ES"*2 ~ k implies the condition (E), 1, and
e the conclusion about SQ — B* is the condition (B); 1.

Now we assume the theorem holds for n — 1 odd and must show it for n even. In this case,
there is nothing to do: by hypotheses generators P are of odd degree < 7, so P admits a transgres-
sive basis by the induction hypothesis, and we apply the implication (F), & (E),+1 = (B)n41
of Theorem 2.7.1 to EP, — E, to conclude.

Now we assume the theorem holds for n — 1 even and must show it for n odd. The hypothesis
is that ES"*2 = k and there is a graded subspace P < F* generated by elements of odd degree
< n such that AP — F* is an isomorphism in degrees < n and an injection in degree n + 1.
Write P, = P n F" and P., < P for its complementary subspace. Then AP., — F* is an
isomorphism in degrees < n — 1 and an injection in degree 7, so by the inductive hypothesis, P,
admits a transgressive basis, and map SQ,+1 — B*® induced by inclusion of the transgressions
Q<nt+1 < B® is a bijection in degree < n and an injection in degree n + 1. It follows we may
pick out a basis of a complementary subspace Q,.1 to the image in B"*!, and then setting
Q = Q<nt1® Qu+1, we have SQ — B*® bijective in degrees < n + 1 by construction and injective
in degree n + 2 odd because Q is evenly graded.

It remains to show that d,1 is a bijection P, — Q1. First we show that Q, 1 lies in the
image of the transgression. We know that EZI;’O = EX0 — 0,50 Quat < EZE’O must be the
image of some differential d,. The potential differentials have source in bidegree (n +1—r,r —1),
and we must show it is only possible that r = n + 1; see Figure 7.4.7. Now consider the spectral

® Which we believe is incomplete.
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Figure 7.4.7: The differentials to E/*!0 originate in the region receiving only differentials induced
by those of E[P=<"],

sequence map E[P_,i1]e — E.. We know it is an isomorphism onto the rectangle Ef”’gn_l

None of the entries of bidegree (n + 1 —r,r — 1) receive differentials from outside this rectangle,
so their elements correspond bijectively to elements of E[P-; 1], which is the Koszul subalgebra
generated by P/ for r —1 < j < n—2. Thus, if § € Q,;1 were in the image of one of these
differentials, it would lie in SQ,,11, contrary to assumption. It follows there is P’ < P, such that
TP’ =~ Qy+1. Now we may construct a map from the Koszul spectral sequence E[P—, 1 @ P'[, to
E., and applying the implication (B),+1 & (E), = (F), of Theorem 2.7.1, we conclude that the
map on E3° is a bijection A[P,,1 ®P'] > AP in degrees < n. It follows P’ = P,, which we
already knows transgresses to Q,+1, concluding the proof. O

Historical remarks 7.4.8. Coming at a later point in history affords us many luxuries Borel did
not have when he was proving Theorem 7.4.6 and Theorem 7.4.5. For one, the Zeeman-Moore
theorem was not available to him, so he did not construct a comparison map, but explicitly,
inductively, and through careful bookkeeping ruled out the possibility of H*(BG) being anything
other than a polynomial ring, keeping track at the same time of what elements of AP transgressed
and ultimately determining them to be only the primitives P themselves.

More historically remarkably, in determining H*(BG) Borel did not have access to BG itself.
In 1952, it was only known in general that n-universal principal bundles E(n,G) — B(n,G)
existed for each n € N with 7;E(n,G) = 0 for i < n. Borel's H*(BG) is actually defined as the
inverse limit of the rings H*(B(n,G)), known cohomology rings of already-existing manifolds.
Resultingly, for numerous topological applications in which we cavalierly deploy BG, Borel must
instead invoke H*(B(n, G)) for n sufficiently large. This approximation technique is still used in
algebraic geometry, where each B(n, G) can be considered an algebraic variety but BG cannot.

We imagine the alternate proof of Theorem 7.4.1 following Theorem 7.4.6 was known, but
have no reference.

7.4.3. Complements

The rest of this section is devoted to related results we will not have need of in the sequel. For
example, there is also a dual result whose proof falls out of what we have already done.
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Corollary 7.4.9 (Borel [Bors4, Thm. 6.1, p. 297]). Let k be a commutative ring and Q = k{y.} an
evenly-graded free k-module. Suppose (E,, d,) is a spectral sequence of bigraded k-algebras such that

e E, admits a tensor decomposition SQ® Ey*, with Ey =~ SQ the symmetric algebra on Q and
e the final page E,, = EX = k is trivial.
Then Eg" >~ Alvy| admits a simple system of transgressive generators v, such that Tv, = y,.

Proof. Since Ey, = k, each y, must eventually be annihilated by some differential. There can be
no generators of degree 1 since all differentials out of this box are zero. The generators Q, of
degree 2 can only be annihilated by elements Eg’l. Since d, is a differential, it follows Eg’o =
SQ/(Q2) = S[Qx3] is the subalgebra on generators of degree three or more. Assume inductively
that Q, survives in E,. Since it doesn’t survive to Ey, it must be annihilated by the elements E9’2,
which are hence all transgressive. Inductively continuing this way, each element of Q must be
killed by a transgressive element of Eg".

Now define a cochain map A : SQ® A[v,] — E; as in the proof of Theorem 7.4.5. Applying
the Zeeman—-Moore comparison theorem 2.7.1 again, one sees the restriction A[v,] — Afv,] <
EJ* must a linear isomorphism, so that Ey* = A[v,]. O

Combining the two, one has the following.

Corollary 7.4.10. Let k be a commutative ring. Suppose (E,,d,) is a spectral sequence of bigraded k-
algebras such that

* E, admits a tensor decomposition EE’O ®EY*,
o the final page Eo, = EX = k is trivial.
Then the following are equivalent:
* The k-algebra Eg" ~ A|zy] admits a simple system of transgressive generators z,.
* The k-algebra EE’O =~ S[ya] is a symmetric algebra on generators yy.
If the statements hold, the z, and y, are related by Tz, = y,.

Remarks 7.4.11. (a) In fact, there is a strengthening requiring only that the triangle @p +q<n EP ~k
is trivial, the map from A[z,] is a bijection in degrees < n — 1 and an injection in degree n and
that the map from S[y,] is a bijection in degrees < n and an injection in degree n + 1, as in the
proof of Theorem 7.4.5.

(b) The full strength version of Corollary 7.4.10 reflects a sort of duality between the category of
modules over a symmetric algebra and that over an exterior algebra, called Koszul duality.

To round out this subsection we include without proof some other finite-characteristic results
and conclude with some historical remarks. As regards the applicability of the little transgres-
sion theorem 7.4.6 in characteristic # 2, it is not universal. Borel found the following example.
Recall that the cohomology rings H*(Spin(n); F») do admit simple systems of generators (Propo-
sition 3.2.17).

Theorem 7.4.12. Consider a simple system of generators for H*(Spin(n); F»). These are all transgressive
if and only if n < 9. Accordingly, H*(BSpin(n); F») is a polynomial ring if and only if n < 9.
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Specifically, as described in Proposition 3.2.17, one has
H*(Spin(10); F2) = A[vs, vs, V6, v7, V9, 215,

but there is an element u of degree 15, congruent to z;5 modulo decomposables, which has
dip(u®1) = dip(v9®1) - (1®ve). The nontransgression of this u is related to the failure of the
homology ring H. (Spin(lO) ; }Fz) to be an exterior algebra, as described in Example A.2.8.

Nevertheless, in the universal bundle for the limiting group Spin = lim Spin(), all generators
transgress again. One has then the following corollary of Theorem 3.2.18.

Theorem 7.4.13 ([BCM, Thm. 6.10, p. 55]). The mod 2 cohomology ring of BSpin is given by
H*(BSpin; F») = Folw; : j # 2 +1]
and that of BSO by
H* (BSO, Fz) = ]Fz[w]],
the map H*BSO —» H*BSpin induced by Spin — SO being the obvious surjection. The transgressions
are given, for j odd, by
0

T('UJZ' ) = wZé'j+1.

Borel also found a complement in characteristic not equal to 2, showing even-dimensional
spheres (other than S°) can’t show up as factors in the fiber of a bundle with contractible total
space.

Theorem 7.4.14. Let k be a ring of characteristic not equal to 2. Suppose (E,, d,) is a spectral sequence of
bigraded k-algebras such that

e E, admits a tensor decomposition Ey° @ Ey* such that EY* = A[p,] for a simple system (pa) of
generators with p2 = 0 and

o the final page Eq, = EX = k is trivial.
Then all of the p, are of odd degree.

Explicitly, in this case, we have in the hypothesis that

E* = Alpal = Alp; : [palodd]® &) Slpal/(p2)

|paleven

and in the conclusion that A[p,] = AP for P oddly graded. Clearly, then, if one wanted to
generalize the “simple system of generators” to even-degree generators in characteristic p > 2,
asking that they be nilsquare would not be the way to go. Postnikov would find the proper
strategy in 1966 to generalize Theorem 7.4.6 to odd characteristic.

Definition 7.4.15 ([Pos66, p. 36]). Let p be an odd prime. A graded commutative I ,-algebra F is
said to admit a p-simple system of generators (za,Yp)aca pes, Where the z, are of odd degree and
the yg even, if F is spanned as an F,—vector space by the basis of ordered monomials

2t l
thl...zamyﬁl...yﬁ’;’

where the indices a; and f; are strictly increasing and the exponents ¢; < p — 1.
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Theorem 7.4.16 ([Pos66, p. 36]). Let p be an odd prime. Suppose (E,,d,) is a spectral sequence of
bigraded F,-algebras such that

* E, admits a tensor decomposition E5’0®Eg’° such that Eg” admits a p-simple system (zq,yp) of
transgressive generators, the z, being of odd degree and the yg even,

e the final page E,, = EXX ~ IF, is trivial.
Then EE’O is the free commutative algebra on the transgressions
Xy = TZg, Vg = TYp, ug == T(vg ®yz_1).
Explicitly, E3° = Fplxa] ®Fplug] @ Alvg]

Sketch of proof. Assume first the elements Ty ®y§71 transgress. Then we will be able to find the
proper bigraded comparison complex admitting a chain map to (E, T), where T is a choice of
transgression in E;, and the proof will proceed exactly as the proof of Theorem 7.4.6.

For the odd generators z,, one retains the bigraded Koszul spectral sequence E[z,]| as before,
but for each even generator yg one introduces a tensor-factor (not a pGa)

(Alog] ® Fylig]) ® Flpl/ (7 ") dyp=0p, d(Tp ®7; ) = i

bigraded with the expected degrees with vg and ug in the bottom row and yjp in the left column.
Collecting all of these, the assignment z, — z4, Jg — Yp, Op — Ug, ilg — ug is by definition a
chain map, and restricts to a ring map Fp[7z,, 15] ® A[0g] — EE’O because on this subdomain it
is defined by unique extension from free cGA generators.

That the Tyg® yz_l must transgress is an induction like that in Theorem 7.4.5. To prove it for
maxg [yg| = n + 1, inductively assume it for degrees < n and as well that EE’O agrees up to degree
p(n+ 1) + 1 with the free cca on

Xe,  vp (for|ygl <n+1), ug (for |yg| <n—1).

It follows from this assumption and the eventual triviality of E, =~ I, that on the page E(;,11)(p—1)+1,
the rectangle [0, (n + 1)p + 1] x [0, (n + 1)(p — 1) — 1] is trivial, the cancellations being due solely

to the elements in the induction hypothesis. This means that the differentials of the Ty, ®yg_l

n+1,(n+1)(p—1)
(n+1)(p—1)+1

must be an isomorphism, showing all the new Ty, ®y2_1 also transgress. O

for |yg| = n +1 which land in this rectangle must be trivial, and so the map 7: E

E(n+1)p+2,0
(n+1)(p—1)+1

[
Remark 7.4.17.
|

7.5. Characteristic classes

Borel’s Theorem 7.4.1, the mod 2 addendum Section 7.4.2.(a), and knowledge of the cohomology
rings of classical groups from Chapter 3 make instantly available a great deal of information
about classifying spaces.
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Corollary 7.5.1. Let k = Z['2]. The cohomology rings of the classifying spaces of the classical groups are

H*(BO(n); F2) = Falwy, ..., wy], degw; = j,
H*(BSO(n);Fa) = Falwy, ..., wy), degw; = j,
H*(BU(n); Z) = Z[cy, . .., cu), degcj = 2j,
H*(BSU(n); Z) = Z[cy, . ..., cnl, degc; = 2j,
H*(BSp(n); Z) = Z[q1, ..., qu), degg; = 4j,
H*(BSO(2n +1);k) = k[p1, ..., pn—1,pnl, degpj =4,
H*(BSO(2n);k) = k[p1,...,pu—1,€],  degpj=4j, dege = 2n.

Definition 7.5.2. The w; in the preceding corollary are the Stiefel-Whitney classes, the c; the
Chern classes, the q; the symplectic Pontrjagin classes, the p; the Pontrjagin classes, and e the
Euler class.

Remark 7.5.3. For G € {U,Sp,SO}, the inclusions G(n) — G(n + 1) preserve c;,q;, pj respec-
tively for j < n and annihilate c,11,§u+1, Put1, with the exception that H*(BSO(2n + 1)) —
H*(BSO(2n)) takes p, — €.

The Pontrjagin classes and Euler class as described above are actually integral in that they
are in the image of the canonical map H*(BSO(m);Z) — H*(BSO(m);Z[1/2]). These classes
carry certain well-known relations. For example, the inclusion U(n) ~— SO(2n) induces a
map H>"(BSO(2n);Z) —> H*'(BU(n);Z) carrying e — c,, and mod-2 coefficient reduction
H"(BSO(n); Z) — H"(BSO(n);F,) takes e —> wy,.

All of these rings can also be calculated independently with Q coefficients from the result
Corollary 6.3.7 that H*(BG) ~ H*(BT)" and an understanding of the Weyl group action on BT.
For example, the existence of the Euler class can be seen as a result of the fact that Wso(2,41) =
{£1}" % S, and Wsp(2y) is the subgroup S{+1}" x S, where S{+1}" < {£1}" is the index-two
subgroup whose elements contain an even number of —1 entries. The product e = t;---f, €
Z[t,...,ts] is invariant under S{£1}" but not under all of {+1}", and as a result does not occur
in H*(BSO(2n + 1)); its square p, = £ - - - £2 is however invariant under the larger group’s action.

The cohomology classes of Definition 7.5.2, elements of a cohomology ring BG only known
after 1955 to globally exist, are abstract manifestations of objects associated to vector bundles
which were defined in the 1930s and early 1940s by their namesakes.”

Definition 7.5.4. Let E — B be a principal G-bundle and x: B — BG a classifying map. Given
c € H*(BG), its pullback x*(c) € H*(B) is written c*(E) and called a characteristic class of
E — B.

These characteristic classes are functorial invariants of principal bundles: because the univer-
sal bundle is terminal, a map of bundles induces a homotopy-commutative triangle of maps of
base spaces.

Proposition 7.5.5. Let E — B be a principal G-bundle, let f: B — B be a continuous map, and let
c € H*(BG). Then the pullback bundle f*E satisfies

c(f*E) = f*c(E) e H*(B).

7 With the obvious exception of the Euler class.
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Given a vector bundle F — V - B with transition functions in a linear group G, there is an
associated principal G-bundle G — P — B as described in Appendix B.3.1, and one can associate
to V — B the characteristic classes of P — B,

c(V) = ¢(P),
calling them the characteristic classes of the vector bundle V. — B. For example
e if §: V — B is a quaternionic vector bundle it defines symplectic classes g;(¢) € HY(B;7Z),
¢ if { is a complex vector bundle one has Chern classes c;(¢) € H?%(B;7),

* if { is a real vector bundle one has Pontrjagin classes p;($) € H%(B;Z) and Stiefel-Whitney
classes wj(¢) € H/(B;F3), and

e if ¢ is an orientable vector bundle with fiber F = R”, it has an Euler class e(¢) € H"(B; Z),
and the first Stiefel-Whitney class w; can be shown to vanish.

[TIE THIS IN TO THE EARLIER DISCUSSION IN THE CONTEXT OF THE GYSIN SEQUENCE]
A smooth manifold M determines a tangent bundle TM — M, which thus defines a charac-
teristic class
c(M) :==¢(TM) € H*(M)

for each characteristic class c of the tangent bundle. For example, we can equip TM with a
Riemmannian or Hermitian metric to reduce its structure group to O(n) or U(n), so all smooth
manifolds carry Pontjagin and Stiefel-Whitney classes, orientable smooth manifolds carry an
Euler class e(M) € H'P(M), and almost complex manifolds carry Chern classes.

These classes turn out to be well-defined invariants of the topological manifold underlying M
in that they are independent of the chosen metrics and smooth or almost complex structures. To
see at least that the metrics are irrelevant, one way to proceed is to note that the Gram-Schmidt
construction can be seen as a product decomposition [BT82, Ex. 6.5(a)]

SL(n,R) =SO(n) - F,

where F is the contractible space of positive-definite symmetric matrices. If we consider ESO(n)
to be ESL(n,R), which is valid, as discussed in Section 5.2, since SO(n) and SL(n,R) are Lie
groups, the former closed in the latter, then taking quotients yields the bundle

F —> BSL(n,R) —> BSO(n),

with fiber F contractible, so that BSL(n,R) ~ BSO(n). Similar homotopy equivalences hold for
other classifying spaces of linear groups, so one can dispense with the metrics at the negligible
cost of viewing the characteristic classes instead as arising in BGL(n;F) or BSL(n;F) for IF €
{R,C, H}.

Assume now M is compact and oriented. A characteristic class ¢ in H'P(M;Z) =~ Z is then
some integer multiple n - [M]* of the cohomological fundamental class [M]*; alternately, evalu-
ation of c against the homological fundamental class [M] yields an integer n. These integers are
called characteristic numbers of the manifold, and the data given by characteristic numbers for
a real manifold can be seen as the composition

H"(BSO(n); Z) X H"(M;Z) —> Z,
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where x: M — BSO(n) is the characteristic map of the associated principal SO(n)-bundle.
The Pontrjagin numbers are the images under this composition of the degree-n level of the
subring Z[p1, ..., pn|, and the Euler characteristic can be seen as the image of e:

Theorem 7.5.6. Let M be a smooth, compact, oriented n-manifold. Then the Euler class e € H"(M;Z)
and cohomological fundamental class [M|* € H"(M; Z) and the Euler characteristic x(M) € Z satisfy the
relation

e =x(M) - [M]*.

This is the reason behind the nomenclature Euler class. This equivalence also yields an out-
landishly complicated way of seeing the Euler characteristic of an odd-dimensional closed man-
ifold is zero.

[CONNECT THESE EULER CLASSES AND STIEFEL-WHITNEY CLASSES WITH THOSE INTRODUCED IN
SECTION 2.3.1.]

7.6.  Maps of classifying spaces
The machine for computing H*(G/K) depends critically on an understanding of the map

o* = (Bi)*: H*(BG) — H*(BK)

induced by the inclusion i: K —— G; this understanding (in what by now should be starting to
seem like a familiar theme) is also due to Borel [Bors3, §28].

7.6.1. Maps of classifying spaces of tori

To start, let i: S —— T be an inclusion of tori. By using a functorial construction of the universal
bundle as in Section 5.3, or else by taking ES = ET and representing BS — BT as the “further
quotient” map ET/S —» ET/T, we have a bundle map

which induces a map (tpr: (Er, cf,) — (E,, dr)) between the spectral sequences of the bundles.
Because these sequences both collapse on the third page, ¥, is just an isomorphism H°(ET) —
HO(ES) = Z for r > 3, so we may as well drop page subscripts and consider the lone interesting
map ¢ = P, which by Theorem 2.2.2 is

= (Bi)* ®i*: H*(BT)® H*(T) — H*(BS)® H*(S).
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200 Because, by the definition of a chain map, we have dy = 1[1017, and, as we have just seen, d: H 1S) —
2610 H?(BS) and d: H'(T) — H?(BT) are group isomorphisms, we have the commutative square

i*

HY(S) <— HY(T)
2 2 (7.6.1)
H2 (B)* 1»
(BS) <~— H=(BT).

2611 Thusi*: HY(T) — H'(S) is conjugate through the transgression isomorphisms to (Bi)*: H?>(BT) —>
2612 H2(BS). Since H?(BT) generates H*(BT) as an algebra, and (Bi)* is a ring homomorphism, this
2013 means (Bi)* is determined uniquely by i*. This i*, in turn, is described by i in a transparent way.
2614 It is dual to the map i,: H1S — H;T, or equivalently to the map 7y ().
In a case we will explore completely later, S will just be a circle, which we will identify with
the standard complex unit circle S! < C*. Similarly identify T with (S!)"”. Then i: S — T can
be written as

i: St — (shy?,
z+— (2",...,2"),
2015 where the exponent vector @ € Z" is a list of integers with greatest common divisor 1, so that i is

216 injective.® If x;j € 711(T) = Hy(T) is the fundamental class of the j factor circle and y € Hy(S) the
217 fundamental class of S, then

Iyt Y — Z ajx;.
218 Let (x]*) be the dual basis for H'(T) and y* € H!(S) the cohomological fundamental class. Then

219 the dual map i*: H(T) —» H'(S) in cohomology takes Xj — ajy* since

(*xf)y = *(ixy) Eam = a;.

2620 Put another way, the matrix of i* is the transpose of the matrix of i,. Write s = doy* € H?(BS) and
a1 Uj = dyx¥ € H?(BT) so that H*(BS) = Z[s] and H*(BT) = Z[ii]. Then, the square above implies
2622 that (Bi)*(u;) = ajs, so that if p(if) € Z[ii] is any homogeneous polynomial,

(Bi)*p(il) = p(ass,...ans) = play, ..., a,)sBP,

w2 7.6.2. Maps of classifying spaces of connected Lie groups

224 Let K < G be an inclusion of compact, connected Lie groups. If S is a maximal torus of K, then
225 there exists a maximal torus T of G containing S. Through the functoriality of the classifying
226 space functor B and cohomology, this square of inclusions gives rise to two further commutative
2627 squares:

i) ¥
s i.T B BT H*(BS)@H*(BT)
[
K——~G BKHBG
H*(BK) < H*(BG).
0

8 This vector 7 is only well-defined up to the choice of identifications S =~ S' and T = (S')", but will suffice for our
later applications.
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2028 The vertical maps in the last square are inclusions by Corollary 6.3.7. Thus p* can be computed
2620 as the composition

H*(BG) = H*(BT)"e P2, p*(Bs);

2630 it follows from the commutativity of the square that the image lies in H*(BS)"x ~ H*(BK).

231 Example 7.6.2. Let G = U(4) and K = Sp(2), identified as a subgroup of G through the injective
2 ring map H ~— C2*2 given by a + jB —> [g _g ] A standard maximal torus for G is given by
23 the subgroup T = U(1)* of diagonal unitary matrices, which meets K in the subgroup

S = {diag(z,z,w,zb) eU)*:zwe Sl}.

234 With respect to the expected basis of Hi(T) and the fundamental classes of the factor circles
2635 w =1and z=1of S, and the dual bases in H!, the maps H;(S) — H;(T) and H!(S) «—— H(T)
23 are given respectively by

1 0

1 0 1 -10 0
0 1 and [o 0 1 —1]
0 -1

2637 By the commutative square (7.6.1), the second matrix also represents H?(BS) «— H?(BT) with
238 respect to the transgressed bases t1, to, t3, t4 of H?(BT) and sy, s, of H?(BS).

2639 The Weyl group of U(4) is the symmetric group S4 on four letters acting on T and hence
200 BT by permutation of the four coordinates. It follows that when H*(U(4)) is conceived as the
2641 invariant subring H*(BT)%* of H*(BT), it is generated by the elementary symmetric polynomials
22 01,02,03,041n t1, t, t3, ty, lying in respective degrees 2, 4, 6, 8. These are the first four Chern classes
2643 Cj.

] The Weyl group of Sp(2) is the group {£1}? x S,, acting on H'(S) and hence on H?(BS) =
Q{s1,s2} by negating and/or switching the two coordinates. It follows the invariant subring
H*(BSp(2)) = H*(BS)"sr@ is generated by q1 = s3 +s% and g2 = (s152)%. These are the first two
symplectic Pontrjagin classes. The generators c; exhibit the following properties under H* (B T)54 —
H*(BT) — H*(BS):

C1=t1+t2+t3+t4'—>(S1—Sl)+(52—52)IO,

1 1
= 5( -0, 15,5, 1) — E(O— (82482 +83+83)) = —(s3+53) = —q1,

Cqy = t1t2t3t4 —> S%S% = qZ.

204 That is, H*(BU(4)) — H*(BSp(2)) is surjective, a fact we will later be able to see as a conse-
2045 quence of the surjectivity of H*(U(4)) — H*(Sp(2)).
Example 7.6.3. Let G = Sp(2) and K = S = SO(2), identified as a subgroup of G through the
standard inclusion R «—— H. One maximal torus T of Sp(2) containing S is that generated by S
and the block-diagonal subgroup S’ = U(1) ®[1]. As |S n S| = 1, the standard isomorphisms
S! — S and S! — S’ determine a basis of 711(T) = H;(T). With respect to this basis, the
map Hi(S) — Hi(T) is given by the matrix [}] so H'(S) «— HY(T) is given, with respect
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to the dual basis, by the transpose [1 0]. By (7.6.1) again the second matrix also represents
H?(BS) «— H?(BT) with respect to the transgressed bases t1,t, of H>(BT) and t; of H?(BS).
Generators for H(BSp(2)) are 41, 4> as in Example 7.6.2, and we have

g1 =1+ 15— 13,
g2 = B3 — 2.0 =0.

Example 7.6.4. Let G = U(2) and S,S, T as in the previous example. The map H*(BT) —
H*(BS) is again given by the map Z[t;, to] — Z[t1], preserving t; and killing ¢,. Generators for
H(BSp(2)) are c1, ¢, as in Example 7.6.2, and we have

di =t +tr—> 1y,
qzztltzi—>t1-020.

Example 7.6.3 illustrates a general result about the map p* in the event G is semisimple and
S a circle, which we will later use in determining the rings H*(G/S!).

Lemma 7.6.5. Let K be a semisimple Lie group containing a circle S. The image of Hf — HZ =~ Q[s]
contains s* € Ha.

Proof. Let T be a maximal torus of K containing S, so that Hy — H{ factors as H¥" — H} — Hg,
where W is the Weyl group of K. Identifiying Hf = Q[uy, ..., u,] and Hf = Q[s], the exponents a;
of the inclusion S! < T = (S!)" give the matrix [a; --- a,] of H1(S) = 711(S) — m1(T) = Hy(T),
and so the transpose is the matrix of HY(T) — H!(S), which we can identify with H2 —
H{. Thus u; —> ajs and H} — H¢, takes a homogeneous quadatric polynomial ¢(if) in the
generators u; to q(d)s?.

To show H*(BK;Q) — H*(BS;Q) is surjective is equivalent to showing H*(BK;R) —
H*(BS;R) is surjective, and elements of H*(BT;R) can be seen as quadratic forms on the vector
space Hy(BT;R) ~ Hy(T;R) ~ myT®R = t. Under this identification, the restriction H*(BT; R) —
H*(BS;R) corresponds to restriction of a quadratic form g on t to s. Thus, showing the map
H*(BT;R)" — H*(BS;R) is surjective regardless of the choice of the circle S is equivalent to
showing that for each tangent line s in t, there is W-invariant quadratic form g not vanishing on
s. In particular, it would more than suffice to find a W-invariant g such that g(v) # 0 for all v # 0.
But the Killing form B(—,—): ¢ x £ — R is an Ad-invariant, negative definite bilinear form by
Proposition B.4.13, so its restriction to t x t is W-invariant, and its restriction to the diagonal is a
W-invariant, quadratic form g on t strictly negative on t\{0}. O

Historical remarks 7.6.6. The choice of notation p* for this important map follows historical prece-
dent dating back to the heroic era of large tuples described in Historical remarks 5.3.9. Borel and
later Hirzebruch canonically assigned the name p(U, G) to the map BU — BG induced by an
inclusion U < G and p*(U, G) to the resulting map H*(BG) — H*(BU) in cohomology.
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Chapter 8

The cohomology of homogeneous spaces

In this chapter we finally arrive at our stated goal, to compute the cohomology of a homogenous
space G/K in terms of the transitively acting group G and the isotropy subgroup K.

Moreover, the Serre spectral sequence of G - EG — BG induces a machine, invented by
Borel in his thesis, computing the cohomology of homogeneous spaces G/K. The machine is,
in slightly disguised form, the Cartan algebra computing the Borel K-equivariant cohomology
of G. This Cartan algebra was one of the motivating examples behind the definition of minimal
models, which developed into a central tool of rational homotopy theory in the late 1960s. We use
one tool from rational homotopy theory, the algebra of polynomial differential forms, to update
Borel’s 1953 proof that the Cartan algebra computes the cohomology of a homogeneous space.

The innovation of this chapter is that we are able to present the Cartan algebra and its appli-
cation in algebraic terms with essentially no use of the Lie algebra of G, of the Lie derivative, or
of connections, and without developing rational homotopy theory. Though many sources cover
this material in more or less detail [Cen51, And62, Ras6g, GHV76, Onigy], all of them rely on
Lie-algebraic methods. Rational homotopy theoretic proofs of Cartan’s theorem can be found in
texts [FHTo1, FOTo8], as an application of a much more of a general theory we for lack of space
do not develop here. In fact, Cartan’s theorem was an early instance of and an inspiration for
such methods [Hesgg].

Now seems like a good time to formalize the setup.

Definition. Let G be a compact, connected Lie group, and K a closed, connected subgroup. In
this situation we call (G, K) a compact, connected pair of Lie groups.

Our discussion will really be about properties of such pairs. Associated to a compact pair
(G, K) are three fiber bundles. The first, K — G — G/K, follows from Theorem B.4.4. The second
is the Borel fibration G — Ggx — BK, which is a principal G-bundle. The third is the fibration
G/K — BK — BG, where the projection p ~ Bi: BK — BG can be seen as the “further quotient”
map EG/K —» EG/G. Substituting the homotopy quotient Gk for G/K when convenient, we can
then see that each three consecutive terms of the sequence

K -G G/K % BK 5 BG (8.0.1)

form a bundle up to homotopy. Here x: gK —— eogK is the classifying map of K - G —
G/K and also the fiber of BK — BG over ¢yG, and we are able to substitute Gk in for G/K
without changing j or x up to homotopy by Proposition 5.5.4. This section is devoted to a general
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discussion of the implications of this fiber sequence in the resulting cohomology sequence
* it o X o 0% s
H*(K) «— H*(G) «— H*(G/K) <~ Hg «— H{. (8.0.2)

It is a curious historical coincidence that the study of the cohomology of homogeneous spaces
seems to break into three basic periods, the first studying the Leray spectral sequence of the first
three terms, the second studying the Leray-Serre spectral of the second three terms, and last
studying the Eilenberg—Moore spectral sequence of the last three terms. It is the second period
characterization that we employ in what follows, but these maps will all have some relevance for
us.

Remark 8.0.3. We always assume our groups are compact and connected in what follows. Con-
nectedness is essential, but what we say also goes for noncompact Lie groups. [INCLUDE THIS
ARGUMENT. |

8.1. The Borel-Cartan machine

We begin by introducing the device that will carry out our computations.

8.1.1. The fiber sequence

The five terms of (8.0.1), up to homotopy, form the labeled subdiagram in the following diagram
of bundle maps, where the columns are bundles.

KCieG——G
EiKHCi;HElG (8.1.1)
Lo

BK—=BK — BG
Here the middle row should be seen as

EK®K— EG®G — EGXQG,
K K G

the outer terms being homeomorphic to EG ~ EK, and the fiber inclusions from the preceding
row given by ¢ —— ¢9®g. The first and last columns are universal bundles and the second
column is the Borel fibration. It is clear that j o7 and p o x are nullhomotopic because they factor
through EG. The classifying map p: BK — BG is explicitly given by p = Bi: eK — ¢eG.

The Borel approach ([Bors3, §22]) to understanding the cohomology of H*(G/K) depends on
the G-bundle map between the second two bundles,

G=—=G
I
Gk —EG (8.1.2)
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2723 This bundle map induces a map from the spectral sequence (E,,d,) of the universal bundle,
2724 which we now completely understand, to the spectral sequence (E,,d,) of the Borel fibration,
2725 which we do not. As Gk ~ G/K, the latter sequence converges to H*(G/K). We write

(¢r): (Er dy) «— (Er/ Jr)

2726 for this map of spectral sequences. Recall from Section 2.6 that these maps ¢, : E, — E, are pGA
2727 homomorphisms, meaning d, o i, = 1§, o d,, and each descends from that on the previous page,
2726 meaning ¥, 11 = H*(¢p,). The map ¢»: E; «— E; between second pages is

p* ®id: H*(BK)® H*(G) «— H*(BG)® H*(G),

2720 where id = () is the isomorphism EY® = EY* of the leftmost columns and p* = (Bi)*: H*(BK) «—
250 H*(BG) is the map EE'O — E3° of bottom rows.

2731 It is a consequence of the following lemma that the map p* at least largely determines
732 H*(G/K).

2733 Proposition 8.1.3. Let G be a compact, connected Lie group whose primitive subspace PG < H*(G) is
2734 concentrated in degree < q — 1. Then if G — E — B is a principal G-bundle, its SSS collapses at E; 1.

2735 Proof. Recall that the spectral sequence (Er, Jr) of the universal G-bundle collapses at Eq+1 =
2736 Eoc = Q. Because G — E — B is principal, it admits a bundle map to the universal bundle, as
237 in (8.1.2) inducing a spectral sequence map (¢,): (Er, d}) — (E,,d,), which is a cochain map,
2738 meaning d, i, = 1prd}. Thus the edge maps 4, : ES"l — Eﬁ’o all vanish for r > g. Now, the d, also
273 vanish on the bottom row E; by lacunary considerations, and are antiderivations with respect to
2720 an algebra structure on E, descending from that of E; = H*(B) ® H*(G), so they vanish entirely
a1 forr > gq. ]

2742 In particular, since the edge homomorphisms of the universal bundle spectral sequence
s (Ey,d,) are determined entirely composition by an isomorphism 7: PG — Q(BG) restricting
2724 the transgression, it follows much of the structure of (E,,d,) is determined by the composition
2745 p* o T. In fact, in the next subsection we will show that this composition itself yields a differential
2726 - d on Ey, the Cartan differential, such that H*(E, d) =~ H*(G/K) and (E,, d,) is the filtration spectral
2747 sequence associated to the filtered pGa (Ep,d), equipped with the horizontal filtration induced
278 from Hy.

2749 [ADD PROOF OF SAMELSON’S 1941 RESULT ABOUT TRANSITIVE ACTIONS ON SPHERES. ]

20 8.1.2. Chevalley’s and Cartan’s theorems

2751 In this subsection, we prove Cartan’s theorem that the complex described above actually deter-
2752 mines H*(G/K) completely. To do so, we will have to briefly invoke a cochain-level description
2753 of the situation, and rather than use singular cochains, we compute cohomology with Apy. We
2754 only need two features: it is a cDGA and the filtration spectral sequence induced by the filtration
2755 (ApL(X, XP _1)) of a bundle F — X — B agrees with the cochain Serre spectral sequence after E,.
2756 Temporarily taking a step back from homogeneous spaces, consider the universal bundle
257 G — EG — BG. Lifting indecomposables, which is possible by Proposition A.4.3 since H*(BG) is
278 a free cGa, the transgression yields a map

P(G) =+ Q(BG) — H*(BG),
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Since H*(BG) is also a free cGa, there exists a cGa section i*: H*(BG) — App(BG), so we can
lift T to i*7: PH*(G) — ApL(BG).

Now consider a principal G-bundle G — E 7> B. This bundle is classified by some map
X: B— BG, inducing a ring map x*: ApL(BG) — Apr(B), and we can form the composition

)(*i*TZ P(G) — H*(BG) — APL(BG) — APL(B)

Because H*(G) = AP(G) is a free cGa, we can extend this lifted transgression uniquely to an

antiderivation on
C:= APL(B) ® H*(G)

which we will again call x*i*T and which vanishes on Apy(B). Similarly, the differential dp of
ApL(B) extends uniquely to an antiderivation on C annihilating Q® H*(G), which we again call
dp. We consider C as a Q-cpca with respect to the unique differential dc := dp + x*i* T extending
both dp and x*i*T. See Figure 8.1.4.

Figure 8.1.4: The differential of the algebra C = Apy(B) ® H*(G) as defined on generators

3 |P) S
R

1 [Pc) it

0 |ao By AL (B) A2 (B) A3 31\4‘4 B)| A3 B>{6 B)| .-
pL(B)|ApL(B) Apr(B) | App (B)| Ay (B) Ay (B)| Apy (B)
Sdp A ~dp A~ dp A~ dp A ~dp 7 ~\dp 7~ dp

0 1 2 3 4 5 6

Let (z/) be a basis of P(G) and set By = (x*i*7)z, for each ¢, so that we have

de(a®1) =dpa®1, ae App(B);
dc(1®Zg) = ﬁg@l.

The cochain maps (Apr(B),dg) — (C,dc) — (H*(G),0) induce ring homomorphisms H*(B) —
H*(C) - H*(G).

Theorem 8.1.5 (Chevalley [Car51][Kos51][Bor53, Thm 24.1, 25.1]). Let G I E % Bbea principal G-
bundle, and let (C,dc) be as above. Then there exists an isomorphism A*: H*(C,dc) — H*(E) making
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the following diagram commute:

H*(E)

Proof. We want to construct a cochain map A: C — App(E) into the algebra of polynomial
differential forms on E (any cpca calculating H*(E) would do), which we will then show to be a
quasi-isomorphism by showing it induces an isomorphism between later pages of the associated
filtration spectral sequences. The spectral sequence corresponding to H* (Apr(E)) =~ H*(E) will
be the Serre spectral sequence (E,, d,) of G 1, E X B with respect to Apy, cochains.

Note that by construction and by Corollary 7.4.3 a primitive z, € H'~!(G) transgresses in
E, to d;[z¢] = [B¢]. By the description in Proposition 2.2.21 of the transgression in the Serre
spectral sequence, this means there exists a form <y, € App(E) such that [j*y,] = zy € H*(G) and
dpye = By € ApL(E). Define A on algebra generators by

A: ApL(B)®H*(G) —  ApL(E),
a®1 — T, (8.1.6)
1@2( > Y.

Then A is a cochain map by construction, for following through the formulas on generators,

deMa®1) = dpt*a = m¥dpa = Adc(a®1);
dE/\(l ®Zg) = dE’)/g = ﬂ*ﬁg = /\dc(l ®Zg).

Filter B = | J B? by its p-skeleta, E by the preimages 71~ !B of these, and C and Apr(E) by
F,C = @ Ap(B)®H*(G),  F,ApL(E) = ker(ApL(E) — Apr (7 'BP1)).

izp

Then A preserves filtration degree for elements of H*(B), which is enough to see that it sends
F,C —> F,Ap.(E).

Write (E,, d,) still for the spectral sequence of the filtration on Apy (E) and ('E,,'d,) for that of
the filtration on C. The former is just the SSS of G — E — B using Apy, cochains (Theorem 2.2.2,
Proposition 2.2.3),

E;, = H*(B)® H*(G).
On the other hand, following through the reasoning in Corollary 2.6.8 in this case, 'Ey is the
associated graded algebra grC =~ C, and 'dy is the differential induced by dc = dp + x*i*t.
Since x*i*7 is induced by the transgression 7, it has filtration degree > 2 on all elements it fails

to annihilate outright, and so vanishes under the associated graded algebra construction, and
likewise dp adds one to the filtration degree, so dy = 0 and 'E; = 'Eg = C. Thus 'd; = dp and

/Ez = H*(B)®H*(G) ~ bEy.

Now that we know these pages can both be identified with H*(B) ® H*(G) in a natural way; it
remains to show A, : 'E; — E; becomes the identity map under these identifications. But this is
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also the case by construction: the base elements & € Apy,(B) ®1 and A(a®1) = 7t*a € Ap(E) both
become [a] ®1 in 'E; = E; and the fiber elements 1®z, € 1® H*(G) and A(1®zy) = 4 € ApL(E)
each become 1®[j*y/] = 1®z,.

Since A; is a cochain isomorphism, it follows from the general principle Proposition 2.7.2 that

)\* = H*(/\) H*(APL(B)®H*(G),dc) — H*(E)
is an isomorphism. O

Remark 8.1.7. We are committed to a very classical viewpoint in this work, but those with some
grounding in rational homotopy theory might note that (SQ(BK)® APG,d) is a pure Sullivan
model.

Remark 8.1.8. If we are willing to sacrifice multiplicative structure, we can take coefficients in a
ring k of arbitrary characteristic, subject only to the condition H* (F; k) be a free k-module [Hir53]."!
Given a fibration F — E 75 B with trivial 7r1(B)-action on H*(F;k), assign to each element y of a
basis of H*(F; k) a representing cocycle in C*(F; k) and extend this to a cochain (1) € C*(E; k).
There is a k-linear map A’, the analogue of A from (8.1.6), taking C' = C*(B; k) ® H*(F; k) —
C*(E;A) via b®1 — 7*b for b € C*(B;k) and 1®y — 7(y). A differential can be defined on
C’ [FIND THE ARTICLE TO DETERMINE HOW] such that the obvious filtration induces an isomor-
phism of H*(B;k)-modules on the E; page, so that H*(C') = H*(E;k) on the level of graded
H*(B; k)-modules.

The algebra C = App(B) ® H*(G), although simpler than App (E), still involves the algebra
Apr(B) of polynomial forms on the base B, which though graded-commutative and hence simpler
than the algebra of singular cochains on B, is still typically a large ring (if B is a CW complex of
positive dimension, then dimg Apy (B) > 2%), which we would rather replace with H*(B).

The E, page of the filtration spectral sequence associated to the filtration induced from the
“horizontal” grading on Apr(B) is the algebra we want, namely H*(B) ® H*(G) equipped with
the differential d, vanishing on H*(B) and sending z € PG to (x*7)z = [(x*i*1)z] € HIF+1(B).

Definition 8.1.9. The algebra C = H*(B) ® H*(G) equipped with the antiderivation d extending

P(G) 5 Q(BG) — H*(BG) % H*(B)
is the Cartan algebra of the principal bundle G — E — B.

Remark 8.1.10. Observe that the Cartan algebra of a principal bundle G — E — B is the Koszul
complex (Definition 7.3.6) of a sequence @ in H*(B) of images of generators of H*(BG) under
the characteristic map x*: H*(BG) — H*(B). This follows because indeed H*(BG) = S|Q(BG)]
by Borel’s Theorem 7.4.1 and APG® SQ(BG), equipped with 7: PG — Q(BG), is the Koszul
complex of PG. In particular, one has the following isomorphism.

Proposition 8.1.11. Let G — E — B be a principal bundle and C its Cartan algebra. Then there is an
isomorphism
H*(C) = Tor};: (Q, H*(B)).
G

Proof. By Remark 8.1.10, C is the Koszul complex of the map x*: H*(BG) — H*(B), and by
Proposition 7.3.10, the cohomology of this complex is Tor} (Q,H*(B)). O
G

! Hirsch actually wants k to be a field.
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We would like to find a zig-zag of quasi-isomorphisms linking (Apy(B)® H*(G),dc) with
C = (H*(B)®H*(G),d).* Recall from Definition 4.1.1 that in this case the space B and the
complex (Apr(B),d a,, (p)) are both called formal.

Proposition 8.1.12. If the base B of a principal bundle G — E — B is formal, then the Cartan algebra of
Definition 8.1.9 computes the cohomology H*E of the total space.

Proof. This is an application of the later lemma lemma 8.4.11 to the zig-zag of quasi-isomorphisms
connecting (A,d) = Ap(B) and H*(A) = (H*(B),0). In the lemma, let V = P(G) and {: P(G) —
APL(B) a lifting of

P(G) - Q(BG) — H*(BG) — H*(B). O

The ring endomorphism ¢ in the above proof can actually be seen to be an automorphism by
a filtration argument; if one filters by B-degree, then ¢ induces the identity map on the associated
graded algebras.

We will be able to use this result later to discuss bundles over formal homogeneous spaces
G/K, but the case of critical interest to us, of course, is the Borel fibration G — Gg — BK.

Definition 8.1.13. The Cartan algebra of the Borel fibration G — Gx — BK, given by C =
H*(BK)® H*(G) equipped with antiderivation d extending p* o 7: P(G) — Q(BG) — H*(BK),
is the Cartan algebra of the pair (G, K).

The key theorem, due to Cartan, is that the Cartan algebra of a compact pair (G,K) does
indeed compute H*(G/K).

Theorem 8.1.14 (Cartan, [Car51, Thm. 5, p. 216][Bor53, Thm. 25.2]). Given a compact pair (G, K),
there is an isomorphism H*(H*(BK) ® H*(G)) — H*(G/K) making the following diagram commute:

H*(H*(BK) ® H*(G))

N

H*(BK) H*(G) (8.1.15)

AN

H*(G/K)

Proof. Because H*(BK) =~ S|Q(BG)] is a free cGa, it is formal and Proposition 8.1.12 applies.

To avoid use of Lemma 8.4.11 in full generality, note that picking generators for H*(BK)
defines a cpGaA quasi-isomorphism H*(BK) — App(BK) and apply the spectral sequence of the
filtration with respect to the grading of Apy (BK) to the induced cpGga map H*(BK)® H*(G) —
AprL(BK)® H*(G) to get an isomorphism on E; pages. O

Remark 8.1.16. If B is not formal, the Cartan algebra of a bundle can indeed fail to compute the

cohomology of the total space. For an example of this phenomenon, see Section 3 of Baum and
Smith [BS67, p. 178].

> There exists a single quasi-isomorphism (H*(BG),0) — (ApL(BG),d 4, (sg)), but for general B, a chain of
quasi-isomorphisms is required.
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Corollary 8.1.17. There is an isomorphism
H*(G/K) = Tor;{’;(BG) (Q, H*(BK)).

Proof. By Theorem 8.1.14 and Proposition 8.1.11, H*(G/K) = H*(C) = Tory ¢, (Q, H*(B)). O

Remark 8.1.18. If we set K = G, this statement makes precise our motivating claim in the introduc-
tion to Section 7.3 that the differentials in the SSS of the universal bundle G — EG — BG filter an
antiderivation T extending the transgression which can be seen as the “one true differential.” In
the same way, the SSS of the Borel fibration G — Ggx — BK filters the differential on the Cartan
algebra. This does not make this SSS, which we have already exploited to such effect, any less
valuable: we will see examples in the next section where the Cartan algebra is unpleasantly com-
plicated and it behooves us to look at the associated graded algebra E,, = gr H*(G/K) instead.
Moreover, in precisely the complement of this “bad” case, the associated graded construction is
an isomorphism, so that the SSS of the Borel fibration calculates H*(G/K) on the algebra level.
Rather than one description being more powerful, it is the equivalence of these two descriptions
that turns out to be critical.

Remark 8.1.19. It is only fair to say at one point why we insist so fervently that K be connected.
The main issue is that if K is not connected, then BK will not be simply-connected, and the
Serre spectral sequence of the Borel fibration is calculated with local coefficients. One can still
say some things, for if Ky < K is the identity component, then BKy — BK and G/Ky — G/K
are finite coverings, so if |7K| is invertible in k, one can embed H*(G/K) as the mpK-invariants
of H*(G/Kp) by Proposition B.2.1 and likewise Hy as the roK-invariants of H .

That G be connected, on the other hand, is not a real restriction if we insist K be connected,

for then K will lie in the identity component Gy of G and G/K will factor homeomorphically as
oG x Go/K, a finite disjoint union of copies of Go/K.
Historical remarks 8.1.20. The original, unpublished statement of Chevalley’s theorem [Kos51,
p- 70l[Bors3, p. 183][Cars1, p. 61], as best the author can tell, applied to the de Rham cohomology
of a smooth principal G-bundle with compact total space. This statement is cited by Cartan and
Koszul both (without proof) in the Collogue proceedings. Borel’s generalization of this result, as
proved in his thesis, removes the smoothness hypotheses by relying, instead of on forms, on
an object of Leray’s creation known as a couverture, which was superseded so quickly and so
thoroughly by the ring of global sections of a fine R-cpGA resolution of the constant sheaf R that
it never acquired an English translation. Borel’s statement of the result still requires compactness
of the base because it relies on (what is essentially) sheaf cohomology with compact supports
and a result of Cartan which in modern terms can be interpreted as saying a resolution of the
constant sheaf R on a paracompact Hausdorff space by a fine sheaf of R-cpcas always exists.
Neither the principal bundle G — EG — BG nor a Q-cpca model of cohomology was available
to Borel at the time, so in his statement [Bor53, Thm 24.1] of Chevalley’s theorem, our H*(B) is
replaced with (essentially, again) a fine resolution % of the real constant sheaf on B.

As we have noted in Historical remarks 7.4.8, the unavailability of BK available, complicated
Borel’s proof, which hence needed to invoke n-universal K-bundles E(n,K) — B(n,K) for n
sufficiently large. Borel’s proof also applied not the Serre spectral sequence as we do, but the
Leray spectral sequence, applied simultaneously to an early formulation of a sheaf and a couverture.
We will reproduce a less drastic modernization of Borel’s original argument in Appendix C.3,
and delve slightly further there into the meaning of the Leray spectral sequence, fine sheaves,
and couvertures.
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8.2. The structure of the Cartan algebra, |

The Cartan algebra makes a few results on H*(G/K) easy which would require more sophisti-
cation if attacked with the map of spectral sequences that was the subject of Section 8.1.1. We
reproduce here the important bundle diagram (8.1.2) whose induced spectral sequence map the
Cartan algebra encodes.

G=——=0G

L

Gk — EG

|

BK — BG.
P

One important subobject of the Cartan algebra is related to the image of the map j*: H*(G/K) —
H*(G) induced by j: G — G/K ~ Gk.

Definition 8.2.1. The image of j*: H*(G/K) — H*(G) is called the Samelson subring of H*(G).
It meets the primitives PH*(G) < H*(G) in the Samelson subspace P.

The importance of the Samelson subspace is that in fact it generates im j*.
Proposition 8.2.2. The Samelson subring is the exterior algebra AP.

Proof (Borel [Bors3, Prop. 21.1, p. 179]). By definition P < imj*, so that AP < imj*, and we
want to see the reverse inclusion. Because primitives are involved, we will need the coproduct
on H*(G). Recall that the left translation action of G on G/K descends from the multiplication of
G, in the sense that the left diagram below commutes:

GxG-l>gG H*(G)® H*(G) <" H*(G)
idle j id®j*[ *
G x G/KLG/K, H*(G)® H*(G/K) L H*(G/K).

The right diagram is that induced in cohomology, applying the Kiinneth theorem and assuming
the torsion of G is invertible in k. From commutativity of the diagram

Suppose that we have shown the inclusion in degrees less than that of y € H*(G/K). Fix an
ordered basis (z;)'*{ of PH*(G), so that monomials z! = [],_; z; for I € {1,...,tk G} form a basis
of H*(G). Then we can write p*(y) = ax + Y. bxzK with x € PH*(G) and 4, by € k, and

(d® )p*(y) = w*p*(y) = a(1@x +x@1) + > > +bgx' ®/

K Ij=K

in the resulting basis for H*(G) ® H*(G). In particular, for each K with bx # 0, and each i € K the
sum contains the term +bxzK\} ® z; € H*(G) ® H*(G), which implies that z; € P = PH*(G) n
im j*. Thus Y. bxzK € im j*, so ax = p*(y) — X, bxzX € im j*. But x was assumed primitive, so x € P
and p*(y) € AP. O

Proposition 8.2.3. If HZ! denotes the augmentation ideal of H, then one has P = d~'(HZ! - im d).
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Proof. By construction, the Serre spectral sequence of G — Gg — BK is the filtration spectral
sequence of the Cartan algebra (Hy ® H*G, d) with respect to the grading of Hy. Elements z of
P! = P1H*G A im j* are represented by elements 1®z e Eg" which survive to E,,, meaning
all differentials vanish on the class of 1®z. This means that the image under the Cartan dif-
ferential, x®1 = d(1®z) € Hf ®Q, represents zero in the quotient Er"o, or in other words lies
in the kernel of the quotient map H ® Q = EE’O —» E;’O. This kernel is, by induction, the ideal
generated by the lifts to E; of the images of previous transgressions d;: E?’i_l — Ef’o. Since these
transgressions lie in degree < r, it follows dz € HZ' - im d.

On the other hand, if dz e Hfl -imd, say dz = Y a;dz; with a; € Hfl and z; € PH*(G), then
o0

|zj] = |z| — \aj\ < |z|, so E‘Z|

is a quotient of Hg/(dz;) and particularly dz®1 represents 0 in E,,

meaning 1® z survives to E in the filtration spectral sequence and z € p. O
The Samelson subring is in fact a tensor factor of H*(G/K).

Definition 8.2.4. Let (G, K) be a compact pair. We write P = PG/13, and call this the Samelson
complement; the notation is supposed to indicate its complementarity to P.

Proposition 8.2.5. The Cartan algebra admits a coproduct decomposition
(HE® APG,d) = (HE® AP,d)® (AP,0).

The proof is just what one would naively hope; we paraphrase from Greub et al [GHV76,
3.15 Thm. V, p. 116].

Proof. Choose some QQ-linear section

P — kerd < Hf® APG

T
of the column projection kerd — H*(G/K) L H *(G). This section extends uniquely to a ring
injection f: AP — kerd which we can extend further to a ring map

(HE® AP)® AP — Hi ® APG
(®2)®%+—> (a®Z) - f(2).

This ring map is also a cochain map, since it is the identity on the first tensor-factor of its domain
and since for 2 € AP we have 0 = d(f2) = (0(2)).

It remains to see f is bijective. Note that f is the identity on HK®AP and that given an
element z € P, since f is defined to be a section of the projection to the leftmost column, we
have f(z) = 1®z (mod HZ'). Thus f preserves the the horizontal filtration induced by the

filtration FyHy = Dz, HY on the base Hj and induces an isomorphism gr, f on associated

graded algebras. By Proposition 2.7.2, f is an isomorphism. O

Corollary 8.2.6. Let (G, K) be a compact pair. Then there exists a tensor decomposition
H*(G/K) ~ H*(H{ ® AP,d)® AP,
where the subring AP = im j* < H*(G) is induced from the projection j: G — G/K.

We write the first factor as J.
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Corollary 8.2.7. The factor | satisfies Poincaré duality.

Proof. Since G/K is a compact manifold, H*(G/K) is a PDA by Theorem A.2.10, and the exterior
algebra AP is a PDA, so by Proposition A.2.12, so also must be the remaining factor J. O

The same way that im j* admits a description as the leftmost column of E., for the SSS of
G — Gg — BK, so also the image of x* admits a description as the bottom row E3.

Definition 8.2.8. The map x*: Hf — H*(G/K) is traditionally called the characteristic map and
im x* =~ Hj // HE the characteristic subring of the pair (G, K). The factor | = H*(Hf ® AP,d) of
H*(G/K) in the decomposition Corollary 8.2.6 is called the characteristic factor.

The name characteristic subring arises because, up to homotopy, the classifiying map G/K —
BK of the principal K-bundle K — G — G/K is the projection )x: Gx — BK of the Borel fibration
(see (8.0.1)), and the characteristic classes of the former K-bundle bundle lie in im x*. The charac-
teristic factor is so called because Hf — Hy ® H*(G) factors through Hyg ® AP, making clear the
following containment.

Proposition 8.2.9. The characteristic ring im x* is contained in the characteristic factor |.

The cohomology sequence (8.0.2) is coexact at Hf, yielding the following pleasing description
of the characteristic subring.

Proposition 8.2.10. The characteristic subring is given by im x* ~ Hy J/ HE.

Proof. The bottom row Hf lies in the kernel of the Cartan differential dc, and meets the image
imdc in the ideal j generated by p*(im 7). Since 7: P(G) — Q(BG) surjects onto generators
of H§, it follows that the ideal j which is the kernel of Hf — H*(Hj ® H*(G)) is generated
by the image p*HZ' of the augmentation ideal, so this image is Hi/(0*HZ') = Hj / HE, the
ring-theoretic cokernel. By the commutativity of the diagram (8.1.15), this image subalgebra cor-
responds to im x* in H*(G/K). O

This information is already enough to compute H*(G/K) in many cases of interest.

8.3. Cohomology computations, |

Lest we miss the trees for the forest in fleshing out our general description of the Cartan algebra,
we take a detour to describe the cohomology of two popular classes of homogeneous spaces G/K,
namely those for which H*(G) — H*(K) is surjective and those for which rk G = rk K.

8.3.1. Cohomology-surjective pairs

The map (8.1.2) of spectral sequences lets us easily reobtain Hans Samelson’s classic theorem
that H*(G) ~ H*(K)® H*(G/K) whenever H*(G) —» H*(K). Pictorially, this means the Serre
spectral sequence of G — Gx — BK looks like that of U(4) — U(4)sp2) — BSp(2), as pictured in
Figure 8.3.3; for now, just look at the E,, page, on the right.

Definition 8.3.1. If (G,K) is a compact pair such that K — G induces a surjection H*(G) —
H*(K) in cohomology, we call (G, K) a cohomology-surjective pair.



Figure 8.3.3: The Serre spectral sequence of U(4) — U(4)sp(2) — BSp(2); nonzero differentials (shown) send x — o, whereas es survive to the next page
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Theorem 8.3.2 (Samelson [Sam41, Satz VI(b), p. 1134]). Suppose that (G, K) is a cohomology-surjective
pair. Then

1. p*: HE — H is surjective,

2. x*: Hf — H*(G/K) is trivial,

3. the Samelson subspace Pis complementary to P(K) in P(G),
4. H*(G/K) is the exterior algebra AP =~ AP(G) J) AP(K), and
5. H*(G) =~ H*(K)® H*(G/K).

6. If the Poincaré polynomials of PG and PK are respectively p(PG) = 27:1 t% and p(PK) = Zle t,
then p(G/K) = [T/, (1+ #9).

Proof. By Proposition 1.0.11 the facti: K —— G is a group homomorphism implies i*: H*(G) —»
H*(K) takes the primitives P(G) — P(K). Because we have assumed i* surjective, it follows
i*P(G) = P(K) and because i* is a ring homomorphism that keri* =~ A[P(G)/P(K)].

The outer columns of (8.1.1) are a bundle map between the universal principal K- and G-
bundles, inducing a map of Serre sequences interleaving the transgressions. Restricting to prim-
itives, one has the commutative diagram

P(K) <" P(G)
¢ ™ G| (8.3.4)
Q(BK) =+ Q(BG),

which implies that Q(p*)Q(BG) = Q(BK) and hence that p*: H*(BG) — H*(BK) is also sur-
jective. It follows from the triviality of x* o p* that the characteristic subring im (x=: Hf —
H*(G/K)) is Q.

If we embed P(K) — P(G) by taking a section of i*, we see from the transgression square
(8.3.4) that the complement of P(K) is annihilated by p* o 7, so that the Samelson subspace
P<P(G)isa complement to P(K), or P =~ P(G)/P(K).

Because p* o T ends P(K) onto Q(BK) and annihilates P, we have a ring factorization of
E;, ~ H*(BK)® H*(G) as

[H*(BK)® H*(K)| ® AP,

which respects the transgression in that all differentials are trivial on P, and the left tensor factor
is the beginning of the filtration spectral sequence corresponding to the Koszul complex on
Q(BK) (cf. Proposition 7.4.2). It follows Ey, = E%* ~ AP. Thus we can identify the short coexact
sequence H*(K) < H*(G) (J; H*(G/K) with

0« AP(K) «— A[P(K)® P] «— AP « 0;

the tensor factorization is valid simply because by Proposition A.4.3 the free cca AP(K) is pro-
jective.

The result on Poincaré polynomials follows from the statements in Appendix A.2.3, since
p(APG) = [T/_y(1 + %) and p(APK) = [Ti_; (1 + ). O
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Remarks 8.3.5. (a) With the benefit of hindsight, our calculations of the cohomology rings of SU(n)
in Proposition 3.1.6 and of V;(C") and V;(H") in Proposition 3.1.8 can all be seen to be of this
form.

(b) The Samelson isomorphism H*(G) =~ H*(G/K)® H*(K) also follows directly from Corol-
lary 1.0.7 independent of any consideration of classifying spaces.
[INTRODUCE MINIMAL MODELS HERE.]

Proposition 8.3.6 ([Cars1, 1°, p. 69][Bors3, Corollaire, p. 179]). Let i: K < G be an inclusion of
compact, connected Lie groups. Then p*: Hf, — Hy is surjective if and only if i*: H*(G) — H*(K)
is.

Proof. This follows immediately from the commutative square (8.3.4) in the proof of Theorem 8.3.2
since the vertical maps are isomorphisms. O

Most of these conditions are clearly equivalent. In fact, a weaker dimension condition on
H*(G/K) is equivalent to cohomology-surjectivity.

Proposition 8.3.7 ((GHV76, Thm. 10.19.X(6) p. 466]). Let (G, K) be a compact pair. One has
h*(G) < h*(G/K) - h*(K),
with equality if and only if (G, K) is cohomology-surjective.

Proof [GHV76, Cor. to Thm. 3.18.V, p. 125]. This follows from Corollary 2.3.5 as applied to the
Serre spectral sequence of K — G — G/K, evaluating the Poincaré polynomials at t = 1. O

Example 8.3.8. Recall from Example 7.6.2 that H*(BU(4)) — H*(BSp(2)) is surjective. From
Proposition 8.3.6, we see as well that H*(U(4)) — H*(Sp(2)), as promised. We had

Cc1 — 0,
C — “q1/
C3}—>0’

Cq4 — (2,

so in the primitive subspace P(U(4)) = Q{z1,z3,25,27} we have PSp(2) = Qz3 ® Qz7 and P =
Qz1 ® Qzs. It follows from Section 8.3.1 that

H*(U(4)/Sp(2)) = Alz1,25], degzj = .

The resulting spectral sequence, Figure 8.3.3, appears complicated, but this complexity is only
apparent. Staring closely at the picture, one sees that AP = A|z1,z5] is a tensor-factor, to which
nothing ever happens, and the massive simplifications after the 4" and 8™ pages just witness
that the Koszul complexes K|[z3] and K|[z7] are other tensor-factors.

Alternately, not bothering with the picture, the transgression in the universal principal U(4)-
bundle takes z; — ¢ and zs5 —— c3, this means that AP = A[z1,z5] splits off in the Cartan
algebra immediately, and S[q1, 2] ® A[z3, z7] is a Koszul complex, so acyclic.

A little more work shows that Hf,,, — H;p( is surjective for all n with kernel the odd
Chern classes, and it follows

n)

H*(U(2n)/Sp(n)) = Alz1,...,zan—3], degz; =].
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As an example application of Samelson’s theorem, we prove a result which will be of use to
us later in investigating equivariant formality of isotropy actions.

Lemma 8.3.9. Let S be a torus in a compact, connected Lie group G and Z = Z(S) its centralizer in Z.
The cohomology of Z decomposes as

H*(Z) =~ H*(S)® H*(Z/S).

Consequently, H*(Z/S) is an exterior algebra on tk G — rk S generators and h*(Z/S) = 2K G—1ks,
Proof. By Theorem 8.3.2, it will be enough to show the inclusion S — Z surjects in cohomology.
Since S is normal in Z, the quotient Z/S is another Lie group, so 712(Z/S) = 0 by Corollary 1.0.12
and in the long exact homotopy sequence (Theorem B.1.4) of the bundle S — Z — Z/S we find the
fragment 0 = 72(Z/S) — mS — mZ. Since S and Z are topological groups, their fundamental
groups are abelian by Proposition B.4.3 and hence isomorphic to their first homology groups
by Proposition B.1.5, so Hi(S;Z) — Hi(Z;Z) is injective. It follows from Theorem B.1.1 that
Hi(S;Q) — Hi(Z;Q) is injective, and, dualizing, that HY(Z;Q) — H(S;Q) is surjective. Since
H'(S) generates H*(S), it must be that H*(Z) — H*(S) is surjective as well.

The statement on Betti number follows because Z must have the same rank as G, since S is
contained in some maximal torus of G by Theorem B.4.11. O

Historical remarks 8.3.10. Proposition 8.3.6 was first proven by Cartan [Car51, 1°, p. 69][Bors3,
Corollaire, p. 179].

A surjection H*(G) — H*(K) in cohomology corresponds dually to an injection H,(K) —
H,(G) in homology, and it was this condition Hans Samelson researched in the work in which
the tensor decomposition Theorem 8.3.2.5 above was first proven [Samg41]. It has since been said
that K is totally nonhomologous to zero in G. Samelson said the Isotropiegruppe U nicht homolog in
der Gruppe G ist or U + 0, the letter U for Untergruppe (our K), and showed if the fundamental
class [K] € Hy(K) did not become zero in H.(G), then H,(K) — H,.(G): the fundamental class
[K] € H«(K; Q) = A(PK)* is the product of a set of algebra generators, so if p.[K] # 0 in H.(G),
then p. is injective. The “totally” is redundant and sometimes dropped for this reason.

When the cohomology ring rather than the homology ring became the primary actor, later
expositors named the condition, by analogy, totally noncohomologous to zero, though that name
taken literally would imply the surjection H*(G) — H*(K) should be injective. These conditions
have been abbreviated variously TNHZ, TNCZ, and n.c.z. For safety’s sake, in dealing with this
situation we will always simply say a map surjects in cohomology.

8.3.2. Pairs of equal rank

We recast some of the results from Chapter 6 in this framework.
Definition 8.3.11. A compact, connected pair (G, K) is an equal-rank pair if rk G = rk K.
Theorem 8.3.12 (Leray). Let (G, K) be an equal-rank pair. Then

1. p*: HE — Hg is injective,

2. x*: Hf — H*(G/K) is surjective,

3. the Samelson subspace Pis trivial,
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4. H*(G/K) =~ Hy /| HE = H}'* ) H)'®.
5. If the Poincaré polynomials of PH*(G) and PH*(K) are respectively given by p(PG) = > £5

j=17]
and p(PK) = Z}Ll t]z.kf _1, then the Poincaré polynomial of G/K is

_ p(BK)  {H1-t%

Proof. The inclusion K < G induces an injection of Weyl groups Wx >~— W and in turn an
inclusion H%V voe—s Hp] X — Hf of Weyl invariants. Recalling from Corollary 6.3.7 that HE =
H%V ¢, this means p*: Hf — Hj are injective.’ Since the transgression 7: PG — Q(BG) is also
injective, the composition p* o 7: PG — Hf is as well, so its kernel P is 0. The injectivity of
p* combined with the fact im x* ~ Hy / Hf means Hy ~ H ®im x* as an HE-module, so the
Cartan algebra H*(BK) ® H*(G) factors as

(im x*,0) ® (H: ® H*(G), d).

Since the second term is a Koszul complex, which has trivial cohomology by Proposition 7.3.4,
we have H*(G/K) = im x* = Hf // HE by the Kiinneth theorem.

As far as Poincaré polynomials are concerned, the statements assume the results of Chapter 1,
that H*(G) and H*(K) are exterior algebras, and by Theorem 7.4.1 we know Q(BG) =~ XPG is
spanned by generators of degree 2¢; and H*(BG) = S[Q(BG)] is a polynomial ring on these
generators. By the results of Appendix A.2.3, we have

p(BG) = H 1—1t2gf and p(BK) = H
j j

1
1— t2k]' '

The HE-module isomorphism Hf =~ HE® H*(G/K) reduces on the the level of graded vector
spaces to

p(BK) = p(BG) - p(G/K).
Multiplying through by p(BG)~! = [,(1- 1287) yields the claimed formula. O

Corollary 8.3.14 (Leray [Bor53, Prop. 29.2, p. 201]). Let G be a compact, connected Lie group and T a
maximal torus. Then the characteristic map x*: H*(BT) — H*(G/T) is surjective, and if the Poincaré

polynomial of P(G) is p(PG) = I, tjz.gj_l, then

L p—
p(G/T) = 1_[ PR

j=1

3 We have proved this from abstract results about invariants, but these maps arise from the cohomology of the base
spaces in the sequence
Gr —— Gy ——EG

L

BT —— BK —— BG,

of principal G-bundles maps, where the maps of total spaces can be conceived as “further quotient” maps among
quotients of EG x G.
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We have also a converse.
Proposition 8.3.15. If H*(G/K) is concentrated in even degrees, then K and G are of equal rank.

Proof. If H*(G/K) is concentrated in even degrees, then the Euler characteristic x(G/K) > 0.
Thus the result follows from Corollary 6.2.5; if we had rkK < rk G, then we would also have
x(G/K) = 0. d

This result also admits a purely algebraic proof involving commutative algebra and the Samel-
son subspace.

Corollary 8.3.16 (Borel [Bors3, Corollaire, p. 168]). Suppose (G, K) is a pair of compact, connected
Lie groups such that the characteristic homomorphism x*: Hi — H*(G/K) is surjective. Then for every
principal G-bundle G — E — B, the fiber inclusion of the quotient bundle G/K — E/K — B is
surjective in cohomology.

Proof. The principal bundle G — E — B is classified by a map B — BG, inducing a bundle
map to the universal bundle G — EG — BG. Taking the right quotient of the total spaces of both
bundles by K yields a bundle map

G/K=G/K

G

E/K -~ BK

|

B —— BG.

But the existence of this map puts us in the situation of Theorem 2.4.1, so one has H*(E/K) —
H*(G/K) surjective, and moreover

H*(E/K) = H*(B) ® H. O

}{C
Example 8.3.17. Consider the pair (U(n), T"). The Weyl group Wy, is the symmetric group S,
acting on H} = Q[t1,...,t,] by permuting the generators ¢; € H?(BT), so H[*J(n) = Qlc1,...,cn] is

generated by the elementary symmetric polynomials ¢; = (f]'(?). It follows that the cohomology of
the complex flag manifold U(n)/T" is

H*(U(n)/T") = Q[t, ..., tal/(c1, .-, Cn),
with Poincaré polynomial
p(U(n)/T") = (1_t)n/ n = 11+ DA+t ) (Tt + 2+ 17D,
[T, (1 -ty
which, evaluated at t = 1, yields rational dimension n! = |S,| = [Wy,)|. We will see this is no
coincidence.

If we take n = 2, then

UQ)/T? = U(Z)/U(l) L u(1) ¥ GLCH=CP' ~ &,
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so we know what to expect. Indeed, ¢; = t; + t and ¢ = t1f5 in Hf = Q[ty, t2], so

* 2\~ * * _ Q[tl,tz] ~ 2
H(U@YTY) = 1 [ Hyg = ARl s ey
as predicted.
For a less trivial example, take n = 3, so that ¢c; = t; + t2 + t3 and ¢ = t1ty + (t1 + f2)t3 and

c3 = tifats. Since we are setting each ¢; = 0, we can eliminate out the generator t; = —(t1 + t2)
and know 0 = ¢y = t1tr — (t; + t2)? = —(t% + t% + t1tp). Simplifying c3 = 0 yields tlt% + t%tz =0, so

. 5y ~ Qlt, to]
H*(U(3)/T?) = /(t§+t§+t1tz, itz + ht3).
See Figure 8.3.18.

Figure 8.3.18: The E, page for U(3)/T°

2 42 3 3
0 1 t1,t 1,5 H+t5

0 2 4 6 ‘

Example 8.3.19. Consider the pair (Sp(n),Sp(k) x Sp(n — k)), yielding as quotient the quaternionic
Grassmannian G(k,H"). The Weyl group Ws;(,, is the signed perrmution group {£1}" x S,: in
the semidirect product, S, acts by permuting the entries of {£1}", and Wsy(,y acts on Hf =
Q[t1, ..., tu] by permuting and negating the generators ¢; € H?(BT), so ng(n) =Qlg1,.-.,qn] is
generated by the elementary symmetric polynomials g; = 0j(], . .., ;) in the squares t7 € H*(BT).
The factors of the Weyl group Wspx)xsp(n—k) = Wspx) x Wsp(n—k) separately permute the tensor
factors Q[f1, ..., t] and Q[txiq, ..., tu], SO

\ Yy o~ Q[t, .., bW ® @ Qe . . ., tn] Vor
HA(G(k ) = A )

We will calculate explicitly what happens if n = 5 and k = 3. For convenience, set u; = tJZ. The
numerator ring Hékp(?)) ®H§p(2) is the polynomial subring Q[r,72,73,51,52] of Q[u1, U2, u3, us, us|
generated by the five generators on the left, and the denominator ideal is generated by the
elements on the right:

r1 = U1+ Up + us, q1 =711 +51,

ro = up(uy, Uz, Us), g2 = 1151 + 12 + 52,
3 = U1UrU3, 43 =13 + 1281 + 1182,
S1 = U4 + U5, 43 = 1381 + 1283,

52 = UalUs; (5 = 1352.

Imposing the congruences generated by setting each g; = 0 and crunching relations a few times
yields
|1’1| =4, |1’2‘ =8.

H*(G(3, 1)) =~ Q[rl'r2]/ 4

2 2 5,3 2
(r{ —rira —r3,2r7r2 4 3r1713),
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Historical remarks 8.3.20. Leray’s determination of H*(G/T) dates back to 1946 in the event G is a
compact, connected, classical simple group [Ler46b]. By 1949, he only requires that the universal
compact cover (see Theorem B.4.5) G of G contain no exceptional factors [Lerg9a]. His original
statement of Theorem 8.3.12 requires no exceptional group to occur as factors of the universal
compact cover G of G, but allows K to be any closed subgroup, not necessarily connected, of
equal rank. His additional requirement on G is removed by the time of his contribution [Ler51] to
the 1950 Brussels Collogue de Topologie. The formula (8.3.13) was first conjectured by Guy Hirsch
and is hence traditionally called the Hirsch formula. According to Dieudonné [Dieog, p. 448],
Cartan and Koszul obtained this result independently around the same time. The initial proof
that H*(G/T) is the regular representation of W also dates to Leray in the Bruxelles conference;
he had earlier [Lers9a] shown the same result holds if G is finitely covered by a product of
classical groups.

8.4. The structure of the Cartan algebra, II: formal pairs

Returning to our discussion of homogeneous spaces, let (G, K) be a compact pair and consider
the Cartan algebra Hy ® H*(G) with differential d induced by p* o 7.

Recall that if the Samelson subspace P < H*(G) is the subspace of the primitives of G where
d vanishes and P = PG/P is the Samelson complement, we defined the characteristic factor to be
] == H*(Hj; ® AP, d) and found a tensor decomposition (Corollary 8.2.6)

H*(G/K) =~ J® AP.

One would like in a similar way to be able to tensor-factor out the characteristic subring im x*
from J, but this is not generally possible. The best we are able to do in this regard is the following.

Proposition 8.4.1. The characteristic ring im x* is simultaneously a subring and quotient ring of the
characteristic factor | = H*(Hg ® AP).

Proof. Since the image of d meets Hg in p*H, the composite projection
HE@H*(G) —» H;E —» H;//Hé = im)(*

descends in cohomology to a homomorphism H*(G/K) —» im x* split by the defining inclusion
im x* — H*(G/K). O

In this section, we explore the propitious case in which the characteristic subring im x* is the
characteristic factor .

Definition 8.4.2. If H*(G/K) =~ im x* ® AP, we call (G,K) a formal pair (traditionally, such a pair
is called a Cartan pair).

Example 8.4.3. Suppose (G, K) is a cohomology-surjective pair. Then, by Theorem 8.3.2, the char-
acteristic factor | is trivial.

Example 8.4.4. Suppose (G, K) is an equal-rank pair. Then, by Theorem 8.3.12, the Samelson sub-
ring AP is trivial and the characteristic factor | is the characteristic ring im x*.
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One can see formal pairs as the smallest class of cases that contains both these extreme
examples. Another way of seeing it is this: the first interesting page of the Serre spectral sequence
of the Borel fibration G — Gx — BK is E; = E£’0®Eg" ~ Hf ® H*(G), a coproduct of cGas,
with one tensor-factor each arising from the base and the fiber of the fibration. In our examples
in Section 8.3.2 and Section 8.3.1, this tensor-product structure persisted throughout the entire
sequence, in that the decomposition E, = E;* ® E* continued to hold, and

Ey, = EXX®EY = (HE ) HE) @ AP

was the tensor product of the characteristic subring im x* and the Samelson subring AP.4 For a
representative example, see Figure 8.7.4. This is also the optimal situation from a purely numer-
ical perspective, because, in particular, the tensor decomposition yields a factorization

p(G/K) = p(ES?) - p(E), (8.4.5)
of Poincaré polynomials and in particular, setting the formal variable ¢ to 1, a factorization
h*(G/K) = dimg E3? - dimg E".

We will expound a number of properties of and equivalent characterizations of the formal
pair condition, in the process justifying the nomenclature. The very fact that there are so many
ways of stating this property should be a further argument, were one needed, for the naturality
of the concept.

But first we introduce an important bound on the dimension of the Samelson subspace.

Definition 8.4.6 (Paul Baum). The deficiency of a compact pair (G, K) is the integer
df(G,K) == 1k G — rk K — dim P.
Proposition 8.4.7. The deficiency is a natural number. That is, for any compact pair (G, K), one has
dim PG — dim PK > dim P.

Proof (Baum [Bau68, Lem. 3.7, p. 26]). Since P®P = PG by definition, it is enough to show
dim P > dim PK. This can be shown through Poincaré polynomials. We may view Hy as an
algebra over the polynomial ring A = S[T(Z\S)] by restricting p*: Hf — Hy. If we lift a basis of
H¢ ) HE = HE J/ A back to Hg, this basis spans Hg as an A-module (typically with some redun-
dancy; we do not expect Hf to be a free A-module). Thus p(Hg / HE) - p(A) = p(HE) (in that
each coefficient of t" on the left is at least its counterpart on the right), or dividing through,

p(HL | HE) > prffj;).

Both the numerator and denominator on the right-hand side are products of factors 1 — t", by
(A.2.13). There are dim PK such factors in the numerator and dim P in the denominator, so if we
had dim PK > dim P, the rational function p(HE)/p(A) would have a pole at t = 1, but this is
impossible because it is majorized by the polynomial p(Hf // HE). O

4 We concede that in those examples, it was the tensor product of precisely one of those factors—there are historical
reasons why those cases were studied first.



3207
3208

3209

3210
3211

3212

3213

3214

3215

3216

3217

3218

3219

3220
3221

3222
3223

3224

3225

3226

3227

3228

3229

3230

3231

3232
3233

3234

Chapter 8. The cohomology of homogeneous spaces 125

Theorem 8.4.8 ([Onigyq, Thm. 12.2, p. 211]). Let (G, K) be a compact pair. The following conditions are
equivalent:

1. (G,K) is a formal pair.
2. The kernel (imp*) of the characteristic map Hj RN H*(G/K) is a regular ideal in the sense of
Definition 7.3.6.
e

3. The sequence H RN H*(G/K) L, H*G is coexact.

4. The characteristic factor | in the decomposition H*(G/K) = J®AP is evenly-graded.

5. The deficiency df(G, K) = dim PG — dim PK — dim P is zero.
Proof. We always have H*(G/K) = | ® AP, so the task is to prove the remaining conditions are
equivalent to the statement | = im x*.

1 < 2. If we singly grade the cpca C = Hf ® AP, by
.. —> HE®A*P — HE®A'P — Hj — 0, (8.4.9)

where the differential d vanishes on Hy and is induced by
~ - p*
P— PG — Q(BG) — Hg

thevn ] = imx* = Hj /H if and only if H*(C) = H°(C). But if we write ¥ for a basis of

T(P) < HE, then C is the Koszul complex Kz (¥, HE) of Definition 7.3.6. Then Proposition 7.3.9
states this Koszul complex is acyclic if and only if the sequence is regular.

1 — 3. By the definition Definition 8.2.1 of the Samelson subring, j* factors as H*(G/K) —»
AP — H*G, so one can replace H*G by AP in the coexact sequence above. Once we factor out
AP, the new claim is that the sequence

Hi 25— Q

is coexact, or that every class of positive degree in | has a representative in Hf ® AP lying in the
ideal x(HZ 1). But this is clearly the case if y surjects onto J.
3 = 1. Assume every class of positive degree in | admits a representative in the ideal (HZ 1 of
HE ® AP. Then the quadruple

a=H'<A=Hf, V=Q=Jh<M:==]
satisfies M = aM + V, so the corollary A.1.3 of Nakayama’s lemma yields | = M = AV = A -1,
meaning x* is surjective.
1 = 4. This is clear since im x* = Hf / HE inherits an even grading from H}.

4 = 2.1If ] is evenly graded, then H 1 of the Koszul complex C of (8.4.9) above must be zero
because P < PG is oddly-graded. But by Proposition 7.3.9, this also means | = H*(C) = H°(C) =
Hy JJ HE = im x*.



3235
3236
3237
3238
3239

3240

3241

3242
3243

3244

3245

3246
3247

3248

3249
3250
3251
3252
3253
3254
3255
3256

3257

3258
3259
3260
3261
3262
3263
3264

3265

3266
3267
3268
3269

3270

Chapter 8. The cohomology of homogeneous spaces 126

2 < 5. ([Onig4, p. 144]) Write y1,...,yn for a basis of Q(BK) and by,...,b, for a basis of
7(P) < Slyi]. Note that we know that df(G,K) > 0 in any event by Proposition 8.4.7, and if
df(G,K) = 0, then dim P = dim PK.

Working over k = Q or C, the ring k[y;]/(b;) is finite-dimensional as a k-module, so the variety
V =V(by,...,by) < k" is zero-dimensional. By a result of algebraic geometry [VA67, Ch. 16], the
sequence (b;) is regular if and only each component of V is (n — £)-dimensional. Thus (b;) is

regular if and only if tkK = n = £ = dim P. O

To justification our choice of terminology, we need to bring in a concept from rational homo-
topy theory.

Theorem 8.4.10 ([Onig4, p. 145][GHV76, Thm. 10.17.VIII]). A compact pair (G, K) is formal if and
only if its Cartan algebra is formal in the sense of Definition 4.1.1.

The proof needs a level of sophistication with models we have not needed elsewhere. The
crux is the following lemma, distilled from the material in Section 3.7 of Greub et al. [GHV 76,

pp- 147-152].

Lemma 8.4.11. Suppose (B;,d;)l is a zig-zag of quasi-isomorphic k-CDGAs as depicted in Defini-
tion 4.1.1, that F = SQ® AP is a free k-cGA on a strictly-positive graded subspace V. = Q@ P and
that we are given a k-linear map Co: V — Z(By) = kerdy increasing degree by one. Extend ¢y uniquely
to a derivation on By ® F vanishing on By and define a new derivation on By&® F by dyp = ¢ + do. Then
there exist k-cDGA structures (B; ® F, ;) extending the d; such that the rings H*(B; ® F) are isomorphic
through isomorphisms which preserve the images H*(By) — H*(B;) — H*(B;® F)

In particular, if (A,d) is formal, then there exists a k-cDGA structure on H*(A) ® F with isomorphic
cohomology to that of (A®F, ) and such that the triangle

H*(4)

N

H*(H*(A)®F) = H*(A®F)

commutes.

Proof. To guarantee the second condition, that the quasi-isomorphisms to be defined among the
(Bi®F, 6;) preserve the image of H*(By), we stipulate at the beginning all the quasi-isomorphisms
we construct must restrict on the bases B; to the original quasi-isomorphisms. Now inductively
suppose the construction has been established up to B = B; and that the differential 6 = §; on
B®F is a derivation of degree 1. Write C = B, ;. There are two cases for the induction step,
quasi-isomorphisms s»: (B,d) — (C,dc) or A: (B,d) «— (C,dc).

In the former case, using the assumed differential § on B& F and the fact that s¢ is a cochain
map, we extend

v -2 7(B) %> Z(C),

uniquely to a derivation {c on C&®F. Then ¢ := dc + {c is again a derivation of degree one
because ¢ is. The map »®id: B&F — C®F is a ring map because s was, and a cochain map
because it is so on generators.

In the latter case, pick a homogeneous basis (v) of V. Since A: (B,d) «— (C,d¢) is a quasi-
isomorphism, for each v there is a unique class in H*(C) mapping onto [dv] € H*(B) under
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H*(A), and we may choose an element {cv € Z*(C) representing this class. Since Acv and év
are cohomologous, we can then write

Alcv = 6v + da(v) = 6(v + a(v))

for some elements a(v) € B. These maps of the basis extend k-linearly to a: V. — B and
¢c: V. — Z*(C). Uniquely extend ¢c to a derivation on C®F and define éc = dc + {c. An
extension : CQF — BQ®F of A to a ring map is determined uniquely by its restriction to V,
and for this extension to also be a cochain map (C®F,dc) — (B®F,?), it is necessary and
sufficient to demand that for v € V one have

() = Poc(v) = ¢ (§cv) = Alco = 6(v+a(v)).

eC

But we can achieve this by just letting ¢(v) = v + a(v) on V.

It remains to see »#®idr and ¥ are quasi-isomorphisms; we do this for 1, the other case
being slightly simpler without the complication of «. Filter BOF and C® F “horizontally” with
respect to the degree of B- and C-tensor components respectively. Then it is clear that both § and
dc increase filtration degree and that ¢ preserves filtration degree since the filtration degrees of
v and v + «a(v) are equal for v € V, so ¢ induces a map of filtration spectral sequences. Since
dega(v) = 1, the element v + a(v) becomes just v in the associated graded algebra, so the map
of Ey pages is just A®id: C®F — B®F. Since elements of the generating space V < F are
sent forward at least two degrees in the filtration by dc, we find E; = Ep in both sequences
and the map of E; pages is H*(A)®id: H*(B)® F — H*(C) ® F, which by assumption is an
isomorphism. By Proposition 2.7.2, then, ¢ is a quasi-isomorphism. O

Proof of Theorem 8.4.10 ([GHV76, Thm. 2.19.VIII, Thm. 3.30.XI, Thm. 10.17.VIII]). For the forward
direction, one always has an algebra map

A: (HE® APG,d) — ((Hi ) HE) ® AP,0),
a®1—> (a+ (imp¥)) ®1,
10z 1® (z + (P)),

which is in fact a pGa homomorphism since d(1 @15) is contained in im p*. If (G, K) is a formal
pair, so that H*(G/K) = (Hg // HE) ® AP, then A is a quasi-isomorphism, so the Cartan algebra
(Hf ® APG, d) is formal.

For the other direction, the strategy is to show the sequence

H: 2% H*(G/K) L H*G
K

is coexact, this being one of the equivalent formulations in Theorem 8.4.8. Start by noting the
Cartan cpca C = (Hg ® H*G, d) is quasi-isomorphic to Apr,(G/K) by Theorem 8.1.14, and that by
the assumption that G/K is formal there also exists a zigzag of quasi-isomorphisms connecting
C with H*(C) = H*(G/K) as equipped with the zero differential. Proposition 8.1.12 then allows
us to connect a cpGaA structure on H*(G/K)® H*K via a zig-zag of quasi-isomorphisms to the
Chevalley algebra (Ap (G/K)® H*K,d) of the bundle K — G — G/K, which calculates H*G by
Theorem 8.1.5.
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Since this zigzag connects the subalgebra App(G/K) of App(G/K)® H*K with the factor
H*(C) = H*(G/K) of H*(C)® H*K, when we take cohomology, we obtain an isomorphism
H*(H*(G/K)® H*K) — H*G such that the following triangle commutes:

H*(G/K)

H* (H*(G/K) ® H*K) ~ H*G.

Thus we can identify these two maps, the left being induced by the obvious inclusion H*(G/K) ® Q —
H*(G/K)® H*K and the right by the quotient map j: G — G/K.

To show the sequence is coexact, it remains to show the common kernel of these maps is the
ideal generated by x(HZ 1 in H*(G/K). But the differential in the algebra on the bottom left of
the triangle is induced by the composition

PK > Q(BK) — Hj X H*(G/K).

It follows that the image of H*(G/K) in H* (H*(G/K) ® H*K) is the quotient of H*(G/K) ® Q by
the image of the generators of H, so the kernel is the ideal in H*(G/K) generated by x*(Hg')
as claimed. O]

Proposition 8.4.12. Let (G, K) be a formal pair of Lie groups. If the Poincaré polynomials of the Samelson
subspace P, the Samelson complement P, and the primitive space PK are given respectively by

N rk G—rk K - rk K rk K
pPy = Y #, p(B) =3, p(PK)= Y,
/=1

j=1 (=1

then the Poincaré polynomial of G/K is
P(G/K)_P(Aﬁ)'p_ (1+tdj)'1_[m

and its total Betti number is

kG rkK kK
2! co+1 i< 1(C/+1)2rkc kK

(G/K) = Jax Hkg+1: W]

Proof. Given the equations (8.4.5) and (A.2.13), all that remains to be shown is that p(Hg / Hf) =
p(BK)/ p(S[Zﬁ]) as claimed. But Theorem 8.4.8, the generators of im p* form a regular sequence
of rk K elements of Hy of degrees c; + 1. These generators are thus algebraically independent and
form a polynomial subalgebra S =~ S[Zﬁ] of Hg such that Hf is a free S-module. The result then
follows from Proposition A.2.14. O

Proposition 8.4.13 ([Onigg, Rmk., p. 212]). Suppose (G, K) is a compact pair and S a maximal torus of
K. Then (G, K) is a formal pair if and only if (G, S) is.
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Proof. This follows from Corollary 6.3.6, with X = G. Write W for the Weyl group of K. If (G, S) is
formal, then H{(G) = H*(G/S) = (HZ ) HE) ® AP. Since the W-action on H*(G) descends from
the K-action, which is trivial since K is path connected, the action of W on H§(G) affects only the
bottom row H¢ // HE, and we have

H*(G/K) = H(G) = HE(G)" = (H§//mz )Y @ AP = ((H)" /s ) © AP = (H/pgz) © AP,
On the other hand, if (G, K) is formal, so that Hi(G) =~ (Hj // HY) ® AP, then

H*(G/S) = Hi ® H*(G/K) = H§ © HR /1 ® AP ~ H /g @ AP. O
K K

Remarks 8.4.14. Though the formality condition on pairs (G, K) is convenient, is natural, has
many equivalent formulations, is guaranteed by several commonly studied sufficient conditions,
and is invariant under the act of replacing the isotropy group K with its maximal torus S, there
still seems to be no simpler way of determining formality of a randomly given pair (G, K) than
carefully examining the image of the map p*: H: — H¢, and our knowledge has arguably not
improved in any major way since regular sequences were introduced into commutative algebra
in the mid-1950s. Indeed, it seems computing the map p* is an NP-hard problem [Ama13, Sec. 1].

Historical remarks 8.4.15. The deficiency first appears in Paul Baum’s 1962 doctoral disserta-
tion [Bau62], where it is shown inter alia that if k = Z or k is any field and H*(G; k) and H*(K; k)
are exterior algebras and the analogue of the deficiency with k coefficients satisfies df(G, K) < 2,
then the Eilenberg-Moore spectral sequence of G/K — BK — BG collapses at E; = Toryx (k, HE).
The deficiency thus links our account with the Eilenberg—-Moore spectral sequence analysis of
the cohomology of homogeneous spaces discussed in Section 8.8.2. This deficiency is actually an
invariant of the homogeneous space G/K and not just of the compact pair (G, K), according to a
theorem of Arkadi Onishchik; see Onishchik [Oni72].

What we call a formal pair is traditionally called a Cartan pair (as seen, e.g., in the standard
reference by Greub et al. [GHV 76, p. 431]). The condition already arises in Cartan’s classic trans-
gression paper in the Colloque [Car51, (3) on p. 70], so the attribution is just, but the name is
made inconvenient by the vast prolificacy of the Cartans: pursuant to the work of Cartan peére on
symmetric spaces, the pair (¢ p) of +1-eigenspaces of the Lie algebra g induced by an involutive
Lie group automorphism 6: G — G is also called a Cartan decomposition or a Cartan pair. (The
author spent an embarrassingly long time in grad school finally convincing himself these two
concepts of “Cartan pair” are entirely unrelated.)

The formal pair condition also appears in the (Russian-language) writings of Doan Kuin’,
where—at least as the translator would have it—K is said to be in the normal condition in G. This
locution did not catch on. We hope that despite the existence of standard terminology, this section
has made the case that ours is preferable.

The proof of Theorem 8.4.10 is due to Steve Halperin, and in fact (personal communication)
is the first result he proved as a graduate student. The first published proof was in Greub et al.

8.5. Cohomology computations, Il: symmetric spaces

Now we are able to discuss the cohomology of a famous class of homogeneous spaces which
has been intensively studied since the early 1900s, the so-called symmetric spaces. The irreducible
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examples have been completely classified and we will be able to study them thoroughly. It is
possible to discuss generalized homogeneous spaces in the same breath, so we do.

Definition 8.5.1. Let G be a connected Lie group and 6 € AutG a smooth automorphism of
finite order. Then the fixed point set G” is a closed subgroup of G. Let K be a subgroup of G
containing the identity component (G*)y. Then G/K is called a generalized symmetric space. In
the event 6 is an involution, G/K is a symmetric space. If in addition G and K are compact and
connected, we call (G, K) a generalized symmetric pair.

It turns out all symmetric pairs are formal. The argument, already due in its essence to Elie
Cartan [FIND CITATION], turns into a proof G/K is geometrically formal if one verifies that the
representing forms we find are in fact harmonic.

Proposition 8.5.2. Suppose (G, K) is a compact pair such that G/K is a symmetric space. Then (G, K) is
a formal pair.

Proof. Recall from Proposition 6.1.1 that elements of H*(G/K; R) can be represented by G-invariant
differential forms on G/K, which are determined by their values at the identity coset, elements of

the exterior algebra A(g/¢)". Recall further, from Proposition 6.1.2, that G-invariance on *(G/K)

translates to Ad*(K)-invariance in A(g/¢)". Thus elements of H*(G/K) are represented by el-

ements of (A(g/E)V)K. Let 8 € AutG be the involution fixing K, so that g, viewed as an (6)-

representation decomposes as the direct sum of the with 1-eigenspace ¢, the Lie algebra of K, a

(—1)-eigenspace p. This p is orthogonal to ¢ under the Killing form B, for 6, is an isometry, and

if u e tand v € p, then B(u,v) = B(0,u,0,v) = B(u, —v). Since € is Ad*(K)-invariant so also is p,

so that g/¢ =~ p as an Ad(K)-representation, and hence (A(g/E)V)K =~ Afp¥]X.

We claim every one of these elements corresponds to a closed differential form. Indeed, be-
cause ¢ is a Lie group automorphism, the induced map 6* on (*(G/K) commutes with the
exterior derivative d, and hence with the induced differential on A[p¥]. Now, since 6, acts as —id
on p, its dual 8* acts as —id on p¥ and so acts as (—1)¢ -id on A’[p¥], which is spanned by wedge
products of ¢ elements of p¥. Let w be one such element. Then, since d 0 6* = 6* o d, we have

()" dw = 0*dw = do*w = (1) dw,

so dw = 0. Thus all elements of (A[pV]K, d) are closed. Translating back, every element of
O*(G/K)¢ < O*(G/K) is closed, so (H*(G/K;R),0) = (Q*(G/K)®,d) and G/K is formal over
R. d

Corollary 8.5.3. Let B be a generalized symmetric space in the sense of Definition 8.5.1 and G — E — B
a principal G-bundle over B. Then the Cartan algebra calculates H*(E).

Proof. By Remark 8.5.5, a generalized symmetric space is formal, so Proposition 8.1.12 applies.
O

Corollary 8.5.4 (Koszul, [Kos51]). Let (G, K) be a pair such that G/K is a symmetric space. Then the
Cartan algebra of K — G — G/K calculates H*(G).

[THE REST OF THIS SECTION WILL INCLUDE ALL IRREDUCIBLE SYMMETRIC SPACES AS EXAMPLES,
WITH SOME OF THE CALCULATIONS LEFT AS EXERCISES.]
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Remark 8.5.5. Svjetlana Terzi¢ [Tero1] and independently Zofia Stepieri [Steb] have also shown
that compact generalized symmetric spaces G/K with isotropy group K connected are formal.
It is not, however, the case that wedge products of harmonic forms on such spaces are again
harmonic (that such should happen is called geometric formality); see Terzi¢’s later joint article
with Dieter Kotschick [KTo3].

8.6. Cohomology computations, lll: informal spaces

This section comprises a pair of computations demonstrating the case the pair is informal, in this
case of deficiency 1. The first example, Sp(5) > SU(5), is also done in Paul Baum’s thesis. Both
also appear in the book of Greub et al. [GHV76, pp. 488-9].

8.6.1. Sp(5)/SU(5)

This is an example Paul Baum says Armand Borel showed him in the 60s. We understand
ng(S) — HgU(S) in terms of invariants of Hjs = Q[t1, f2, 13, t4, t5] under the actions of the Weyl
groups of Sp(5) and U(5), which are respectively {+1}° x S5 and S5 acting on the ¢; in the ex-
pected way. We find that generators of Hgkp(s) are given by elementary symmetric polynomials
pn of degree 41 in the variables —t? and those of Hyj5) by elementary symmetric polynomials c,
of degree 2n in the t;. These are of course the symplectic Pontrjagin classes and Chern classes.
The restriction maps between them are a matter of combinatorics: Write ¢, for the elementary
symmetric polynomials in the —t;, so that ¢, = (~1)"cy, and set pgp = co = ¢o = 1. Then the total
Pontrjagin and Chern classes satisfy

c =ch = H(1+t]-),
p=2pn=]]a-H=]]a+5-t)=cc

from which, collecting terms of like degree, we read off p, = Z;zio CjCon—j- Recalling the map
fo}(g) — ékU(E) = QJcy, ..., c¢] induced by the inclusion is given by ¢; — 0 and ¢, — ¢, forn > 1,
we can strip out all the ¢; from the expressions for the p, and finally compute Hé"p(S) — Hiys

as
p1—— 2+ Cr = 20y,

P2 —> C4 + Cy = 2¢y,
pP3 —> C2C4 + C3C3 + C4Cr = 2coC4 — C%, (8.6.1)
P4 — €3C5 + C4C4 + C5C3 = ci — 2c3¢s,
pPs —> C5C5 = *C%.
One observes the image ring is
Q[cz, ¢4, c%, C3Cs, c%].

Now to compute the cohomology of Sp(5)/SU(5) is to determine the cohomology of the
resulting Cartan algebra

C = Qca,c3,¢4,c5| @ Alopr, 0p2, 0p3, 0pa, oPs],

where the op, are suspensions of the Pontrjagin classes, living in H¥*~!Sp(5), and the differential
is the unique one taking op, to the image of p, in H;U(5). A clever choice of generators helps
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compute the cohomology of C, but we will find it easier to filter C by the base degree in Hg s
and run the filtration spectral sequence. This is stable until E; = C, and then the first nonzero
differential cancels cp; against co and we get

Es = Q[c3,c4,¢5| @ Alopa, op3, ops, ops]
with differentials

op2 —> 2C4,
2
Up3 > —C3,
Opg —> cﬁ — 2c3¢5,

ops —> —c%.
The next differential is on Eg, and after we get

Eg = Q[c3, c5| @ Alopz, opa, ops)

with
op3 —> —C3,
Opg — —2C3C5, (862)
ops — —C%.

Up to an irrelevant rescaling of the generators op,, this is Baum’s presentation.

Everything we have done so far could have been done on the algebra level. To see what
happens next, we prefer to proceed via the spectral sequence. Although this should destroy
multiplication, in fact we will be able to reconstruct it through degree considerations. The next
page of the spectral sequence is the last at which we can afford not to draw a picture. The
differential dq, cancels op3 and c%, so the next page is

Ei3 = Qlcs, 5] / (c2) ® Alopa, ops|

Figure 8.6.3: The Ej4 page for Sp(5)/SU(5)

2 2 .3

15 N 23 | 2C5 2C3052C3C5 ZC3C5| ZCs
N

0 1 c3 | c5 \C‘3C5 c% \CA3C§ cg

0 6 | 10 16 | 20 26 | 30

The next nontrivial differential, di¢, annihilates ops, and so leaves the tensor-factor A[ops]
inert, so we will just look at the other factor Q[c3, 5] / (c3) ® A[ops]. Since by this page we have

5 Morally, this process has factored a Koszul algebra Q[cy, c4] ® A[op1, op2] out of C.
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3 = 0, any differential of a term divisible by c3 vanishes, so the nontrivial differentials originate
from terms divisible by z and end at terms divisible by c3cs. Here we have made the abbreviation
z = —0pa4/2. The parallel copy, ops times the displayed part, is omitted.

The last differential is on the page Ey. The nonzero differentials on this page come from
generators divisible by w = —ops and land in squares divisible by cZ, as follows:

Figure 8.6.4: The Ej page for Sp(5)/SU(5)

34 wzc, wzcese wzesc? wzcescd
] 3¢5 3¢5 3¢5

19 | w  wes wes \x%\ \x@ \oez%\
15 ZC3 zZC3 ZC3 ZC3

Y

0 1 ¢z c5 o cz Cs

0| 6 10 16| 20| 26 | 30 | 36 | 40

What remains on E;; = E is the following:

Figure 8.6.5: The E,, page for Sp(5)/SU(5)

19 wces

15 ZC3 ZC3Cs5

0 1 C3 Cs

0 6 10| 16

The degrees of the surviving vector space generators are
0, 6, 10, 21, 25, 31

and the only nonzero products are those determined by Poincaré duality. The bottom row of the
E page represents the image

Qles esl /¢y, c5)2

of Hiys) — H*(Sp(5)/SU(5)). We can see from the picture that the familiar (base) ® (fiber)
structure that obtains in the formal examples has been destroyed by the decomposable differen-
tials.

8.6.2. SU(6)/SU(3)?
In this example we consider the inclusion of the block-diagonal subgroup SU(3) x SU(3) of SU(6).
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We understand Hgy(,) in terms of the classifying space of its maximal torus T"1 as the
subring of invariants of H7,_; under the action of the Weyl group S, 1. It will be easier to think
about this in terms of Hyj,, and Hf, first, and then restrict. So before considering Hgy;, —
Hgy5)xsu(3) We will assess Hfy o) — Hij5), 1y(3)- Since U(6) and U(3) x U(3) share the diagonal

unitary matrix subgroup T® as maximal torus, we can think about this map as
( T6)56 (H* )53><53

Writing HYs = Qlt1,ta, t3,t], 15, t3], the total Chern class whose components are the symmetric
polynomials on all six variables is

5=Zc~n:=1_[(l+tj)]_[ (1+t) = chZc

Gathering terms one finds
n
Cn = Z CjCu_j-
j=0

Recalling that Hg; ) = Hyj,)/(c1), we find the map we want is given from the preceding by
setting all of ¢j,c1,¢} to 0 and ¢y, ¢, = 0 for n > 3. Explicitly, H;"U(6) — H;U(3)XSU( 3) can be
identified with

~ o~ o~ A~ o~

C2 — Cy + C2,
53 —> C3 + Cg,
Cq > €205,
C5 —> C3Ch + Cach,
C~6 [ C3Cé.
It can be observed that the image is precisely the subring invariant under the involution given

by ¢j «— c;-. The resemblance to (8.6.1) will not escape the watchful reader.
To compute the cohomology we just need to find the cohomology of the Cartan algebra

C == Qlcy, 3,5, 5] ® Alocy, 0¢a,0¢3,0Cy, 0C5],

where the oc,, are suspensions of the Chern classes ¢, living in H?'-1SU(5), and the differential
is the unique one taking oc, to the image in Hgyy3)xsu s Just determined. We filter C by the base
degree in Hgy 4, gy(3) and run the filtrationNSpectral sequence. This is stable until E; = C, and
then the first nonzero differential cancels ¢, against ¢, + ¢5. The result is that ¢, = —c; in Es.
Writing ¢, for the class c; mod c; + ¢, one has

Es = Q[é2, ¢3,c5]| @ AloCs, ¢y, 0C5, 0Cs]
with differentials

53 —> C3 + Cé,

Cq — —C_%

~ _

Cs —> Ca(c3 —c3),

Co — C3C5.
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The next differential is on Eg, and cancels o¢3 against c3 + c;. Writing ¢3 for the class c3
mod c3 + ¢, we get
E; = Q[C_z, C_3] ®A[0'54, 0'55, 0'56]

with
(o C~4 —> —C_%,
0Cs5 —> —20>C3,
0Ce —> —5%.
This, of course, looks exactly like (8.6.2), and what happens in the spectral sequence from this

point on will be the same up to grading. For thoroughness, we include the entire calculation. The
differential dg cancels 0¢y, and ¢3, so

Ey =~ Q[C_Z’C_3]/(c‘%) ® Alocs, 0Ce)-

The next nontrivial differential, dyo, annihilates 0¢s and takes z = —0C5/2 — ¢>¢3. We show this
in Figure 8.6.6, omitting the parallel copy, which is 0Cs times the displayed part.

Figure 8.6.6: The Ejo page for SU(6)/SU(3)?

= = e ) = 2 =3

11 =N 2y | €3 2CyC3 203 2CyC5 205
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Now take w = —0¢s.
Figure 8.6.7: The Ej; page for SU(6)/SU(3)?
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Finally, E is as follows:

Figure 8.6.8: The E,, page for SU(6)/SU(3).

13 wey

11 zCo 2C>C3

0 4 6 |10

The degrees of the surviving vector space generators are
0, 4, 6, 15, 17, 21
and the products are determined by Poincaré duality. The bottom row of the E,, page represents
Qler sl / ey oy

the image of H§U(3)XSU(3) in H*(SU(6)/SU(3)?).

Remark 8.6.9. Aleksei Tralle [Trag3] commented that one similarly has informality for the same
K = SU(3) x SU(3) embedded in the top-left 6 x 6 entries of G = SU(n) for n > 6.° The point is
that the differentials of the first five generators of PH*SU(n) are always the same, so formality is
always destroyed, and one cannot partition 7 into two integers < 3, so the differentials of ¢¢;, for

n > 7 are zero. Thus H*(SU(n)/SU(6))

———
H*(SU(n)/SU(3)?) =~ H*(SU(6)/SU(3)*) ® A[0C7, . ..0C,] .
Remark 8.6.10. It is possible to show that SU(3n)/SU(3)" is always of deficiency n — 1.

Remark 8.6.11. Manuel Amann has a general theorem constructing many informal pairs, all of
deficiency 1 [Ama13, Thm. E, Table 2]. In particular, he has an example in every dimension > 72.

8.7. Cohomology computations, IV: G/S?

In order to obtain what was arguably the main result of the thesis this monograph evolved from,
we needed a grasp on the cohomology rings H*(G/S; Q) of homogeneous spaces G/S for G
compact connected and S a circle. It is not hard with the tools we have developed to describe
these completely. In 2014, the author found the following dichotomy; note these are the only two
options because dimg H!(S) = 1.

Proposition 8.7.1. Let G be a compact, connected Lie group and S a circle subgroup. Then the rational
cohomology ring H*(G/S) has one of the following forms.

® His point is actually to exhibit a nontrivial Massey product: the generator of order thirteen above represented by
z¢, + F5 lies in the product {[¢;], [¢2], d[¢3]). In terms of the generators on the E; page, which is a DGa factor of the
Cartan algebra, we find d(—0¢y) = ¢4 and d(0C5) = —205¢3, 50 d(c20C5 — 2c30¢4) = 0.
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1. If HY(G) — H(S) is surjective, then there is zy € H'(G) such that
H*(G/S) = H*(G)/(z,).
In terms of total Betti number, h*(G) = %h'(G/S).
2. If HY(G) — H(S) is zero, there are z3 € H*(G) and s € H*(G/S) such that

H'(G) o Q)

HAGS) =y © )

In terms of total Betti number, h*(G) = h*(G/S).

As it happens, we were not here first. General statements on the cohomology of a homo-
geneous space were already available to Jean Leray in 1946, the year after his release from
prison [Miloo, sec. 3, item (4)]. In the second of his four Comptes Rendus announcements from
that year [Lers6a, bottom of p. 1421], he states the following result.”

Theorem 8.7.2 (Leray, 1946). Let G be a compact, simply-connected, Lie group and S a closed, one-
parameter subgroup [viz. a circle]. Then there exist an n € N, a primitive element zp, 1 € H*'*1(G), and
a nonzero s € H*(G/S) such that

H*(G) _ Qs]
() © (54

The following year, Jean-Louis Koszul published a note [Kosg7b, p. 478, display] in the
Comptes Rendus regarding Poincaré polynomials for these spaces.

H*(G/S) =

Theorem 8.7.3 (Koszul, 1947). Let G be a semisimple Lie group and S a circular subgroup. Then the
Poincaré polynomials (in the indeterminate t) of G/S and G are related by

1+ #2

p(G/S) = P(G)m~

This result implies that in fact n = 1 in Leray’s theorem. This enhanced version of Leray’s
result follows from Proposition 8.7.1 simply because H!(G) = Hé = 0 for semisimple groups.
The author is unaware of any published proof of the Leray and Koszul results, which is part of
the motivation for including a proof of Proposition 8.7.1 here.

Before doing so, we illustrate the result with a representative example. Let S be a circle
contained in the first factor Sp(1) of the product group G = Sp(1) x U(2). The cohomology of G
is the exterior algebra

H*(G) = Algs, z1, 23], degz; =1, degzz = deggs = 3,

and that of BS is
H¢ = Q[s], degs = 2.

The spectral sequence (E,,d,) associated to G — Gs — BS is as follows. Its E; page is the
tensor product Hf ® H*(G). Because the map H'(G) — H!(S) is zero, the differential d; is zero,

7 See also Borel [Borg8, par. 12]; only owing to Borel’s summary are we confident “compact Lie group” is the
contextually-correct interpretation of Leray’s groupe bicompact, which translated literally would mean only that the
group be compact Hausdorff.



3511
3512

3513
3514
3515
3516
3517

3518
3519
3520
3521
35622
3523
3524

3525

3526

35627

3528

3529

3530

3531

Chapter 8. The cohomology of homogeneous spaces 138

and d3 is zero for lacunary reasons, so E4 = E;. The differential d4 annihilates each of s, z1, z3
and takes g3 —> s,

Figure 8.7.4: The Serre spectral sequence of Sp(1) x U(2) — (Sp(1) x U(2))s — BS

212343 5212343 522123113

g q 4 e
~.
2
N

~
6 2343 w%
\\ 4
2123 2143 $2123 \SZ‘P%\ s%2123 \SZz}K
\ \

/

\\
~. \\\
\ \\‘
2123 52123

e 3 Z3 5z3

Z1 521 \ 5221 \ - B =

0 1 S g2 0 1 S

Ey |0 2 4 Ex |0 2

Because d4 is an antiderivation, its kernel is the subalgebra Q[s] ® A[zj, z3] and its image the
ideal (s?) in that subalgebra. Elements mapped to a nonzero element by d4 are marked as blue
in the diagram and elements in the image in red; the vector space spanned by these elements
vanishes in Es. Thus Es5 = A[s]® A[z1,z3], where A[s] = Q[s]/(s?) ~ H*S2. For lacunary reasons,
Es = E. In fact,

G/S = SP(l)/S x U(2) ~ §2 xU(2), (8.7.5)
so this tensor decomposition was not unexpected.

This example has all the features of the general case; the pair is always formal, and either it
is cohomology-surijective or else dy is a nontrivial differential taking some z3 — s?> € Hg, which
then collapses the sequence at Es. If H'(G) # 0, then the exterior subalgebra of H*(G) generated
by H!(G), an isomorphic H*(A), is in the Samelson subring, and can be split off before running
the spectral sequence; the factoring out of this subalgebra is the algebraic analogue of the product
decomposition (8.7.5) of G/S.

Lemma 8.7.6. A compact pair (G, S') is formal.

Proof. Consider the map p*: Hf, — H¢{ in the sequence

H: 5 HE 25 HA(G)S)
G S .

Because p* is a homomorphism of graded rings and H¢ =~ Q[s] is a polynomial ring in one
variable, the cokernel (p*Hs) of x* is generated by a single homogeneous element and hence is
a regular ideal (s") for some n. By Theorem 8.4.8, it follows (G, S) is a formal pair. O

Proof of Proposition 8.7.1. If HY(G) —» H(S), then Samelson’s Corollary 1.0.7 applies and yields
the result, so assume instead this map is zero. By Lemma 8.7.6, (G, S) is a formal pair, so

H*(G/S) =~ H§ /gx ® AP
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with dimP = rkG —rkS = rkG — 1 and dim P = 1. It follows that p* o1 takes P = Qs for
some /, yielding Leray’s theorem. To obtain Koszul’s, it remains to show ¢ = 2.

By Proposition B.2.4, we may replace G with its universal compact cover A x K, where A is
a torus and K simply-connected, and S with the identity component of its lift in this cover. If
H'(G) — H!(S) is trivial, then because H*(A) is generated by H'(A), it follows H*(A) < AP
splits out of the Cartan algebra, so we may as well assume G = K is semisimple.

[UPDATE FROM PUBLISHED EQF_TORUS]

We now return to the map of spectral sequences described in Section 8.1.1. Recall the differ-
entials in the spectral sequence (E;, d,) of the Borel fibration K — K5 — BS vanish on Hf and are
otherwise completely determined by by the composition

p*OT:PK—>HI?—>H§.

Because K is semisimple, HY(K) = 0, so it follows HIZ< = 0 as well by Borel’s calculation from
Section 7.4 of the spectral sequence of K — EK — BK. The edge homomorphisms d; and d3 then
must be zero, so

E, = E; = HE®H*(K)

and the first potentially nontrivial differential is
dy: H3(K) > Hg — H4.

By Lemma 7.6.5, this is surjective, so dz = p*1z = s? for some z € P3(K). Thus (En\p/* ) is generated
by s? as claimed, concluding the proof. O

8.8. Valediction

At this point we have completed the exposition the author wished was available when he started
work on his dissertation problem. We hope we have been able to do justice to the material so
that the reader may find some measure of the beauty in it that the author does. This is of course
neither the end nor the beginning of this story. We round out our account with some historical
remarks and connections.

8.8.1. Cartan’s approach to the Cartan algebra

Our presentation of the Cartan algebra computation of the cohomology ring H*(G/K; Q) of a ho-
mogeneous space G/K in this work introduced what we believe to be the least possible algebraic
overhead, but is not the original version.

Cartan’s account [Car51] was cast in Lie-algebraic terms, with the “choice of transgression”
we have been somewhat casual about explicitly determined by a connection and induced from
an R-cpca called the Weil algebra, Wt = SXe¢* ® At*, where £* is the dual to the Lie algebra
of K, equipped with natural actions of £ by inner multiplications (z and the Lie derivative .Zz.
The Weil algebra, as an algebra, is the Koszul algebra of Definition 7.3.3 but outfitted with a
different differential which incorporates the adjoint action of the Lie algebra of G. It does this
to emulate the behavior of connection and curvature forms determined by a connection on a
principal bundle, and these in turn arise due to a desire to understand the cohomology of the
total space of a principal bundle in terms of forms arising from pullback in its base. Thus it is
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an algebraic model of the cohomology of EG — BG and the homotopy quotient predating the
general (1956) discovery of these objects. In particular, H*(BG) had not been calculated before
this note.®

Given a principal K-bundle K — E 75 B, Cartan views a connection, as a linear map ¢* —
Q!(E) respecting both actions of £. Using the fact (Proposition 6.1.1) that there exist K-invariant

representative forms for the classes on H*(E; R), Cartan constructs the Weil model (SZE* RQAL*R® O (E))

of H{(E;R) = H*(B;RR); here the subscript denotes the basic subalgebra annihilated by all 1z and
Z7. The idea is that this should serve as a model for the base B, and indeed Cartan shows the
natural inclusion of 77*()*(B) =~ *(B) in the Weil model is a quasi-isomorphism. He then shows
the Weil model is quasi-isomorphic to the Cartan model (SZ€* ®Q°*(E))K.9 This in turn, when
our principal bundle is K — G — G/K for G another compact, connected Lie group, is quasi-
isomorphic to a DGa with underlying algebra (SZ£*)K® H*(G).*° This is the original version of
the Cartan algebra.

8.8.2. The Eilenberg-Moore approach

There is a later chapter in the story of the cohomology of a homogeneous space, due to authors
including Paul Baum, Peter May, Victor Gugenheim, Hans Munkholm, and Joel Wolf, using the
Eilenberg-Moore spectral sequence.

The issue is that we only have a Cartan algebra over a field of characteristic zero. Without
strictly commuting cochain models, we are not able to pick representatives for H*(G) in C*(Gk)
in such a way as to get a ring structure, and in general torsion makes commutativity impossible.

Proposition 8.8.1 ([Bor51, Thm. 7.1]). Let p be a positive prime. Then there is no functorial F,-cDGA
model (A, d) for H*(—;IF,) such that a closed inclusion i: F — X induces a surjection A(X) — A(F).

Proof. Suppose there were such a model. Let F = CP" for n > p and X = CF ~ * be the cone over
it. Let a € A%(CP") represent a generator « in cohomology, so that H*(CP"; F,) = F,[a]/(a"*1),
and let 7 € A%(X) be some extension of a to X. Then d(a?) = paP~! = 0, so a” represents a
class in H?(X;F,) = 0 and hence 4" = db for some b € A?~1(X). But then we would have

di*h = i*db = i*(ar) = (i*a)P = aP, so that a? = 0 in H??(CP";F,), a contradiction. O

The last step in our journey to the Cartan algebra that worked with arbitrary coefficients
was the map Section 8.1.1 of spectral sequences. If k is chosen such that H*(G; k) is an exterior
algebra, then Theorem 7.4.1 does go through in characteristic # 2, so one still have H*(BG; k) a
polynomial algebra on the transgressions and the map does still control many of the differentials
in the Serre spectral sequence of G — Gk — BK. Because the Serre spectral sequence with Q
coefficients is the filtration spectral sequence of the Cartan algebra by construction, we are able
to recover what happens to elements that come from the free part of H*(G/K;Z) but rather little
about the torsion.

8 There also seems to have been a desire to stay in the realm of manifolds, so that finite-dimensional truncations
of BK are mentioned instead. In Chevalley’s review of this work, he states that BG does not exist, a statement that only
makes sense if one demands finite-dimensionality.

9 Cartan credits this reduction to Hirsch, as clarified by Koszul, but this point of view is not evident in Hirsch’s
Comptes Rendus announcement [Hir48] and Koszul’s reworking is unpublished.

° For generic E, one can find a differential on the graded vector space Sx¢* ® H*(B;R) whose cohomology is
HE(E;R) = H*(B;R), but this isomorphism does not generally respect multiplication.

bas
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The cohomological Eilenberg-Moore spectral sequence starts from a pullback square and its
resulting square of cochain algebras and cohomology rings

X>B<Y Y C*(XgY)&C*(Y) H*(XEY)%H*(Y)
| (8.8.2)
X B C*(X) =<—— C*(B) H*(X) <—— H*(B).

The commutativity of the last square makes H*(X xp Y) a module over H*(X) ®px gy H*(Y); if B
is a point and k a field the Kiinneth theorem says this is an isomorphism. The bundle eq. (2.4.1)
says this map is an isomorphism if F — Y — B is a bundle and H*(Y) — H*(F) is surjective.
To generalize this, consider the middle square, which allows us to make the observation that
C*(X xp Y) a module over C*(X) ®cx gy C*(Y) in a differential-preserving manner.

This means the following. In general, a differential graded k-module (M?*,dys) can be said to
be a differential module over a k-DGa (A*,d) if dp(ax) = da - x + (—1)1"la - dps(x) for a € A* and
x € M*. One can construct a so-called proper projective (A*,d)-module resolution (Py,d)) of such
a (M,dy) conducive to the differential homological algebra setting. This carries both internal
differentials d), and resolution maps P, — P, 1, and filtering the total complex by the internal
degree, one has Ey = P; and E; = M, so E, = E; = H*(M) and P} is a projective replacement
for M. One uses this to define a differential Tor, written Tor?l’:, d)(M‘,N *), as the cohomology of
the total complex of P*®4 N°*, analogously to the conventional Tor.

Filtering the algebra by filtration degree p yields a filtration spectral sequence with E; =
P? @) H*(N) and E; = Tor}s ) (H*(M), H*(N)) the traditional non-differential Tor. Because
we resolve projectively, p is nonpositive, so this is a left-half plane spectral sequence and any square
can receive arbitrarily many differentials, so convergence to the intended target, the differential
Torz;q'.’d) ((M*,dm), (N*®,dy)), is not ensured.

Back in the motivating case, assume F — Y — B is a Serre fibration, so that F - X xgp Y —
X is as well. Pick a proper projective resolution P; of C*(X); then there is an induced pca
map ¢: PJ ®cx gy C*(Y) — C*(X xp Y) factoring through P§ ®c« () C*(Y). If we filter C*(X xp
Y) by the Serre filtration over X, C*(Y) by the Serre filtration over B, P; by total degree, and
P2 ®c+(py C*(Y) by the sum of degrees, then ¢ is filtration-preserving and so induces a map
of spectral sequences. It is not hard to check that if 1B acts trivially on H*(F), then E(¢) is
the identity on H*(X; H*(F)), so that ¢ is a quasi-isomorphism and Torcs gy (C*(X), C*(Y)) =~
H*(X xp Y). The filtration spectral sequence of the previous paragraph in this case has E; =
Tor = () (H*(X),H*(Y)), and, if 1;B = 0, the sequence converges. This is the Eilenberg-Moore
spectral sequence.

Our case of interest is given by (Y — B) = (BK — BG) and X = =, so that X xy B ~ G/K. In
this case the E, page is Tor;’[;(BK;k) (k, H*(BG)), which in case Q < k is exactly the cohomology
of the Cartan algebra, so the spectral sequence collapses and even gives the correct result at the
algebra level. The desired generalization is that if H*(BK; k) and H*(BG; k) are polynomial rings,
then the sequence should collapse at E,. This is not at all obvious. The main line of approach
runs through the following result.

10
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Proposition 8.8.3. If the vertical maps in a commutative diagram of differential graded k-modules

A<—T——B

]

M~<~—A——=N,

are additive quasi-isomorphisms, then they induce an isomorphism Torp(A, B) — Tora (M, N). If the
vertical maps are multiplicative, this is an algebra isomorphism.

Remark 8.8.5. We do not in fact need A, B, M, and N to be algebras for the algebra automorphism,
just differential modules equivariant with respect to the map I' — A.

Proof. The map of algebraic Eilenberg-Moore spectral sequences is an isomorphism on E,. [

Since Torcx(ggy) (k, C*(BK;k)) = H*(G/K;k), if we had quasi-isomorphisms between C*(BG; k)
and H*(BG; k) making (8.8.4) commute, we would have a collapse result. It was only known how
to construct such quasi-isomorphisms for K a torus, although it is now known they exist gener-
ally [Frao6, Prop. 1.3], and when they could be constructed, (8.8.4) did not usually commute. The
proofs that emerged relied on extending the category k-DGA to a “homotopy version” requiring
less than a bGa map but still inducing quasi-isomorphisms and showing (8.8.4) could be taken
to commute up to homotopy. The strongest of these results is the following.

Theorem 8.8.6 (Munkholm [Muny4]). Let k be a principal ideal domain such that H*(X; k), H*(Y; k),
and H*(B; k) in (8.8.2) are polynomial rings in at most countably many variables. If chark = 2, assume
further that the Steenrod square Sq' vanishes on H*(X;k) and H*(Y;k). Then the Eilenberg—Moore
spectral sequence of the square collapses at Ep, and H*(X xp Y; k) = E; as a graded k-module.

Thus the graded additive structure and bigraded multiplicative structure of the associated

graded of H*(G/K; k) agree with Tor} (k, HY).
G

8.8.3. Biquotients and Sullivan models

Our expression for the cohomology of a homogeneous space generalizes to the quotient of G
by the two-sided action (u,v) - ¢ := ugv~—! of a subgroup U of G x G, and one can consider the
Borel fibration G — Gy — BU. If U acts freely on G, then Gy ~ G/U is a biquotient, a sort of
space intensely studied in positive-curvature geometry, but if not, the algebra still makes sense,
and if U = K x H, then H*(Gy) = H{(G/H) is the Borel K-equivariant cohomology of G/H, as
discussed in Remark 5.5.5, whose study was the purpose of the dissertation this book emerged
from.

The new Borel fibration looks like the bundle leading to the Cartan algebra but is no longer
a principal G-bundle because G is not free on either side. Particularly, there is not a classifying
map to BG-bundle. On the other hand, Eschenburg [Escg2] noticed that since U < G x G, there
is still a map BU — BG x BG. Moreover, let us write E(G x G) = EG x EG, with the action
(g,h) - (e,€') == (eg~!, he'). Then there is a natural map

Gu = G® (EG x EG) — EG®EG = BG,
g® (e, e) —  eQ®¢,
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where the object on the right is BG because it is the quotient of the contractible total space of a
principal G-bundle by G. The map

A: EGCé)EG — BG x BG,
e®e — (eG,Ge)
then makes the following diagram commute:

G=——=G

Gu —BG (8.8.7)

A

BU - BG x BG.
Bi

One can actually check that Gy is isomorphic to the pullback. We would like to use this map the
same way we used the Borel map before.

Exercise 8.8.8. Convince yourself that the map we called A can be identified up to homotopy with
the diagonal map BG — BG x BG.

The map A* induced in cohomology is exactly the cup product, which, when k is taken
such that H*(BG;k) =~ k[X], has kernel the ideal generated by x;®1 —1®x;, so one expects
7zj = xj®1 - 1®x; in the Serre spectral sequence of the bundle A. One can check this guess
by including the universal bundle in A two ways, via EG — EG®¢ Gey — EG®g EG, which
induces BG — BG x {Geyp} — BG x BG on the base, and via EG — {ep} ®c EG. One of the
projection picks up a sign due to the fact that one of the maps takes a right G-action to a left.

So the Serre spectral sequence of A is the filtration sequence of the cpca (HE ® HE ® H*G, d)
with dz = 1® 1z — 12 ®1 on generators. Borel, in deriving the Chevalley algebra of Theorem 8.1.5,
makes a generalization [Bor53, Thm. 24.1] extracting a submodel Q°*(B) ® H*F of Q°*(E), for a
fiber bundle F — E — B, so long as H*F is an exterior algebra on generators that transgress
in the Serre spectral sequence, as this part of the argument no longer needs that the bundle is
principal. Thus, using the same argument we used to obtain the Cartan model, then, we can use
the map (8.8.7) to construct a model

(H;®HE,d)

of G/U where d vanishes on H{; and takes a primitive z € PH*G to
(Bi)*(1®71z — 1z®1).

It turns out Vitali Kapovitch discovered this model ten years before the author by more general
considerations [Kapog, Prop. 1][FOTo8, Thm. 3.50], which we will now elaborate.

Definition 8.8.9. We adopt the new convention that AQ := SQ as well if Q is an evenly-graded
rational vector space, so that any (Q-cpGa can be written as AV for V a graded rational vec-
tor space. A Sullivan algebra is a cpGA (AV,d) such that V is an increasing union of graded
subspaces V (/) such that V(—1) = 0 and dV({) < AV(¢ —1). (The effect is that any finitely
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generated subalgebra is annihilated by some power of d.) A Sullivan model of a space X is a
quasi-isomorphism (AV,d) — App(X) from a Sullivan algebra.

A pure Sullivan algebra is a Sullivan algebra (AV = AQ® AP, d) with Q evenly graded such
that V(0) = Q and P oddly-graded such that V(1) = Q@ P. That is, dQ = 0 and dP < AQ. All
the finitely generated models we have discussed in this book have been pure Sullivan models.

Sullivan models behave well with respect to fibrations and pullbacks.

Theorem 8.8.10 ([FHTo1, Prop. 15.5,8]). Given a map of Serre fibrations

- s> F/

|

F
E——=F
b
B——=PB
f
and Sullivan models (AVy,d) — (AVg,d) for f and (AVp,d) — (AVp ® AVp,d) for q, if H*F' —
H*F is an isomorphism, 1B, myB’, myE, and myE’ = 0 are zero and either H*F or both of H*B and
H*B' are of finite type, then E admits a Sullivan model
(AVg,d) = (AVg,d) (A® (AVp @ AVp,d) =~ (AV® AV, d).

Vi d)

The Cartan algebra is probably the first instance of this theorem, and Kapovitch derives his
model as a consequence. It is clear this amalgamation of models has great flexibility. Here is
another classical example.

Theorem 8.8.11 (Baum-Smith [BS67]). Given a bundle G/H — E — B induced from a principal
G-bundle, with G and H connected Lie groups and B a formal space, one has a rational isomorphism

H*(E) = Toryy (H*(B), H)
of graded algebras.

Baum and Smith actually additionally assume B is a Riemannian symmetric space, because
they know these are formal Proposition 8.5.2, and that G is compact.

Proof. The assumption of the theorem is that there is some principal G-bundle G — E — B such
that E = E/H. Let (X, x): (E - B) — (EG — BG) be both components of the classifying map,
so that xy o p = p o X. Then reducing X modulo H induces the map E/H — EG/H in the diagram
below.

G/H=—G/H
|
E——~BH

b

BT>BG
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A model for G/H is given by the Cartan algebra (Hg ® H*G,dg/y). To extend this to a model
of BH inducing the right map to G, take A = (HE®Hg ® H*G,dpp), with dppz = 1z®1 +
1®p*1z € HE®Hg for z € PH*G, where T is a choice of transgression in the Serre spectral
sequence of G — EG — BG. Filtering by Hf degree and running the filtration spectral sequence,
one sees H*(A) = Hy.

To get a model for yx, start with App(x): ApL(BG) — Apr(B) and precompose with Hf —
Apr(BG). Each generator of HY >~ AQH{ goes to some cocycle in Apy (B); lifting these to any Sul-
livan model (AVg,d,) of B gives a map x": Hf — AVp inducing x*. Applying Theorem 8.8.10
yields a model

AVp @ (HE®HE®H*G) = AVp® HLQ H*G."*

HE

The factor HE ® Hg @ H*G = (Hg ® H*G ® H(;) ®yx Hy can be seen as a free Hi-module resolu-
tion of Hg, so the cohomology E, which is the cohomology of our model, can be identified with
(differential) Tor:

H*(E) ~ TOI'(H&",O) ((AVB,dB), (HI?/ O))

Now, since we assume B is formal, we can take (AVp,dp) = (H *(B),O), so this collapses to the
regular Tor of the claim. O

Remark 8.8.12. Baum and Smith of course did not use this language, but recalled the Eilenberg—
Moore theorem that H*(E;R) = Torqe.g) (Q2°(B), 2*(BK)). Here they have taken real coef-
ficients to be able to use harmonic forms as representatives of H*(B;R) and used finite ap-
proximations of BG and BK to be able to describe their cohomology via forms. They take our
model HE ® H ® HG as an H{-module resolution of Hi and then use the three pGa quasi-
isomorphisms (H*(B;R),0) — Q°(B), etc.

[EMAIL JoEL WOLF ABOUT THAT BIZARRE PAPER]

8.8.4. Further reading

The story of understanding the cohomology of the base of a bundle through invariant forms
starts with the work of Elie Cartan in the early 1900s and continues through the work of Henri
Cartan and his school (Koszul, Borel, and for a time Leray, with major unpublished contributions
by Chevalley and Weil) in the late 1940s and early 1950s. The main and classical source for these
developments is the conference proceedings [Cens51] to the 1950 Collogque de Topologie (espaces
fibrés), held in Bruxelles, with contributions by Beno Eckmann, Heinz Hopf, Guy Hirsch, Koszul,
Leray, and Cartan. The second of the two papers by Cartan in this volume, “La transgression
dans un groupe de Lie et dans un espace fibré principal” [Car51], promulgates in Lie-algebraic
terms what we have called the Cartan algebra, as summarized in Section 8.8.1. This was later
responsible for the institution of the Cartan model of equivariant cohomology, a full ten years
before the Borel model gained currency. The classic sketched proof of the equivariant de Rham
theorem showing the equivalence between these two models of equivariant cohomology is also
contained in this terse paper.

11 We do not need this level of detail, but the differential d restricts to dg on Vp and to 0 on H¥, and sends z € PH*G
to x"1z®1+1®p*1z € AVF®HE.
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3747 There is also no shortage of secondary sources for the work of this school [And62, Ras6g,
sras GHV76, Onigyg], especially as it applies to the Cartan model of equivariant cohomology [GS99,
a9 GLS96, GGKoz].
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Appendix A

Algebraic background

In this appendix we gather a ragtag assortment of algebraic preliminaries. Notationally, in all
that follows we denote containment of an algebraic substructure by “<,” containment of an ideal
by “<1,” isomorphism by “~,” and bijection by “<>.” The restriction of a map f: A — B to a
subset U < A is written f|;.

A.1. Commutative algebra

We will take tensor products, direct products, and modules as given. Beyond this, we only need
a very little pure commutative algebra, a corollary of Nakayama’s lemma and a version of the
Krull intersection theorem.

Lemma A.1.1 (Nakayama’s lemma; [AM69, Cor. 2.7, p. 22]). Let A be a commutative ring, M a
finitely generated A-module, N a submodule of M, and a < A an ideal contained in the Jacobson radical.
If M =aM+ N, then M = N.

Proposition A.1.2 ([AM69, Cor. 10.19, p. 110]). Let A be a Noetherian ring, a an ideal contained in its
Jacobson radical, and M a finitely-generated A-module. Then (,_,a"M = 0.

Corollary A.1.3 ((GHV76, Lemma 2.8.1, p. 62]). Let k be a commutative ring and A = k[x1,...,x,]| a
polynomial ring in finitely many indeterminates, and write a = (x1,...,x,) <A for the ideal of positive-
degree polynomials. Let M be a finitely-generated A-module and V a k-submodule of M, and suppose
M =aM +V.Then M = AV.

This is just an application of Nakayama’s lemma A.1.1 to the case N = AV.

Alternate proof. Iteratively substituting the entire left-hand side of M = aM + V in for the occur-
rence of M on the same-side, one inductively finds

M=aM+V
=a’M+aV+V

n
="M + Z dVv.
=0

Intersecting all right-hand sides yields M = (,_,a"M + Y., a"V, but by Proposition A.1.2,
(), m"M is zero. O

147
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A.2. Commutative graded algebra

A Z-graded k-module is an A € k-Mod admitting a direct sum decomposition A = @, ., An. An
element a € A is homogeneous if there exists some integer |1| = dega, the degree of A, such that
a € Agegqa- We blur the distinction between 0 € A, and 0 € A, and leave the degree of the latter
indeterminate. A k-module homomorphism f: A — B between graded k-modules is said to be a
graded k-module homomorphism of degree n = deg f if

deg f(a) = n + dega = deg f + dega

for all homogeneous a € A. We let gr-k-Mod be the category of graded k-modules and graded
k-module homomorphisms.

A cohomology ring A will be a graded commutative k-algebra. This means A is a graded
k-module, and additionally the product is such that

Am - An < Apgns
and for all homogeneous elements a4,b € A, one has
ba = (—1)1¥lgp,

For us, these rings will actually be N-graded, so that A, = 0 for n < 0, and the absolute coho-

mology rings H*(X) (as opposed to relative cohomology rings H*(X,Y')) will be unital, so that

the map x — x -1 embeds k — Ap — A and the k-algebra structure can be seen as the restriction

of the ring multiplication A x A — A. We will call these k-ccas for short, and the category of

graded commutative k-algebras and degree-preserving k-algebra homomorphisms will be writ-

ten k-CGA. The product in k-CGA is the ring product A x B, graded by (A x B), = A, x B,.
Some k-algebras A we will encounter will have a bigrading:

A=A"= (P A
P.9€L

in such a way that the bidegrees (p,q) add under multiplication:
Al AP < ATTPIT,
We conventionally visualize such a ring as a grid in the xy-plane, with the p'" column

AP = @AM
q

residing in the strip p < x < p + 1 and the 4" row

A1 = P AP
P

residing in the strip 4 < y < g + 1. For us, such gradings will always reside in the first quadrant:
we demand (p,q) € N x N. A linear map f: A — B of bigraded algebras is said to have bidegree
bideg(f) = (p,q) if f(A") < Bi*Pi*1. The associated singly-graded k-algebra of a bigraded
algebra is A® = @, A", graded by A" := @, ,_, AP, and a bigraded algebra will be said to be
commutative if this associated singly-graded algebra is a cGa.
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As a particular example, given two graded k-algebras A, B, we can form the graded tensor
product: this is A ®y B as a group, equipped with the bigrading (A ®; B)"1 = AP & BI. The asso-
ciated singly graded algebra is also written A ®; B and is the coproduct in k-CGA. The resulting
commutation rule is (1®b)(a®1) = (—1)1"Pla@b fora e Ay and b € Bjy|. As often as feasible, we
suppress ring subscripts on tensor signs, and in elements, we omit the tensor signs themselves,
letting a® b =: ab, so that for example we recover the reassuring expression ba = (—1)1/gp.

Given a graded unital k-algebra A with a preferred basis (a;) of Ag # 0, the map

Ao = k{a]} — k,
D7 7

induces a natural ring homomorphism A —» Ay — k called the augmentation. Its kernel A is
called the augmentation ideal; the notation is in analogy with reduced cohomology." If Ay = k,
we say A is connected; the terminology is because the singular cohomology of a connected space
satisfies this condition. In this case, the augmentation ideal is (D, Ax.

Given a degree-zero homomorphism f: A — B of connected augmented k-algebras, write

B/ A= B/(f(A)).

This is the right conception of cokernel for maps between cohomology rings: one wants the 0-
graded component to stay the same and the rest of the image of f to vanish. This sort of quotient
will become relevant to us in Section 8.4, where it will be found that an important subring of
the cohomology ring H*(G/K;Q), of a compact homogeneous space, namely the image of the
characteristic map x*: H*(BK; Q) — H*(G/K;Q), is of this form.

If A is a graded subalgebra of B, then one wants to think of

0-A—-B—->A/)/B—-0

as a “short exact sequence” of rings, but of course this doesn’t make sense: the sequence A —
B — C of k-modules is exact at B if im(A — B) = ker(B — C), but the image of a ring map is a
ring, while the kernel is an ideal, a different type of algebraic object. The appropriate modification
is the following.

Definition A.2.1. A sequence A — B — C of homomorphisms of unital k-algebras is said to be
exact at B if
ker(B — C) = (im(A — B)).

One should think of this as the ring-theoretic substitute for exactness in sequences of groups.

Example A.2.2. Let A be a graded k-subalgebra of a graded k-algebra B. Then0 - A — B —
A //B — 0 is a short exact sequence, by design. If A and C are k-algebras, free as k-modules (in
the applications we care most about, k = Q), then taking B = A®C, we see the sequence

0-A—>ARC—C—0

is short exact.

! Industry standard seems to be A, but I have resisted this because H* is the kernel of the augmentation in
cohomology and I am used to overbar notation referring to quotients.
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Remark A.2.3. This condition is usually called coexactness [MS68, p. 762]. The idea is that in any
category C equipped with a zero object 0, there is a unique zero map 04_,p between two any
objects, and one can define the (co)kernel of any map A — B to be the (co)equalizer of it and
04_.p. Suppose a composition A — B 3, Cis zero. Then f factors as (ker g) o f for some morphism
f and dually ¢ factors as § o (coker f). One says the sequence is exact at B if f is an epimorphism
and coexact at B if § is an monomorphism. However [Car15], these notions are equivalent in the
category of k-cpGas equipped with zero object the field k.

A.2.1. Free graded algebras

Suppose that char k # 2. As with modules, there are free objects in the category of k-cGas, which
have the following description. Given a free graded k-module V if we separate it into even- and
odd-degree factors Veven and V44, then the free graded commutative k-algebra on V is the graded
tensor product

S Veven G]? AVodd

of the symmetric algebra SV.,.,, on the even-degree generators and the exterior algebra AV, 4 on
the odd-degree generators. Given k-bases f= (t1,...,tm) of Voyen and Z = (z1,...,25) of Voqq, We
also write these as

S[ﬂ = SVeven;
/\[ZJ = AVodd-
Write
Az | = k{1, zm},

for the unique rank-two unital k-algebra with elements of degrees zero and m, which is the
cohomology of an m-sphere. This is Az, for m odd and S[z,]/(z2,) for m even.

In the event chark = 2, the graded commutativity relation xy = (—1)¥lyx, or equivalently
xy + yx = 0, forces genuine commutativity xy = yx for all elements since 1 = —1 in k. Thus a free
k-cca is a symmetric algebra SV in characteristic 2, independent of the grading on V. Algebras
which merely resemble AV still play an important role in characteristic two.

Definition A.2.4. Let k be a commutative ring. A k-algebra A (not assumed graded commutative),
free as a k-module, is said to have a simple system of generators V. = (vy,...,0y,...) if a k-basis
for A is given by the monomials

v, V), 1< <jg,

where each generator occurs at most once. If A has a simple system of generators, we write
A=AV = Alvy,...,04,...]

despite the fact that this description does not specify A up to algebra isomorphism.

Example A.2.5. The exterior algebra A[zy,...,z,] admits z;,...,z, as a simple system of genera-
tors.

This is of course the motivating example. Polynomial rings also afford examples.
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Example A.2.6. The polynomial ring k[x] admits x, x2, x*,x8, ... as a simple system of generators,

as consequence of the binary representability of natural numbers.

Example A.2.7. The property of admitting a simple system of generators is preserved under tensor
product (e.g., k[x,y] admits x?y? for i +j > 0 and k[x]® A[z] admits x¥ ®1 and x¥ ®z) so in
fact all free cGas are examples.

The multiplication in a AV need not be anticommutative, as one can see from the following
example.

Example A.2.8 ([Bors4, Théoréme 16.4]). Borel found that the mod 2 homology ring of Spin(10) is
given by
H, (Spin(10); F2) = A[vs, vs, vs, v7, V9, U15),

where all UJZ = 0 and all pairs of vj commute except for (ve,v9), which instead satisfies

V609 = U9Vg + U15.

A.2.2. Poincaré duality algebras

The real cohomology ring of a compact manifold exhibits an important phenomenon which we
generalize to an arbitary CGA.

Definition A.2.9. Let A be a k-cGa, free as a k-module. Suppose there exists a maximum n € N
such that A, # 0, that A, = k, and that for all j € [0, n] the natural pairing

Ajx A_j —> Ay

obtained by restricting the multiplication of A is nondegenerate. Then we call A a Poincaré
duality algebra (or rpA) and a nonzero element of A, a fundamental class for A, which we write
as [A]. If we fix a homogeneous basis (v;) of A, we can define a linear map a — a* on A by
setting v = v,_; whenever v;0,_; = [A] and extending linearly. Such a linear map is called a
duality map.

Theorem A.2.10 (Poincaré; [BT82, 1.(5.4), p. 441). If M is a compact manifold, the real singular coho-
mology ring H*(M; R) is a PDA.

Example A.2.11. Let V be a finitely generated, oddly-graded free k-module. Then the exterior
algebra AV is a Poincaré duality algebra with fundamental class given by the product of a basis
of V.

Poincaré duality is a severe restriction on the structure of a ring, with powerful consequences,
and it is inherited by tensor-factors.

Proposition A.2.12. Let A and B be k-cGas, free as k-modules, and suppose B is a PDA. Then A® B
exhibits Poincaré duality just if A does.

Sketch of proof. If A and B are ppas with duals given by a — a* and b — b*, then a®b —
a* ®@b* is easily seen to be a duality on A® B up to sign. If, on the other hand, b — b* is a
duality on A and a®b — a®D is a duality on A® B, then for any homogeneous a € A one has
a®1 = a* ®[B] for some a* € A, and a — a* is a duality on A. O
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A.2.3. Polynomials and numbers associated to a graded module

A graded k-module A is said to be of finite type if each graded component A, has finite k-rank.
Given a graded k-module A of finite type, we define the Poincaré polynomial of A to be the
formal power series

pA) =) (tk Ap)t".

Nnez
The sum p(X)|i=1 = Y rki Ay is the total rank or total Betti number of A. If the total Betti
number of A is finite, then when we evaluate at t = —1 instead, we get the Euler characteristic

X(A) = p(X)|t=—1 = DJ(—1)" rky A,,; otherwise the Euler characteristic is undefined.

In most cases we care about, the Poincaré polynomial will applied to a nonnegatively-graded
k-cca of finite type. The Poincaré polynomial is a homomorphism gr-k-Mod — k[f] in the sense
that

p(AxB) =p(A)+p(B),  p(A®B) = p(A)-p(B).
Usually the cGa in question will be the cohomology ring H*(X; k) of a space, and we will write

p(X) = p(H*(X;k)) = > rke H'(X; k)",
neN
The individual ranks /*(X) := dimg H*(X; Q) are called the Betti numbers of X; the associated
total rank p(X)|;=1 = >, 1" (X) is called the total Betti number of the space and denoted /*(X).
The Euler characteristic p(X)|i=—1 = >(—1)"h"(X) of H*(X;k) is called the Euler characteristic

of the space, and written x(X); it does not depend on k. If we write h¥*"(X) = > h?*"(X) and
hodd(X) = ST h?"+1(X), then

B (X) + x(X) = 2-h¥(X);
h*(X) = x(X) = 2-h°(X)
Free ccas behave pleasantly under the Poincaré polynomial because p(—) is multiplicative. If
degx = n is odd, then p(A[x]) = 1+ t". Thus given an exterior algebra AV on an oddly-graded

free k-module V of finite type, with Poincaré polynomial p(V) = > " (where it is fine if some 7;
occur more than once), the tensor rule yields

p(AV) = [ [ +").
Likewise, if deg x = 1 is even, then S[x] = k[x] is spanned by 1, x,x?, ..., so
. 1
P(S['x]) = Zt]n = 1 _tn'

jeN

Given a symmetric algebra SV on an evenly-graded free k-module V of finite type with p(V) =
>, t", thenthe tensor rule yields
1
p(SV) = H T (A.2.13)
Proposition A.2.14. Let k be a field, V be a positively-graded k—vector space, SV the symmetric algebra,
and W a graded vector subspace of SV such that the subalgebra it generates is a symmetric algebra SW
and SV is a free SW-module. Then

_ p(SY)
p(SV J/SW) = LS
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Proof. Let (g,) be a homogeneous A-basis for SV. Then (g, ® 1) forms a graded basis for SV / SW =
SV @y k, so on the level of graded k-modules, one has SV =~ SW &, k{g, ®1} =~ SW® (SV /) SW).
Taking Poincaré polynomials and dividing through by p(SV // SW) gives the result. O

A.3. Differential algebra

Our cohomology theories will always take coefficients in an ungraded, commutative ring k with
unity; usually, k will be Q or R. The category of k-modules and k-module homomorphisms is
denoted k-Mod. A differential k-module is a pair (A,d), where A € k-Mod is a k-module and
d € Endy A, the differential, is a nilsquare endomorphism, so that the composition d?:=dod=0
is the constant map to the zero element. A homomorphism f: (A,d) — (B, ) in the category of
differential k-modules, a group homomorphism f: A — B such that fd = Jf.

A cochain complex (A,d) is a differential k-module such that A € gr-k-Mod and additionally
d is of degree 1. A homomorphism of cochain complexes, as described in the first paragraph of
the subsection, is then called a cochain map.”? We writed | A, =:d,,. Amap f: (A,d) — (B,6) of
cochain complexes is a cochain map of differential k-modules that is additionally a graded map
of degree 0, so that fA, < B,. We let k-Ch denote the category of cochain complexes and cochain
maps of k-modules,

The cohomology H(A,d) of a differential k-module (A, d) is the quotient (kerd)/(im d), which
makes sense because d> = 0. We also write this as H,;(A). The differential k-module is exact if
H;(A) = 0. A cochain map f: (A,d) — (B,¢) induces a homomorphism f*: H(A,d) — H(B, /)
of k-modules. If this map is an isomorphism, then one says f is a quasi-isomorphism.

If A is a chain complex, then H(A, d) is graded by

H"(A,d):=H*(A,d), =kerd,/imd,_1.

Then a (graded) cochain map induces a map of graded modules, so cohomology is a functor
k-Ch — gr-k-Mod. A cochain complex (A, d) is said to be acyclic if H*(A,d) = H°(A,d) = k,
meaning H"(A,d) = 0 for n # 0.

We will say a map A — B of differential k-modules surjects in cohomology or is H*-
surjective if it induces a surjection H*(A) —» H*(B). In the opposite extreme case, that the
map H*(A) — H*(B) is zero in dimensions > 1 and is the isomorphism H°(A) — H°(B) in di-
mension 0, we call this map frivial, and say the map X — Y'is trivial in cohomology.lf A — B
is the map f*: H*(Y) — H*(X) in cohomology induced by a continuous map f: X — Y, then
we likewise say f is surjective in cohomology or trivial in cohomology if f* is.

Given a chain complex, Euler characteristic is preserved under cohomology: one has the
following corollary of the fundamental rank-nullity theorem of linear algebra, as applied to the
differential d.

Proposition A.3.1. Let (A, d) be a chain complex over k of finite total Betti number. Then
X(A) = x(H*(A,d)).
2 A chain complex is a graded differential group (A®,d) with degd = —1; a homomorphism of chain complexes is

a chain map. Chain and cochain complexes are mirror images of each other under the reindexing A" = A_;, and we
will focus our attention on cochain complexes.
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A.3.1. Differential graded algebras

A cohomology ring is a commutative graded algebra, and it is defined as the cohomology of a
chain complex which is itself a graded algebra. We set out some commonplaces of these objects.

A chain complex (A*,d) concentrated in nonnegative degree such that A® is also a graded
ring satisfying the product rule

d(ab) = da-b+ (—1)a - db

for homogeneous elements a,b is a differential graded algebra (or k-pGa). A differential d on
a graded ring satisfying this condition is called an derivation.3 An derivation on a unital k-
algebra satisfies d1 = 0 and hence d(k-1) = 0. A morphism of DGAs is a k-algebra map that is
simultaneously a cochain map. If A was a k-cGa, then we say (A, d) is a commutative differential
graded algebra (henceforth k-cpGa).

The kernel of an derivation d is a subalgebra, because d is additive and because if da = db = 0,
then d(ab) = (da)b + a(db) = 0. The image of d is an ideal of kerd, because if b = da € B and
c € kerd, then b € kerd and d(ac) = (da)c + a(dc) = bc. It follows that H*(A®,d) is again a graded
k-algebra.

The product in the category of pGas is the graded ring direct product A x B, equipped with
the differential d(a,b) := (da,db). The coproduct is the same tensor product A (>k§ B as for cGas,
equipped with the unique derivation given by

d(a®b) = daa®b+ (-1)"a®@dpb

on pure tensors. If we omit the tensor signs, this gives back, formally, the same product rule.

A differential bigraded algebra (A, d) is a bigraded algebra such that 4 is an antideriviation on
the associated singly-graded algebra A® of degree 1. We make no additional demands as to how
d interacts with the bigrading, but note that since dA"” < A""!, one has for each bidegree (i,])
that dA" < @, Ai++1=¢, and composing with projections to Ai*%/*1=¢ one obtains component
maps d': Al — A+Li+1=L of bidegree (¢,1 — £) such that

d:de.

el

A.3.2. The algebraic Kinneth theorem

It is trivial that a product of pGas induces a product decomposition in taking cohomology. In an
ideal world, the same would remain true of coproducts, and this ideal world is achieved in the
event one of the pGas lacks torsion.

Theorem A.3.2. Let k be a principal ideal domain and suppose A and C are free graded differential
k-modules. Then

H'(A®C)=~ P (H(A)QH"J(C)® @ Tork(HT(A), H"(C)).

k o<j<n o<j<n

3 Classically, this was an antiderivation and a derivation was required to satisfy d(ab) = da - b + a - db independent of
degree, but this is never the right notion in the graded context.
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Proof. Write Z" = ker(d": A" — A"*!) and B" = im(d"~!: A"! — A™). Then one has a short
exact sequence
0-Z—A— B 50

of complexes where the differentials on Z and B**t1 are 0. Since we have assumed C is flat, on
tensoring these complexes with C, we obtain a short exact sequence

0>Z®C— ARC — B*''®C -0

of complexes, where the differentials on Z* ® C and B**! ® C are both id4 ® dc and the differen-
tial on A®*® C is the expected d4 ®id¢ +idy ® dc. Write i®: B® — Z* for the inclusion; then it
is not hard to see the the connecting map in the long exact sequence in cohomology is the map
(i®id¢c)*: B*® H*(C) — Z*® H*(C) induced by i ®id¢. Thus we get a short exact sequence

0 — coker(i®idc)* — H*(A®C) —> ker(i**' ®idc)* — 0.

Because 0 — B**! — Z**1 — H**1(A) — 0 is exact, the first term is H*(A) ®; H*(C) and
the last is Tor} (H**1(A), H*(C)). Re-sorting summands to gather equal total degrees yields the
statement of the theorem. O

In particular, one has the following.

Corollary A.3.3. Let A and C be k-DGAs free as k-modules and such that H*(C) is flat over k. Then
H*(A(>k§C) ~ H*(A) (?H*(C)

as k-algebras.
Proof. The hypotheses precisely ensure the Tort term vanishes. O

Note that it more than suffices k be a field.

A.4. Splittings

An epimorphism A — B is said to split if there exists a monomorphism B —— A, called a
section, such that the composition B — A — B is the identity on B. This section is virtually
never canonical, but it is frequently still useful to be able to lift the structure of B back into A in
however haphazard a manner.

Surjective homomorphisms onto free objects always split in categories whose objects carry a
group structure (we always assume the axiom of choice), and we use this simple fact repeatedly.

Proposition A.4.1. Let t: A — F be a surjection in gr-k-Mod and suppose F is free. Then 1t splits.

Proof. Let S be a k-basis for F and for each s € S pick a preimage a; € 77~ !{s}. This assignment
extends to the needed section. O

Restricting to the case everything lies in one graded component, one obtains the result in
k-Mod. Specializing to the category S!-Mod of modules over S! =~ R/Z one obtains the following
useful statement.



3999
4000

4001

4002

4003

4004

4005

4006
4007
4008
4009
4010

4011

4012

4013

4014

4015

4016

4017

4018

Appendix A. Algebraic background 156

Proposition A.4.2. Any exact sequence 0 — A — B — C — 0 of tori splits: we can write B =~
A®@c(C) as an internal direct sum of topological groups for some suitable section o: C —— B of the
projection to C.

Alternate proof. Any short exact sequence of free abelian groups splits, and the functors
A— A Cz) R/Z,
m(T,1)«—T
furnish an equivalence of categories between finitely generated free abelian groups and tori. [
We will also need to apply this principle to ccas.

Proposition A.4.3. Let F be a free k-cGa and rt: A — F a surjective k-cGa homomorphism. Then there
exists a section i: F —— A of 7.

Proof. Suppose F is free on the graded k-module V. Since V is free as a graded module, there
exists a section i: V —— A of 7t over V by Proposition A.4.1. As 7t is a ring homomorphism, the
subalgebra A’ generated in A by iV projects back onto F under 77. Were A’ not itself a free k-cca,
there would be some relation between homogeneous elements of A’ other than those ensured by
the cca axioms, and 7w would transfer that relation to F, so there is no such relation. Thus 7| 4/ is
a CGA isomorphism; now extend i to be its inverse. ]

When we deal with principal bundles, the following simple proposition will be useful.

Proposition A.4.4. Let 0 - B — E — F — 0 be a exact sequence of k-cca maps with F free and E
of finite type. Suppose further that for each degree n we have rky E,, = rki(B (>k9 F),. Then E ~ B®F.

Proof. The projection E — F splits by Proposition A.4.3, and together with B, the lift of F
generates E as an algebra, so there is a commutative diagram

B®F

of ring maps with the vertical map surjective. If this vertical map failed to also be injective, the
rank assumption would fail, so it is an isomorphism. O
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Appendix B

Topological background

In this appendix we state some well-known results in algebraic topology and Lie theory. We will
take homotopy groups and singular homology and cohomology groups as known concepts, and
cite basic results in algebraic topology without proof, but will restate that the 0" homotopy set 719X
of a space X is its set of path-components, which inherits a group structure if X is a group. We
denote homotopy equivalences by “~,” homeomorphisms by “~,” and Lie group isomorphisms
by “=.” If a group G acts on a space X via ¢: G x X — X, we write ¢: G — X. The interior of a
manifold M with boundary @M is M. The complement of a set A < B is B\ A.

B.1. Algebraic topology grab bag

This section is just a collection of useful algebro-topological results we will need later, presented
without much in the way of motivation, which one might have encountered in a first topology
or Lie theory course.

Let Top be the category whose objects are pairs (X, A) of topological spaces, A closed in X,
with morphisms (X, A) — (Y, B) those continuous maps f: X — Y such that f(A) < B. The
category whose objects are individual topological spaces and morphisms continuous maps is
included as a full category through the inclusion X — (X, &), where @ is the empty space.

B.1.1. Cell complexes

A CW complex is a topological space X equipped with a decomposition into a union of disks
of increasing dimension. Less elliptically, such an X must admit a filtration (X") into n-skeleta
meeting the following conditions:

* The 0-skeleton X’ is a discrete space.

* Given the n-skeleton X", index a collection of distinct (1 + 1)-disks as (D*1),cs. From each
boundary S}, let a continuous map ¢, : S; — X", the attaching map, be given. These maps
assemble into a map ¢: [[,ca ST — X", and X"*! is defined to be the quotient space

X" U] Jpep DI
~ ¢(s)

of the disjoint union: we’ve identified the boundaries of the D! with their images in X".
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 The entire space X is X = [ J,,.y X", the colimit, with the direct limit topology. This amounts
to saying U < X is open just if each U n X" is open in X".

A map f: X — Y between two CW complexes is said to be cellular if it respects the skeleta:
f: X" — Y" for all n.

Write CW for the subcategory of Top whose objects are CW pairs consisting of a CW complex
X and closed subcomplex A, and whose maps (X, A) — (Y, B) are required to be cellular,
meaning both X — Y and the restriction A — B are cellular. The category CW is a homotopy-
theoretic skeleton of Top in the sense that given any (X, A) € Top there exists (X, A) e CW and
a weak homotopy equivalence (X, A) — (X, A) in Top. This map (or (X, A) itself) is called a
CW approximation [Hatoz, Example 4.15, p. 353]. Moreover, any map of pairs is the same up to
homotopy as a map between CW complexes: given a map (X, A) — (Y, B) of pairs there exists
a map between CW approximations making the following square commute up to homotopy:

(X, A) = (X, A)

Y
(Y, B) — (Y, B).

Although CW is unstable under the formation of mapping spaces, with judicious use of CW
approximations, we may basically assume every space that follows is a CW complex.
The algebraic Kiinneth Theorem A.3.2 has at least two major topological repercussions.

Theorem B.1.1 (Universal coefficients [Hatoz, Thms. 3.2, 3.A.3, pp. 195, 264]). Let X be a topological
space and k a principal ideal domain. For each n € N one has the following short exact sequences of abelian
groups:

0 — Hy(X;Z) @k —> Hy(X;k) — Tor} (Hu—1(X;Z),k) — 0,

0 — Exty (Hy—1(X;Z), k) — H"(X;k) — Homy, (Hu(X;Z), k) — 0.

Proof. The homology sequence follows from Theorem A.3.2 by taking C = Cy = kand A = C,(X)
the singular chain complex, taking into account the differentials go in the opposite direction
expected. The cohomology sequence arises from taking C = k and A = Homy, (C.(X),Z) the
singular cochain complex, noting A (2} k = Homy, (C.(X), k). O

Theorem B.1.2 (Topological Kiinneth [Hato2, Thm. 3B.6, 3.21][Masg1, Thm. 11.2, p. 346]). Let X
and Y be topological spaces and k an abelian group. Suppose H*(X) is of finite type. Then for each n € N
one has the following split short exact sequences of abelian groups:

0— (—D (H]’(X)®Hn,j(Y)) —H, (X xY; k) — (—D Tor'l‘(Hj(X; k),Hn,j,l(Y;k)) —0;

0<j<n 0<j<n
0> P (H(X;Z)®H"(Y;k) —H"(XxY;k) — P Torl(H(X;Z), H""'7/(Y;k)) — 0.
0<j<n 0<j<n+1

When one of the rings H*(X;k) or H*(Y;k) is free as a k-module, the Ext and Tor terms
disappear and these isomorphisms assume a product form

H*(X x Y) =~ H*X® H*Y.

One also obtains the following relation between integral homology and cohomology.



4071
4072

4073
4074

4075
4076

4077

4078

4079

4080

4081

4082

4083
4084

4085

4086
4087

4088
4089

4090

4091
4092

4093

4094

4095

4096

4097

Appendix B. Topological background 159

Proposition B.1.3. Let X be a topological space. The torsion subgroups and torsion-free quotients of the
singular homology and cohomology groups H.(X; Z) and H*(X; Z) satisfy

H"(X;Z) = Hy(X; Z)tree © Hy—1(X; Z)tors

We will use fiber bundles frequently, and need a criterion for determining when the funda-
mental groups of their base spaces are trivial.

Theorem B.1.4 ([Hato2, Thm. 4.3]). Let F — E — B be a fiber bundle. Then there is associated a long
exact sequence of homotopy groups

- > m(F) — m2(E) — m2(B) — mi(F) — m(E) — m1(B) — 710(F) — 710(E) — 0.
There are important but subtle relations between the homology and homotopy groups.

Proposition B.1.5. The first singular homology group of a space X is the abelianization of its fundamental
group: Hy(X;Z) = my(X).

Theorem B.1.1. Let X be a simply-connected topological space and let n > 1 be the least natural number
such that 7w, X is nontrivial. Then the same n is also minimal such that H, X is nontrivial, and the natural
Hurewicz map

X — HyX,
[0 8" — X] — 04[S"],

taking the homotopy class of a map from a sphere to the pushforward of the fundamental class, is an
isomorphism.

The homotopy groups completely determine homotopy type in the following sense.

Theorem B.1.6 (Whitehead [Hato2, Thm. 4.5, p. 346]). Let f: X — Y be a map of CW complexes
such that 70, f: 1,X — 1Y is an isomorphism for all n > 0 (a weak homotopy equivalence). Then
f is a homotopy equivalence.

Theorem B.1.7 (Whitehead [Hato2, Thm. 4.21, p. 356]). Let f: X — Y be a weak homotopy equiva-
lence of topological spaces. Then H" f: H"Y — H"X is an isomorphism for all n.

We will also need the Lefschetz fixed point theorem. Note that if X is of finite type, the natural
maps H"(X;Z) - H"(X; Z)free — H"(X; Q) carry a Z-basis of the free Z-module H" (X; Z)free to
a Q-basis of H*(X; Q).

Definition B.1.8. Let f: X — X be a continuous self-map of a topological space X of finite
type. Then associated endomorphisms H"(f) € Autg H"(X; Q) are defined for each n > 0. The
Lefschetz number

X(f) = D (=) e H'(f)

n=0

is the alternating sum of these traces, where each trace is taken with respect to a basis of H" (X; Q)
inherited from H"(X;Z)¢ee-

Since the trace of the identity map of a vector space is just the dimension of that space and
H"(idx) = idpn(x.q) one immediately has the following.
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Proposition B.1.9. Let f: X — X be a continuous self-map of a topological space of finite type. Then
the Lefschetz number of the identity map idx is the Euler characteristic of X:

x(X) = x(idx).
The more interesting fact about the Lefschetz number is the Lefschetz fixed point theorem.

Theorem B.1.10 (Lefschetz, [Hato2, Thm. 2C.3, p. 179]). Let X be a topological space which is a
deformation retract of a simplicial complex and f: X — X a continuous map without fixed points. Then
the Lefschetz number x(f) is 0.

B.2. Covers and fransfer isomorphisms

In this section, we leverage a standard result on the cohomology of covers to a statement we use
later about the cohomology of homogeneous spaces.

Proposition B.2.1 ([Hato2, Prop. 3G.1]). Let F be a finite group acting by homeomorphisms on a space
X, so that p: X — X/F is a finite covering. Suppose |F| is invertible in k. Then the map

p*: H*(X/F;k) — H*(X; k)
is an injection with image the invariant subring H*(X; k)F.

Proof. Since simplices A" are simply-connected, each singular simplex ¢: A" — X/F lifts to a
singular simplex 7: A" — X. The map 7: 0 > Y, fer f © 0 summing over all such lifts then
induces a transfer map T: Cy(X/F) — Cu(X) of singular chain groups. For each lift fo we
have p(fo) = 0, s0 pot = |F|-id on C,(X/F). Dualizing yields a cochain map t*: C"(X; k) —
C"(X/F; k) such that T* o p* = |F|-id on C*(X; k), so the same holds in H*(X; k).

If we demand |F| be a unit in k, then T* o p* is an isomorphism, so p* is injective. Since
pof = p forall f € F, it follows im p* is contained in the invariant subring H*(X; k). On the
other hand, since 7o p sends 0 — 2ierfo 0, it follows p*t*a = Diper fro for all w € H*(X; k).
In particular, if « € H*(X; k) is F-invariant, then p*t*a = |F|a, so p* surjects onto H(X; k)E. O

Corollary B.2.2. In the situation of Proposition B.2.1, suppose the action of F on X is the restriction of a
continuous action of a path-connected group I on X. Then

H*(X/F;k) ~ H*(X;k)

Proof. Let f € F. Since I' is path-connected, the left translation y — f7 on I" is homotopic to the
identity. It follows f acts trivially on H*(X;k). Thus H*(X; k)" =~ H*(X;k). O

Proposition B.2.3. Let I' be a path-connected group, Hy a connected subgroup, and F a finite central
subgroup of I. Write Fy = F n Hy and suppose |F/Fy| is invertible in k. Then

H*(T/FHy) ~ H*(T/Hp).

Proof. The space I'/FH) is the quotient of I'/Hy by the left action of F/Fy given by fFy-yHy =
v fHo, which is well defined because F is central in I'. But F/Fy is a subgroup of the path-
connected group I'/Fy, so the result follows from Corollary B.2.2. O
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Proposition B.2.4. Let G be a compact, connected Lie group, K a closed, connected subgroup, G—Ga
finite cover, K the preimage of K, and Ky the identity component of K. Then

H*(G/K) = H*(G/K) = H*(G/Ky).

Proof. By Theorem B.4.5, F is central, so taking G =T and Hy = K in the statement of Proposi-
tion B.2.3 we have I'/Hy = G/K and I'/FHy ~ G/p(K) = G/K and the result follows. O

The preceding two results are too simple not to have been known, yet the author knows no
reference.

Proposition B.2.5. Let F — X — B be a finite-sheeted covering. If either of the Euler characteristics
X(X), x(B) is finite, then so is the other, and x(X) = x(B) - |F|.

Proof sketch. Taking a CW approximation, we may assume X and B to be CW complexes and
X — B cellular. Each cell of B is covered by |F| cells in X, so the result follows from cellular
homology. O

B.3. Fiber bundies

A fiber space with is a continuous surjection E — B such that for each b € B, we have h~1{b} ~ F
for some fixed space F, the fiber. Each h=1{b} is also called a fiber, E is the total space, and B
the base. We abbreviate this assemblage as F — E — B. Given two fiber spaces p: E — B and
p': El — B/, amap h: E — E’ of total spaces is fiber-preserving if it sends fibers into fibers.
Equivalently, there is a map & of bases making the following diagram commute:

Then hp~1{b} = (p')"'{h(b)} for all b € B. Fiber spaces with fiber F and fiber-preserving maps
form a category whose isomorphisms are fiber-preserving homeomorphisms.
A fiber space p: E — B with fiber F is a fiber bundle, or an F-bundle (or locally trivial), if

¢ the base B admits an open cover of sets U such that there are fiber space isomorphisms
du: p~(U) => U x F, called (local) trivializations, and

¢ these trivializations are compatible in the sense that given two overlapping trivializing
opens U and V, the transition functions gy defined by the composite homeomorphism

—1

duv: (UnV)x E2% p{UAV) 2% (UAV) < F
(x, f) — (%, guv(x)(f)),

are continuous maps U n V — Homeo F. Morally, different coordinatizations of the same
trivial subbundle should differ continuously.
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Given a fiber space F — E %, B and an subset U < B, the restriction El is the F-bundle
(plu): p~'(U) — U. This generalizes to the following construction. a continuous map h: X — B
(for restrictions, an inclusion), we can construct a pullback space h"E — X with fiber F fitting
into the commutative square

E
|
B

4

h=pr,

h*E —

h¥p:= prll
X h

-

where the new total space is

f*E:XEE::{(x,e)eXxE:h(x)zp(e)};XxE

and the new maps the restrictions of the factor projections from X x E. This total space is called
the fiber product, and (with the maps), it is the pullback of the diagram X — B « E in Top." If
E — B was an F-bundle, so also is h*E — X: given a local trivialization

¢=(p.p):p'U—UxF,
a trivialization of the pullback (h*E)|,-1(y is given by

idx x p: (x,e) —> (x,p(e)),

and such sets h~1(U) cover X. The resulting bundle is a pullback bundle.

If F, E, B are all smooth manifolds and the fiber inclusion, projection, and transition functions
are all C*, we say F — E — B is a smooth bundle. One can similarly define holomorphic and
algebraic bundles, but smooth and merely continuous bundles are all we shall work with.

B.3.1. Principal bundles

Now suppose we are given a fiber bundle F — E — B admitting trivializations (¢y)yes, such
that each transition function g7y takes values in some subgroup G of the group Homeo F of
self-homeomorphisms of the fiber. As G is a topological group, its multiplication is continuous,
and left multiplication /; by any element of ¢ € G is a self-homeomorphism of G. In this way the
transition function values g7 v(x) € G can be viewed as elements of Homeo G, and we can form
a G-bundle G — P — B by starting with the disjoint union [ [;;c,, U x G and gluing the pieces
by the relations

(x,8) ~ (x,guv(x)-g)

for all nonempty intersections U NV of setsin 7 and allx e UnV and g € G.

The disjoint union we started with admits a global right G-action (u,g) - ¢’ = (1, gg’), which
descends to a right G-action on P since the transition functions act on the left of the fibers G.
This right action is simply transitive on each fiber. We call a G-bundle admitting a right G-action
acting simply transitively on each fiber a principal G-bundle; this motivating bundle G - P — B
is one such.

' This notation X x E, now universal, is due to Paul Baum [Smi6y, p. 68].
B
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We can recover the original F — E — B from G — P — B and the map : G — Homeo F by
a pushout construction:

E~P®F = PxF N [Tuyer Ux G xF
G (e 8l f) ~ ([ 1y(Q)f) (v guv(®)g f) ~ (x,8f) ~ (x,1,$(g)f)

Verbally, this can be seen as extracting the G-valued transition functions from a principal G-
bundle and applying them to F instead of G. For this reason, the bundles E — B and P — B
are said to be associated. Because this correspondence is reversible, principal bundles carry
essentially all information about fiber bundles.

Every homogeneous space G/K is the base space of a principal K-bundle K — G — G/K by
Theorem B.4.4. Further, in Chapter 5, we construct a universal principal G-bundle EG — BG that
every principal G-bundle is a pullback of. Given such a bundle, a space F, and a homomorphism
: G — HomeoF, it follows the the associated F-bundle EG xg F — BG is universal for F-
bundles with transition functions in ¢(G); for example, EGL(n, R) ®crLnr) R" — BGL(n,R) is a
universal vector bundle. Once we have done this, we will be able to associate to each G/K a
homotopy-equivalent space Gy fitting into a principal G-bundle G — Gx — BK.

(B.3.1)

B.3.2. Fibrations

[To BE WRITTEN...]

B.4. The structure of Lie groups

In this section, we record—without much in the way of explanation or interstitial verbiage—
the background we require on compact Lie groups. Dwyer and Wilkinson [DWg8] develop this
material in an atypical algebro-topological manner concordant with the approach adopted here.
Brocker and tom Dieck [BtD85] is another standard reference.

Let G be connected Lie group and H a closed, connected subgroup. By the Cartan-Iwasawa—
Malcev theorem, there exists a maximal compact subgroup Ky of H, unique up to conjugacy
[HMoy, Cor. 12.77], which is necessarily connected, such that there is a homeomorphism H ~
Kp x R" for some n [HMo7y, Cor. 12.82]. Likewise G contains a maximal compact subgroup K,
which after conjugation can be chosen to contain Ky. This yields a reduction result.

Proposition B.4.1. Suppose G is a connected Lie group and H a connected, closed subgroup, with re-
spective compact, connected subgroups K and Ky, the one containing the other. Then G/H is homotopy-
equivalent to Kg/Kp.

Proof. A left-Kg-equivariant deformation retraction of G to K¢ induces a deformation retraction
from G/Ky to Kg/Ky. The fiber of G/Ky — G/H is H/Ky, which is homeomorphic to Eu-
clidean space, and G/Ky and G/H each have the homotopy type of a CW complex so the long
exact sequence of homotopy groups and Whitehead’s theorem shows the maps is a homotopy
equivalence. O

Proposition B.4.2. There exists a smooth map exp: g —> G, the exponential, which is surjective if G
is compact and connected, which restricts to a homomorphism on the preimage of any connected abelian
subgroup (in particular, on any line), and whose inverse in a neighborhood of 1 € G serves as a smooth
chart.
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Proposition B.4.3 ([Wik14]). The fundamental group of a topological group is abelian.

Theorem B.4.4 ((War71, Thm. 3.58, p. 120][GGKo2, Prop. B.18, p. 179]). Let G be a Lie group and K
a closed subgroup. Then G/K is a manifold and K — G — G/K a principal K-bundle.

One of the main structure theorems for compact Lie groups is the following.

Theorem B.4.5 ([HHMo6, Thm. 2.19, p. 207]). Every compact, connected Lie group G admits a finite
central extension N
0-F—>G—G—-0

such that G is the direct product of a compact, simply-connected Lie group K and a torus A. Thus
G =~ AxK/F

We call G the universal compact cover of G; it is uniquely determined up to isomorphism.*

Proposition B.4.6 (Elie Cartan-Wilhelm Killing). Every simply-connected Lie group K is a direct
product of finitely many simple groups, groups whose proper normal subgroups are finite. A simply-
connected simple group is one of the following:

SU(Tl), Sp(”)/ Spin(n)/ GZ/ P4/ Eé/ E7/ ES/

with the exception of Spin(1) = O(1) and Spin(4) = SU(2) x SU(2); the three infinite families comprise
the simply-connected classical groups and the last five the exceptional groups.

We will not explain the exceptional groups, but the groups Spin(n) are double covers of SO(n)
for n > 3 (when 71;SO(n) = Z/2) and Spin(2) = SO(2) =~ S!'. A compact group whose universal
cover is a direct product of simple groups is called semisimple.

Proposition B.4.7. Let G be a compact, semisimple Lie group. Then H'(G; Q) = 0.

Proof. By our definition, G admits a simply-connected finite cover G. By the universal coefficient
theorem B.1.1, we have H!(G; Q) = Hi(G;Q) ~ Hy(G;Z)®Q, and by Proposition B.4.3 and
Proposition B.1.5 we know H; (G;Z) = m,G, which we have assumed to be a finite group. O

A classification-type result in the opposite direction is that all compact Lie groups can be seen
as closed subgroups of U(n).

Theorem B.4.8 (Fritz Peter-Hermann Weyl [BtD85, Thm. IIL.4.1, p. 136]). Every compact Lie group
G admits a faithful representation.

This is a corollary of the Peter-Weyl theorem, and implies in particular [say wHY] that every
compact Lie group embeds as a closed subgroup of U(n) for n sufficiently large.

2 This is arguably a misnomer; this object cannot be initial in that we can always cover the toral factor A with
another torus, and in particular the fiber F is not uniquely determined by this characterization.

3 Tt is much more usual to equivalently demand that the Lie algebra g be a direct sum of simple Lie algebras, but
our focus is away from the Lie algebra level.
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Proof, assuming Peter—Weyl. The Peter-Weyl theorem states, in one version, that the span of the
set of continuous functions G — C that appear as coefficient functions p; ; in irreducible unitary
representations p: G — U(n) < C"™" is dense in L?(G;C). Particularly, the matrix coefficients
must separate points of G, meaning that for any g,k € G there is some irreducible unitary rep-
resentation p such that some coefficient p;;(g) # p;;(h). Particularly, taking & = 1, it follows
p(g) # p(1) = id; in words, no nontrivial element is in the kernel of every irreducible unitary
representation p, or [ | kerp = {1}. Each intersection of finitely many kerp is a closed submani-
fold of G, so in fact one can select finitely many p, such that (\kerp, = {1} and hence @ p,, is
faithful. O

Exercise B.4.9. Why does one only need to take a finite intersection in the preceding proof?

B.4.1. The maximal torus

A real torus is a Lie group smoothly isomorphic to the direct product of finitely many copies
of the complex circle group S' =~ U(1); for us tori are always considered as Lie groups. A one-
dimensional torus is a circle. Much of the structure of the structure of compact, connected Lie
groups arises due to tori they contain. The centralizer Z(K) of a subgroup K of a group G is the
set of ¢ € G such that gkg~! = k for each k € K.

Lemma B.4.10. Any torus T contains a topological generator, an element generating a dense subgroup.

Sketch of proof. Any element of R’ none of whose coordinates is a rational multiple of any other
will project to such an element in (R/Z)" = T. O

Theorem B.4.11. Let G be a compact, connected Lie group. Every torus S of G is contained in a torus T
which is properly contained in no other torus; such a T is called a maximal torus of G. Every element lies
in some maximal torus, each maximal torus is its own centralizer in G, and all maximal tori are conjugate
in G. The centralizer Z(T) of a maximal torus is T itself.

Given a group G, and a subgroup K of G, we write N (K) for the normalizer of K in G, the set
of elements ¢ € G such that gKg—! = K. The Wey! group W(G) of G is defined to be the quotient
group Ng(T)/T, the collection of nontrivial symmetries of T induced by conjugation. It is always
a finite reflection group.

Proposition B.4.12. Let G be a connected, compact Lie group. Then the center Z(G) is the intersection
of all maximal tori in G.

Proof [DWg8, Prop. 7.1]. Any element of Z(G) must lie in Zg(T) = T for any maximal torus T.
Conversely, any element x € G has some conjugate gxg~! in any given maximal torus. If x itself
does not lie in that torus, then x # gngl, so x is not central. O

Proposition B.4.13 ([BtD85, Prop. V.(5.13), p. 214]). On the Lie algebra g of a compact, connected Lie
group G, there exists a symmetric bilinear form B(—, —), the Killing form, which is invariant under the
adjoint action of G. This form is negative definite if G is compact.

[
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Sketch construction. Conjugation cg: h —> ghg™! on G is smooth, so induces a derivative Ad(g) :=
(cg)x: g — g on the tangent space g := T;G. The map Ad: G — Autg g is itself smooth when
Autgr g = Autg R" is topologized as an open subset of the space R"*" of matrices, thus inducing
a derivative ad: g — Endg g. This is the multiplication in the Lie algebra g: one sets [x,y] :=
ad(x)y. Once a basis of g is selected, a trace is well defined, and one sets B(x,y) := tr(ad x cad y).
This is clearly bilinear. To see it is Ad(G)-invariant, one notes that if v, is a curve in G with
7x(0) = 1 and 7% (0) = x, then c: t — gy,(t)g! satisfies ¢(0) = 1 and ¢’(1) = Ad(g)x, so that

d _ d _ _
ad (Ad(g)x) = 5 Ad(g74(0)g )], = Ad(g) 7 Ad (12(1)],_y Ad(g ™) = Ad(g) ad(x) Ad(g) "
and recalls the trace of a matrix is invariant under conjugation. [NEGATIVE-DEF?] O

]



4287

4288

4289
4290
4291
4292

4293

4294

4295
4296
4297
4298
4299

4300
4301

4302

4303

4304
4305

4306
4307

4308

4309

4310

Appendix C

Borel’s proof of Chevalley’s theorem

Borel’s proof of Cartan’s theorem in his thesis does not use the Serre spectral sequence, but
the Leray spectral sequence, which was at the time phrased in a vocabulary no longer in use.
This appendix rephrases his original proof, hopefully without too much violence, in still-current
terminology. The translation effort was not entirely trivial; needless to say, any errors belong to
the author, not to Borel.

C.1. Sheaf cohomology

We will require standard material on sheaves and sheaf cohomology to proceed [War71, Ch. 5][ET14,
Sec. 2]. The development to follow is no longer standard; this is what things looked like circa
1950.

We take as known the concepts of sheaf, presheaf, constant sheaf, and stalk. Let k be a prin-
cipal ideal domain and k the constant sheaf in the rest of this subsection.

Definition C.1.1. Let &/ be a sheaf of k-modules over a topological space X. A resolution €* of
</ is a sequence
0o — ¢ —C' —¢>— ...

of sheaf homomorphisms such that the induced sequence of stalks over each point of X is exact.
We say &7 is acyclic if the induced sequence

0— o (X) — €°(X) — ¢1(X) — €*(X) — - -

of global sections is exact. If ¥* is a resolution of . by acyclic sheaves, then the sheaf cohomology
H*(X; /) of & is the cohomology of the complex

0—6'(X) — €HX) — F*(X) — -

If space X is paracompact, we say & is fine if for every open cover (U,) of X, there is a family
(¢) of k-linear sheaf endomorphisms of ./ such that ) ¢, = id and the closure of each set
{x e X : @u(x) # 0} (the support) lies in U,.

Note what is implicit in this definition, that the choice of acyclic resolution of .27 does not
affect the end result. Our interest in sheaf cohomology is the following:

167
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Proposition C.1.2. Let X be a topological space homotopy equivalent to a finite CW complex. Then the
singular cohomology and sheaf cohomology rings

H*(X; k) ~ H*(X; k)
are isomorphic.

By the following proposition, then, to compute singular cohomology, we can resolve k by fine
sheaves and take the cohomology of the sequence of global sections.

Proposition C.1.3. Fine sheaves are acyclic.

Example C.1.4. The canonical fine sheaves are the sheaves (¥ of differential forms on a smooth
manifold M. The Poincaré lemma is that the sequence ()* of sheaves resolves the constant sheaf
R on M. In this guise, de Rham’s theorem that the cohomology of the de Rham complex is
H*(M;R) becomes a consequence of Proposition C.1.2. In fact, it is still a little stronger in that
the sequence of sheaves ()°* has its own internal multiplication (we say it is a sheaf of R-cpGAs)
and this multiplication of global sections induces a multiplicative structure on H*(X;R) which
corresponds to the cup product on H*(X;R).

This situation is important enough that we codify it.

Definition C.1.5. Let X be a paracompact space and .#*° a sheaf valued in k-cpGas. This can
be seen, forgetting the multiplication, as a complex #° — Z! — #2 — ... of sheaves of R-
modules, and the inclusion of locally constant functions via ¢ — ¢ - 1 is a sheaf homomorphism
k —> Z9 If the resulting sequence 0 — k — . 0 5 Z1 ... isexact, such a sheaf of k-DGAs can
be seen as an acyclic resolution as required in Definition C.1.1. If additionally the values .7 *(U)
are free k-modules, we will say .#°® is a cpca-resolution of k. In general, if .#* is sheaf of chain
complexes on a space X, write 7" (Z#*) for its p™ cohomology sheaf, whose stalk at x € X is
HP(F°|y).

These exist in the cases we are interested in, via a clever trick.

Proposition C.1.6 (Cartan (unpublished)). Let X be a compact metrizable space. Then there exists a
fine sheaf of R-cpGas on X resolving the constant sheaf R.

Proof. By the Menger-Nobeling theorem, X with any compatible metric embeds isometrically
into a Euclidean space (specifically R1+2dimX where dim X is the Lebesgue covering dimension).
The de Rham sheaf U — Q*(U) is a fine sheaf of R-cpGas resolving R on Euclidean space, and
so, by restriction, induces such a sheaf on X. O

We will need to compare and combine sheaves to prove Leray’s theorem.

Definition C.1.7. By a fensor product of sheaves of k-pDGas ¥°* ®.7* we mean the sheaf whose
stalks are the rings ¢°[; ®.7°[, singly graded by (¥*®.7°)" = @,,,_, 9" ®F" equipped
with the unique differential restricting to the original differentials on ¢°*®k and k ® #°. Let
f: X — Y be a continuous map, .# a sheaf on X, and ¢ a sheaf on Y. Then the direct image
sheaf f..7 onY and inverse image sheaf f~'% on X are given respectively by

Ve Z (V)

U— lim 9(V).
Vor(U)
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The following is unsurprising, since we can reuse the same partition of unity:

Proposition C.1.8. If .7 is a sheaf and ¢ a fine sheaf of k-modules on a paracompact topological space X,
then the sheaf tensor product 7 Q% is again fine.

A cpca-resolution of k allows us to find resolutions of sheaves in a canonical way.

Proposition C.1.9. Let .% be a sheaf on a paracompact space X and ¢° a fine cpGa-resolution of k. Then
9°*®.Z is a fine resolution of %, so that H*(X; .7 ) can be calculated as the cohomology of the complex
(9°®.7)(X).

Proof. Because the stalks ¢*(x) are free k-modules, # — ¥'®.% — 41 ®.F — ... is a resolution
of .. Because each ¢7 is fine, so is 47 ® .#, by Proposition C.1.8. O

Remark C.1.10. Borel actually takes this as his definition of sheaf cohomology.

Proposition C.1.11. Let f: X — Y be a continuous map of Hausdorff spaces, .# a fine sheaf on X, and
& a sheaf on Y. Then pullback along f induces an isomorphism

YR foF = fu(f*"9Q.F).
Proof. The stalk of the former sheaf over y € Y is
(G fF)y) =9 (W) O (fuT)y) =9 (y) ® lim,_ F(f7H(V) =4 (y)®F(f(y)
since {y} is closed and .Z is fine. On the other hand

(el fr 9@ 7)) (y) =lim,_ (f(f*9®F)(V)=lim,_ (ff9®F)(fH(V)) = (F4OF)(f ()

for the same reason. This last is the module of continuous sections over f~!(y) of an étalé space
whose stalk at x € X is

(F9®.7)(x) = lim lim %(V)®.F(x) =~ 4 (f(x)) ® F(x).
Usx Vorf(U)

But then a continuous section is precisely an element of ¢ (y) ® Z (! (y)). O

Corollary C.1.12. Let f: X — Y be a continuous map of Hausdorff spaces, F a fine sheaf on X, and &4
a sheaf on Y. Then pullback along f induces an isomorphism

(YR fF)Y) = (ff9Q.7)(X).
Proof. Now (9 ® f.7)(Y) = (f«(f*¢ ®.%))(Y), but this is (f*¢ ®.%)(X) by definition. O

Corollary C.1.13. Let f: X — Y be a continuous map of Hausdorff spaces, #* a fine cDGA-resolution
of k on X, and ¢4° a fine cbGA-resolution of k on Y. Then f*94*® .%* is also a fine cDGA-resolution of k
on X.

Proof. By Proposition C.1.8, f*¥4*®.#* is fine, and we saw in the proof of Proposition C.1.11 that
its stalk at x € X is ¥*(f(x)) ® #*(x). This stalk is a free k-module since the tensor factors are,
and an acyclic cpGa by the Kiinneth theorem Corollary A.3.3 since the tensor factors are acyclic
and free over k. O
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Example C.1.14. Let m: E — B be a smooth fiber bundle with compact total space. Let ()} be
the sheaf of de Rham algebras over E and ()} that over B. The tensor sheaf ¢ = 7*Q; ® O,
which is another cpGa-resolution of R on E by Corollary C.1.13. Thus the de Rham cohomology
H*(E;R) is the cohomology of the complex

A=%(E) = (703 ®01) (E).

This looks at first as if it will violate the Kiinneth theorem Corollary A.3.3, since m*Q3%(E) =
Q°(B), but % is the sheaf associated to the presheaf U — Q°(71(U)) ® Q*(U), which is very
different from the presheaf itself.

C.2. The Leray spectral sequence

We paraphrase Borel’s 1951 ETH exposition of the Leray spectral sequence [Bor51, Exposé VII-3].
Let f: X — Y be a map of Hausdorff spaces, with Y paracompact, .#* a fine cpGa-resolution of
k on X, and ¢4° a fine cbGga-resolution of k on Y.

Now f*¥*®.#° is again a fine cpGa-resolution of k on X by Corollary C.1.13. Thus the
complex (f*¥*®.7*)(X) of global sections computes H*(X; k). Note from Corollary C.1.12 that
this complex of global sections can equally be viewed as (¥° ® f,.7*)(X).

Let us filter this by base degree, taking p'"* filtrand

(G7P® f.7)(X),

and consider the associated filtration spectral sequence as described in Corollary 2.6.8. We know
already that it converges to H*(X; k), and we seek to identify the first two terms. The zero term,
the associated graded algebra of the p-filtration, is just P(4F ® f..#)(X) = (9° ® f..#)(X) again.
The complex (¥9°® f,.#°*)(Y) is actually bigraded and by definition its differential is the sum
of two components, one of bidegree (1,0) and extending the differential dy. and the other of
bidegree (0,1) and extending the differential df, 7.. The former increases the filtration degree so
differential induced on the associated graded Ey is dy = (id®dy, 7+ )(X).

We claim the cohomology E; of this complex can be identified with the space of global sections
(9° @2 (f.7°))(X). It is easiest to see this first at the stalk level, where clearly an element of
G°(x)®ker (ds, 7+ (x)) < 9*(x)® f.7*(x) is the same as an element of ker (id ®dy, z+)(x)) since
9*(x) is a free k-module, and similarly an element of im(idy.(,) ®dy, z+)(x) is the same as an
element of ¢°(x) ®im (dy, 7 (x)).

The differential d; on E; takes elements in the kernel of dy one level forward in the filtration,
and hence iis nduced by dy-., so it is given under our identification by (dg. ®id)(Y’). Recall from
Proposition C.1.9 that since ¢ is acyclic, sheaf cohomology on Y with coefficients in any sheaf
</ is given by the cohomology of the module of global sections of ¥° ® 7). In particular fixing
of = H(f«.#), one finds

EY" =~ HP (Y; A (fo F)).

To conceptualize this, recall that the pushforward f..# is the sheaf whose stalk at y € Y is the
direct limit of .7 (U) over neighborhoods U of f~!{y}, so

(feF)y) = H*(f{y}ik).

Thus the E; page is the cohomology of Y with coefficients varying over the cohomology of the
fibers. This spectral sequence (E,, d,) is the Leray spectral sequence of the map f: X — Y.
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Theorem C.2.1 (Leray). Let f: X — Y be a map of spaces, with Y paracompact. Let ¥ be a fine
cpGA-resolution of k on X and ¢ a fine cDGA-resolution of k on Y. Then the filtration spectral sequence
of the sheaf 4° @ f..#* with the horizontal filtration induced by the grading of ¢4° is a spectral sequence
of k-DGAs satisfying

« BT = (9P @ fL.F)(Y),
o BN =~ HP(Y; 9 (f.F)),
o EN ~ gr, HPI(X; k).

Corollary C.2.2 (Vietoris-Begle [Vie2y, Begso]). Let f: X — Y be a map of Hausdorff spaces, Y
paracompact, and suppose each for each y € Y that HS" (f~1(y); k) = 0. Then f*: H/(Y; k) — H/(X;k)
is an isomorphism for 0 < j < n and an injection for j = n + 1.

Proof. This is immediate from the E; term of the Leray spectral sequence, where rows 1 through
n + 1 are empty, so that no differential can hit the first segment ES"*1* of the bottom row, which
hence survives to E,. As the diagonals of total degree < n are only inhabited by these elements,
there is no extension problem. O

Remark C.2.3. Borel states this a bit more generally. Without complicating the proof, one can
replace .#* with the extended sheaf (#*®@M)(U) = .#*(U)®M for any k-module M to get
a Leray spectral sequence with coefficients in M. More generally still, although his exposition
does not do this, one can replace M with another sheaf &7 on X to arrive at a spectral sequence
H*(Y; #° (fod)) = H*(X; ).

Another important difference is that Borel works with compactly supported cohomology on
locally compact Hausdorff spaces. This makes no difference for compact total spaces, but the
compactness necessary to construct the cpGa-resolution of R an important reason why Serre
had to reformulate the theory in his thesis, which deals extensively, for example, with the path
fibration QX — PX — X.

Now suppose f: X — Y is a bundle with fiber F. Then preimages of small enough neighbor-
hoods V = Y are of the form V x F, so f,.7*: V +— Z*(V x F) and #(f..7°)(y) = H1(F,; k)
is a locally constant sheaf, so the cohomology groups H*(F) of individual fibers are isomorphic.
They are related to one another by isomorphisms 7.: H*(E|,y) — H*(E|,(1)) induced by lift-
ing paths : [0,1] — Y in the base to homeomorphisms between fibers, and it is possible to
convert these sheaves into a local coefficient system. Thus E, can be shown to isomorphic to
the cohomology of the complex Hom, (v) (C*(Y), H7(F; k)), where H7(F; k) is viewed as a 71 (Y)-
module through the conversion just hinted at, and in fact the Leray spectral sequence of a bundle
agrees with the Serre spectral sequence from E; onward.

C.3. Borel’s proof

In this section, we provide a proof of Chevalley’s theorem close to Borel’s original. Most of it is
in the setup; once the relevant pGas are defined, the quasi-isomorphisms are nearly immediate.
Let k = R, let G be a compact, connected Lie group, and let G — E ©> B be a smooth principal
G-bundle. Write P = PG for the space of primitives of H*(G) = H*(G;R), so that H*(G) =~ AP.
Fix a transgression
T: P = QH*(BG) —— H*(BG).
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As 7t: E — B is a principal G-bundle, there is a classifying map x: B — BG. Let [x;] be a basis
of P and [b;] = x*t(x;) € H*(B) for each j.

Let # be an fine sheaf of R-cpGas resolving the constant sheaf R on B, as guaranteed by
Proposition C.1.6 and likewise & be a fine sheaf of R-cpGas resolving the constant sheaf R on E,
so that by Definition C.1.1 and Proposition C.1.2,

H*(B) =~ H*(#(B)); = H*(E) = H*(&(E)).

We can pull % back to a sheaf 7% on E and then the tensor product 7*#Z® & is another fine
sheaf on E. If we set C = (m* A ® &)(E) with the expected differential, then by Corollary C.1.13,

H*(C) = H*((n*#® &)(E)) ~ H*(E)

as well. This C can be seen as the quotient of #(B) ® & (E) by the ideal n spanned by elements of
empty support.

By Theorem 7.4.5, the classes [x;] € PG are universally transgressive, which in particular
means in this instance they transgress in the filtration spectral sequence (E,, d,) of C as filtered
by

Cr =P (m* B ®&)(E).
izp
By Theorem C.2.1, this is a version of the Leray spectral sequence of 7t: E — B, which from
E, ~ H*(B)® H*(G) on, is isomorphic to the Serre spectral sequence of this bundle. Thus, as
discussed in Proposition 2.2.21, the transgression of the primitive classes [x;] € PG means there
exist elements c; € C such that dccj = 77%0;®1 (mod n),

These transgressive cochains allow us to compile a simpler model of H*(E) as in the previ-
ously cited version Theorem 8.1.5 of Theorem C.3.1. As AP is a free CGA, we can lift it to a subal-
gebra A[x;] of (m*# ® &)(E) generated by global sections x; of T*#® &. Let C' = #(B) ® Alx;],
with differential the unique antiderivation d¢s satisfying

dcl(b@l)Zd@b@)l, dc/(1®x])=b]®1
and filtration
(CY =P #'(B)®H*(G).
izp

Then the map

A:C—C:

b®1+— T ®1,

1 ®[x]] =

is a filtration-preserving pGa homomorphism, which we hope to show is a quasi-isomorphism.

Theorem C.3.1 (Chevalley). This map A is a quasi-isomorphism completing a commutative diagram

H*(C')
N
H*(G) a+ H*(B).
N

H*(E)
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Proof (Borel). Apply the filtration spectral sequence of (Corollary 2.6.8) to both pGas and the map
A*. As discussed above, the spectral sequence (E,,d,) of C is the Leray spectral sequence of
n: E — B. Write ('E,,'d,) for the spectral sequence of C'. The 0 page is the associated graded
algebra of the filtration:

'E)* = #"(B)® H*(G).

Since degx; > 1, we have degb; > 2, so dc: increases the filtration degree of each element of
H*(G) by at least 2, and the filtration degree of elements of %4(B) by 1. Thus no image of d¢
survives the “associated graded” procedure, so ‘dyp = 0 and

'Ey = 'Eo = B(B) @ H*(G).

The differential d; still sends generators of H*(G) at least two filtration degrees forward, but acts
as dg on #(B), so that 'd; = 65 ®idpyx«(c) and

'E, ~ H*(B) ® H*(G).

Thus 'E; =~ E; it just remains to see the map Ay: 'E, — E; itself is such an isomorphism
in a manner making the diagram commute. But 1 ®[x;] € C"' and 1 ® x; (mod n) € C both
become 1® [x;] in H*(B)® H*(G), and b®1 € C" and b ® 1 (mod n) € C both become [b]®1 in
H*(B)® H*(G). O

Historical remarks C.3.2. The proof presented above is in terms of a historically late formulation of
Leray’s technology; there were several such accounts, of gradually improving comprehensibility.
The entirety of the recounting that follows is derived from work of Borel expositing Leray’s
approach, both in 1951 and 1997 [Bor51, Borg8].

Leray’s original motivation for the topological edifice he erected seems to have been the de
Rham complex. This is an R-CGA of forms supported on various subsets, yielding a complex
which Poincaré already had shown to be trivial on Euclidean subsets, but which collate together
nonetheless to contain global information about a manifold, as conjectured by Elie Cartan and
proven by Georges de Rham in his thesis. Recall that if w, T are forms on a manifold M and f a
smooth function, the support satisfies these axioms:

supp(T + w) S supp T U supp w; supp0 = &; supp(f - w) S suppw ;
supp(T A w) S supp T N supp w; supp dw < supp(w).

Leray’s idea, beautiful in its audacity, is to equip a topological space X with a complex (complexe
concrete) K of “forms on a space,” equipped with a support function k — |k|, valued in closed
subsets of X, satisfying the first three axioms above despite the absence of any native notion of
smoothness (or notion of what “the germ of k at a point” would mean, k not being a function
in any real sense). As a purely algebraic object, a complex is a module over a commutative
coefficient ring (which we will write as A to allow us to write k € K); only the support function
imparts any topological content. If the complex is a bGa, we ask the last two axioms be satisfied
as well.

With this setup, and some further definitions, Leray is able to reprove a good amount of
existing algebraic topology as of 1945, proving that the cohomology of certain types of complexes
recovers Hopf’s and Samelson’s theorems on Lie groups, the Lefschetz fixed-point theorem, the
Brouwer fixed-point theorem, invariance of domain, Poincaré duality, and Alexander duality.
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Building up couvertures (defined below) associated to nerves of a cofinal sequence of closed
covers of a topological space, Leray can show his cohomology is isomorphic to Cech cohomology
on compact Hausdorff spaces X.

Here are some of those further definitions. Given a function f: X — Y and a complex K
on X, one defines the complex fK on Y to have the same underlying module and new support
function |k|y = f(|k|x). Given a complex L on Y, one defines, on the module level,

flL=L/{teK: f | = o}

with supports |[¢]| := f~!|¢|. As a particular example, if F X is a closed subset, the intersection
F.K is defined to be the quotient

FK:=K/{keK:|k|nF =&}

with support function k — |k| n F, and there is a natural restriction homomorphism K — F.K.
If F = {x} is a singleton, one writes xK; these are the germs of forms if K = (Q(M) is the de
Rham complex. The system of such restrictions F — F.K is an example of a sheaf (faisceau)
under Leray’s later (1946) definition, which should be contrasted with the modern definition
depending on an open cover; at this point, Leray was interested in cohomology with compact
supports on a locally compact space. An element z of the tensor product K® K’ of two complexes
is assigned support

|z| := {x € X : the image of z is nonzero under K& K’ — xK®xK'}.

The intersection KO K’ is given by
KOK' = K@K'/{ze K®K': |z| = @}.

An A-complex is fine (fin) if every finite cover (U;) of X admits a partition of unity, which is
a set of A-endomorphisms ¢;: K — K such that for each k € K

supp ¢;(k) = Uj nsuppk and ) ¢;(k) = k.
An A-complex which is a DGA is a couverture if is A-torsion free, its stalks are acyclic, i.e.,
if H*(xK) = H°(xK) =~ A for every x € X, and there exists u € K such that xu < 1 under
HO(xK) =~ A for all x € X. This is the notion our “cpGa-resolution of k” translates. Leray’s original
cohomology theory on a normal space was the cohomology of the union of all couvertures.

The intersection KO .7 of a sheaf and a complex is defined in a way that winds up equivalent
to taking the associated sheaf .#": F — F.K and forming the tensor sheaf 7" ®.%# in the modern
sense. One can also extend the coefficients of a complex K to an A-module M by considering M
as a complex with |m| = X for m # 0 and taking KO M.

By the time of Borel’s 1951 lectures on Leray’s work [Bor51], a sheaf (Borel credits this defini-
tion to Lazard) has become the espace étalé, associated to a presheaf satisfying the gluing axioms,
which is equivalent to the modern definition. The statement of the Leray spectral sequence in
these lecture notes is as follows (translation due to the present author).

Theorem C.3.3 (Leray). Let f: X — Y be a continuous map, K and L fine A-couvertures, M an
A-algebra, and E the sheaf associated to f(K® M). Then there exists a spectral sequence in which

Eo=G(f Y(L)OK®M), E;=LOH(F), E,=H(LOH(F)),

(do is the derivation with respect to K, dj the derivation with respect to L) and which terminates in the
associated graded algebra of H*(X, M), suitably filtered.



4535

4536

4537

4538
4539

4540
4541
4542

4543
4544
4545

4546

4547
4548
4549

4550

4551

4552
4553

4554
4555

4556
4557

4558
4559

4560
4561

4562
4563
4564

4565
4566

4567
4568

4569
4570
4571

4572
4573

Bibliography

[Aday6] J. Frank Adams. The work of H. Cartan in its relation with homotopy theory. Astérisque, 32-33:29—41, 1976.
[AM69] Michael F. Atiyah and Ian G. Macdonald. Introduction to Commutative Algebra. Addison-Wesley, 1969.

[Ama13] Manuel Amann. Non-formal homogeneous spaces. Math. Z., 274(3—4):1299-1325, 2013. URL: http://link.
springer.com/article/10.1007/s00209-012-1117-6, arXiv:1206.0786.

[And62] Michel André. Cohomologie des algebres différentielles oit opére une algebre de Lie. Téhoku Math. . (2),
14(3):263-311, 1962. URL: http://jstage.jst.go.jp/article/tmj1949/14/3/14_3_263/_article/-char/
ja/.

[Bau62] Paul Frank Baum. Cohomology of homogeneous spaces. PhD thesis, Princeton, December 1962. URL:

http://dropbox.com/s/uldkyz01id9vnet/cohomology_homogeneous_spaces/28Baum_dissertation_
ORIGINALY29.pdf?d1=0

[Bau68] Paul F. Baum. On the cohomology of homogeneous spaces. Topology, 7(1):15-38, 1968.

[BBEt60] Armand Borel, Glen Bredon, Edwin E. Floyd, Deane Montgomery, and Richard Palais. Seminar on transfor-
mation groups. Number 46 in Ann. of Math. Stud. Princeton Univ. Press, 1960. URL: http://indiana.edu/
~jfdavis/seminar/Borel, Seminar_on_Transformation_Groups.pdf.

[BCM] Robert R. Bruner, Michael Catanzaro, and J. Peter May. Characteristic classes. Unpublished notes.

[Begso] Edward G. Begle. The Vietoris mapping theorem for bicompact spaces. Ann. of Math., pages 534—543, 1950.

[BH58] Armand Borel and Friedrich Hirzebruch. Characteristic classes and homogeneous spaces, I. Amer. |. Math.,
pages 458-538, 1958.

[BH59] Armand Borel and Friedrich Hirzebruch. Characteristic classes and homogeneous spaces, II. Amer. . Math.,
pages 315-382, 1959.

[BH60] Armand Borel and Friedrich Hirzebruch. Characteristic classes and homogeneous spaces, III. Amer. J. Math.,
pages 491-504, 1960.

[BJog] Edgar H. Brown Jr. The Serre spectral sequence theorem for continuous and ordinary cohomology. Topology
Appl., 56(3):235-248, 1994. doi:10.1016/0166-8641(94)90077-9.

[Bor51] Armand Borel. Cohomologie des espaces localement compacts d’aprés ]. Leray, volume 2 of Lecture Notes in Math.
Springer-Verlag, 1951. Sém. de Top. alg., ETH.

[Bor53] Armand Borel. Sur la cohomologie des espaces fibrés principaux et des espaces homogenes de groupes
de Lie compacts. Ann. of Math. (2), 57(1):115—207, 1953. URL: http://web.math.rochester.edu/people/
faculty/doug/otherpapers/Borel-Sur.pdf, doi:10.2307/1969728.

[Bors4] Armand Borel. Sur I'homologie et la cohomologie des groupes de Lie compacts connexes. American Journal
of Mathematics, pages 273—342, 1954. doi:10.2307/2372574.

[Bor6y] Armand Borel. Topics in the homology theory of fibre bundles: lectures given at the University of Chicago, 1954,
volume 36 of Lecture Notes in Math. Springer-Verlag, 1967.

[Borg8] Armand Borel. Jean Leray and Algebraic Topology. In Armand Borel, editor, Jean Leray, selected papers:
Oeuvres scientifiques, volume 1, pages 1—21. Springer and Soc. Math. France, 1998. URL: http://springer.
com/cda/content/document/cda_downloaddocument/9783540609490-c1.pdf.

[BS67] Paul Baum and Larry Smith. The real cohomology of differentiable fibre bundles. Comment. Math. Helv.,
42(1):171-179, 1967.

175


http://link.springer.com/article/10.1007/s00209-012-1117-6
http://link.springer.com/article/10.1007/s00209-012-1117-6
http://link.springer.com/article/10.1007/s00209-012-1117-6
http://arxiv.org/abs/1206.0786
http://jstage.jst.go.jp/article/tmj1949/14/3/14_3_263/_article/-char/ja/
http://jstage.jst.go.jp/article/tmj1949/14/3/14_3_263/_article/-char/ja/
http://jstage.jst.go.jp/article/tmj1949/14/3/14_3_263/_article/-char/ja/
http://dropbox.com/s/u14kyz01id9vnet/cohomology_homogeneous_spaces%28Baum_dissertation_ORIGINAL%29.pdf?dl=0
http://dropbox.com/s/u14kyz01id9vnet/cohomology_homogeneous_spaces%28Baum_dissertation_ORIGINAL%29.pdf?dl=0
http://dropbox.com/s/u14kyz01id9vnet/cohomology_homogeneous_spaces%28Baum_dissertation_ORIGINAL%29.pdf?dl=0
http://indiana.edu/~jfdavis/seminar/Borel,Seminar_on_Transformation_Groups.pdf
http://indiana.edu/~jfdavis/seminar/Borel,Seminar_on_Transformation_Groups.pdf
http://indiana.edu/~jfdavis/seminar/Borel,Seminar_on_Transformation_Groups.pdf
http://dx.doi.org/10.1016/0166-8641(94)90077-9
http://web.math.rochester.edu/people/faculty/doug/otherpapers/Borel-Sur.pdf
http://web.math.rochester.edu/people/faculty/doug/otherpapers/Borel-Sur.pdf
http://web.math.rochester.edu/people/faculty/doug/otherpapers/Borel-Sur.pdf
http://dx.doi.org/10.2307/1969728
http://dx.doi.org/10.2307/2372574
http://springer.com/cda/content/document/cda_downloaddocument/9783540609490-c1.pdf
http://springer.com/cda/content/document/cda_downloaddocument/9783540609490-c1.pdf
http://springer.com/cda/content/document/cda_downloaddocument/9783540609490-c1.pdf

4574
4575

4576
4577

4578
4579
4580

4581
4582

4583
4584

4585

4586

4587
4588
4589

4590
4591

4592
4593

4594
4595
4596

4597
4598

4599
4600

4601
4602

4603
4604
4605

4606
4607

4608
4609

4610
4611

4612
4613

4614
4615

4616
4617

4618
4619

4620
4621

4622

Bibliography 176

[BTS2]

[BtD85]

[Cars1]

[Car15]

[Cens1]

[Chey6]
[Dieog]
[DWog]
[Eisos]

[Escoz]

[ET14]

[FHTo1]

[FOTo8]

[Frao6]

Raoul Bott and Loring W. Tu. Differential Forms in Algebraic Topology, volume 82 of Grad. Texts in Math.
Springer, 1982.

Theodor Brocker and Tammo tom Dieck. Representations of compact Lie groups, volume 98 of Grad. Texts in
Math. Springer, 1985.

Henri Cartan. La transgression dans un groupe de Lie et dans un espace fibré principal. In Collogue de topolo-
gie (espace fibrés), Bruxelles 1950, pages 57—71, Liege/Paris, 1951. Centre belge de recherches mathématiques,
Georges Thone/Masson et companie. URL: http://eudml.org/doc/112227.

Jeffrey D. Carlson. Some reflections on exactness and coexactness. 2015. URL: http://www.math.toronto.
edu/jcarlson/coexactness.pdf.

Centre belge de recherches mathématiques. Collogue de topologie (espace fibrés), Bruxelles 1950, Liége/Paris,
1951. Georges Thone/Masson et companie.

Shiing-Shen Chern. Characteristic classes of Hermitian manifolds. Ann. of Math., pages 85-121, 1946.
Jean Dieudonné. A history of algebraic and differential topology, 1900-1960. Springer, 2009.

William G. Dwyer and Clarence W. Wilkerson, Jr. The elementary geometric structure of compact Lie groups.
Bull. London Math. Soc., 30(4):337—364, 1998. URL: http://hopf.math.purdue.edu/Duyer-Wilkerson/lie/
liegroups.pdf.

David Eisenbud. Commutative algebra with a view toward algebraic geometry, volume 150 of Grad. Texts in Math.
Springer, 1995.

Jost-Hinrich Eschenburg. Cohomology of biquotients. Manuscripta Math., 75(2):151-166, 1992. doi:10.1007/
BF02567078.

Fouad El Zein and Loring W. Tu. From sheaf cohomology to the algebraic de Rham theorem. In Eduardo Cat-
tani, Fouad El Zein, Phillip A. Griffiths, and Lé Diing Trang, editors, Hodge Theory, volume 49 of Mathematical
Notes, chapter 2, pages 70-121. Princeton Univ. Press, 2014.

Yves Félix, Steve Halperin, and Jean-Claude Thomas. Rational homotopy theory, volume 205 of Grad. Texts in
Math. Springer, 2001.

Yves Félix, John Oprea, and Daniel Tanré. Algebraic models in geometry, volume 17 of Oxford Grad. Texts Math.
Oxford Univ. Press, Oxford, 2008. URL: www.maths.ed.ac.uk/ viranick/papers/tanre.pdf.

Matthias Franz. Koszul duality and equivariant cohomology. Doc. Math., 11:243-259, 2006. URL: emis.de/
journals/DMJDMV/vol-11/10.pdf.

[GGKoz] Viktor L. Ginzburg, Victor Guillemin, and Yael Karshon. Moment maps, cobordisms, and Hamiltonian group

actions, volume 98 of Math. Surveys Monogr. Amer. Math. Soc., Providence, RI, 2002. URL: http://utm.
utoronto.ca/ karshony/HUJI/monograph/index-pdf .html.

[GHV76] Werner H. Greub, Stephen Halperin, and Ray Vanstone. Connections, curvature, and cohomology, vol. III:

[GLSg6]
[GS99]
[Gysa1]
[Hat]
[Hato2]
[Hesgo]
[Hirg8]

[Hirs3]

Cohomology of principal bundles and homogeneous spaces. Academic Press, 1976.

Victor Guillemin, Eugene Lerman, and Shlomo Sternberg. Symplectic fibrations and multiplicity diagrams.
Cambridge Univ. Press, 1996.

Victor W. Guillemin and Shlomo Sternberg. Supersymmetry and equivariant de Rham theory, volume 2 of
Mathematics Past and Present. Springer, New York, 1999.

Werner Gysin. Zur Homologietheorie der Abbildungen und Faserungen von Mannigfaltigkeiten. Comment.
Math. Helv., 14(1):61-122, 1941.

Allen Hatcher. Spectral sequences in algebraic topology. URL: math.cornell.edu/ hatcher/SSAT/SSATpage.
html.

Allen Hatcher. Algebraic topology. Cambridge Univ. Press, 2002. URL: http://math.cornell.edu/ hatcher/
AT/ATpage.html.

Kathryn Hess. A history of rational homotopy theory. In Ioan Mackenzie James, editor, History of topology.
Elsevier, 1999.

Guy Hirsch. Un isomorphisme attaché aux structures fibrées. C. R. Acad. Sci. Paris, 2277:1328-1330, 1948.
URL: http://gallica.bnf.fr/ark:/12148/bpt6k3179j/£1320.

Guy Hirsch. Sur les groupes d’homologie des espaces fibrés. Bull. Soc. Math. Belgique, 6:79—96, 1953.


http://eudml.org/doc/112227
http://www.math.toronto.edu/jcarlson/coexactness.pdf
http://www.math.toronto.edu/jcarlson/coexactness.pdf
http://www.math.toronto.edu/jcarlson/coexactness.pdf
http://hopf.math.purdue.edu/Dwyer-Wilkerson/lie/liegroups.pdf
http://hopf.math.purdue.edu/Dwyer-Wilkerson/lie/liegroups.pdf
http://hopf.math.purdue.edu/Dwyer-Wilkerson/lie/liegroups.pdf
http://dx.doi.org/10.1007/BF02567078
http://dx.doi.org/10.1007/BF02567078
http://dx.doi.org/10.1007/BF02567078
www.maths.ed.ac.uk/~v1ranick/papers/tanre.pdf
emis.de/journals/DMJDMV/vol-11/10.pdf
emis.de/journals/DMJDMV/vol-11/10.pdf
emis.de/journals/DMJDMV/vol-11/10.pdf
http://utm.utoronto.ca/~karshony/HUJI/monograph/index-pdf.html
http://utm.utoronto.ca/~karshony/HUJI/monograph/index-pdf.html
http://utm.utoronto.ca/~karshony/HUJI/monograph/index-pdf.html
math.cornell.edu/~hatcher/SSAT/SSATpage.html
math.cornell.edu/~hatcher/SSAT/SSATpage.html
math.cornell.edu/~hatcher/SSAT/SSATpage.html
http://math.cornell.edu/~hatcher/AT/ATpage.html
http://math.cornell.edu/~hatcher/AT/ATpage.html
http://math.cornell.edu/~hatcher/AT/ATpage.html
http://gallica.bnf.fr/ark:/12148/bpt6k3179j/f1320

4623
4624
4625

4626
4627
4628

4629

4630
4631

4632
4633

4634

4635
4636

4637
4638

4639
4640

4641
4642

4643
4644
4645

4646
4647

4648
4649

4650
4651

4652
4653
4654

4655

4656

4657
4658
4659

4660
4661
4662

4663
4664

4665
4666

4667
4668

4669
4670

4671

Bibliography 177

[HMo6] Karl H. Hofmann and Sidney A. Morris. The structure of compact groups: A primer for students — a handbook
for the expert, volume 25 of De Gruyter Studies in Mathematics. Walter de Gruyter, 2nd revised and augmented
edition edition, 2006.

[HMoy] Karl H. Hofmann and Sidney A. Morris. The Lie theory of connected pro-Lie groups: A structure theory for pro-Lie
algebras, pro-Lie groups, and connected locally compact groups, volume 2 of EMS Tracts Math. Eur. Math. Soc.,
2007.

[Hop4o] Heinz Hopf. Uber den Rang geschlossener Liescher Gruppen. Comment. Math. Helv., 13(1):119-143, 1940.

[Hop41] Heinz Hopf. Uber eie Topologie der Gruppen-Mannigfaltigkeiten und ihre Verallgemeinerungen. Ann. of
Math., 42(1):22-52, Jan 1941. URL: http://jstor.org/stable/1968985.

[HS40] Heinz Hopf and Hans Samelson. Ein Satz tiber die Wirkungsraume geschlossener liescher Gruppen. Com-
ment. Math. Helv., 13(1):240-251, 1940.

[Hsiys] Wu-Yi Hsiang. Cohomology theory of topological transformation groups. Springer, 1975.

[Kapog4] Vitali Kapovitch. A note on rational homotopy of biquotients. 2004. URL: http://math.toronto.edu/vtk/
biquotient.pdf.

[Kosg7a] Jean-Louis Koszul. Sur les opérateurs de dérivation dans un anneau. C. R. Acad. Sci. Paris, 225(4):217-219,
1947.

[Kosg7b] Jean-Louis Koszul. Sur I'homologie des espaces homogenes. C. R. Acad. Sci. Paris, 225:477-479, Sep 1947.
URL: http://gallica.bnf.fr/ark:/12148/bpt6k3177x/£477.

[Kos50] Jean-Louis Koszul. Homologie et cohomologie des algebres de Lie. Bulletin de la Société Mathématique de
France, 78:65-127, 1950.

[Koss51] Jean-Louis Koszul. Sur un type d’algebres differentielles en rapport avec la transgression. In Collogue de
topologie (espace fibrés), Bruxelles 1950, pages 73-81, Liége/Paris, 1951. Centre belge de recherches mathéma-
tiques, Georges Thone/Masson et companie.

[KTo3] Dieter Kotschick and Svjetlana Terzi¢. On formality of generalized symmetric spaces. Math. Proc. Cambridge
Philos. Soc., 134(03):491-505, 2003.

[Lerg6a] Jean Leray. Structure de I'anneau d’homologie d'une représentation. C. R. Acad. Sci. Paris, 222:1419-1422, Jul
1946. URL: http://gallica.bnf.fr/ark:/12148/bpt6k31740/£1419.

[Ler46b] Jean Leray. Sur I'anneau d’homologie de 1’espace homogene quotient d'un groupe clos par un sous-groupe
abélien, connexe, maximum. C. R. Acad. Sci. Paris, 229:412—415, 1946.

[Lergoa] Jean Leray. Détermination, dans les cas non exceptionnels, de I'anneau de cohomologie de 1’espace ho-
mogene quotient d’un groupe de Lie compact par un sous-groupe de méme rang. C. R. Acad. Sci. Paris,
228(25):1902-1904, 1949.

[Lergob] Jean Leray. Sur I'anneau de cohomologie des espaces homogenés. C. R. Acad. Sci. Paris, 229(4):281-283, 1949.

[Lerso] Jean Leray. L'homologie d’un espace fibré dont la fibre est connexe. . Math. Pures Appl., 29:169—213, 1950.

[Lers1i] Jean Leray. Sur I’homologie des groupes de Lie, des espaces homogenes et des espaces fibrés principaux. In
Colloque de topologie (espace fibrés), Bruxelles 1950, pages 101—115, Lieége /Paris, 1951. Centre belge de recherches
mathématiques, Georges Thone/Masson et companie.

[Ler72] Jean Leray. Fixed point index and Lefschetz number. In Symposium on Infinite-Dimensional Topology, Louisiana
State Univ. Baton Rouge, 1967, volume 69 of Ann. of Math. Stud., pages 219—234. Princeton Univ. Press, 1972.
Editor: R. D. Anderson. URL: http://www. jstor.org/stable/j.cttlbgzb8c.

[Macs6] Saunders Mac Lane. Book review: Henri Cartan and Samuel Eilenberg, Homological algebra. Bull. Amer. Math.
Soc., 62(6):615-624, 1956. URL: http://projecteuclid.org/euclid.bams/1183521097.

[Mass52] William S. Massey. Exact couples in algebraic topology (Parts I and II). Ann. of Math., pages 363-396, 1952.
doi:10.2307/1969805.

[Mas53] William S. Massey. Exact couples in algebraic topology (Parts III, IV, and V). Ann. of Math., pages 248-286,
1953. doi:10.2307/1969858.

[Mas55] William S. Massey. Some problems in algebraic topology and the theory of fibre bundles. Ann. of Math.,
pages 327-359, 1955. doi:10.2307/1970068.

[Masg1] William S. Massey. A basic course in algebraic topology, volume 127 of Grad. Texts in Math. Springer, 1991.


http://jstor.org/stable/1968985
http://math.toronto.edu/vtk/biquotient.pdf
http://math.toronto.edu/vtk/biquotient.pdf
http://math.toronto.edu/vtk/biquotient.pdf
http://gallica.bnf.fr/ark:/12148/bpt6k3177x/f477
http://gallica.bnf.fr/ark:/12148/bpt6k31740/f1419
http://www.jstor.org/stable/j.ctt1bgzb8c
http://projecteuclid.org/euclid.bams/1183521097
http://dx.doi.org/10.2307/1969805
http://dx.doi.org/10.2307/1969858
http://dx.doi.org/10.2307/1970068

4672
4673

4674
4675

4676
4677
4678

4679
4680

4681
4682

4683
4684

4685
4686

4687

4688
4689

4690

4691
4692

4693
4694

4695
4696

4697
4698

4699

4700
4701

4702

4703
4704

4705
4706

4707

4708
4709

4710
4711

4712
4713

4714
4715

4716
4717
4718

Bibliography 178

[McCo1]

[Mils6]

[Miloo]

[MS68]

[MToo]

[Munz4]

[Oniz2]

[Onig4]
[Pitg1]

[Pos66]
[Ral]

[Ras69]

[Rie11]

[Samg41]

[Sams2]
[Sam77]

[Seroo]

[Smi6y]

[Stea]

[Steb]
[Ste48]

[Stes1]

[Sti35]

[Sul77]

[Tero1]

John McCleary. A user’s guide to spectral sequences, volume 58 of Cambridge Stud. Adv. Math. Cambridge Univ.
Press, Cambridge, 2001.

John W. Milnor. Construction of universal bundles, II. Ann. of Math., 63(3):430-436, May 1956. URL: http:
//math.mit.edu/ hrm/18.906/milnor-construction-universal-ii.pdf, doi:10.2307/1970012.

Haynes Miller. Leray in Oflag XVIIA: the origins of sheaf theory, sheaf cohomology, and spectral sequences.
Gazette des mathématiciens, (84 suppl.):17-34, Apr 2000. URL: http://www-math.mit.edu/ hrm/papers/ss.
pdf.

John C. Moore and Larry Smith. Hopf algebras and multiplicative fibrations, I. Amer. ]. Math., pages 752—780,
1968.

Mamoru Mimura and Hiroshi Toda. Topology of Lie groups, I and II, volume 91 of Transl. Math. Monogr. Amer.
Math. Soc., Providence, RI, 2000.

Hans J. Munkholm. The Eilenberg-Moore spectral sequence and strongly homotopy multiplicative maps. J.
Pure Appl. Algebra, 5(1):1-50, 1974.

Arkadi L. Onis¢ik [Onishchik]. On certain topological invariants of homogeneous spaces. Mat. Zametki,
12:761-768, 1972. [in Russian].

Arkadi L. Onishchik. Topology of transitive transformation groups. Johann Ambrosius Barth, 1994.

Harsh V. Pittie. The integral homology and cohomology rings of SO(n) and Spin(n). J. Pure Appl. Algebra,
73(2):105-153, 1991.
Mikhail Mikhailovich Postnikov. On Cartan’s theorem. Russian Mathematical Surveys, 21(4):25—36, 1966.

Ralph. Transgression maps in group cohomology and group homology / duality of spectral sequences.
MathOverflow. URL: http://mathoverflow.net/q/124114.

Petr Konstantinovich Rashevskii. The real cohomology of homogeneous spaces. Russian Mathematical Sur-
veys, 24(3):23, 1969.

Emily Riehl. A leisurely introduction to simplicial sets. 2011. Unpublished expository article. URL: http:
//www.math.harvard.edu/~{}eriehl.

Hans Samelson. Beitrage zur Topologie der Gruppen-Mannigfaltigkeiten. Ann. of Math., 42(1):1091-1137, Jan
1941. URL: http://jstor.org/stable/1970463.

Hans Samelson. Topology of Lie groups. Bull. Amer. Math. Soc., 58(1):2-37, 1952.

Hans Samelson. Book review: Werner Greub, Stephen Halperin and Ray Vanstone, Connections, curvature,
and cohomology. Bull. Amer. Math. Soc., 83(5):1011-1015, 1977. doi:10.1090/50002-9904-1977-14358-9.

Jean-Pierre Serre. Local algebra. Monographs in Mathematics. Springer, 2000.

Larry Smith. Homological algebra and the Eilenberg—Moore spectral sequence. Trans. Amer. Math. Soc.,
129:58-93, 1967. doi:10.2307/1994364.

Norman E. Steenrod. Cohomology invariants of mappings. Ann. of Math., pages=954-988, year=1949,
doi=10.2307/1969589.

Stepien.

Norman Steenrod. Review: Hirsch, Guy. “Un isomorphisme attaché aux structures fibrées.”. MR, 1948.
MRo0029167.

Norman Earl Steenrod. The topology of fibre bundles, volume 14 of Princeton Mathematical Series. Princeton
Univ. Press, 1951.

Eduard Stiefel. Richtungsfelder und Fernparallelismus in n-dimensionalen Mannigfaltigkeiten. Comment.
Math. Helv., 8(1):305-353, 1935. doi:10.1007/BF01199559.

Dennis Sullivan. Infinitesimal computations in topology. Publications Mathématiques de 'THES, 47(1):269-331,
1977
Svjetlana Terzi¢. Cohomology with real coefficients of generalized symmetric spaces. Fundam. Prikl. Mat,

7(1):131-157, 2001. In Russian. URL: http://mathnet.ru/php/archive.phtml?wshow=paper&jrnid=fpm&
paperid=556.


http://math.mit.edu/~hrm/18.906/milnor-construction-universal-ii.pdf
http://math.mit.edu/~hrm/18.906/milnor-construction-universal-ii.pdf
http://math.mit.edu/~hrm/18.906/milnor-construction-universal-ii.pdf
http://dx.doi.org/10.2307/1970012
http://www-math.mit.edu/~hrm/papers/ss.pdf
http://www-math.mit.edu/~hrm/papers/ss.pdf
http://www-math.mit.edu/~hrm/papers/ss.pdf
http://mathoverflow.net/q/124114
http://www.math.harvard.edu/~{}eriehl
http://www.math.harvard.edu/~{}eriehl
http://www.math.harvard.edu/~{}eriehl
http://jstor.org/stable/1970463
http://dx.doi.org/10.1090/S0002-9904-1977-14358-9
http://dx.doi.org/10.2307/1994364
http://dx.doi.org/10.1007/BF01199559
http://mathnet.ru/php/archive.phtml?wshow=paper&jrnid=fpm&paperid=556
http://mathnet.ru/php/archive.phtml?wshow=paper&jrnid=fpm&paperid=556
http://mathnet.ru/php/archive.phtml?wshow=paper&jrnid=fpm&paperid=556

4719
4720

4721

4722
4723

4724

4725
4726

4727
4728

4729
4730

4731
4732

Bibliography 179

[Trag3]

[Tu11]
[Tuar]

[VA67]
[Vie27]

[Wary1]

[Wik14]

[Zees8]

Aleksei Tralle. On compact homogeneous spaces with non-vanishing Massey products. In Proc. Conf. Opava,
August 24—28, 1992, Silesian University, Opava, Czechoslovakia, volume 1 of Math. Publ., pages 47-50, 1993.

Loring W. Tu. An Introduction to Manifolds. Universitext. Springer, 2nd edition, 2011.

Loring W. Tu. Introductory Lectures on Equivariant Cohomology. Annals of Mathematics Studies. Princeton
University Press, to appear.

Bartel Leendert Van der Waerden and Emil Artin. Algebra II. Springer, 1967.

Leopold Vietoris. Uber den hoheren Zusammenhang kompakter Rdume und eine Klasse von zusammen-
hangstreuen Abbildungen. Math. Ann., 97(1):454—472, 1927.

Frank W. Warner. Foundations of differentiable manifolds and Lie groups, volume 94 of Grad. Texts in Math.
Springer, 1971.

Wikipedia. Eckmann-Hilton argument — Wikipedia, The Free Encyclopedia, 2014. [accessed 18-March-2015].
URL: http://en.wikipedia.org/w/index.php?title=Eckmann--Hilton_argument&oldid=631784085.

E. C. Zeeman. A note on a theorem of Armand Borel. Math. Proc. Cambridge Philos. Soc., 54(3):396—398, 1958.
do0i:10.1017/S0305004100033612.


http://en.wikipedia.org/w/index.php?title=Eckmann--Hilton_argument&oldid=631784085
http://dx.doi.org/10.1017/S0305004100033612

4733

4734

4735

4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754

4755

4756

4757

4758

4759

4760
4761
4762

4763
4764

Index of results

G/Ng(T) is rationally acyclic, 61

Algebraic Kiinneth, 136
torsion-free, 137

Cohomology

of SO and Spin
mod 2, 41

of SO(n), 40
mod 2, 41

of Spin(n), 41

of Sp(n), 32

of SU(n), 32

of U(n), 31

of V(R"), 36

of a flag manifold
is even-dimensional, 59

4765

4766

4767

4768

4769

4770

is regular representation of Weyl group,

62
of a real Stiefel manifold, 40
of complex Stiefel manifolds, 33
of Lie groups
is generated by primitives, 28

of quaternionic Stiefel manifolds, 33

comparison, 21

Hurewicz surjects onto primitives of H,(G), 30

Joins are highly connected, 54
Koszul algebra is acyclic, 71
Lie groups are formal, 43

Spectral sequence
filtration, 19
Serre, 8

The classifying space is unique, 51
The infinity-sphere is contractible, 52

Topological Kiinneth, 140
Total Betti number of G is 2XG, 30

Universal coefficients, 140
Universality is contractibility, 51

Weyl group invariants, 64, 65

Zeeman—Moore, 21

180



4771

4772

4773
4774
4775

4776

4777
4778
4779
4780

4781
4782

4783
4784

4785
4786

4787

4788

4789

Dramatis personae

Baul, Paul, 113
Borel, Armand, 26

Cartan
Elie, 113, 114
Henri, 24, 113, 123
Chern, Shiing-Shen, 24

Halperin, Stephen, 113
Hirsch, Guy, 24

Hopf, Heinz, 26, 28
Hurewicz, Witold, 141

Koszul, Jean-Louis, 24
Kuin’, Doan, 113

Lefschetz, Solomon, 141, 142
Leray, Jean, 24

Massey, William, 24
Milnor, Jack, 28
Moore, John C., 28

Onishchik, Arkadi, 113

Whitehead, J.H.C., 141

181



4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825

4826

Index of symbols

C*(A"), 45
Ca(X), 47
EG®¢ X, 57
EG — BG, 49
EV,72

EX, 55

Eo, 18

Eg’q, 20

Ey, 17,18

E, = H(C), 17

EP, 20

F.K, 155
F-Bun/¢o, 13
FPA"', 20
F,C, 15
F,H(C), 16
Fyg, 19
Gn(C*®), 53
H(A,d), 135

4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862

4863

*

(Ke, k), 47
(X; ), 148
"(A,d), 135
*(K., k)/ 47
Ha(A), 135
J, 98

KOK, 155
KV, 71

KV, 71
K[v], 70
K[v]n, 71
K[v]pq, 70
K-Top, 63
K="[V], 71
KAH, 72
Ka(@, M), 73
Kg, 145

Kh, 145

K., 45

N€, 57
Ng(K), 147
PA, 28

PG, 28

P’A, 28

QA, 28
SVeven, 132
S[f], 132

5%, 52
Va(C¥), 53
W, 63, 124, 147
XY, 54

X xpE, 144
Xe, 57
Zg(K), 147
Z,, 18

[x, y], 147
AV, 132

*

H
H
H
H

182



4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908

Index of symbols

Alv,...,04,...], 132
A", 44
H¢-CGA, 63

Homg (K., L.), 46

Homeo F, 144
AVoad, 132
AlZ], 132

Q, 124
Q-CGA, 63
2V = V.,l, 71
Tor;[p’q, 74
ad, 147

~, 139
DFEC, 15
X, 58

X(A), 134
X(X), 134
x(f), 141

~, 129, 139
9,47

df(G, K), 108
gr, C, 15
gr. f, 15

L, 35

k-CGA, 130
k-Ch, 135

<, 129

<, 129

P, 97

A, 131

~

Gn(R™), 53
%G/ 56
CP*®, 52
C®, 52
SO, 41
Spin, 41
%O/ 57
61,57
AP, 149
CW, 140
Top, 139
W, 25
bideg, 130
Bo, 18

4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953

Zo, 18
oM, 139
X, 139
TG, 53(3

P, 28
dega, 130
deg f, 130
exp, 146
=, 139

M, 139
—, 47

T, 23
~,139
g, 129
|Kel, 45
lal, 130
k|, 154
o, 64
c(M), 84
c(V), 84
c*(E), 83
dn, 135
e®x, 57
f|U/ 129
f* 135
f*E, 144
1%, 149
[+, 149
h*E, 144
h*p, 144
h*(X), 134
H*(X), 134
i]’.“, 46

k, 7,15, 135
p, 16
p(A), 133
p(X), 134
4,19
—\—, 139
—lu, 144
HE(XGk), 58
ch’ 56
/131
*"X, 55

183



4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965

4966

4967

4968

4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986

4987

4988

Index of terms

(—1)-connected, 54
H*-surjective, 135
oo-sphere, 52
N-graded, 130
n-connected, 54
n-skeleta, 139
p-simple system of generators, 81
ph column, 130

g™ row, 130
(TYN(H/C)Z, 103
cpGA-resolution, 149
CGA, 130

PDA, 133

spectral sequence
of the Koszul algebra, 72

algebra
bigraded
commutative, 130
Cartan, 94, 97, 107
differential graded, 136
commutative, 136
model, 43
semisimplicial, 46
filtered, 15
graded commutative, 130
free, 132
Koszul, 71
of polynomial differential forms, 46
of smooth differential forms, 46
Poincaré duality, 133
associated graded module, 15
attaching map, 139
augmentation, 131
augmentation ideal, 131

base space of a fiber bundle, 143

4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002

5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024

5025

Betti number, 134
total, 61, 134
of a space, 134
bidegree, 130
bigrading, 130
Borel construction, 57
Borel fibration, 57
bundle, 143
over another, 13
principal, 144
associated, 145
universal, 49
pullback, 144
smooth, 144

Cartan
Henri, 103
Cartan algebra, 94, 97, 107, 126
of a compact, connected pair, 95
Cartan decomposition, 113
Cartan model, 124
Cartan’s theorem, 92
centralizer, 147
chain complex, 135
chain map, 135
characteristic class, 83
characteristic classes
Chern, 83
Euler, 83
of a vector bundle, 84
Pontrjagin, 83
characteristic factor, 99
characteristic map, 99
characteristic numbers, 84
characteristic subring, 99, 107
Chern classes, 83
Chevalley’s theorem, 93
choice of transgression, 75

184



5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063

5064

5065
5066
5067
5068
5069

5070

Index of terms

circle, 147
classical groups, 146
classifying map, 49
classifying space, 49
cochain map, 135
coexactness, 131
cohomology, 135
(Borel) equivariant, 58
of BG, 74
of BS!, 66
of BT, 69
of a semisimplicial set, 47
of a differential module, 135
of a homogeneous space, 89
of a principal bundle, 93
of a sheaf, 148
of classifying spaces, 66
sheaf, 149
cohomology-surjective pair, 99
column, 130
compact, connected pair, 89

comparison theorem of Zeeman and Moore, !

77, 80
complementary grading, 19

complete flag manifold, 59
complex, 135
acyclic, 135
chain, 135
cochain, 135
Koszul, 73
complex projective space
infinite, 52
component maps, 136
cone, 55
convergence of a spectral sequence, 17
coproduct, 25
couverture, 155
CW complex, 139
CW pairs, 140

deficiency, 108
degree, 130
of a homomorphism, 130
of an element, 130
derivation, 136
derived couple, 17

5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081

5082

5083
5084
5085
5086
5087
5088
5089
5090
1
5092
5093
5094
5095

5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113

5114

differential bigraded algebra, 136
differential form
on a simplex
polynomial, 46
smooth, 45
differential graded algebra, 136
differential module, 135
exact, 135
filtered, 16
differential of a module, 135
direct image sheaf, 149
duality map, 133

edge map, 9
Eilenberg-Moore spectral sequence, 126
element
homogeneous, 130
Elizabethan drama, 74
equal-rank pair, 103
Euler characteristic, 10, 61, 63, 85, 134
Euler class, 83
exact couple, 16
derived, 17
exactness, 131
exceptional groups, 146
exponential, 146

fiber, 143
fiber bundle, 143
fiber product, 144
fiber space, 143
fibration
Borel, 57
filtered differential graded algebra, 19
filtration
bounded, 15
exhaustive, 15
finite, 15
finite in each degree, 15
Hausdorff, 15
horizontal, 20
filtration spectral sequence, 20
of the Koszul algebra, 72
finite type, 133
formal pair, 107
formality

185



5115
5116
5117

5118

5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139

5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
51562
5153
5154
5155

5156
5157

Index of terms

of a differential graded algebra, 43
of a pair, 107, 109, 110
of a space, 43, 110

fundamental class, 133

generalized symmetric pair, 114
generators
p-simple, 81
simple, 132
topological, 147
geometric realization, 45
graded module, 130
grading
multiplicative, 71
resolution, 73
Grassmannian, 53
oriented, 53
group
centralizer, 147
Lie
classical, 146
exceptional, 146
semisimple, 146
simple, 146
normalizer, 147
Weyl, 62, 88, 147

H-space, 25
Hausdorff, 15
heroic era of large tuples, 56, 88
homogeneous element, 130
homology
of a semisimplicial set, 47
homomorphism
of spectral sequences, 17
of graded modules, 130
homotopy equivalence
weak, 141
homotopy quotient, 57
Hopf algebra, 26
Hopf’s theorem, 26
horizontal filtration, 20
Hurewicz map, 141

ideal
regular, 73

5158
5159
5160
5161
5162

5163

5164
5165
5166

5167

5168
5169
5170
5171
5172
5173
5174
5175
5176

5177

5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199

5200

186

indecomposable, 28
inverse image sheaf, 149
isomorphism

of fiber bundles, 143
isomorphisms, 143

join, 54

Killing form, 88, 114, 147
Koszul algebra, 71
Koszul complex, 73
Koszul differential, 71

lacunary considerations, 22
Lefschetz number, 141
Leray spectral sequence, 151
Lie group
classical, 146
exceptional, 146
semisimple, 146
simple, 146
limiting page, 17
locally trivial, 143

manifold
flag, 59
Grassmann
complex, 53
oriented, 53
map
attaching, 139
cellular, 140
chain, 135
classifying, 49
cochain, 135
component, 136
edge, 9
exponential, 146
fiber-preserving, 143
Hurewicz, 141
of bundles, 143
of classifying spaces, 85
of spectral sequences, 17
semisimplicial, 46
transfer, 142
transition, 143
trivial in cohomology, 135



5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216

5217
5218

5219

5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243

Index of terms

trivialization, 143
maximal torus, 147
mixing diagram, 51
model of a space, 43
module
associated graded, 15
cohomology, 135
differential, 135
exact, 135
filtered, 15
graded
filtered, 15
of finite type, 133
of indecomposables, 28
module of indecomposables, 28
multiplicative grading, 71

nerve, 57
normalizer, 147

oriented Grassmannian, 53

page
limiting, 17
page of a spectral sequence, 17
pair
Cartan, 107
cohomology-surjective, 99
compact, 89
equal-rank, 103
formal, 107
generalized symmetric, 114
Poincaré duality algebra, 133
Poincaré polynomial, 10, 133
polynomial differential forms, 46
Pontrjagin classes, 83
Pontrjagin numbers, 85
preservation of filtration, 15
primitive element, 28
primitive subspace, 28
principal bundle, 144
associated, 145
universal, 49
product, 25
pullback, 144
pullback bundle, 144

5244

5245
5246
5247
5248
5249
5250
5251

5252

5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286

5287

quasi-isomorphism, 135

regular ideal, 73
regular sequence, 73
resolution, 148
by sheaves of cpcas, 149
of a sheaf, 148
resolution grading, 73
restriction, 144
row, 130

Samelson complement, 98
Samelson subring, 97
Samelson subspace, 97
Samelson’s theorem, 99
Samelson, Hans, 28, 99, 103
section, 137
semisimplicial map, 46
semisimplicial set, 45
semisimplicity, 146
sequence
coexact, 131
exact, 131
regular, 73
Serre spectral sequence, 8
sheaf
acyclic, 148
cohomology, 149
direct image, 149
early definition of, 155
fine, 148
inverse image, 149
of CDGAs, 149
sheaf cohomology, 148
simple groups, 146
simple system of generators, 132
spectral sequence
convergence of, 17
first-quadrant, 20
limiting page of, 17
of a filtered paGa, 20
of an exact couple, 17
of Leray, 151
page of, 17
Serre, 8
split, 137

187



5288
5289
5290
5291
5292
5293

5294

5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312

5313

5314

5315

5316
5317
5318
5319

Index of terms

Stiefel manifolds, 53

Stiefel-Whitney classes, 83

surjects in cohomology, 135

suspension, 71

symmetric space, 114
generalized, 114

symplectic Pontrjagin classes, 83

tensor product

graded, 131

of sheaves, 149
topological generator, 147
torus, 69, 147

maximal, 147
total Betti number, 61
total rank, 134
total singular complex, 47
total space, 143
transfer map, 142
transgression, 23

choice of, 75

in the Serre spectral sequence, 11
transgression theorem

Borel, 76

little, 78
transition functions, 143
trivializations, 143

universal compact cover, 146
universal principal bundle, 49

weak homotopy equivalence, 141
Weil algebra, 124

Weil model, 124

Weyl group, 62, 63, 88, 147

188



	Table of contents
	List of figures
	Acknowledgments
	Apology: How this book came to be
	Introduction
	The rational cohomology of Lie groups
	Spectral sequences
	The idea of a spectral sequence
	The Serre spectral sequence
	Sample applications 
	Sphere bundles
	Homotopy groups of spheres and Eilenberg–Mac Lane spaces

	A natural lemma on bundles
	Filtered objects
	The filtration spectral sequence
	Fundamental results on spectral sequences
	The transgression
	Proofs regarding the Serre spectral sequence

	The cohomology of the classical groups
	Complex and quaternionic unitary groups
	Real difficulties

	Formality and polynomial differential forms
	Formality
	Polynomial differential forms
	Semisimplicial sets
	Forms on semisimplicial sets

	Comparison with singular cohomology
	Simplicial sets

	Classifying spaces
	The weak contractibility of EG
	An ad hoc construction of EG for G compact Lie
	Milnor's functorial construction of EG
	Segal's functorial construction of EG
	The Borel construction

	The cohomology of complete flag manifolds
	The cohomology of a flag manifold
	The acyclicity of G/NG(T)
	Weyl-invariants and the restricted action a maximal torus

	The cohomology of classifying spaces
	The Serre spectral sequence of S1 ES1 BS1
	The Serre spectral sequence of T ET BT
	The Koszul complex
	The Serre spectral sequence of G EG BG
	Statements
	Two proofs
	Complements

	Characteristic classes
	Maps of classifying spaces
	Maps of classifying spaces of tori
	Maps of classifying spaces of connected Lie groups


	The cohomology of homogeneous spaces
	The Borel–Cartan machine
	The fiber sequence
	Chevalley's and Cartan's theorems

	The structure of the Cartan algebra, I
	Cohomology computations, I
	Cohomology-surjective pairs
	Pairs of equal rank

	The structure of the Cartan algebra, II: formal pairs
	Cohomology computations, II: symmetric spaces
	Cohomology computations, III: informal spaces
	Sp(5)/SU(5)
	SU(6)/SU(3)2

	Cohomology computations, IV: G/S1
	Valediction
	Cartan's approach to the Cartan algebra
	The Eilenberg–Moore approach
	Biquotients and Sullivan models
	Further reading


	Algebraic background
	Commutative algebra
	Commutative graded algebra
	Free graded algebras
	Poincaré duality algebras
	Polynomials and numbers associated to a graded module

	Differential algebra
	Differential graded algebras
	The algebraic Künneth theorem

	Splittings

	Topological background
	Algebraic topology grab bag
	Cell complexes

	Covers and transfer isomorphisms
	Fiber bundles
	Principal bundles
	Fibrations

	The structure of Lie groups
	The maximal torus


	Borel's proof of Chevalley's theorem
	Sheaf cohomology
	The Leray spectral sequence
	Borel's proof

	Bibliography
	Index of theorems
	Dramatis personae
	Index of symbols
	Index of terms

