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Apology: How this book came to be

This monograph evolved from a dissertation whose purpose was to explore the satisfiability and
consequences of a technical condition on Borel equivariant cohomology called equivariant formal-
ity, as applied to the isotropy action on a homogeneous space G{K, which the author eventually
found required a detailed study of the singular cohomology of that space.

The standard way to compute H˚pG{K;Rq is to identify it with the Borel equivariant cohomol-
ogy H˚

KpG;Rq and to determine it using the Cartan model. This model is already discused by the
monograph of Guillemin and Sternberg [GS99] and by the forthcoming text [Tuar] of Tu, among
other places, and a standard discussion involves a level of differential geometry and Lie theory
the present author wanted to avoid in the present work. As applied to compute H˚pG{K;Rq it is
also discussed in the tomes of Onishchik and of Greub–Halperin–Vanstone [Oni94, GHV76]. As
it turns out, the Cartan model in the case of the author’s thesis can be concisely constructed from
mostly algebraic considerations, avoiding structure constants and indices, using the Serre spec-
tral sequence and simple algebraic models, in a way which is much more economical and makes
few presuppositions of the reader. The resulting theory is both simple and beautiful. Moreover,
its historical development involved the discovery of spectral sequences, classifying spaces, and
commutative models in rational homotopy theory, and thus an exposition of this historical ques-
tion, surprisingly, gives a perfect opportunity to develop many fundamental notions of algebraic
topology which fit together nicely into a second graduate course.

The author, having taught himself this material, initially put his own development in his
dissertation operating on the spurious assumption that committee members would appreciate
having all the background in one place. By the time he realized this was incorrect, he was already
committed to producing a document that could serve as a reference.1

The existing literature
To explain our insistence on presenting yet another version of an old if insufficiently publicized
story, some discussion of other expositions is in order.

The primary literature predominantly dates to a movement from 1949–53 clustered around
Henri Cartan, and is presented rather telegraphically, littered with references to results whose
proofs were never published, and reliant on an early version of sheaf theory which is now vir-
tually forgotten. (These works will be cited in historical commentary throughout, especially in
Chapter 8 and a version of this early account of sheaf theory and Borel’s original derivation of
the Cartan model are written up in Appendix C.) There are also long surveys by André and by

1 It may also be that realizing his dissertation was the only published document he was ever likely to have complete
creative control over, he went somewhat overboard. The present account is somewhat more streamlined than the thesis
itself.

viii
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Rashevskii [And62, Ras69] summarizing the results of this school in greater detail, but still aimed
at the professional, but the main secondary sources in English are the books of Onishchik and of
Greub–Halperin–Vanstone [Oni94, GHV76].

Onishchik is relatively concise at under 300 pages, and surprisingly difficult to lay hands on.
With a view toward classifying pairs pG, Kq of compact, connected Lie groups with respect to the
diffeomorphism, homeomorphism, or homotopy type of G{K, it develops Lie theory, a real ver-
sion of Sullivan’s rational homotopy theory, the Weil algebra, the theory of symmetric invariants,
and the Cartan model. The Weil algebra appears ex nihilo, as it were, without reference to the con-
nection and curvature forms associated to a principal bundle which were Weil’s motivation. It is
notable that through diligent use of filtration arguments, Onischik manages to completely avoid
invoking spectral sequences. His end goal is classfication problems relating transitive actions

The book of Greub, Halperin, and Vanstone, on the other hand, comprises nearly 600 pages.
It develops the necessary background in great generality, finally arriving at the target results on
the cohomology of homogeneous spaces in Ch. XI [GHV76, p. 457]. The development is an earlier
language than that now current2 and the notation, which is highly nonstandard, is, as Samelson
notes in his otherwise favorable review [Sam77], not indexed. The book’s thoroughness and the
generality of the formulations result perforce in an ouroboric format where the topological results
at the end are notational permutations of algebraic results obtained toward the beginning. Hence
the most possible is said about any topic touched, and reading a proof involving a topological
space is a recursive process with three to four iterations.3 The list of notations used by Onishchik
is unfortunately incomplete.

Our approach
The present book cannot hope and would not presume to compete with the existing secondary
literature in terms of scope or depth. What it can do, by way of contrast, is present the material as
briefly and directly as possible, through a purely topological lens, assuming minimal prerequi-
sites, and with a complete index of notation. Thus the goal of this monograph is to arrive along a
quasigeodesic path at Chevalley’s and Cartan’s respective theorems on the cohomology of princi-
pal bundles G Ñ P Ñ B and homogeneous spaces G{K, showing both how one computes this in
general and in many specific examples. There are many other paths one could go down along the
way, and throughout these detours are clearly marked. The Serre spectral sequence is developed
from scratch, Lie theory is quoted only when necessary, which is not often, and the results are
seen to follow for essentially algebraic reasons from the presence of the multiplication on a Lie
group and the existence of commutative models. Some language of rational homotopy theory is
thus used, particularly in Chapter 4 where we introduce the algebra of polynomial differential
forms, which allows one to circumvent an approximation of BG by manifolds, the bulk of Lie
theory, and the development of sheaf theory. The hope is that this will inspire a reader to learn

2 Many results are phrased in a sort of first draft of a version of the language of rational homotopy, which was just
coming into being at the time, and for which the later work [FHT01] of Halperin has become a standard reference.

3 The major pattern is that results on homogeneous space in Ch. XI are a rewriting of those on Lie algebra
cohomology in Ch. X, which specialize analogous results on “P-differential algebras” in Ch. III, bearing the same
relation to results about “P-spaces” in Ch. II. These last are bilinear maps Pb S ÝÑ S of degree 1 of graded vector
spaces, where P is odd-dimensional, which the authors note are exactly the same as modules over the polynomial
algebra

Ž

IP; here
Ž

denotes the symmetric algebra and IP the evenly-graded suspension of P. The results of these
early chapters are mostly translatable into results about Sullivan algebras.
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more about rational homotopy theory without requiring her to learn it immediately.
This exposition presents a direct, historically honest account, demonstrates the essential sim-

plicity of the determination of H˚pG{K;Qq, and offers motivation for the study of rational homo-
topy theory without building up the entire edifice of this general theory, already well-developed
in Felix et al. [FHT01]. We require throughout only basic Lie theory and differential and algebraic
topology, much less than that contained in the respective books of Bröcker–tom Dieck, Tu, and
Hatcher [BtD85, Tu11, Hat02], and all of which is summarized in the appendices, in the hopes
that the whole be legible to a second-year graduate student interested in topology. The author be-
lieves the resulting account to be the most accessible available account of some essential material
which should be better known.
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Introduction1

The following definition of the cohomology of a compact space is an extension of de Rham’s2

definition of the cohomology of the algebra of their exterior differential forms (E. Cartan sug-3

gested that definition in 1928 after he succeeded in understanding a sentence written by H.4

Poincaré in 1899).5

—Jean Leray [Ler72]6

Let ĂM be a fibre bundle over M with projection P and fibre F. Using cohomology groups with7

rational coefficients, the author defines, for each dimension p, a characteristic isomorphism of8

a factor group of a subgroup of the cohomology group HppFq onto a group similarly related to9

Hp`1pMq. It is stated that one of these, suitably interpreted, is the characteristic cocycle of the10

bundle. [This could only be so if the coefficients of the latter (in πppFq) are replaced by their11

images in the homology group of F.] It is also asserted that a knowledge of the cohomology12

rings of M and F, and certain undefined generalizations of the characteristic isomorphisms,13

lead, in an unstated fashion, to a determination of the additive cohomology groups of ĂM.14

—Steenrod’s Math. Review (1946) of Hirsch’s paper on the transgression [Ste48]15

It is now abundantly clear that the spectral sequence is one of the fundamental algebraic16

structures needed for dealing with topological problems.17

—William Massey, 1955 [Mas55, p. 329]18

Now we illustrate the advantages of commutative multiplication in a fibration formula. This19

is the [ . . . ] analogue of the Chevalley–Hirsch–Koszul formula for principal Lie group bundles20

which was current in 1950 and ignored later in topology. The evident power and simplicity of21

the CHK formula helped prompt me to the present theory after Armand Borel kindly explained22

it to me in 1970.23

—Dennis Sullivan, 1977 [Sul77]24

Homogeneous spaces are of fundamental importance in geometry and equivariant topology—25

they are precisely orbits G{K of a transitive smooth action of a Lie group G, equivariant 0-cells—26

and accordingly the determination of their cohomology was a major research topic in topology27

from the late 1930s to the mid-1970s. Despite the slogan that cohomology is easy to compute and28

homotopy is hard, progress toward toward determining H˚pG{K;Qq in general required two ma-29

jor new ideas, sheaf cohomology and spectral sequences (both due to Jean Leray, around 1945),30

which were complicated and poorly understood. Fortunately, great work was put into under-31

standing and systematizing this early work and its essential features soon began to emerge.32

The main ideas of the present work are few:33

2
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• The multiplication on a group constrains its rational cohomology to be exterior (hence free34

graded commutative), in Chapter 1.35

• The Serre spectral sequence of a fiber bundle allows one to analyze the cohomology of36

a fiber bundle in terms of the fiber and the base, in Chapter 2. The related, purely alge-37

braic spectral sequence of a filtered differential graded algebra allows one to compare the38

cohomology of two algebras by an examination of simpler constituent parts.39

• All principal bundles are classified by a map to a universal bundle, in Chapter 5.40

• The structure of the cohomology of the universal bundle is constrained by the structure of41

a spectral sequence. This implies for purely algebraic reason that the rational cohomology42

ring of a homogeneous space is polynomial (hence free graded commutative).43

• Rational cohomology can be computed from a commutative cochain algebra, a “model,” in44

Chapter 4. Surjections onto free objects split, so a free commutative cohomology ring maps45

as a subring into a commutative model of its own cochain algebra.46

• A map of bundles induces a map of spectral sequences, and a related map of commutative47

models. By comparison, we see in Chapter 8 that the cohomology of a homogeneous space48

is carried by a very small model.49

Each of these ideas is simple but powerful. Thus the historical question of the cohomology of50

a homogeneous space leads naturally into into a development of several key ideas of algebraic51

topology.52

The key algebraic feature of the theory of differential forms that Leray wanted to emulate53

in setting up sheaf theory, which he uses to define his spectral sequence, is commutativity. This54

commutativity was isolated in purely algebraic form by Koszul in his thesis on Lie algebra co-55

homology, where he observes a spectral sequence always arises from a filtration of a differential56

graded algebra, such as the de Rham algebra Ω˚pMq or the singular cochain algebra C˚pXq. The57

spectral sequence pulls apart such an algebraic object one level at a time, and enables one to58

understand it by understanding its parts; if the filtration comes from a filtration of topological59

space (the classical examples being simplicial and CW-skeleta), this allows one to understand60

the cohomology of the space in terms of those of simpler parts. There is a bit of book-keeping61

involved, but it quickly comes to feel natural. The idea is so essential that there is no purpose to62

avoiding it, and the author thinks it is best encountered early, so in Chapter 2 we present what63

we believe is the simplest possible development.64

It was rapidly recognized that the key feature of the sheaves Leray used was that their sec-65

tions, like differential forms but unlike singular cochains, commuted up to sign under multiplica-66

tion. Henri Cartan, building on unpublished work of Weil and Chevalley, distilled this insight into67

a conference paper (1950) in which he produces a commutative model computing H˚pG{K;Rq68

and sketches proofs. This model relies on the differential-geometric notion of a connection and69

some of the structure of a Lie algebra, and at least uses terminology from spectral sequences;70

it is likely the proofs involved them, but we do not know. In his dissertation, published as an71

Annals paper in 1953, Armand Borel produced a version of this model topologically using a map72

of fiber bundles, and it is this version we paraphrase here, entirely avoiding structure constants73

and indices, using the spectral sequence of a bundle one encounters in a second course in alge-74

braic topology (for instance, this one, or the classic book [BT82] of Bott and Tu) and simple and75

algebraic models.76
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Both these accounts produce finitely generated commutative models of a space. Borel’s insight77

is so bold as to be somewhat shocking. He has already determined one spectral sequence (that of78

a universal bundle, computed in Section 7.4), and there is a natural mapping into this universal79

bundle from another bundle we are interested in, determining a mapping of spectral sequences80

converging to H˚pG{Kq. The existence of the mapping determines the differentials of certain81

elements which represent generators of the page E2 of the spectral sequence of interest, and82

in particular determines the coboundaries of certain elements of C˚pG{K;Rq. We know these83

elements represent elements in cohomology, but we know little about their cup products on the84

cochain level because the cup product is noncommutative. So we replace the singular cochains85

C˚pG{K;Rq with a graded-commutative differential algebra A˚pG{Kq. This is still an uncountable86

object we can define but in no way describe explicitly, but we do have a finite set of commuting87

elements whose differentials we know. We use this to define an abstract graded-commutative88

differential algebra C and an injective mapping to A˚pG{Kq, a finite crystal of pure structure89

in an uncountable chaos. The algebra C inherits a filtration from A˚pG{Kq, and so the map90

C ÝÑ A˚pG{Kq, induces a map between the algebraic spectral sequences of their filtrations. The91

spectral sequence of C does not change on the first few pages E0 “ E1 “ E2, but in the spectral92

sequence of A˚pG{Kq, the obscuring mist melts away, until at E2, every element is in the image93

of C. This implies by general considerations that the map C ÝÑ A˚pG{Kq in fact induces an94

isomorphism in cohomology, so that H˚pCq – H˚pG{K;Rq. The primal chaos of cochains was95

structurally supported all along by a skeleton we understand completely.96

Not only is this idea beautiful, but it does not require much algebraic sophistication beyond97

polynomial and exterior algebras.4 The author realized this when he was writing his own thesis,98

and it became a personal goal to present this version of the story, the genesis of many ideas99

which were to become important in topology and compelling in its own right. His hope is that100

this writing makes this material more accessible and its essential simplicity clearer.101

4 Homological algebra was being worked out for the first time around the time of Borel’s thesis and does not
figure. A later version of this story stars the Eilenberg–Moore spectral sequence and hence does explicitly involve
Tor, but is independent of this story despite largely sharing its conclusions. A motion toward this history is made in
Section 8.8.2.
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The rational cohomology of Lie groups103

It was noted in the thirties the cohomology rings of classical Lie groups, over sufficiently easy104

coefficient rings k, become exterior algebras, and one might wonder whether this holds over Lie105

groups in general. It has been known since 1941 that it does, due to work of Heinz Hopf ex-106

ploiting a natural algebraic structure in the (co)homology of a topological group, a development107

that essentially reduced the study of Lie group cohomology to obtaining torsion information and108

collating it back into integral cohomology.109

We begin by isolating the essential feature of topological groups for our purposes.110

Definition 1.0.1. An H-space1 is a topological space G equipped with a continuous product map111

µ : Gˆ G ÝÑ G containing an element e P G neutral up to homotopy: we demand g ÞÝÑ µpe, gq112

and g ÞÝÑ µpg, eq be homotopic to idG.113

Such a map induces a coproduct in cohomology, the composition114

H˚pGq
H˚pµq
ÝÝÝÝÑ H˚pGˆ Gq ÝÑ H˚pGqbH˚pGq,

where the second map arises through the Künneth theorem. We denote the coproduct by µ˚.115

Because H˚pµq and the Künneth map are maps of graded k-algebras, it follows µ˚ is a graded116

algebra homomorphism, and that if x P HnpGq, then µ˚pxq P
À

H jpGqbHn´jpGq.117

Suppose as well that G is connected. We know µp´, eq » idG; diagrammatically, this is the118

homotopy-commutative triangle below on the left, and taking cohomology whilst being casual119

about Künneth maps yields the commutative diagram on the right.120

G « //

id
))

Gˆ teu i // Gˆ G

µ

��
G

H˚pGq H˚pGqbH0pGq„oo H˚pGqbH˚pGq
H˚piqoo

H˚pGq
id

kk

H˚pµq

OO

This means the component of µ˚pxq lying in HnpGqbH0pGq is xb 1. The same argument run121

with the identity µpe,´q » idG yields the component 1b x in H0pGqbHnpGq. So122

µ˚pxq ” 1b x` xb 1
`

mod rH˚pGqb rH˚pGq
˘

.

1 The choice of H, due to Serre, is in honor of Heinz Hopf.

5
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Recall that the cup product ! : H˚pGq ˆ H˚pGq ÝÑ H˚pGq is induced in a similar way by the123

diagonal map ∆ : G ÝÑ GˆG taking g ÞÝÑ pg, gq; to wit, it can be understood as the composition124

H˚pGqbH˚pGq ÝÑ H˚pGˆ Gq ∆˚
ÝÑ H˚pGq.

As ∆ and µ admit some relations on a topological level, we recover some cohomological identities.125

Trivially but importantly, µ ˆ µ is a map
ś4 G ÝÑ

ś2 G taking the quadruple px, y, x, yq to126

the pair
`

µpx, yq, µpx, yq
˘

“ p∆ ˝ µqpx, yq. If we write τ : G ˆ G ÝÑ G ˆ G for the transposition127

switching the coordinates, then px, y, x, yq “ pidˆτˆ idqpx, x, y, yq “ pidˆτˆ idqp∆ˆ ∆qpx, yq, so128

∆ ˝ µ “ pµˆ µq ˝ pidˆτˆ idq ˝ p∆ˆ ∆q. (1.2)

Taking the cohomology of (1.2), being casual with Künneth maps again, and recalling from Ap-129

pendix A.2 the sign convention for a tensor product of cgas, one finds that for all homogeneous130

a, b P H˚pGq,131

µ˚pabq “ µ˚paqµ˚pbq,

so that µ˚ : H˚pGq ÝÑ H˚pGqbH˚pGq is a ring homomorphism. All this inspires the following132

definition.133

Definition 1.0.3. A Hopf algebra over k is a graded (not necessarily associative) k-algebra A such134

that A0 – k, equipped with an algebra homomorphism µ˚ : A ÝÑ Abk A such that135

µ˚paq ” 1b a` ab 1
`

mod rAb
k
rA
˘

for each homogeneous a P A. (Here rAC A is the augmentation ideal
À

iě1 Ai – A{A0 of elements136

of positive degree, as defined in Appendix A.2.)137

What we have shown is that, given an H-space G, its cohomology ring H˚pGq is naturally a138

commutative, associative Hopf algebra. The presence of the coproduct imposes severe constraints139

on the algebra structure, especially with regard to algebra generators. Here is Hopf’s structure140

theorem.141

[Prove what the monogenic ones are in positive characteristic.]142

Theorem 1.0.4 (Hopf, char k “ 0: Hopf’s theorem [Hop41, Satz I, p. 23]; Borel, char k ą 0). Let A143

be a commutative, associative Hopf algebra of finite type over a field k. Then it is a tensor product of Hopf144

algebras on single generators. As algebras these are145

• exterior algebras Λrαs with |α| odd-dimensional,146

• polynomial algebras krαs, with |α| even-dimensional if char k ‰ 2, and147

• truncated symmetric algebras krαs{pαpj
q if if p “ char k ą 0, with α even-dimensional if p ą 2.148

Proof [Hat02, Prop. 3C.4, p. 285]. We prove the result for char k “ 0 by induction on the number
n of algebra generators, starting with n “ 0 so the result is trivial. Inductively suppose we have
shown the result for n generators and A is generated by n` 1. Order these algebra generators
x1, . . . , xn, y by weakly increasing degree, and let A1 be the subalgebra generated by x1, . . . , xn.
This is actually a Hopf subalgebra, for µ˚pxjq “ 1b xj ` xjb 1` pdeg ă |y|q, so the last term
cannot involve y, and must lie in A1. Since µ˚ is an algebra homomorphism, we must have
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µ˚pA1q ď A1b A1. Because A is a cga generated by A1 and x, there is a surjective k-algebra
homomorphism

A1bΛrys ÝÝ� A if |y| is odd,

A1b krys ÝÝ� A if |y| is even.

To see A is free, it is enough to prove these maps are injective.149

If |y| is odd, suppose a` by “ 0 in A, where a, b P A1. Then 0 “ µ˚pa` byq P Ab A projects150

under Ab A ÝÝ� AbΛrys to151

0 “ ab 1` pbb 1qpyb 1` 1b yq “ pa` by
loomoon

0

qb 1` bb y “ bb y.

This can only be zero if b is, but then 0 “ a` 0y, so a “ 0 and our relation was trivial.152

We leave the case |x| even as an exercise.153

Exercise 1.0.5. Finish the proof in the case |x| is even. (Hint: Apply µ˚ to a relation and examine154

the image in Ab A{p rA1, y2q – Ab krys{py2q.155

Corollary 1.0.6. Let G be a compact, connected Lie group. Then H˚pG;Qq is an exterior algebra.156

Proof. We already know H˚pGq is a free k-CGA, say on V. If V contained any even-degree ele-157

ments, then by the theorem, HnpGq would be nontrivial for arbitrarily large n; but it cannot be,158

because G is a finite-dimensional CW complex. So V is oddly graded and H˚pGq – ΛV.159

Corollary 1.0.7. Let G be a Lie group and G Ñ E Ñ B a principal G-bundle and suppose H˚pEq ÝÑ160

H˚pGq surjects and k is a field of characteristic zero. Then there exists a k-cga isomorphism161

H˚pEq – H˚pBqbH˚pEq.

Proof. By Corollary 2.2.12, one has an H˚pBq-module isomorphism H˚pEq – H˚pBqbH˚pGq. By162

Corollary 1.0.6, H˚pGq is a free k-cga, so by Proposition A.4.4, a lifting of H˚pEq ÝÝ� H˚pGq163

induces a ring isomorphism H˚pBqbH˚pGq „
ÝÑ H˚pEq.164

We can do a bit better in identifying the generators of H˚pGq.165

Definition 1.0.8. We an element x of a Hopf algebra A primitive if µ˚pxq “ 1b x` xb 1. Write166

PA “ tx P A : x is primitiveu

for the primitive subspace and grade this space by PrA “ PAX Ar. Note that the only primitive
in A0 – k can be the identity so that P0A “ 0 and PA is contained in the augmentation ideal rA.
If A “ H˚pGq is the cohomology ring of an H-space G, we abbreviate PG :“ PH˚pGq. Another
way to phrase the definition is to say that PA is the kernel of the k-linear homomorphism

ψ : A ÝÑ Ab A,

x
ψ
ÞÝÑ µ˚pxq ´ p1b x` xb 1q.

The indecomposable elements of an augmented ring A are, informally, those of positive de-167

gree that cannot be written as sums of products of lower-degree elements; the idea is to find168
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an analogy for irreducible polynomials for rings with more complex ideal structure. The most169

convenient definition turns out to be this: the module of indecomposables is the k-module170

QA :“ rA{ rA rA – rAb
A

k

where rA is the augmentation ideal and the denominator denoted rA rA is understood to be the171

module spanned by products ab for a, b P rA of positive-degree elements. Under this definition172

we see Q is functorial, since a graded homomorphism A ÝÑ B takes rA ÝÑ rB and hence rA rA ÝÑ173

rBrB. If A is a free k-module, then so is QpAq, so the k-module surjection rA ÝÝ� QpAq splits by174

Proposition A.4.1 and we can consider QpAq (in a badly noncanonical way) as a k-submodule175

of algebra generators for A. Because it satisfies a product rule, an derivation d on A, like a ring176

homomorphism, is uniquely determined by its values on such a lifted QpAq, so a linear map on177

QpAq determines at most one derivation of A.178

There is a natural k-linear composite map179

PpAq ãÝÝÑ rA ÝÝ� rA{ rA rA “: QpAq

linking primitives and indecomposables, which is an isomorphism in the case we care about.180

Proposition 1.0.9 (Milnor–Moore). Let A be a commutative, cocommutative Hopf algebra finitely gen-181

erated as an algebra over a field k. Then this canonical map takes PpAq „
ÝÑ QpAq. In particular, A is182

generated by primitive elements.183

Proof. The strong statement is more than we need, but we will prove the result in the case A is a184

coassociative Hopf algebra over a field k of characteristic ‰ 2 with underlying algebra an exterior185

algebra, loosely following Mimura and Toda [MT00, p. 369] for injectivity; this weaker version is186

due to Hopf and Samelson.187

Write A “ ΛV, for V an oddly-graded vector space. That V „
ÝÑ QpAq is clear, so we just need188

to show V can be chosen such that PpAq “ V. Pick a basis X of V. By anticommutativity, a basis189

of ΛV is given by monomials y “ x1x2 ¨ ¨ ¨ xn with xi P X of weakly increasing degree. If n ą 1,190

then we have191

µ˚pyq “
ź

µ˚pxiq “
ź

`

x1b 1` 1b xi ` p¨ ¨ ¨ q
˘

“ 1b y` rx1b x2 ¨ ¨ ¨ xns `
ÿ

ab b,

where none of the terms ab b have a P Qx1. It follows the term x1b x2 ¨ ¨ ¨ xn doesn’t cancel, and192

thus µ˚pyq ‰ yb 1` 1b y, so PpAq ď V.193

For the other containment, we induct on dim V. Assume the result is proved for n, and that194

dim V “ n ` 1. Arrange a homogeneous basis x1, . . . , xn, y of V in weakly increasing degree.195

By induction, V1 “ Qtx1, . . . , xnu, where we may choose xj primitive, and it remains to show196

y is. Since each xj is primitive, we have µ˚pxjq ď ΛrxjsbΛrxjs for each j, so the coproduct µ˚197

descends to a coproduct µ˚ on ΛV {{Λrxjs, and since this is an exterior algebra on n generators,198

by induction, we have µ˚pyq “ 1b y` yb 1 in this quotient, so back in ΛVbΛV, the difference199

ψpyq :“ µ˚pyq´ p1b y` yb 1q lies in the ideal pxjb 1, 1b xjq. Varying j, we see ψpyq lies in the the200

intersection of all these ideals. If we write xI :“
ś

iPI xi, this intersection ideal is that generated201

by the tensor products xI b xJ such that I > J “ t1, . . . , nu is a partition. In fact, since by definition202

ψpyq P rAb rA, it lies in the ideal generated by xI b xJ with neither I nor J empty. We are then203
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done unless |y| “
řn

i“1 |xi|, so assume this equality holds. Then since ψpyq is homogeneous and204

the generating elements xI b xJ already have the right degree, we can write205

ψpyq “
ÿ

I>J“t1,...,nu

aI,J xI b xJ

for some scalars aI,J P k.206

The fact that pµ˚b idqµ˚ “ pidb µ˚qµ˚, the coassociativity of A, follows for H˚pGq from the207

associativity of the multiplication on G. It is not hard to see this is equivalent to the condition208

pψb idqψ “ pidb ψqψ. Applying this equation to y we obtain209

ÿ

aI,JψpxIqb xJ “
ÿ

aI,J xI bψpxJq,

where the sum runs over partitions I > J “ t1, . . . , nu with I ‰ ∅ ‰ J. These equations expand to210

ÿ

aI,J
ÿ

I1,I2

xI1
b xI2

b xJ “
ÿ

aI,J
ÿ

J1,J2

xI b xJ1
b xJ2 ,

where I > J “ t1, . . . , nu as before and in the sums on either side, one has I1 > I2 “ I and J1 > J2 “ J,211

and I, J, I1, I2, J1, J2 ‰ ∅. Fix a partition I1 > I2 > J “ t1, . . . , nu. The coefficients of xI1
b xI2

b xJ on212

the left-hand side and the right, which must consequently be equal, are aI,J and aI1,I2>J . These213

equalities show all aI,J are equal to some single scalar a P k, so214

ψpyq “ a
ÿ

I,J‰∅
xI b xJ “ aψpx1 ¨ ¨ ¨ xnq,

or ψpy´ ax1 ¨ ¨ ¨ xnq “ 0. Thus x1, . . . , xn, y´ ax1 ¨ ¨ ¨ xn is a set of primitive generators of A.215

Remark 1.0.10. An analogous result holds in characteristic 2 with the weaker assumption on A216

that it not necessarily be an exterior algebra, but merely admit a simple system of generators (see217

Definition A.2.4). The proof is correspondingly much more difficult.218

We will later need as well the fact that a map of H-spaces induces a map of primitives in219

cohomology.220

Proposition 1.0.11. Let φ : K ÝÑ G be a homomorphism of H-spaces. Then the map φ˚ : H˚pGq ÝÑ221

H˚pKq in cohomology takes PG ÝÑ PK.222

Proof. To ask φ be a homomorphism is, by definition, to require µG ˝ pφ ˆ φq and φ ˝ µK be223

homotopic maps Kˆ K ÝÑ G. In cohomology, then, if z P PG is primitive, we have224

µ˚Kφ˚z “ pφ˚b φ˚qµ˚Gz “ pφ˚b φ˚qp1b z` zb 1q “ 1b φ˚z` φ˚zb 1.

There is a further theorem determining dim PG.225

Theorem 1.0.1 (Hopf [Hop40, p. 119]). Let G be a compact, connected Lie group and T a maximal226

torus. Then the total Betti number h‚pGq “ 2dim T.227

Proof [Sam52]. By the preceding theorem, H˚pG;Qq is an exterior algebra, so from Appendix A.2.3228

we see h‚pGq “ 2l for some l P N. To see that l “ dim T, consider the squaring map s : g ÞÝÑ g2
229

on G. Since s “ µ ˝ ∆, it follows that for a primitive a P H˚pGq one has230

s˚a “ ∆˚µ˚a “ ∆˚p1b a` ab 1q “ 1 ! a` a ! 1 “ 2a,
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so if rGs P Hdim GpGq is the fundamental class, the product of l independent primitives, one231

has s˚rGs “ 2lrGs. Thus the degree of s is 2l . On the other hand, restricting to the abelian232

subgroup T – pR{Zqdim T, it is easy to see the s-preimage of a generic element of T contains233

2dim T points, which, since s is orientation-preserving, should each be counted with multiplicity234

1. By a standard theorem on degree [Hat02, Ex. 3.3.8, p. 258] we then know 2dim T “ deg s “ 2l ,235

so l “ dim T.236

These results also let us obtain a classical topological fact usually proven through other means.237

Corollary 1.0.12 ([BtD85, Prop. V.(5.13), p. 225]). The second homotopy group π2G of a compact Lie238

group G is trivial.239

Proof. The universal compact cover rG of G (see Theorem B.4.5) satisfies π2 rG – π2G by the long240

exact homotopy sequence of a bundle Theorem B.1.4, and rG – A ˆ K for A a torus and K241

simply connected. Using the long exact homotopy sequence of the short exact sequence Zn Ñ242

Rn Ñ Tn, one sees π2A “ 0, and since π1K “ 0, successively applying the Hurewicz theorem,243

the universal coefficient theorem, and Hopf’s theorem, one finds π2K – H2K – H2K “ 0, so244

π2 rG – π2 Aˆ π2K “ 0.245

Remark 1.0.13. The multiplication on a Lie group G induces a product on H˚pG;Qq, the Pontrjagin246

product, making it a Hopf algebra as well, the homology ring, which is dual to H˚pG;Qq. It is this247

ring that Hopf originally discovered the structure of, though the way he put it was that the248

homology ring of G was isomorphic to that of a product
ś

S2nj´1 of odd-dimensional spheres.249

Serre noted later [FHT01, p. 216] that this was actually due to a rational homotopy equivalence: there250

is a map
ś

S2nj´1 ÝÑ G inducing isomorphisms251

π˚

´

ź

S2nj´1
¯

bQ „
ÝÑ π˚pGqbQ

on rational homotopy groups. Because the rational Hurewicz map252

π˚

´

ź

S2nj´1
¯

bQ ÝÑ H˚
´

ź

S2nj´1;Q
¯

is an isomorphism when restricted to the span
À

Q ¨ rS2nj´1s of the fundamental classes of the253

factor spheres, the image of the Hurewicz map π˚pGqbQ ÝÑ H˚pG;Qq contains the homological254

primitives P˚pGq “ PH˚pGq. In Remark 2.2.23, we will show that this means these primitives are255

in the image of the transgression in the homological Serre spectral sequence of any G-bundle.256
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Spectral sequences258

One of the main tools in our development is the spectral sequence. This is an algebraic gadget259

with a reputation for ferocity that we maintain is undeserved. While it is common in topology260

to be able to prove a spectral sequence exists without being able to compute its differentials261

explicitly, the cohomology of homogeneous spaces offers many beautiful examples where the262

sequence is completely computable.263

This section introduces the Serre spectral sequence relating the cohomology rings of the con-264

stituent spaces F Ñ E Ñ B of a fiber bundle, or more generally a fibration. In order that the265

exposition be self-contained, we prove the structure we need in the later sections of this chapter,266

but we do not recommend reading it immediately; while it is important culturally to know at267

some point what is going on, and we will eventually need some details of its construction in Sec-268

tion 8.1.2, our initial applications do not require these details, and there is enough to assimilate269

that it is reasonable to go at it in stages, learning to use the machine before lifting up the hood270

to see how it goes.271

For reasons of digestibility, we start the section with the statement of Serre spectral sequence272

itself and some applications. We will need the filtration spectral sequence of an abstract filtered273

differential graded algebra later, of which the Serre spectral sequence is one particular case, so we274

develop this, with full proofs, in a long appendix to this chapter. There is value to understanding275

why the machine works, but it is not immediately useful for our purposes, and the reader is276

advised to defer reading these proofs until the tension becomes unbearable.277

We believe this is a good way to introduce oneself to this machine, there are many recountings278

of this story, and we do not claim ours is optimal. The author recommends the discussion in his279

advisor’s book [BT82, Ch. 3] as still the clearest introduction he has seen to this material.280

2.1. The idea of a spectral sequence281

A spectral sequence is a tool that allows us to understand an algebraic object in terms of its282

constituent parts. The particular example we will use, takes a differential graded algebra A and283

recovers the associated graded algebra gr
‚

H˚pAq of the cohomology ring H˚pAq, as defined in284

Section 2.5, at the end of a computation whose first steps are forming the simpler associated285

graded algebra gr
‚

A with respect to some filtration, and taking its cohomology H˚pgr
‚

Aq. This286

seems like it is “just computing cohomology with extra steps,” but it is often useful if the initial287

A is too complicated—say, too large—to be understood directly.288

For example, the singular cochain algebra C˚pXq of a CW complex X will be uncountable if289

11
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dim X ě 1, but in terms of the CW skeleta Xp, recall that there are associated cellular cochains290

Cellp
pXq :“ HppXp, Xp´1q – rHppXp{Xp´1q

which can be identified as free groups on the p-cells of the CW structure, and are thus finitely291

generated in our cases of interest. The cup product of cochains induces a product on the direct292

sum of these groups and there is a differential δ given by the connecting maps in the long exact293

sequence of a triple pXp`1, Xp, Xp´1q, and one shows in a first course in algebraic topology that294

the cohomology of the algebra Cell‚pXq is just H˚pXq. This calculation is actually exactly what295

the spectral sequence of the previous paragraph returns if we feed it C˚pXq, filtered by ideals296

corresponding to the p-skeleta Xp.297

If X is the total space of a fiber bundle F Ñ X Ñ B and we instead use a filtration of C˚pXq298

induced from the p-skeleta Bp of the base, we will get a computation that starts, under reasonable299

circumstances, with H˚pBqbH˚pFq, proceeds in a well-determined manner, and returns H˚pXq300

at the end. This will enable us, in the first place, to often determine H˚pXq in terms of H˚pFq and301

H˚pBq, which we will use to compute the cohomology of the classical Lie groups, and later to302

compute the cohomology of H˚pBq in terms of H˚pXq and H˚pBq which we will use to determine303

the cohomology of a classifying space. Later still, we will use maps of spectral sequences to304

determine the cohomology of a homogeneous space, which fits into a system of bundles in such305

a way that all of the information of the spectral sequence is calculable.306

In more detail, a spectral sequence, for us, will be a sequence pErqrě0 of differential algebras307

such that each algebra is the cohomology of the previous: Er`1 “ H˚pErq. Particularly, each308

algebra is a subquotient of the previous, so they can be considered as “decreasing” in a certain309

sense. In the cases we consider, there will always be a number N such that dr “ 0 for all r ě N,310

so we will have Er – Er`1 – Er`2 – ¨ ¨ ¨ . We will write E8 for this last page.311

So far, this is a finite sequence of rings. These additionally will be bigraded: Er “
À

p,qě0 Ep,q
r312

as an abelian group, and the multiplication will add the bidegrees: so that on any given page the313

product of an element of bidegree pp, qq and one of pp1, q1q will have bidegree pp` p1, q` q1q. The314

bigrading seems at first glance to complicate things, since now each page is an infinite-by-infinite315

array of groups—and it certainly does encumber the notation—but in practice being able to316

separate out all this information into many components simplifies life, as each of these pieces will317

be a finitely-generated abelian group we have a good handle on, and each ring will be generated318

by finitely many elements. Since each differential dr is a derivation, it will be determined by319

finitely many of these values, and this will actually make computations much more tractable.320

Here is a picture of a spectral sequence we will encounter later (Figure 2.2.18), that corresponding321

to the Hopf fibration S1 Ñ S3 Ñ S2.322

1 Zz Zxz

0 Z Zx

E2 0 2

d2 1 Zxz

0 Z

E8 0 2p
323

The left diagram is meant to indicate that324

E2 “ Zrx, zs{px2, z2q, where x P E2,0
2 and z P E0,1

2 .
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The arrow d2 indicates that d2pzq “ x, and the absence of an arrow from 1 and x indicates that325

d2p1q “ 0 and d2pxq “ 0. The differentials are in fact derivations, so for example one can deduce326

d2pxzq “ d2pxqz` p´1q2x ¨ d2pzq “ 0 ¨ z` x ¨ x “ 0

as well. The cohomology as a group, is thus ker d2{ im d2 “ Zt1, x, xzu{Zx – Zt1, xzu, as we327

see in the right diagram for E3 “ E8. Implicit in the discussion is the fact that the rest of the328

differentials, dr for r ě 3, are all zero.329

In this picture, we see d2 goes one step down and two right. In general, each differential dr330

has bidegree p1´ r, rq, meaning it runs from a square pp, qq to square
`

p` r, q´ pr´ 1q
˘

, as seen331

in Figure 2.1.1332

Figure 2.1.1: The differentials out of E1,5
‚

5 E1,5
‚

0

0 1

d0
d1

d2

d3

d4

d5

d6

Here is a formal statement of the spectral sequence of a filtered differential graded algebra;333

the proof will be deferred to Section 2.6.334

Theorem 2.1.2. (Koszul). Let pC‚, d, ı̃q be a filtered differential N-graded algebra such that the associated335

filtration of HnpC‚q is finite for each n. Then there is an associated filtration spectral sequence in which336

• pE0, d0q “ pgr
‚

C‚, gr
‚

dq,337

• E1 – H˚pgr
‚

C‚q,338

• Ep,q
8 – grp Hp`qpC‚q.339

We call this the filtration spectral sequence of the filtered dga pC‚, d, ı̃q. It is first-quadrant spectral340

sequence in that Ep,q
r “ 0 if p ă 0 or q ă 0. All pages become differential algebras under the bigrading341

Ep,q
r induced from the bigrading Ep,q

0 :“ grp Cp`q of E0 “ gr
‚

C‚ and the product induced from that of C,342

with differential dr of bidegree pr, 1´ rq. Moreover, the product on each page is induced by that on the last.343

This sequence is functorial in homomorphisms of filtered dgas.344

Our examples will mostly be concrete and topological, but as a purely algebraic application,345

here is a proof of the algebraic Künneth corollary A.3.3 over a field.346
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Proof. As we will not need a notation for coboundaries, we will write B‚ for instead for the347

differential graded algebras with k-flat cohomology. Take C “ A‚bk B‚, bigraded by Cp,q “348

Apbk Bq, with the differential d “ dAb id`p´1qp idb dB. We apply Theorem 2.1.2 with the349

filtration given by FpC “ Aěpbk B‚. Then we have E0 “ gr
‚

C – C on the level of graded groups350

by inspection (or Corollary 2.6.8) and d0 “ gr
‚

d “ p´1qp idb dB, so that351

E1 “ H˚
d0
pA‚b

k
B‚q “ A‚b

k
H˚
˘dB
pB‚q “ A‚b

k
H˚pB‚q.

If z P Bq represents a class in HqpB‚q, then for any a P Ap we have dpab zq “ dAab z˘ ab dBz “352

dAab z, and it follows d1 “ δAb id, so that353

Ep,q
2 –

ker
`

ApbHqpB‚q ÝÑ Ap`1bHqpB‚q
˘

im
`

Ap´1bHqpB‚q ÝÑ ApbHqpB‚q
˘ .

But HqpB‚q is flat, so this is pker dA{ im dAqbHqpB‚q “ HppA‚qbHqpB‚q.354

2.2. The Serre spectral sequence355

Most of our examples of spectral sequences will arise from a fibration F Ñ E π
Ñ B with B a356

CW complex, as gestured at in the previous section. Let Bp be the p-skeleton of B. Then pEpq :“357

pπ´1Bpq an increasing filtration of E; set Ep “ ∅ for p ă 0. Associated to each pair pE, Epq is a358

short exact sequence359

0 Ñ C˚pE, Epq ÝÑ C˚pEq ÝÑ C˚pEpq Ñ 0 (2.2.1)

of cochain complexes, where for simplicity we suppress the coefficient group k. Because Ep´1 Ď360

Ep, each restriction C˚pEq ÝÑ C˚pEp´1q factors through C˚pEpq, so the increasing topological361

filtration pEpq leads to a decreasing algebraic filtration362

FpC˚pEq “ C˚pE, Ep´1q

of C˚pEq.1 We have
Ş

FpC˚pEq “ 0, for each singular simplex σ : ∆n ÝÑ E has image in some Ep.2363

The associated filtration of H˚pEq is given by FpH˚pEq “ im
`

H˚pE, Ep´1q Ñ H˚pEq
˘

. Assume for364

convenience that the action of π1B on H˚pFq is trivial. Then turning the crank of the associated365

filtration spectral sequence of Theorem 2.1.2, one arrives at the following.366

Theorem 2.2.2. Let F Ñ E Ñ B be a fibration such that π1B acts trivially on H˚pF; kq. There exists a
first-quadrant spectral Serre spectral sequence pEr, drqrě0 of k-dgas with

Ep,q
0 “ Cp`qpE, Ep´1; kq,

Ep,q
2 “ Hp`B; HqpF; kq

˘

,

Ep,q
8 “ grp Hp`qpE; kq,

for the filtrations pEpq and FpH˚pEq indicated above. If H˚pF; kq is a free k-module (for instance, if k is a367

field), we may also write E2 – H˚pB; kqbk H˚pF; kq. This construction is functorial in fibrations E Ñ B368

and in rings k, in that a map of fibrations or of rings induces a map of spectral sequences.369

1 The mismatch of p and p´ 1 is initially jarring, but worth it to guarantee F0C˚pEq “ C˚pEq.
2 The image of ∆n σ

Ñ E Ñ B is compact, and a compact subset of a CW complex can only can meet only finitely
cells lest it contain an infinite discrete set.
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Most of this is immediate, but the proof of the characterization of the E2 page is nontrivial,3370

and we defer it to Section 2.9. Critically for us in all that follows, this version of the formulation371

applies to principal bundles.372

Proposition 2.2.3. Let G be a path-connected group. If G Ñ E Ñ B is a principal G-bundle, then π1B373

acts trivially on H˚pGq.374

Proof. The transition functions are given by right multiplication rg by elements of G, as discussed375

in Appendix B.3.1. Since G is path-connected, each rg is homotopic to r1 “ idG, so the action of376

π1B on H˚pGq is trivial.377

It is important to us to be able to identify the maps in cohomology induced by fiber inclusion378

and projection to the base.379

Figure 2.2.4: The maps induced by F i
Ñ E π

Ñ B in the Serre spectral sequence

0 H˚
`

B; H0pFq
˘

E2 „ ÝÑ

H˚pBq

ÝÝÝÝÝ� 0 im π˚

E8

ãÝÝÝÝÝÝÑ H˚pEq

„
Ð

H
˚
p
Fq

H
0`

B
;H
˚
p
Fq
˘

E2 0

ãÝÝÝÝÝÝÑ im
i˚

E8 0

ÝÝÝÝÝ� H˚pEq

Proposition 2.2.5. Let F i
Ñ E π

Ñ B be a fibration such that π1B acts trivially on H˚pFq. The fiber projec-380

tion i˚ : H˚pEq ÝÑ H˚pFq is realized by the left-column edge map E‚,‚
8 � E0,‚

8 ãÑ E0,‚
2 in Theorem 2.2.2:381

to wit, we can write382

gr
‚

H˚pEq „
ÝÑ E‚,‚

8 ÝÝ� E0,‚
8 ãÝÝÑ E0,‚

2
„
ÝÑ H˚pFq.

Likewise, the base lift π˚ : H˚pBq ÝÑ H˚pEq is realized by the bottom-row edge map E‚,0
2 � E‚,0

8 ãÑ E‚,‚
8 :383

H˚pBq „
ÝÑ E‚,0

2 ÝÝ� E‚,0
8 ãÝÝÑ E‚,‚

8

„
ÝÑ gr

‚
H˚pEq.

3 On the many occasions in graduate courses when I have carried out the E2 calculation for the Serre spectral
sequence, both the students and I have agreed that the material I presented could surely be reorganized into an
actual proof of the desired theorem . . .

—Edgar Brown, Jr. [BJ94]
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Here is a picture of the situation;4 the proof is again deferred so that we may immediately384

embark on some examples and applications.385

Example 2.2.6. Consider a sphere bundle over a sphere S2 Ñ E Ñ S2. Since H˚pS2q “ Zrxs{px2q386

for x “ rS2s in degree 2, which is a free abelian graded group, we have Ep,q
2 “ Hp

`

S2; HqpS2q
˘

“387

HppS2qbHqpS2q, as appears in Figure 2.2.7.388

Figure 2.2.7: The Serre spectral sequence of S2 Ñ E Ñ S2

2 Z Z

0 Z Z

E2 0 2

d3

2 z xz

0 1 x

E8 0 2

The nonzero squares pp, qq are labeled by their inhabiting group and the zero groups are389

unmarked. The differentials out of the bottom row are zero, as they head into the fourth quadrant,390

so the only potentially nonzero differentials begin in the second row and go down to the zeroth.391

But bideg d3 “ p´2, 3q, so these differentials land in odd columns, whereas only even ones are392

inhabited. Thus the spectral sequence collapses at E8 “ gr
‚

H˚pEq.393

Now we try to reconstruct H˚pEq from its associated graded. We know H0pEq – Z because394

E must be path-connected. The filtration has only one term, so we can also recover this from395

looking at the p` q “ 0 diagonal of the spectral sequence. Explicitly,396

Z “ gr0 H0pEq “ F0H0pEq{F1H0pEq “ H0pEq{t0u “ H0pEq.

We know H4pEq – Z because E is a 4-manifold, but in terms of the filtration, we have unknown397

terms Fp “ FpH4pEq, with successive quotients as indicated below:398

H4pEq ě
loomoon

0

F1 ěloomoon

0

F2 ěloomoon

Z

F3 ěloomoon

0

F4 ěloomoon

0

0

It follows that 0 “ F4 “ F3 and hence that that Z – F2{F3 “ F2 “ F1 “ F0 “ H4pEq, as projected.399

As for H2pEq, we have400

H2pEq ě
loomoon

Z

F1 ěloomoon

0

F2 ěloomoon

Z

0,

so that Z “ F2 “ F1 and Z “ H2pEq{F1 “ H2pEq{Z. Since these groups are abelian, H2pEq – Z‘Z.401

4 We intend to provide diagrams for spectral sequences despite space constraints.

Unhappily the authors continue the conspiracy of silence according to which the rectangular diagrams, used by all
the experts, never appear in print.

—Mac Lane, reviewing Cartan and Eilenberg’s Homological Algbra [Mac56]
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Now let us see what we can say about the multiplication. If we write H˚pFq “ Zrzs{pz2q for402

the cohomology of the fiber S2 and H˚pBq “ Zrxs{px2q for the cohomology of the base, then403

E8 “ E2 – Zrxs
L

px2q b Zrzs
L

pz2q – Zrx, zs{px2, z2q

as a bigraded ring. As far as H˚pEq itself goes, from Proposition 2.2.5, we can identify x with404

π˚rS2s P H2pEq, and pick an element rz P H2pEq “ F0 representing z “ rz ` F1. From Proposi-405

tion 2.2.5 again, i˚rz “ rS2s in the cohomology of the fiber S2. Since406

xz “ px` F3qprz` F1q “ x ! rz` F3

in the associated graded and F3 “ 0, it follows that x ! rz “ rEs generates H4pEq. Since x2 P F3 “407

0, it follows x ! x “ 0 in H˚pEq and not just in E8. As for z2, we know408

0 “ z2 “ prz` F1qprz` F1q “ rz ! rz` F1

in the associated graded, but this means only that rz ! rz P F1 “ F2. Since rEs lies in F2H4pEq, this409

actually doesn’t tell us anything about rz ! rz.410

Indeed, we chose rz as a representative of z P H2pEq{Zx, so for any n P Z, the element411

rz` nx serves equally well as a generator of H2pEq. This element squares to rz ! rz` 2nrEs, since412

x ! x “ 0, so choosing n appropriately we can replace rz with rz1 such that rz1 ! rz1 is either 0 or413

rEs.5414

This example shows both the strengths and the limitations of this technique. That E2 is E8415

was helpful; when this happens, one says the spectral sequence collapses at E2. We can generalize416

the collapse of the example substantially.417

Figure 2.2.8: Even support implies collapse

6

4

2

0

0 2 4 6 8

Corollary 2.2.9. Let F Ñ E Ñ B be a fibration such that the action of π1B on H˚pFq is trivial and418

H˚pBq and H˚pFq are both concentrated in even degrees. Then the spectral sequence collapses at E2.419

Proof. If H˚pBq and H˚pFq are both concentrated in even degrees, then so is E2 “ H˚
`

B; H˚pFq
˘

420

concentrated in even total degree, as in Figure 2.2.8. Since the differentials dr increase total degree421

by 1, mapping from even diagonals to odd and vice versa, they must all be trivial, so the sequence422

collapses at E2.423

5 Indeed, these are both options. If E “ S2ˆ S2, then by the Künneth theorem B.1.2 we can arrange that rz2 “ 0. We
will not show this, but the other option is realized by E “ pS3 ˆ S2q{S1, where S1 acts on S2 by rotation about a fixed
axis and on S3 Ĺ C2 by the diagonal action (complex scalar multiplication).
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Thus, for example, the analysis of Example 2.2.6 carries through to any bundle of the form424

S2q Ñ E Ñ S2p for p, q ą 0, so that H˚pEq – Zt1, x, z, xzu as a graded group for x “ π˚rS2ps and z425

such that i˚z “ rS2qs, and we have x ! x “ 0. If p ‰ q, we also have z ! z “ 0 since H4qpEq “ 0,426

so that H˚pEq – H˚pS2pqbH˚pS2qq as a graded ring. This genre of reasoning, that something427

must stabilize at a certain page—or vanish before a certain page, lest it survive to E8—goes428

by the trade name of “lacunary considerations.” One uses such considerations as frequently as429

possible because they are usually far simpler than actually computing differentials. Occasionally430

this kind of spatial reasoning enables one to understand what happens in a spectral sequence431

without having done any algebra at all.432

Figure 2.2.10: The differentials to and from E4,3
5 leave the first quadrant

3 E4,3
5

E5 4

Another simple example of a lacunary consideration is the following:433

Proposition 2.2.11. Let pEr, drq be a first-quadrant spectral sequence. If p ă r and q ă r ´ 1, then434

Ep,q
r “ Ep,q

8 .435

Proof. Because the bidegree of dr is pr, 1´ rq, the domain Ep´r,q`r´1
r of the component of dr with436

codomain Ep,q
r lies in the second quadrant, and the codomain Ep`r,q`1´r

r of the component of437

dr with domain Ep,q
r lies in the fourth quadrant. See Figure 2.2.10. Since these quadrants are438

inhabited only by zero groups, the differentials in and out of Ep,q
r are zero, so Ep,q

r “ Ep,q
r`1. All439

later differentials out of this square must also be zero for the same reason.440

We notice that in the examples S2q Ñ E Ñ S2p, i˚ : H˚pEq ÝÑ H˚pS2qq was surjective and also441

the spectral sequence collapsed. This is no coincidence.442

Corollary 2.2.12. Let F i
Ñ E Ñ B be a fibration such that the action of π1pBq on H˚pFq is trivial and443

H˚pFq is a flat k-module. Then i˚ is surjective if and only if the spectral sequence of the bundle collapses444

at E2.6445

Proof. Recall from Proposition 2.2.5 that the fiber projection i˚ : H˚pEq ÝÑ H˚pFq factors as be446

realized as H˚pEq � H˚pEq{F1 “ E0,‚
8 ãÑ E0,‚

2 . This map will be surjective if and only if E0,‚
8 “447

¨ ¨ ¨ “ E0,‚
3 “ E0,‚

2 , which means that E0,‚
3 “ E0,‚

2 X ker d2 “ E0,‚
2 , so that d2E0,‚

2 “ 0, similarly that448

d3E0,‚
3 “ 0 and so on: all differentials vanish on the left column.449

6 We do not discuss the general case where π1pBq potentially acts nontrivially on H˚pFq, but in general E0,‚
2 –

H˚pFqπ1pBq, so in fact if i˚ is surjective, then π1pBq must act on H˚pFq trivially.
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This is the case by definition if the sequence collapses at E2. For the converse implication,450

note that by our assumptions, E2 – H˚pBqbk H˚pFq, and d2 vanishes on H˚pBq by lacunary451

considerations. If i˚ is surjective, then as we have discussed, the differentials vanish on the left452

columns E0,‚
‚ . Since d2 is an antiderivation vanishing on tensors of the form 1b z and xb 1 both,453

it is identically zero, so E3 “ E2 – H˚pBqbH˚pFq. But d3 on H˚pBq by necessity and on H˚pFq454

by assumption, so one has d3 “ 0 as well. By induction, E2 “ E8.455

Something even stronger can be said.456

Theorem 2.2.13 (Leray–Hirsch). Let F i
Ñ E π

Ñ B be a fibration such that the action of π1pBq on457

H˚pFq is trivial, H˚pFq is a free k-module, and i˚ is surjective. Then H˚pEq – H˚pBqbH˚pFq as an458

H˚pBq-module.459

This theorem, due to Leray and Hirsch, can be viewed as a strengthening of the Künneth460

Theorem B.1.2. The proof can be seen as a less structured version of that of Proposition A.4.4.461

Proof. From Corollary 2.2.12 we see that gr
‚

H˚pEq “ E8 – H˚pBqbH˚pFq as a bigraded al-462

gebra, but it is not a priori clear what bearing this has on the original multiplicative structure.463

Select a graded k-module basis pzjq for H˚pFq and lift the elements 1b zj P E0,‚
8 “ gr0 H˚pEq464

back to elements rzj of H˚pEq. Then M “ π˚H˚pBqtrzju is a filtered graded H˚pBq-submodule of465

H˚pEq, and there is by Proposition 2.2.5 a natural H˚pBq-module homomorphism ψ : E8 ÝÑ M.466

This homomorphism clearly preserves the filtration induced from the grading of H˚pBq, so467

gr
‚

ψ : H˚pBqbH˚pFq ÝÑ H˚pBqbH˚pFq is defined, and as it takes 1b zj ÞÝÑ 1b zj by con-468

struction, it is an H˚pBq-module isomorphism. Thus, by Corollary 2.5.2, so is ψ.469

Exercise 2.2.14. Derive the topological Künneth theorem over a field k by applying Theorem 2.2.13470

to the projections of XˆY.471

Remark 2.2.15. [Explain the significance of the Künneth theorem and the zig-zag argu-472

ment per Loring’s book as Leray’s motivation for spectral sequences, possibly with an473

original Leray quote. Borel quote: “The starting point is an argument which occurs474

repeatedly in [1945a]. Its first goal was to prove that the ‘forms on a space’ (see 6) obey475

some of the rules of exterior differential calculus (cf. the introductory remarks in476

[1945b] quoted above in 5). According to [1950a] p. 9 or [1959c], p.10, it is the analysis of477

this argument which led Leray to the cohomological invariants of a continuous map,478

described initially in [1946b].”]479

Theorem 2.2.16 (Leray [Ler50][find theorem number]). Let F Ñ E Ñ B be a fibration and k a ring480

such H˚pB; kq contains no 2-torsion, the action of π1pBq on H˚pF; kq is trivial, and H˚pFq – kr~zs{p~zq2,481

where each degree |zj| is even and positive; in other words, let F have the cohomology of a product of482

connected even-dimensional spheres. Then H˚pEq – H˚pBqbH˚pFq as an H˚pBq-module.483

Proof. By the preceding Leray–Hirsch theorem 2.2.13 it is enough to show the spectral sequence484

collapses at E2, and by Corollary 2.2.12 to show that all differentials vanish on H˚pFq. Since485

this group is spanned by monomials zJ “
ś

jPJ zj in the generators, it is enough to show each486

drp1b zjq “ 0. Suppose inductively that dr´1 “ 0, so that Er – E2 – H˚pBqbH˚pFq. We can write487

drp1b z`q “
ÿ

xJ b zJ , xJ P H˚pBq.
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Since dr lowers total degree by one, for every term such that xJ ‰ 0 and all j P J we have488

|z`| ą |z`| ´ 1 ě zj, so that z` does not appear as a factor of any term in drp1b z`q. But then489

0 “ drp0q “ drp1b z2
`q “ 2

ÿ

xJ b z`zJ

since dr is a derivation. Since z` is not a factor of zJ , the factor z`zJ is nonzero. The monomials490

in the zj form a basis of H˚pFq, so it follows each xJ is 2-torsion; but by assumption, there is no491

2-torsion, so drp1b z`q “
ř

xJ b zJ “ 0 itself, concluding the induction.492

After all this collapse, it is about time for an example with a nontrivial differential.493

Example 2.2.17. Consider the Hopf fibration S1 Ñ S3 Ñ S2, obtained by letting S1 ă Cˆ act494

diagonally by complex multiplication on S3 ă CˆC and modding out to get CP1. Of course495

H˚pS2q – Zrxs{px2q for x “ rS2s and H˚pS1q – Λrzs for z “ rS1s, which is free abelian, so that496

E2 – H˚pS2qbH˚pS1q. See Figure 2.2.18.497

Figure 2.2.18: The Serre spectral sequence of S1 Ñ S3 Ñ S2

1 Zz Zxz

0 Z Zx

E2 0 2

d2 1 Zxz

0 Z

E8 0 2

In this case, we already know the end result should be E8 “ H˚pS3q “ Λrys for y P H3pS3q.498

The only potentially nonzero differential is d2 : Zz ÝÑ Zx, whose kernel will be H1pS3q “ 0499

and whose cokernel will be H2pS3q “ 0; there is no need to worry about the associated graded500

because each diagonal p` q “ n has at most one nonzero entry. It follows d2 is an isomorphism501

and hence d2pzq “ ˘x.502

We will use a generalization of this calculation in Section 7.1 to calculate H˚pCP8q.503

The d2 in the previous example stretching from the left column to the bottom row is the504

first example of an important phenomenon that will play heavily in our computation of the505

cohomology of a homogeneous space. It admits the following characterization. In the long exact506

homotopy sequence of the Hopf fibration S1 Ñ S3 Ñ S2, the boundary map B : π2pS2q ÝÑ π1pS1q507

is an isomorphism. Recall that this sequence can be identified with the long exact sequence of508

the pair pS3, S1q, where S1 is thought of as the fiber over some point ˚ P S2, and that this long509

exact sequence is connected to the long exact homology sequence via the Hurewicz map. Modulo510

torsion, the cohomology long exact sequence is dual to this long exact sequence.511

Exercise 2.2.19. Use Hurewicz maps to check that the dual of B is δ : H1pS1q
„
ÝÑ H2pS3, S1q and512

the map π˚ : H2pS2q – H2pS2, ˚q Ñ H2pS3, S1q is an isomorphism.513

Then d2 is determined as d2 “ pπ˚q´1 ˝ δ. In general pπ˚q´1 ˝ δ is not a well-defined map,514

but a relation on Hr`1pBq ˆ HrpFq – Er`1,0
2 ˆ E0,r

2 . We will show momentarily that this relation515

describes via representatives in E2 the transgression maps dr`1 : E0,r
r`1 ÝÑ Er`1,0

r`1 for each r ě 2.516
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Figure 2.2.20: The transgression

5 E0,5
6

4

3

2

1

0 E6,0
6

0 1 2 3 4 5 6

d6

We will discuss the transgression in both the filtration and Serre spectral sequences and prove517

the following result in Section 2.8.518

Proposition 2.2.21. Let F i
Ñ E π

Ñ B be a fibration with all spaces path-connected and such that the519

action of π1B on H˚pFq is trivial. An element rzs P HrpFq “ E0,r
2 (Definition 2.8.1) represents an element520

of E0,r
r`1, and hence transgresses to the class in Er`1,0

r`1 represented by some rbs P Hr`1pBq, if and only if521

there exists c P CrpEq in the singular cochain group such that i˚c “ z and δc “ π˚b. This is the picture:522

CqpEq
δ

��

i˚ // ZqpFq

τ
tt

c_

��

� // z0

xxZq`1pBq
π˚
// Zq`1pEq, b � // δc.

We will ultimately need this cochain-level description to prove Theorem 8.1.5, but there is523

an illuminating way of understanding the transgression which does not require us to descend524

this far. Recall from Theorem B.1.4 that associated to a bundle F i
Ñ E π

Ñ B is an exact triangle of525

homotopy groups526

π˚pFq ÝÑ π˚pEq ÝÑ π˚pBq
deg´1
ÝÝÝÝÑ π˚pFq.

Thus there is a degree-shifting map linking the homotopy groups of the base and fiber. Viewing527

F “ E|˚ as a specific fiber over a point ˚ P B, this sequence arises from the long exact sequence528

of relative homotopy groups associated to the pair pE, Fq,529

π˚pFq ÝÑ π˚pEq ÝÑ π˚pE, Fq
deg´1
ÝÝÝÝÑ π˚pFq,

via the homotopy lifting property. The long exact sequence of a pair530

H˚pFq
deg`1
ÝÝÝÝÑ H˚pE, Fq ÝÑ H˚pEq ÝÑ H˚pFq.

is one of the Eilenberg–Steenrod axioms, but it no longer will do in general to substitute rH˚pBq “531

H˚pB, ˚q for H˚pE, Fq. If it did, we would always have a degree-shifting cohomological map like532

the transgression linking the base and the fiber. Nevertheless, π is a map of pairs pE, Fq ÝÑ pB, ˚q,533
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so one has map of long exact sequences534

¨ ¨ ¨ // HqpFq δ // Hq`1pE, Fq // Hq`1pEq i˚ // Hq`1pFq // ¨ ¨ ¨

¨ ¨ ¨ // Hqp˚q //

OO

Hq`1pB, ˚q

π˚

OO

„ // Hq`1pBq

π˚

OO

// Hq`1p˚q ////

OO

¨ ¨ ¨

Proposition 2.2.22. The transgression is given by the composite relation pπ˚q´1 ˝ δ.535

Proof. A pair
`

rbs, rzs
˘

P Hq`1pBqˆHqpFq stands in the relation pπ˚q´1 ˝ δ, by definition, if π˚rbs “536

δrzs in Hq`1pE, Fq. But δrzs P Hq`1pE, Fq is by definition the class of δc for any cochain c P CqpEq537

such that i˚c “ z. Thus, if elements pz, c, bq satisfy the specification put forth in Proposition 2.2.21,538

then π˚rbs “ rcs “ δrzs. Conversely, if π˚rbs “ δrzs, then the proof of Proposition 2.2.21 shows539

that the extension c of z can be chosen so that π˚b “ δc on the nose.540

Thus the transgressed classes in Hq´1pFq can be imagined as the images of the connecting541

homomorphism η “ pπ´1q˚ ˝ δ in a fictitious long exact sequence542

H˚pFq
η
ÝÑ H˚pBq ÝÑ H˚pEq i˚

ÝÑ H˚pFq

of a bundle corresponding to the long exact sequence of homotopy groups. The transgressive543

elements can be said, morally speaking, to be those for which such a sequence holds.544

Remark 2.2.23. There is an analogous Serre spectral sequence of a bundle in homology, whose545

differentials are of degree p´r, r´ 1q, and a (partially defined) transgression HrpBq ÝÑ Hr´1pBq.546

Dually to our definition in cohomology, the transgressed elements of HqF are images of trans-547

gressive elements of Hq`1B under an incompletely-defined map τ˚ in the dual fictitious long548

exact sequence549

H˚pBq
τ˚
ÝÑ H˚pFq ÝÑ H˚pEq ÝÑ H˚pBq.

Because the Hurewicz homomorphism π˚pX, Aq ÝÑ H˚pX, Aq from homotopy groups to550

homology groups discussed in Theorem B.1.1 is natural, it pieces together into a map from the551

homotopy long exact sequence of a pair pE, Fq to the homology long exact sequence of that pair.552

It follows from the existence of this map of long exact sequences and the long exact homotopy553

sequence of a bundle (Theorem B.1.4) that everything in the image of the Hurewicz map π˚F ÝÑ554

H˚F is the image of the transgression in every fibration with fiber F, a fact we will have cause to555

comment on again in Section 7.4. [Flesh this out.] Moreover, when k is a field, the cohomology556

transgression τ : Hq´1pFq ÝÑ HqpBq and the homology transgression τ˚ : HqpBq ÝÑ Hq´1pFq are557

dual [Ral]. [Flesh this out.]558

Remarks 2.2.24. (a) Although we will also have occasion to invoke the spectral sequence of a559

filtered dga again in Section 7.4, Theorem 8.1.5, and Appendix C.3, from here on out, “spectral560

sequence” simpliciter will connote the cohomological Serre spectral sequence of a bundle. It will561

be deployed with sufficient frequency that we allow ourselves also to abbreviate it SSS.562

(b) This spectral sequences applies more generally, even if instance that π1B fails to act trivially563

on H˚pFq, with the concession that the coefficients H˚pFq must instead be taken as a sheaf of564

groups or, at the most concrete, a krπ1Bs-module.565
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(c) In the event the fibration F Ñ E π
Ñ B is in fact a fiber bundle, as it will be in all cases that566

actually concern us, the Serre spectral sequence is isomorphic from E2 on to the Leray spectral567

sequence of the map π, which we will introduce in Appendix C.2 to complete our account of568

Borel’s original 1953 proof of Theorem 8.1.14.569

(d) We have stated Serre’s theorem for singular simplicial cohomology, but he initially stated570

it for singular cubical homology and cohomology, and it goes through essentially unchanged571

for Alexander–Spanier cohomology, Čech cohomology, or cohomology with APL-cochains as we572

introduce in Section 4.2. The skeletal filtration FpC˚pEq “ ker
`

C˚pEq Ñ C˚pπ´1Bpq
˘

is actually573

due to Kudo. Writing I “ r0, 1s for the unit interval, In ÝÑ Ip for the projection from a cube onto574

the first p coordinates, and π : E ÝÑ B for the fibration in question, Serre’s filtration is575

FpCcube
n pEq :“ tc : In Ñ E | π ˝ c : In Ñ E Ñ B factors through In Ñ Ipu.

2.3. Sample applications576

Starting in Chapter 3 and throughout the book we will see more than enough examples of the577

Serre spectral sequence to build a healthy intuition, but before we do this the author wanted to578

give some example of its broad applicability. We begin with a number of results Leray announced579

in the Comptes Rendus notes where he publicized his creation to the world and a notable early580

result of Borel and Serre before citing some results from Serre’s thesis. This material is not needed581

for the main development.582

The following theorem was the first successful application of spectral sequences by anyone583

but Leray. In late 1949, Borel and Serre resolved what had been taken to be a hard problem in584

one afternoon.585

Theorem 2.3.1. If F Ñ Rn π
Ñ B is a fiber bundle over a CW complex B with path-connected fiber F, then586

rH˚pBq – 0 – rH˚pFq.587

We say the spaces F and B are acyclic in this case.588

Proof. Since Rn is connected, B must be as well. The homotopy long exact sequence of the bundle589

contains the fragment π1pRnq Ñ π1B Ñ π0F, so B is simply-connected, and Theorem 2.2.2590

applies. Since Rn is n-dimensional, B is a CW complex of dimension at most n, and F is a591

deformation retract of an open subset π´1pUq « Uˆ F for contractible open U Ĺ B, so Hěn`1B “592

0 “ Hěn`1F. Let p, q ď n be maximal such that HppBq and HqpFq are nonzero; we need to593

show p “ q “ 0. By the universal coefficient theorem B.1.1, we have Ep,q
2 “ Hp

`

B; HqpFq
˘

–594

HppBqbHqpFq ‰ 0. This is the red square Figure 2.3.2. Now we consider the E2 page of the Serre595

spectral sequence.596
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Figure 2.3.2: Only blue is inhabited, so red does not support a differential

q

0

0 p

Since HąppBq “ 0 “ HąqpFq, the only potentially inhabited squares lie in the rectangle r0, ps ˆ597

r0, qs, shown in blue in Figure 2.3.2. But differentials to and from the pp, qq-square end outside of598

this rectangle, so we must have Ep,q
8 “ Ep,q

2 ‰ 0. But Hp`qpRnq “ 0, so p “ q “ 0.599

This is actually weaker than the original statement, which unfortunately uses a bit too much600

background for the proof to be self-contained.601

Theorem 2.3.3 (Borel–Serre). Let F Ñ Rn Ñ B be a bundle with compact fiber F. Then F is a point and602

B is Rn.603

Proof. Since Rn is locally path-connected, so is F, and the quotient map reducing each path-604

component of F to a point defines another fibration v : Rn ÝÑ B1. Since the base B1 is path-605

connected, this is another fiber bundle, this time with connected fiber F0.606

Figure 2.3.4: A contradictory permanent cycle

0 xb 1

E2 0 p n

We first show F0 is a point by contradiction. Note that for a sufficiently small neighborhood607

U of any point of B we have v´1pUq « Uˆ F0 an open subset of Rn, and since F0 is assumed not608

to be a point, it follows from dimension theory that B1 has topological dimension ď n´ 1. Now609

we consider the Leray spectral sequence of the bundle F0 Ñ Rn Ñ B1 in Čech cohomology with610

compact supports qH˚
c , as derived in Appendix C.2. This works algebraically the same way as the611

Serre spectral sequence of the bundle but has612

Ep,q
2 “ qHp

c
`

B; qHq
c pF;Rq

˘

– qHp
c pB;Rqb

R
qHq

c pF0;Rq
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and converges to qHcpRn;Rq, which is R in dimension n and zero in all other dimensions. It613

follows the total degree n of E2 is nonzero so for some p ď n´ 1 there is a nonzero element of614

Ep,n´p
2 . In particular, for some p there is a nonzero element x of qHp

c pB;Rq. Let p be minimal such615

this holds. Since F0 is compact connected, we have qH0
c pF0;Rq – qH0pF0;Rq – R, represented by the616

constant function 1. Now, as seen in Figure 2.3.4, the element xb 1 is of minimum total degree617

in E2 (alternately), it receives no differentials from the nonzero region, so it must persist to E8.618

But qHp
c pRn;Rq “ 0, a contradiction.619

We have shown each component F0 of the original fiber F is a point. As F is compact, it620

follows it is a finite discrete set, so that Rn is the universal cover of B. It follows π1pBq is a finite621

group acting freely freely on Rn. If π1pBq ‰ 1, then by Cauchy’s theorem, there is an element622

γ P π1pBq of some prime order p, generating a free Z{p-action on Rn. Compactifying Rn with a623

point at infinity, we get a Z{p-action on Sn with precisely one fixed point. But this is impossible624

by Smith theory [Hsi75, p. 50], which shows that the fixed point set X “ pSnqZ{p must have625

H˚pX;Fpq – H˚pSm;Fpq for some sphere Sm (with m ă n). It follows that π1pBq “ 1, so F is626

connected.627

Corollary 2.3.5 (Leray [Ler46a]). Let F Ñ E Ñ B be a fibration such that the action of π1B on H˚pFq628

is trivial and H˚pFq is a free k-module. Suppose further that F and B are of finite type. Then the Poincaré629

series satisfy630

ppEq ď ppBqppFq,

in the sense that each coefficient of ppBqppFq ´ ppEq is nonnegative, with equality if and only if the fiber631

inclusion F ãÝÝÑ E is surjective in cohomology. More specifically, there is a series bptq P Nrrtss such that632

ppEq ` p1` tqbptq “ ppBqppFq in Nrrtss.

Proof. We take k “ Q. Then E2 “ H˚pB;QqbH˚pF;Qq in the Serre spectral sequence of F Ñ E Ñ633

B, showing ppE2q “ ppBqppFq. The rank of each Ep,q
r , and hence the Poincaré polynomial, can634

only decrease by E8, and it can only fail to decrease if E2 – E8; that is the case if and only if635

H˚pE;Qq ÝÝ� H˚pF;Qq, by Corollary 2.2.12.636

On the level of graded vector spaces, through the selection of arbitrary graded linear comple-
ments, we have the following isomorphisms:

E2 – ker d2 ‘ E2
L

ker d2,

ker d2 – im d2 ‘ E3.

Since d2 descends to a graded isomorphism E2{ker d2
„
ÝÑ im d2 of degree one, it follows637

ppE2q “ ppker d2q ‘ t´1 ppim d2q “ ppE3q ` p1` t´1qppim d2q.

Set b2ptq “ t´1 ppim d2q P Nrrtss, so that we get ppE2q “ ppE3q ` p1` tqb2ptq. A similar analysis638

provides for each r ě 2 a series brptq P Nrrtss such that ppErq “ ppEr`1q ` p1` tqbrptq. Now, in639

each fixed total degree n, the sequence pEn
r q stabilizes at a finite r “ rpnq, so the nth coefficient640

of bsptq is zero for s ě rpnq. Hence it makes sense to take the limit as r Ñ 8 of the equations641

ppE2q “ ppEr`1q ` p1` tq
řr

s“2 bsptq.642

The Serre spectral sequence allows a vast generalization of the covering result Proposi-643

tion B.2.5.644
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Proposition 2.3.6. Let F Ñ E Ñ B be a fiber bundle such that the action of π1B on H˚pFq is trivial and645

h‚pBq and h‚pFq are finite. Then the Euler characteristics of these spaces satisfy χpEq “ χpFqχpBq.646

Proof. Consider E2 “ H˚pBqbH˚pFq as a single complex with degpHpBbHqFq “ p ` q. With647

this grading, χpE2q “ χpBqχpFq. By repeated application of Proposition A.3.1, one finds648

χpE2q “ χpE3q “ ¨ ¨ ¨ “ χpE8q “ χpEq.

Proposition 2.3.7. Given a fibration F i
Ñ E Ñ B such that H˚pBq – H˚pSnq and π1pBq acts trivially649

on H˚pFq, there exists a Wang exact sequence650

H˚pFq
deg n´1 // H˚pFq

deg n

��
H˚pEq.

i˚

YY

Exercise 2.3.8 (Leray [Ler46a]). Prove Proposition 2.3.7, consulting Figure 2.3.10 and emulating651

the proof of Proposition 2.3.11.652

[Add Leray’s G{S1
proof as best we can reconstruct it.]653

2.3.1. Sphere bundles654

Figure 2.3.9: The Gysin sequence

n´ 1

0

En 0 n

Figure 2.3.10: The Wang sequence

n´ 1

0

En 0 n

Proposition 2.3.11 (Gysin, in homology [Gys41]; Steenrod, in cohomology [Stea, §11]). Given a655

fibration F Ñ E
ξ
Ñ B such that H˚pFq – H˚pSn´1q and π1pBq acts trivially on H˚pFq, there exists a656

long exact Gysin sequence of graded groups657

H˚pBq
deg n // H˚pBq

ξ˚

��
H˚pEq.

deg 1´n

YY
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The map H˚pBq ÝÑ H˚pBq is linear up to a sign and the map ξ˚ of degree 1´ n satisfies ξ˚
`

ξ˚pbq !658

x
˘

“ b ! ξ˚pxq.659

In the most important case, F is actually a sphere.660

Proof (Leray [Ler46a]). From Figure 2.3.9, it is clear that the only potentially nontrivial differen-661

tial is dn, so En “ E2 and En`1 “ E8. The kernel and cokernel of dn are respectively E‚,n´1
8 and662

E‚,0
8 ; in sequence form,663

0 Ñ Ep,n´1
8 ÝÑ Ep,n´1

2 ÝÑ Ep`n,0
2 ÝÑ Ep`n,0

8 Ñ 0

is exact for each p. But since E8 “ gr
‚

H˚pEq, we have Ep`n,0
8 – F1Hp`npEq and Ep`1,n´1

8 –664

Hp`npEq{F1Hp`npEq, so we can splice these sequences end-to-end: the horizontal file of665

Ep`1,n´1
8 
 m

��

Ep,n´1
2

dn // Ep`n,0
2

�� ��

// Hp`npEq

BB BB

// Ep`1,n´1
2

dn // Ep`n`1,0
2

Ep`n,0
8

2�

DD

is exact. Further, Ep,0
2 – HppBq “ Ep,n´1

2 for all p, so we can roll up this sequence into an exact666

triangle as claimed in the statement of the theorem.667

Exercise 2.3.12. Verify the map H˚pBq ÝÑ H˚pEq arising from our identifications is indeed ξ˚ and668

the map ξ˚ has the claimed H˚pBq-linearity property.669

We say a sphere bundle Sn´1 Ñ E
ξ
Ñ B is oriented with respect to k if the conditions of the670

theorem hold. Thus all sphere bundles are oriented with respect to k “ F2 or if πB preserves the671

orientation class rSn´1s P Hn´1pSn´1q, and not generally. Note that the map H˚pBq ÝÑ H˚pBq672

comes from the transgression dn, which takes bbrFs ÞÝÑ p´1q|b|b ¨ dnrFsb 1, so it is right mul-673

tiplication by p´1q|b|dnrFs. Thus in a sense dnrFs “ τrFs is the only cohomology invariant of an674

orientable sphere bundle ξ : E Ñ B.675

Definition 2.3.13. When Sn´1 Ñ E Ñ B is a Z-orientable sphere bundle, the class τrFs P HnpB;Zq676

is called the Euler class and written epξq. When Sn´1 Ñ E Ñ B is any sphere bundle, the class677

τrFs P HnpB;F2q is called the nth Stiefel–Whitney class and written wnpξq.678

Since the Serre spectral sequence is functorial in bundle maps, so are these classes: that is, if

p f , f q : pE1
ξ1
Ñ B1q ÝÑ pE

ξ
Ñ Bq is a map of oriented sphere bundles, then

f ˚epξq “ epξ1q,

f ˚wnpξq “ wnpξ
1q.

The coefficient homomorphism induced by Z ÝÑ F2 induces a map of spectral sequences sending679

a generator of Hn´1pSn´1;Zq to a generator of Hn´1pSn´1;F2q, so in fact wn “ e mod 2.680
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Note that if n is odd, so that F is an even-dimensional cohomology sphere and k is chosen681

so that H˚pB; kq does not have 2-torsion, then by Theorem 2.2.16, the Euler class vanishes. We682

will produce a consquence of this fact in Section 7.5. For now, note that the mapping cylinder683

Mξ :“ B > pEˆ Iq
L

`

pe, 1q „ ξpeq
˘

of ξ : E ÝÑ B is itself a fiber bundle over B with fibers the cones684

tbu Yξ pEb ˆ Iq « Dn over Eb « Sn´1, naturally containing ξ : Eˆ t0u ÝÑ B as a subbundle. We685

can apply to this inclusion the following “fiber-relative” Serre spectral sequence.686

Theorem 2.3.14. Let F Ñ E Ñ B be a fibration and E1 a subspace of E such that E1 ãÑ E � B is
also a fibration, with fiber F1 such that π1B acts trivially both on H˚pF; kq and H˚pF1; kq. There exists a
first-quadrant fiber-relative Serre spectral sequence pEr, drqrě0 of generally nonunital k-dgas with

Ep,q
2 “ Hp`B; HqpF, F1; kq

˘

,

Ep,q
8 “ grp Hp`qpE, E1; kq.

If H˚pF, F1; kq is a free k-module, we may also write E2 – H˚pB; kqbk H˚pF, F1; kq. This construction is687

functorial in maps of fibrations pF, F1q Ñ pE, E1q Ñ B of pairs.688

Proof. We collapse each fiber of E1 by attaching the mapping cylinder of π1 : E ÝÑ B to E along689

E1. As B is a retract of EYE1 Mπ1 via the inclusion of B on the free end of Mπ1, the exact sequence690

of the pair pEYMπ1, Bq is a split short exact sequence691

0 Ñ H˚pEYMπ1, Bq ÝÑ H˚pEYMπ1q ÝÑ H˚pBq Ñ 0.

As Mπ1 deformation retracts to B and CB to the cone point, it follows EYMπ1YB CB » EYE1 CE1.692

Thus H˚pEYMπ1, Bq – rH˚pEY CE1q – H˚pE, E1q, so H˚pEYMπ1q – H˚pE, E1q ‘ H˚pBq.693

The inclusion of B as a retract induces a map of fibrations pF Y CF1 Ñ EY Mπ1 Ñ Bq ÝÑ694

p˚ Ñ B Ñ Bq, inducing a map of spectral sequences which includes H˚pBq – H˚
`

B; H˚p˚q
˘

in695

pE2 “ H˚
`

B; H˚pFYCF1q
˘

as the complement of E2 “ H˚pB; rH˚pFYCF1q
˘

– H˚
`

B; H˚pF, F1q
˘

. As696

the spectral sequence of the trivial bundle ˚ Ñ B Ñ B collapses, its image in pE‚ does as well,697

representing the image of H˚pBq ÝÑ H˚pEYMπ1q on pE8. It follows the spectral subsequence E‚698

converges to H˚pE, E1q as claimed.699

Applying this tool to the relative spectral sequence pDn, Sn´1q Ñ pMξ, Eq
ppξ,ξq
ÝÝÝÑ B, so long as700

π1B acts trivially on Hn´1pSn´1q we have701

E2 “ H˚
`

B; H˚pDn, Sn´1q
˘

“ H˚
`

B; rH˚pSnq
˘

– H˚pBqbHnpSnq “ E8 – H˚pMξ, Eq,

since the spectral sequence has only the one nonzero row. It follows there is an element u P702

H0
`

B; HnpDn, Sn´1q
˘

such that Φ : b ÞÝÑ pξ˚pbq ! u is H˚pBq-linear isomorphism H˚pBq ÝÑ703

H˚`npMξ, Eq. This u is called the Thom class. By construction, the inclusion pDn, Sn´1q ãÝÝÑ704

pMξ, Eq determined by the inclusion of any fiber Sn´1 ãÝÝÑ E induces a surjection taking u to a705

generator of HnpDn, Sn´1q. We can equally well view u as an element of the cohomology of the706

Thom space707

Tξ :“ Mξ{E,

which we can think of a sort of bundle of discs all sharing one point at infinity. The Thom con-708

struction is easily seen to be functorial in orientable sphere bundles, since the mapping cylinder709

is, and it follows the Thom class is as well.710



Chapter 2. Spectral sequences 29

Note from the long exact sequence of the pair pMξ, Eq and commutativity of the diagram711

E �
� α //

ξ
!!

Mξ
β //

pξ
��

pMξ, Eq

pξ
��

B
?�

j

OO

// pB, ˚q

that im β˚ “ ker α˚ “ pξ˚pker ξ˚q in positive degree. But ker ξ˚ is the ideal of H˚pBq generated by712

epξq, while713

β˚ rH˚pMξ, Eq “ β˚ im Φ “ β˚pim pξ˚ ! uq “ pξ˚H˚pBq ! u.

It follows that u “ ˘j˚e.714

Proposition 2.3.15. The Euler class is the restriction of the Thom class to the zero section.715

Proof. That u and e are functorial in orientable sphere bundles, the equation u “ ˘j˚e can be seen716

as an equality of natural transformations between the identity functor on orientable Sn´1-bundles717

ξ : E Ñ B and the set-valued functor ξ ÞÑ B ÞÑ HnpBq. Thus it will be enough to check the sign718

on one example.719

[To be written...]720

2.3.2. Homotopy groups of spheres and Eilenberg–Mac Lane spaces721

[Add results on rational homotopy of spheres and on loop spaces]722

2.4. A natural lemma on bundles723

In this section, we use the Serre spectral sequence to prove a lemma on cohomology of bundles724

we will use repeatedly to good effect. It seems analogous to the Theorem 2.2.13 that if F Ñ E Ñ B725

is a bundle such that H˚pEq Ñ H˚pFq is surjective, then H˚pEq – H˚pBqbH˚pFq as an H˚pBq-726

module. There is a proof by Larry Smith [Smi67, Cor. 4.4, p. 88] using the Eilenberg–Moore727

spectral sequence as well as the Serre spectral sequence, but the following proof only uses what728

we have already developed.729

Let F be a topological space and ξ0 : E0 Ñ B0 an F-bundle. From the category of F-bundles730

and F-bundle maps, we can form a slice category F-Bun{ξ0 of F-bundles over ξ0 as follows. An731

object of F-Bun{ξ0 is an F-bundle ξ equipped with a bundle map ξ Ñ ξ0; a morphism between732

objects ξ1 Ñ ξ0 and ξ Ñ ξ0 is a bundle map ξ1 Ñ ξ making the expected triangle commute. Such733

a map entails the following commuting prism:734

E1
h
//

f 1

++

ξ1

��

E
f
//

ξ

��

E0

ξ0

��
B1 h̄ //

f 1

33B
f̄ // B0.

(2.4.1)
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Note that the maps between total spaces yield two functors

F-Bun{ξ0 ÝÑ H˚pE0q-CGA :

pE Ñ Bq ÞÝÑ H˚pEq;

pE Ñ Bq ÞÝÑ HpBq b
H˚pB0q

H˚pE0q.

If H˚pE0q ÝÑ H˚pF0q is surjective, we claim these functors are naturally isomorphic.735

Theorem 2.4.1. Let ξ0 : E0 Ñ B0 be an F-bundle such that the fiber inclusion F ãÝÝÑ E0 is H˚-surjective,736

such that H˚pFq is a free k-module, and such that π1B0 acts trivially on H˚pFq. Then the fiber inclusions737

of all F-bundles over ξ0 are H˚-surjective, and there is a natural ring isomorphism738

H˚pEq „
ÐÝ H˚pBq b

H˚pB0q
H˚pE0q

of functors F-Bun{ξ0 ÝÑ H˚pE0q-CGA. Diagrammatically, the commutative diagram (2.4.1) gives rise to739

H˚pE1q H˚pEqh˚oo

H˚pB1qbH˚pB0q H˚pE0q

„

OO

H˚pBqbH˚pB0q H˚pE0q.

„

OO

h̄˚b id
oo

Verbally, if a fiber inclusion is surjective in cohomology, then cohomology takes pullbacks to740

pushouts.741

Proof. By the definition of a bundle map, the fiber inclusion F ãÝÝÑ E0 factors as F ãÑ E Ñ742

E0, so the assumed surjectivity of H˚pE0q Ñ H˚pEq Ñ H˚pFq implies surjectivity of the factor743

H˚pEq ÝÑ H˚pFq.744

Because of these surjections, the spectral sequences of these bundles stabilize at their E2 pages745

by Corollary 2.2.12. Applying H˚ to the right square of the assemblage (2.4.1) yields746

H˚pEq H˚pE0q
f˚oo

H˚pBq

ξ˚

OO

H˚pB0q,
f̄˚
oo

ξ˚0

OO

which manifests on the E2 page as

H˚pBqbH˚pFq H˚pB0qbH˚pFq
f̄˚ b idoo

H˚pBq

idb 1

OO

H˚pB0q.
f̄˚

oo

idb 1

OO

The commutativity of the left square means there is an induced map of rings

H˚pBq b
H˚pB0q

H˚pE0q ÝÑ H˚pEq,

bb x ÞÝÑ ξ˚pbq f ˚pxq,

whose E2 manifestation is the canonical H˚pBq-module isomorphism747

H˚pBq b
H˚pB0q

“

H˚pB0qbH˚pFq
‰ „
ÝÑ H˚pBqbH˚pFq.

Since this E2 map is a bijection, the ring map is an H˚pE0q-algebra isomorphism.748
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For naturality, note that the ring map h˚ : H˚pEq ÝÑ H˚pE1q is completely determined its749

restrictions to its tensor-factors H˚pBq and H˚pE0q. The left square and top triangle of (2.4.1)750

imply the commutativity of the squares751

H˚pE1q H˚pEqh˚oo

H˚pB1q

pξ1q˚

OO

H˚pBq,
h̄˚
oo

ξ˚

OO
H˚pE1q H˚pEqh˚oo

H˚pE0q

p f 1q˚

OO

H˚pE0q,

f˚

OO

so that these factor maps are respectively h̄˚ : H˚pBq ÝÑ H˚pB1q and idH˚pE0q.752

2.5. Filtered objects753

The rest of this chapter constitutes what should be seen as an appendix to the preceding sections754

of the chapter, to fill in missing technical details and be referred back to as necessary. We will755

eventually need some level of explicitness in describing the transgression and the construction of756

a filtration spectral sequence, but the choice of how much to take on faith lies with the conscience757

of the reader.758

In all that follows, k will be an ungraded commutative ring with unity. A filtered module is a759

pair pC, F‚q, where C is a k-module and F‚ is an infinite descending sequence760

¨ ¨ ¨ “ F́ 1 “ F0 “ C ě F1 ě F2 ě ¨ ¨ ¨

of k-submodules. We also write Fp “ FpC.7 One can equivalently repackage this information as a761

Z-graded k-module
À

F‚C :“
À

pPZ Fp equipped with an injective endomorphism i of degree ´1762

which is an isomorphism in nonpositive degrees. We denote either of these equivalent phrasings,763

slightly abusively, by pC, iq. Say a filtration is Hausdorff if
Ş

pPZ FpC “ 0, and finite if FpC “ 0 for764

p sufficiently large. The k-module765

gr
‚

C :“ coker i “
à

pě0
FpC{Fp`1C

is the associated graded module of pC, iq. A filtered k-algebra pC, iq is a k-algebra C such that pC, iq
is a filtered group and Fp ¨ Fq ď Fp`1 for all p, q. In this case gr

‚
C becomes a graded k-algebra,

with multiplication defined on individual degrees by

grp Cˆ grq C ÝÑ grp`q C,

px` Fp`1q ¨ py` Fq`1q :“ xy` Fp`q`1.

A map f : B ÝÑ C is said to preserve filtrations pB, ιq and pC, iq if f pFpBq ď FpC. We write such766

a map as f : pB, ιq ÝÑ pC, iq. Such a map induces an associated graded map gr
‚

f : gr
‚

B ÝÑ gr
‚

C.767

We have the following recurring result on such maps.768

7 In general usage, filtrations pFpCq are not required to stabilize in negative degrees or to be exhaustive in the sense
that

Ť

pPZ FpC “ C. Since we will never have cause to use such a general filtration, we include these more restrictive
hypotheses in our definition off the bat.
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Proposition 2.5.1. Let f : pB, ιq ÝÑ pC, iq be a filtration-preserving cochain map of filtered groups and769

suppose that both filtrations are finite. Then if gr
‚

f is an isomorphism, so also must be f itself.770

Proof. Fix a filtration degree p sufficiently large that Fp`1B “ 0 “ Fp`1B. We have a map771

0 // Fp`1B //

f
��

FpB //

f
��

grp B //

„ gr‚ f
��

0

0 // Fp`1C // FpC // grp D // 0

of short exact sequences; by the five lemma, it follows Fp f : FpB ÝÑ FpC is an isomorphism. This772

begins a decreasing induction on p, which terminates in f : B „
ÝÑ C when p “ 0.773

We can also define filtered graded k-modules pC‚, iq. These are simply direct sums C‚ “774
À

nPZ Cn of filtered k-modules pCn, inq in each degree, equipped with total filtration FpC‚ “775
À

n FpCn. Such an object is said to be finite in each degree (more commonly, bounded) if the filtra-776

tion F‚Cn in each degree is finite. For maps of graded filtered groups, applying Proposition 2.5.1777

individually in each degree, one finds the following.778

Corollary 2.5.2. Let f : pB‚, ιq ÝÑ pC‚, iq be a filtration-preserving cochain map of filtered graded groups.779

Suppose that both filtrations are finite in each degree. Then if gr
‚

f is an isomorphism, so also must be f780

itself.781

It is also useful to know that if an associated graded object is free, the original object must be.782

Proposition 2.5.3 ([McC01, Example 1.K, p. 25]). Let pA‚, iq be a filtered graded k-algebra, free as a783

k-module. If gr
‚

A‚ is a free bigraded k-cga, then gr
‚

A‚ – A‚ as a singly graded k-cga.784

Proof. Select free bihomogeneous generators x P Ep,q
8 of E8, and for each of these fix a repre-785

sentative y P FpHp`qpAq Then the assignment x ÞÝÑ y extends to a filtration-preserving map of786

graded cgas E8 ÝÑ H˚pAq. The induced map of associated graded algebras E8 “ gr E8 ÝÑ787

gr H˚pAq “ E8 takes each generator x ÞÝÑ x, and hence is an isomorphism, so by Corollary 2.5.2,788

the map E8 ÝÑ H˚pAq is an isomorphism as well.789

A filtered differential k-module is a triple pC, d, ı̃q such that pC, dq is a differential group, pC, ı̃q790

a filtered group, and d preserves the filtration in the sense that dFp ď Fp. A homomorphism of791

filtered differential k-modules is a cochain map commuting with the filtration. In this case the792

differential d descends to a differential d0 on gr
‚

C, inducing a short exact sequence of differential793

k-modules794

0 Ñ
à

pPZ
FpC ı̃

ÝÑ
à

pPZ
FpC

̃
ÝÝ� gr

‚
C Ñ 0,

where ı̃ is the degree-p´1q map we have identified with the filtration. This induces a triangular795

exact sequence796

À

HpFpCq i //
À

HpFpCq

j
~~

Hd0pgr
‚

Cq

k

``
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of cohomology groups. Such a triangle is traditionally called an exact couple. If we set d1 “ jk,797

then d2
1 “ jpkjqk “ 0, so d1 is a differential on Hd0pgr

‚
Cq. Note for later that Hpgr

‚
Cq is naturally798

graded by Hpgr
‚

Cqp :“ H˚pgrp Cq and the map i induces a filtration FpHpCq :“ ipHpFpCq on799

HpCq.800

Remark 2.5.4. Note that a map of filtered differential k-modules induces a map of short exact801

sequences and a map of exact couples in cohomology (a triangular prism), and so in particular a802

map of differential k-modules between the E components.803

2.6. The filtration spectral sequence804

There is a functor805

A1
i // A1

j
��

E1,

k

YY

ÞÝÑ

A2
i2 // A2

j2
��

E2,

k2

YY

taking an exact couple to the derived couple whose objects are A2 “ iA1 and E2 “ HpE1, d1q, and806

whose maps are given by i2 “ pi æ iA1q and j2 : ia ÞÝÑ rjas and k2 : res ÞÝÑ ke.807

Exercise 2.6.1. Check these maps are well-defined and that the derived couple is again exact.808

Exercise 2.6.2. Check that a map of exact couples induces a map of derived couples.809

One iterates this process, and the sequence pEr, drq of differential groups so derived is called810

the spectral sequence of the exact couple. Each Er is traditionally called a page.8 A homomorphism811

of spectral sequences is a sequence
`

ψr : prEr, d̃rq ÝÑ pEr, drq
˘

rěn of cochain maps of differential812

groups such that each ψr`1 for r ě n is induced by ψr, which is to say ψr`1 “ Hpψrq. From813

Remark 2.5.4 and Exercise 2.6.2, it follows that a map of filtered differential groups induces a814

map of exact couples and iteratively a map of spectral sequences.815

In all our applications in this book, the initial exact couple pA1, E1q will be that from Sec-816

tion 2.5, namely
`
À

p HpFpCq, Hpgr
‚

Cq
˘

, induced by a filtered differential group pC, d̃, ı̃q. In this817

case, the pth graded component of Ar “ ir A0 is the image of ir “ Hpı̃qr : HpFpCq ÝÑ HpFp´rCq.818

Since our filtrations all have C “ F0C “ F́ 1C “ ¨ ¨ ¨ , for r ą p, the map ir is an injection on the819

pth component. If the filtration FpHpCq is finite, say with Fr HpCq “ 0, then Ar is the direct sum of820

the graded components821

¨ ¨ ¨ “ HpCq “ HpCq ě iHpF1Cq ě i2HpF2Cq ě ¨ ¨ ¨ ě ir´1HpFr´1Cq ě 0 “ 0 “ ¨ ¨ ¨ ,

which can be identified with the filtrands FpHpCq, and ir is injective on every component since822

everything is now a submodule of HpCq. Thus the rth triangle becomes a short exact sequence823

Ar
ir // Ar

jr
��

Er.

0

YY

8 Even more traditionally, it was called a term. The author is not sure when the switch started.
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As jrkr “ jr0 “ 0, it follows Er “ Er`1 “ ¨ ¨ ¨ . We will call this terminal value the limiting page,824

and denote it E8. By exactness,825

E8 “ Er –
Ar

ir Ar
“

à

p

FpHpCq
Fp`1HpCq

“ gr
‚

HpCq.

In such a situation, when E8 – gr
‚

HpCq, we say that pEr, drq converges to HpCq. One sometimes826

writes this as Er ùñ HpCq.827

There is another important way to look at this spectral sequence: since we ultimately want to828

use it to understand the cohomology of C, we should understand the differentials in terms of C829

itself. Let’s first try in terms of E1. Each page, by definition, is the cohomology of the previous,830

so that for instance Er`1 “ pker drq{pim drq; and here in turn ker dr and im dr are subgroups831

of Er “ pker dr´1q{pim dr´1q. Thus, the preimages of ker dr and im dr under the quotient map832

π : ker dr´1 ÝÝ� Er, both contain ker dr´1, and by the third isomorphism theorem, we still have833

pπ´1 ker drq{pπ
´1 im drq – Er`1. Iteratively pulling all the kernels and images back to E1, we get834

a sequence of subgroups835

Ąim d1 ď
Ąim d2 ď

Ąim d3 ď ¨ ¨ ¨ ď
Ćker d3 ď

Ćker d2 ď
Ćker d1

of E1 such that Er`1 “
Ćker dr{Ąim dr. We can now define E8 :“

Ş

Ćker dr{
Ť

Ąim dr, which is defined836

independent of the convergence of the sequence.837

Let us try to characterize these subgroups.838

• An element e P E1 lies in Ąim d1, meaning it represents the trivial class r0s2 P E2, if is in im jk,839

or equivalently, by exactness, if e P jpker iq.840

• An element e P E1 lies in Ćker d1, meaning it represents an element of E2, if it is in ker jk, or841

equivalently, by exactness, if e P kpim iq.842

• An element res2 P E2, meaning it represents the trivial class r0s3 P E3, if it is in im j2k2,843

meaning res2 “ rji´1ke1s2 for some e1 P k´1pim iq. This means e´ ji´1ke1 P Ąim d1 “ jpker iq.844

Thus e “ ji´1ke1 ` ja for some a P ker i, so e P j ker i2. Conversely, if e “ ja and i2a “ 0, then845

ia “ ke1 for some e1 P Ćker d1 by exactness and e “ ji´1ke1 P j2k2re1s2.846

• An element res2 P E2 lies in Ćker d2, meaning it represents an element of E3, if j2k2res2 “ r0s2,847

or in other words, if ji´1ke P Ąim d1 “ jpker iq.9 Thus ji´1ke “ ja for some a P ker i, so848

i´1ke´ a P ker j “ im i and ke P im i2. Conversely, if ke P im i2, then ji´1ke “ 0.849

Exercise 2.6.3. Show by induction that Ąim dr “ jpker irq and Ćker dr “ k´1pim irq.850

Thus the operation ji´rk, defined on elements of Ćker dr, descends to become dr`1. Now we
lift this description back to the associated graded group E0 :“ gr

‚
C. An element ep of Ep

1 “

HpFpC{Fp`1Cq is represented by a cocycle in grp C, which is an element cp ` Fp`1 such that dcp

represents 0 in grp C, or in other words dcp P Fp`1. Such an element cp represents 0 in E1 if it lies
in Fp`1 ` dFp. Let us agree to write for these groups of representatives

Zp
0 :“ tcp ` Fp`1 P grp C : dcp P Fp`1u,

Bp
0 :“ tdcp ` Fp`1 P grp C : cp P Fpu.

9 The particular preimage i´1ke taken does not affect the calculation.
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The maps i, j, k in the original exact triangle arise from the long exact sequence851

0 Ñ
à

Fp
ı̃
ÝÑ

à

Fp ÝÑ gr
‚

C Ñ 0,

taking, in individual graded components,852

HpFp`1q
i // HpFpq

j

��
HpFp{Fp`1q,

k

\\
cp`1 ` dFp`1

� i // cp`1 ` dFp.

dcp ` dFp`1 cp ` dFp;

j
}}

cp ` Fp`1 ` dFp
	

k

dd

[fix arrowhead locations here]853

Note that i, j, k respectively change the p-grading by ´1, 0, 1, so that the p-degree of dr, which854

is induced from ji´pr´1qk on Ćker dr´1, is 0` pr´ 1q ` 1 “ r. Moreover, since the connecting map855

k takes a class represented by c P C to one represented by dc, we see each dr is induced by the856

original differential d.857

Write Zr and Br respectively for the subgroups of E0 comprising representatives of Ćker dr ď858

E1 “ HpE0q and of Ąim dr ď E1.859

• From Exercise 2.6.3, an element e P Ep
1 lies in Ąim dr if it can be written as ja with ira “ 0 for860

some a P A1. That is, there is cp ` dFp such that e “ cp ` dFp ` Fp`1 and cp represents zero861

in HpFp´rq, meaning cp “ dcp´r for some cp´r P Fp´r.862

• From Exercise 2.6.3, an element e P Ep
1 lies in Ćker dr if ke can be written as ira for some863

a P A1. If cp P Fp represents e, that is, dcp ` dFp`1 P HpFp`1q is cp`r`1 ` dFp`1 for some864

cocycle cp`r`1 P Fp`r`1.865

Summing up, for r ě 0 we have

Zp
r “ tcp ` Fp`1 P grp C : dcp P Fp`r`1u,

Bp
r “ tdcp´r ` Fp`1 P grp C : cp´r P Fp´ru,

the cosets of elements that d respectively sends forward r` 1 steps or has sent forward r steps.866

Note how our definitions of Z0 and B0 were contrived to make this still true for r “ 0; in fact867

the expressions still make sense for r “ ´1, yielding respectively grp C and 0. To produce more868

succinct expressions, we adopt the notation FpÑ q :“ tcp P Fp : dcp P Fqu. Expressed in terms of869

elements of C, then, we see that for r ě ´1,870

Zp
r “

FpÑ p`r`1 ` Fp`1

Fp`1
–

FpÑ p`r`1

Fp`1Ñ p`r`1
,

Bp
r “

dFp´rÑ p ` Fp`1

Fp`1
–

dFp´rÑ p

dFp´rÑ p`1
,

Ep
r`1 –

Zp
r

Bp
r
–

FpÑ p`r`1

dFp´rÑ p ` Fp`1Ñ p`r`1
.

(2.6.4)
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To determine E8, we extend the notation by setting F8 :“
Ş

pPZ Fp and F́ 8 :“
Ť

pPZ Fp. Then871

one has872

FpÑ8 :“
č

rě0

FpÑ p`r “ Fp X d´1F8 and F́ 8Ñ p :“
ď

rě0

Fp´rÑ p “ Fp X
ď

dF́ 8,

so quotients involving these expressions will really be about the complex C :“ F́ 8{F8, its in-
duced differential d̄, and the induced filtrations of C, ker d̄, im d̄, and HpCq. Taking r Ñ 8 in
(2.6.4), we have

Zp
8 “

č

Zp
r “

FpÑ8 ` Fp`1

Fp`1
–

FpÑ8

Fp`1Ñ8
–

Fp ker d̄
Fp`1 ker d̄

,

Bp
8 “

ď

Bp
r “

dF́ 8Ñ p ` Fp`1

Fp`1
–

dF́ 8Ñ p

dF́ 8Ñ p`1
–

Fp im d̄
Fp`1 im d̄

,

Ep
8 “

Zp
8

Bp
8

–
Fp ker d̄

Fp im d̄` Fp`1 ker d̄
– grp HpCq.

When we assume our filtrations are exhaustive (F́ 8 “ C) and Hausdorff (F8 “ 0), so that C “ C,
we get the better expressions

Zp
8 – grp ker d,

Bp
8 – grp im d,

Ep
8 – grp HpCq.

Remark 2.6.5. N.B. that this is not the indexing convention used by most authors. It is common873

to define the spectral sequence of a filtration directly, without exact couples, and in this case it is874

natural to use Zp
r for our FpÑ p`r and Bp

r for our dFp´rÑ p. Under these conventions, our formula875

for Ep
r transforms to the standard expression Zp

r {pB
p
r´1 ` Zp`1

r´1 q.876

Now let us consider a filtered differential graded algebra pC‚, d, ı̃q. This is a filtered differential877

group such that pC‚, dq is a dga and pC‚, ı̃q is a filtered graded group. A homomorphism of878

filtered differential graded algebras is a filtration-preserving dga map. In the resulting exact879

couple
`
À

H˚pC‚pq, H˚pgr
‚

C‚q
˘

, one has i : HnpF‚p`1q ÝÑ HnpF‚p q and j : HnpF‚p q ÝÑ HnpF‚p {F‚p`1q880

of degree zero, but connecting map k : HnpF‚p {F‚p`1q ÝÑ Hn`1pF‚p`1q of degree 1. It is standard881

to define a complementary grading q :“ n´ p so that Fn
p “ Fp`q

p . Then we get the statement we882

made at the beginning of this chapter:883

Theorem 2.1.2. (Koszul). Let pC‚, d, ı̃q be a filtered differential N-graded algebra such that the associated884

filtration of HnpC‚q is finite for each n. Then there is an associated filtration spectral sequence in which885

• pE0, d0q “ pgr
‚

C‚, gr
‚

dq,886

• E1 – H˚pgr
‚

C‚q,887

• Ep,q
8 – grp Hp`qpC‚q.888
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We call this the filtration spectral sequence of the filtered dga pC‚, d, ı̃q. It is first-quadrant spectral889

sequence in that Ep,q
r “ 0 if p ă 0 or q ă 0. All pages become differential algebras under the bigrading890

Ep,q
r induced from the bigrading Ep,q

0 :“ grp Cp`q of E0 “ gr
‚

C‚ and the product induced from that of C,891

with differential dr of bidegree pr, 1´ rq. Moreover, the product on each page is induced by that on the last.892

This sequence is functorial in homomorphisms of filtered dgas.893

Proof. Everything follows from the previous discussion except the statements about convergence,894

bidegrees, and product structure. Because the filtrations are finite in each degree, the convergence895

result follows in each degree separately from the previous discussion.896

For bidegrees of dr, first note that d0 is just the internal differential of E0 “ gr
‚

C by definition,897

which is of bidegree pp, qq “ p0, 1q. The first exact couple pA1, E1, i, j, kq is the long exact sequence898

associated to the short exact sequence of chain complexes 0 Ñ
À

FpC ı̃
Ñ

À

FpC
̃
Ñ gr

‚
C Ñ 0. As899

we said before the proposition, i, j, k respectively increase the complex degree n by 1, 0, 0, and we900

saw before they increase p by´1, 0, 1. Thus their respective pp, nq-bidegrees are p´1, 0q, p0, 0q, p1, 1q,901

so their pp, qq-bidegrees are p´1, 1q, p0, 0q, p1, 0q. Recalling that the differential dr is represented by902

e ÞÝÑ ji´pr´1qke mod Čim dr´1 on representatives e P Čker dr´1 ď E1, we see bidegpdrq “ pr, 1´ rq903

and degpdrq “ 1.904

As for the multiplication, we consult (2.6.4). If a P FpÑp`r`1Cn and b P Fp1Ñp1`r`1Cn1 , then905

ab P Fp ¨ Fp1 ď Fp`p1 and dpabq “ da ¨ b ` p´1qpa ¨ db P Fp`r`1 ¨ Fp1 ` Fp ¨ Fp1`r`1 ď Fp`p1`r`1,

so ab P Fp`qÑ p`p1`r`1Cn`n1 has the right filtration behavior and algebra degree, and it the fact906

the multiplication on each page is induced by that on the last will be clear once we check this907

putative multiplication on E‚r is well-defined. To do so, we need to see that we could have chosen908

another representative congruent to a modulo dFp´r ` Fp`1Ñ p`r`1 (and similarly for b, but the909

argument is symmetric); for this it is enough to note Fp`1Ñ p`r`1 ¨ Fp1Ñ p1`r`1 ď Fp`p1`1Ñ p`p1`r`1910

and dFpÑ r ¨ Fp1Ñ p1`r`1 ď dFp`p1´rÑ p1`p1 .911

Since the multiplication adds filtration degrees p and algebra degrees n, it adds the comple-912

mentary degree q “ n´ p as well, so each E‚,‚
r is a bigraded algebra. That dr is a derivation on913

Er follows from the fact that it is induced from d.914

Exercise 2.6.6. Check that indeed915

Fp`1Ñp`r`1 ¨ Fp1Ñp1`r`1 ď Fp`p1`1Ñp`p1`r`1,

dFpÑr ¨ Fp1Ñp1`r`1 ď dFp`p1´rÑp1`p1 .

Given a differential bigraded algebra pA‚,‚, dq, the horizontal filtration, is given by916

Fp A‚,‚ :“
à

iěp
Ai,‚.

The algebra is also a filtered dga if in the decomposition d “
ř

`PZ d` into component maps (see917

Appendix A.3.1) one has d` “ 0 for ` ă 0. In this case, the theorem applied to pA‚,‚, d, iq yields a918

spectral sequence pEr, drq
‚,‚ with E0 – gr

‚
A‚,‚ again. The filtration of HnpA‚,‚q is clearly finite in919

each total degree n “ p` q since the filtration Fp An “
À

iěp Ai,n´i already is.920

Corollary 2.6.7. Let pA‚,‚, d, iq be a filtered, nonnegatively-bigraded dga. Then in the spectral sequence921

associated to the horizontal filtration one has922
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• pE0, d0q – pA‚,‚, d0q,923

• E1 –
À

pPN H˚pAp,‚, d0q, d1 “ H˚
d0pd1q,924

• E2 – H˚
d1 H˚

d0pA‚,‚q,925

• E8 – gr
‚

H˚pA‚,‚q.926

In one recurrent situation, we can say even more about E2.927

Corollary 2.6.8. If pA‚,‚, d, iq – pA‚,0, d1qb pA0,‚, d0q is free as a k-module and i is the horizontal928

filtration, then929

• E0 – A, d0 “ idb d0,930

• E1 – A‚,0bH˚
d0pA0,‚q, d1 “ d1b id,931

• E2 – H˚
d1pA‚,0qbH˚

d0pA0,‚q,932

• E8 – gr
‚

H˚pAq.933

Remark 2.6.9. The algebraic Künneth Theorem A.3.2 of this chapter and the universal coefficient934

Theorem B.1.1 of the appendices both are special cases of general filtration spectral sequences935

that still exist if we do not assume that the modules in question are free over the base ring k or936

that k is a principal ideal domain.937

2.7. Fundamental results on spectral sequences938

A common way to understand the cohomology ring of a filtered dga is to engage in wishful939

thinking: one finds another spectral sequence that one would like to approximate that of the940

dga in question, contrives a map between the idealized sequence and the actual sequence, and941

shows it yields an isomorphism on a late enough page. The theoretical justification behind this942

chicanery has at most two steps.943

Theorem 2.7.1 (Zeeman–Moore, [MT00, Thm. VII.2.4, p. 375]). Let pψrq : p1Er, 1drq ÝÑ pEr, drq be944

a map of bigraded spectral sequences of k-modules such that E2 – E‚,0
2 b E0,‚

2 and 1E2 –
1E‚,0

2 b 1E0,‚
2945

decompose as tensor products. Consider the following three conditions:946

• (B)N : ψ
p,0
2 is an isomorphism for p ă N and an injection for p “ N.947

• (F)N : ψ
0,q
2 is an isomorphism for q ă N and an injection for q “ N.948

• (E)N : ψ
p,q
8 is an isomorphism for p` q ă N and an injection for p` q “ N.949

• (E)`N : ψ
p,q
r is, for all r ě 2, an isomorphism for p` q ă N and an injection for p` q “ N.950

There are the following implications:951

• (F)N and (B)N together imply (E)`N .952

• (F)N´1 and (E)N together imply (B)N .953

• (B)N`1 and (E)N together imply (F)N .954
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Figure 2.7.1: The conditions (B)n, (F)n, (E)n in Zeeman’s theorem, isomorphism blue, injection red

n

0
E2 0 n

n

0
E2 0 n

n

0
E8 0 n

We will use this result to prove the Borel transgression theorem Theorem 7.4.5 and then again955

in Borel’s derivation Section 8.1.2 of the Cartan algebra. Given an isomorphism of E2 pages or956

E8 pages then shows that the inducing map of dgas was a quasi-isomorphism.957

Proposition 2.7.2. Let f : A ÝÑ B be a map of filtered dgas and pψrq : p1Er, 1drq ÝÑ pEr, drq the associ-958

ated map of filtration spectral sequences. Suppose that both filtrations are finite in each degree (as defined959

in Section 2.5) If ψr is an isomorphism for any r ě 0, then f ˚ : H˚pAq ÝÑ H˚pBq is an isomorphism.960

Proof. If any ψr is an isomorphism, then since 1drψr “ ψrdr, it follows that all later ψr and ψ8 are961

isomorphisms. By Corollary 2.6.7, ψ8 is the isomorphism gr
‚

f ˚ : gr
‚

H˚pAq ÝÑ gr
‚

H˚pBq. For962

any given total degree n, we can apply Corollary 2.5.2 to the map ψn
8 : gr

‚
HnpAq ÝÑ gr

‚
HnpBq963

to conclude Hnp f q is an isomorphism.964

Here is a useful splitting-type result for spectral sequences.965

Proposition 2.7.3 ([McC01, Example 1.K, p. 25]). Let pA, d, ı̃q be a filtered differential k-algebra, free966

as a k-module, and pEr, drq the associated spectral sequence. If E8 is a free k-cga , then E8 – H˚pA, dq967

as a k-cga.968

Proof. This is just an application of Proposition 2.5.3.969

2.8. The transgression970

Early on in the history of bigraded spectral sequences of the form discussed above, it was noticed971

that the maps dr : E0,r´1
r ÝÑ Er,0

r from the left column to the bottom row (Figure 2.2.20) have a972

special importance.973

Definition 2.8.1 (Koszul, 1950 [Kos50, Sec. 18]). Let pEr, drq be the filtration spectral sequence of a974

filtered dga pC‚, d, ı̃q. If z P E0,r´1
2 is in the kernel of each dp for p ă r, so that drz P E0,r

r is defined975

(that is, if z survives long enough to be in the domain of an edge homomorphism), then z is said976

to transgress. The transgression is the dotted arrow τ in the diagram977

E0,r´1
r

dr

��

� � // E0,r´1
1

τ

uu
Er,0

1
// // Er,0

r ,

described as the relation on Er,0
1 ˆ E0,r´1

1 given by x τ z :ðñ rxsEr “ drz and z P E0,r´1
r .978
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It is not ruled out by this convention that 0 τ z; the important part is just that dpz “ 0 for979

p ď |z|. It is wrong but conventional to write x “ τpzq and think of the transgression as a980

partially-defined map z ÞÝÑ τz on E0,r´1
1 , either ignoring the ambiguity inherent in viewing drz981

as an element of E1 or else removing it by singling out a specific preimage of drz in E1, which is982

sometimes called choosing a transgression.983

We may rephrase this in terms of the filtered dga as follows.984

Proposition 2.8.2. Let pEr, drq be the filtration spectral sequence of a filtered dga pA‚, d, iq. An element985

z P E0,r´1
1 “ Hr´1pF0C‚{F1C‚, d0q transgresses to τz P Er,0

1 “ HrpFrC‚{Fr`1C‚, d0q if and only if there986

exists c P F0Cr´1 such that z represents c and dc P FrCr represents τz.987

When dealing with the Leray or Serre spectral sequences, which on the E0 and E1 pages still988

can depend on the sheaf resolution or cohomology theory chosen, it is more conventional to989

conceive of the transgression as a relation on the E2 page. The description at the cochain level990

remains unchanged by this.991

Historical remarks 2.8.3. According to the concluding notes in Greub et al. [GHV76], instances of992

transgressions were first identified by Shiing-Shen Chern [Che46] and Guy Hirsch [Hir48] before993

Koszul observed the pattern and coined the term “transgression” in his thesis work.994

The filtration spectral sequence is first described in Koszul’s Comptes Rendus note [Kos47a],995

and is extracted from Leray’s earlier work as described in a 1946 Comptes Rendus notice [Ler46a].996

Koszul was the first other person to work through and understand Leray’s post-war topological997

output, and was the chief instigator of the simplifications that made spectral sequences accessible998

to the rest of the mathematical community [Mil00]. The term filtration itself and its isolation was999

due to Cartan. Exact couples are due to Massey [Mas52, Mas53].1000

2.9. Proofs regarding the Serre spectral sequence1001

In this section we prove Theorem 2.2.2 and its elaborations.1002

Theorem 2.2.2. Let F Ñ E Ñ B be a fibration such that π1B acts trivially on H˚pF; kq. There exists a
first-quadrant spectral Serre spectral sequence pEr, drqrě0 of k-dgas with

Ep,q
0 “ Cp`qpE, Ep´1; kq,

Ep,q
2 “ Hp`B; HqpF; kq

˘

,

Ep,q
8 “ grp Hp`qpE; kq,

for the filtrations pEpq and FpH˚pEq indicated above. If H˚pF; kq is a free k-module (for instance, if k is a1003

field), we may also write E2 – H˚pB; kqbk H˚pF; kq. This construction is functorial in fibrations E Ñ B1004

and in rings k, in that a map of fibrations or of rings induces a map of spectral sequences.1005

Proof. The existence of the sequence is given by Theorem 2.1.2. The convergence will follow if we1006

can show FpHnpEq “ 0 for p ą n, but this is so because πďp´1pE, Ep´1q “ πďp´1pB, Bp´1q “ 0 by1007

the homotopy lifting property.1008

The functoriality of the spectral sequence in bundle maps follows from the fact any map1009

B ÝÑ B1 between CW complexes can be homotoped to a cellular map f with f pBpq Ď pB1qp. By1010

the homotopy lifting property, the resulting map rf : E ÝÑ E1 of total spaces will be homotopic to1011
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the original, but now will satisfy rf pEpq Ď pE1qp.10 Thus rf˚C˚pEp´1q ď C˚
`

pE1qp´1
˘

, so if c1 P C˚pE1q1012

annihilates C˚
`

pE1qp´1
˘

, then rf ˚c1 “ c1 ˝ rf˚ annihilates C˚pEp´1q, meaning f ˚pFpC1q ď FpC. Now1013

use that the filtration spectral sequence is functorial in filtration-preserving dga maps.1014

The functoriality in kmaps follows from the fact a coefficient group homomorphism φ :1015

kk ÝÑ1016

kk1 induces homomorphisms CnpE;1017

kkq ÝÑ CnpE;1018

kk1q and if φ is a map of rings, these is a khomomorphism with respect to cup product, obviously1019

preserving the filtration.1020

The nontrivial part of the proof involves identifying the E2 page. The page E0 is the associated1021

graded algebra gr
‚

C˚pEq with summands C˚pE, Ep´1q{C˚pE, Epq. Considekthe map of complexes1022

(2.2.1) induced by the inclusion of Ep´1 in Ep, the Snake Lemma identifies these summands1023

with C˚pEp, Ep´1q. Thus E1 –
À

p
rH˚pEp{Ep´1q. Since Bp is formed from Bp´1 by attaching p-1024

cells along their boundaries and a fibration over a contractible space is trivial, we have a further1025

identification1026

rH˚pEp{Ep´1q – Hom
`

CellppEq, H˚pF; kkq
˘

“: Cp
Cell

`

B; H˚pF; kkq
˘

.

Once we verify that the differential d1 can be identified with the cellular coboundary operator1027

δCell and the product with the cup product, it will follow immediately that E2 – H˚
`

B; H˚pF;1028

kkq
˘

as bigraded1029

kk-modules and it will only remain to verify that the product structure on E2 agrees up to sign1030

with the cup product on H˚
`

B; H˚pF;1031

kkq
˘

.1032

[To be written...]1033

Proposition 2.2.5. Let F i
Ñ E π

Ñ B be a fibration such that π1B acts trivially on H˚pFq. The fiber projec-1034

tion i˚ : H˚pEq ÝÑ H˚pFq is realized by the left-column edge map E‚,‚
8 � E0,‚

8 ãÑ E0,‚
2 in Theorem 2.2.2:1035

to wit, we can write1036

gr
‚

H˚pEq „
ÝÑ E‚,‚

8 ÝÝ� E0,‚
8 ãÝÝÑ E0,‚

2
„
ÝÑ H˚pFq.

Likewise, the base lift π˚ : H˚pBq ÝÑ H˚pEq is realized by the bottom-row edge map E‚,0
2 � E‚,0

8 ãÑ E‚,‚
8 :1037

H˚pBq „
ÝÑ E‚,0

2 ÝÝ� E‚,0
8 ãÝÝÑ E‚,‚

8

„
ÝÑ gr

‚
H˚pEq.

Proof [McC01, p. 147]. We have a commutative square1038

F F

��

// ˚

��
F

��

i // E

��

π // B

˚ // B B

10 This could also be achieved with a functorial CW replacement, for example the one replacing a space with its
total singular simplicial complex.



Chapter 2. Spectral sequences 42

where each column (and row) is a fibration, with the original fibration in the middle column, and1039

the maps between columns are fiber-preserving. These maps induce maps of spectral sequences,1040

which we can denote as1041

FEr ÐÝ Er ÐÝ
BEr.

The middle spectral sequence is the Serre spectral sequence of the original fibration, while FEr is1042

that of F Ñ F Ñ ˚, which collapses at FE2 “ H˚
`

˚; H˚pFq
˘

“ H˚pFq, and BEr is that of ˚ Ñ B Ñ B,1043

which also collapses instantly, at BE2 “ H˚
`

B; H˚p˚q
˘

“ H˚pBq. On E2 pages, the induced maps1044

are E2pi˚q : E2 ÝÑ
FE2, which is the left-column projection H˚

`

B; H˚pFq
˘

ÝÑ H0
`

B; H˚pFq
˘

–1045

H˚pFq, and E2pπ
˚q : BE2 ÝÑ E2, which is the bottom-row inclusion H˚pBq ÝÑ H˚

`

B; H0pFq
˘

, the1046

maps we would like to descend to the maps i˚ “ gr
‚

i˚ and π˚ “ gr
‚

π˚ on E8 pages. The maps1047

between E8 pages are1048

H˚pFq

FE2

„

OO

gr
‚

H˚pEq
gr‚ π˚
oo BE2

gr‚ i˚
oo

H˚pBq,

„

OO

by the fact that the isomorphism of final page E8 with gr
‚

H˚pEq is natural. But that shows that1049

these maps descend from the E2 column and row maps as claimed.1050

We will make extensive use of the transgression in the Serre spectral sequence of a bundle in1051

the last two chapters. On the E2 level, an edge homomorphism dr takes (a submodule of) Hr´1pFq1052

to (a quotient of) HrpBq, but we will need to know what this means on the cochain level, so we1053

need a slightly more topological description.1054

Proposition 2.2.21. Let F i
Ñ E π

Ñ B be a fibration with all spaces path-connected and such that the1055

action of π1B on H˚pFq is trivial. An element rzs P HrpFq “ E0,r
2 (Definition 2.8.1) represents an element1056

of E0,r
r`1, and hence transgresses to the class in Er`1,0

r`1 represented by some rbs P Hr`1pBq, if and only if1057

there exists c P CrpEq in the singular cochain group such that i˚c “ z and δc “ π˚b. This is the picture:1058

CqpEq
δ

��

i˚ // ZqpFq

τ
tt

c_

��

� // z0

xxZq`1pBq
π˚
// Zq`1pEq, b � // δc.

Proof. Recall that the Serre spectral sequence is the filtration spectral sequence associated to the1059

filtration FpC˚pEq “ C˚pE, Ep´1q,11 of the singular cochain algebra, where Ep´1 :“ π´1Bp´1 and1060

pBpq is a CW structure on B with one 0-cell.1061

Consulting Proposition 2.8.2, c1 P CrpEq represents a transgressive element if and only if1062

c1 P F0CrpEq “ CrpEq and δc1 P Fr`1Cr`1pEq “ Cr`1pE, Erq. Of course δpδc1q “ 0, so δc1 represents1063

a class in Hr`1pE, Erq. Since π satisfies the homotopy lifting property with respect to spheres,1064

π˚pE, Erq ÝÑ π˚pB, Brq is an isomorphism, and πďr and hence Hďr vanish on pE, Erq and pB, Brq1065

11 Again, the surprising p´ 1 ensures that F0C˚pEq “ C˚pEq.
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since Br is the r-skeleton of B, so by the Hurewicz theorem B.1.1, Hr`1pE, Erq ÝÑ Hr`1pB, Brq1066

can be identified with the isomorphism πr`1pE, Erq
„
ÝÑ πr`1pB, Brq, and by the universal co-1067

efficient theorem B.1.1, π˚ : Hr`1pB, Brq ÝÑ Hr`1pE, Erq is also an isomorphism. Thus there is1068

b P Cr`1pB, Brq such that π˚rbs “ rδc1s P Hr`1pE, Erq, meaning π˚b ´ δc1 is some coboundary1069

δc2 for c2 P Cr`1pE, Erq. Set c :“ c1 ` c2; then and c presents the same class as c1 in E0,r
0 and1070

δc “ π˚b for b P Zr`1pBq. Evidently, since δc P CrpE, Erq, its restriction to Er “ π´1pBrq and hence1071

F “ π´1pB0q is zero, so i˚c “ z represents a class of HrpFq.1072

Conversely, suppose b1 P Zr`1pBq is such that π˚b1 represents δc1 for some c1 P CrpEq such1073

that i˚c1 “ z is a cocycle in CrpFq. In the long exact cohomology sequence of the pair pB, Brq we1074

have the fragment Hr`1pB, Brq Ñ Hr`1pBq Ñ Hr`1pBrq “ 0, so b1 differs by a coboundary from a1075

cocycle b P Zr`1pB, Brq, say b “ b1 ` δb2. Pulling back, π˚b “ π˚b1 ` π˚δb2 “ δpc1 ` π˚b2q, where1076

c :“ c1 ` π˚b2 satisfies i˚c “ i˚c1 ` pπiq˚b2 “ z.1077
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The cohomology of the classical groups1079

The rational cohomology of a compact Lie group G is as simple as anyone has any right to1080

expect, and this simplicity can be seen as caused either by the multiplcation on G or by the1081

existence of invariant differential forms (again a consequence of the multiplication). The Serre1082

spectral sequence will allow us to compute the rational cohomology of the classical groups, a1083

major achievement in the 1930s, in a few pages. We will cite general references for this material1084

throughout the chapter, and diligently recount historical origins when we know them. Proofs,1085

however, unless explicitly noted otherwise, have been dredged from the author’s own memories1086

or created anew. We start out with k “ Q, which destroys torsion off the bat, but much can be said1087

with Z and torsion coefficients, and these computations give nice examples of the Serre spectral1088

sequence, so we include them.1089

The general structure of the work does not require the results of this chapter, but the example1090

computations in later sections all do.1091

3.1. Complex and quaternionic unitary groups1092

Note that Upnq acts by isometries on Cn, so that it preserves the unit sphere S2n´1. If we view1093

this action as a left action on the space Cnˆ1 of column vectors, the first column of an element1094

g of Upnq determines where it takes the standard first basis vector e1 “ p1,~0qJ P S2n´1, so the1095

stabilizer of e1 is the subgroup1096
«

1 ~0
~0J Upn´ 1q

ff

of elements with first column e1, which we will identify with Upn ´ 1q. Since the first vector1097

of g P Upnq can be any element of S2n´1, the action of Upnq on S2n´1 is transitive, so the orbit–1098

stabilizer theorem yields a diffeomorphism Upnq{Upn´ 1q – S2n´1, which is in fact a fiber bundle1099

Upn´ 1q ÝÑ Upnq ÝÑ S2n´1.

Similarly, the action of Sppnq on Hn, preserving the unit sphere S4n´1, gives rise to a fiber bundle1100

Sppn´ 1q ÝÑ Sppnq ÝÑ S4n´1,

and the action of Opnq on Rn, preserving Sn´1, gives rise to bundles

Opn´ 1q ÝÑOpnq ÝÑ Sn´1,

SOpn´ 1q ÝÑ SOpnq ÝÑ Sn´1.

44
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The SSSs of these bundles allow us to recover the cohomology of the classical groups.1101

Proposition 3.1.1. The integral cohomology of the unitary group Upnq is given by1102

H˚
`

Upnq;Z
˘

– Λrz1, z3, . . . , z2n´1s, deg zj “ j.

This can be seen as saying that in the SSSs of the bundles (right angles down) in the diagram1103

Up1q //
„

��

Up2q //

��

Up3q //

��

¨ ¨ ¨

��

// Upnq //

��

Upn` 1q

��
S1 S3 S5 ¨ ¨ ¨ S2n´1 S2n`1,

(3.1.2)

the simplest possible thing happens, and the cohomology of each object is the tensor product of1104

those of the objects to the left of it and below it.1105

Proof. The proof starts with the case Up1q – S1, so that H˚pS1q – Λrz1s. Inductively assume1106

H
`

Upnq
˘

– Λrz1, z3, . . . , z2n´1s as claimed. We have a fiber bundle1107

Upnq ÝÑ Upn` 1q ÝÑ S2n`1,

where the cohomology of the fiber and base are known, so the impulse is to use Theorem 2.2.2.1108

Since the cohomology of the fiber is free abelian by assumption, the E2 page is given by1109

E‚,0
2 b E0,‚

2 “ Λru2n`1sbΛrz1, z3, . . . , z2n´1s,

and the sequence is concentrated in columns 0 and 2n` 1. Since the bidegree of the differential1110

dr is pr, 1´ rq, the only differential that could conceivably be nonzero is d “ d2n`1, of bidegree1111

p2n` 1,´2nq.1112

Figure 3.1.3: The Serre spectral sequence of Upnq Ñ Upn` 1q Ñ S2n`1

.

.

.

2n´1 z2n´1 uz2n´1

.

.

.

5 z5 uz5

z1z3 uz1z3

3 z3 uz3

1 z1 uz1

0 1 u

0 ¨ ¨ ¨ 2n` 1

0

0

0

0
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But this d sends the square E0,q
2n`1 “ Hq

`

Upnq
˘

in the leftmost column into the fourth quadrant,1113

so dzj “ 0 for all j. Because d satisfies the product rule and sends all generators of E2n`1 into the1114

fourth quadrant, it follows d “ 0. Thus E2 “ E8 “ Λrz1, z3, . . . , z2n´1, u2n`1s.1115

A priori, this is only the the associated graded algebra of H˚
`

Upn` 1q
˘

, but since E8 is an1116

exterior algebra, by Proposition 2.7.3, there is no extension problem.1117

The same proof, applied to the bundles Sppn´ 1q Ñ Sppnq Ñ S4n´1 and starting with Spp1q «1118

S3, yields the cohomology of the symplectic groups. The diagram associated to this induction is1119

Spp1q //

„

��

Spp2q //

��

Spp3q //

��

¨ ¨ ¨

��

// Sppnq //

��

Sppn` 1q

��
S3 S7 S11 ¨ ¨ ¨ S4n´1 S4n`3.

(3.1.4)

Proposition 3.1.5. The integral cohomology of the symplectic group Sppnq is given by1120

H˚
`

Sppnq;Z
˘

– Λrz3, z7, . . . , z4n´1s, deg zj “ j.

The cohomology of the special unitary groups is closely related to that of the unitary groups.1121

Proposition 3.1.6. The integral cohomology of the special unitary group SUpnq is given by1122

H˚
`

SUpnq;Z
˘

– Λrz3, . . . , z2n´1s, deg zj “ j.

Proof. The determinant map yields a split short exact sequence1123

1 Ñ SUpnq ãÝÝÑ Upnq
det
ÝÝ� S1 Ñ 1; (3.1.7)

a splitting is given by z ÞÝÑ diagpz,~1q. This semidirect product structure means Upnq is topologi-1124

cally a product SUpnq ˆ S1, and it follows from the Künneth theorem B.1.2 that1125

H˚
`

SUpnq
˘

– H˚
`

Upnq
˘

LL

H˚pS1q “ Λrz1, z3, . . . , z2n´1s
L

pz1q “ Λrz3, . . . , z2n´1s.

The information we have accumulated makes it easy to cheaply acquire as well the cohomol-1126

ogy the complex and quaternionic Stiefel manifolds: the idea is just, in the diagram (3.1.2), to1127

stop before one gets to Up1q.1128

Proposition 3.1.8. The integral cohomology of the complex Stiefel manifolds VjpCnq “ Upnq{Upn´ jq is1129

H˚
`

VjpCnq;Z
˘

“ Λrz2pn´jq`1, . . . , z2n´3, z2n´1s.

The integral cohomology of the quaternionic Stiefel manifolds VjpHnq “ Sppnq{Sppn´ jq is given by1130

H˚
`

VjpHnq;Z
˘

“ Λrz4pn´jq`3, . . . , z4n´5, z4n´1s.

Proof. The spectral sequences of the bundles (3.1.2) dealt with in Proposition 3.1.1 all collapsed at1131

the E2 page, so that in particular the maps H˚Upnq ÝÑ H˚Upn´ 1q are surjective and the iterated1132

map H˚Upnq ÝÑ H˚Upn´ jq is surjective by induction: explicitly, it is the projection1133

Λrz1, z3, . . . , z2pn´jq´1sbΛrz2pn´jq`1, . . . , z2n´1s ÝÝ� Λrz1, z3, . . . , z2pn´jq´1s,
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with kernel pz1, z3, . . . , z2pn´jq´1q the extension of the augmentation ideal of the second factor.1134

One has more or less definitionally the fiber bundle1135

Upn´ jq ÝÑ Upnq ÝÑ VjpCnq, (3.1.9)

whose SSS collapses at E2 by Section 8.3.1 since we have just shown the fiber projection is sur-1136

jective. Thus the base pullback H˚VjpCnq ÝÑ H˚Upnq is injective and H˚VjpCnq is an exterior1137

subalgebra of H˚Upnq whose augmentation ideal extends to the kernel pz2pn´jq`1, . . . , z2n´1q of1138

the fiber projection. We see H˚VjpCnq can only be as claimed.1139

The proof for H˚VjpHnq is entirely analogous.1140

3.2. Real difficulties1141

The degeneration of spectral sequences that occurs for unitary and symplectic fails for the orthog-1142

onal groups, because in the analogue of the iterated fiber decompostion (3.1.2) of the orthogonal1143

groups, one encounters spheres of adjacent dimension, which could lead to nontrivial differ-1144

entials. Indeed, this does lead to rather complicated 2-torsion, so we pass to simpler coefficient1145

rings. Even with this simplification, there seems to be a certain unavoidable difficulty in handling1146

H˚SOpnq, forcing case distinctions and a rather explicit calculation of a map of homotopy groups.1147

The proofs here are, in the author’s own opinion, cleaner and more scrutable than those in the1148

source material, but he would not claim they make an easy read. The reader can be forgiven for1149

skipping to the next chapter at this point, but it seems only right to say what can be explained1150

about H˚SOpnq and H˚Spinpnq at this point, and we will need this material for examples later.1151

To proceed, we require on a lemma [MT00, Cor. 3.13, p. 121] about the cohomology of a Stiefel1152

manifold V2pRnq. The proof here is a hybrid of Mimura and Toda’s and that in online notes by1153

Bruner, Catanzaro, and May [BCM]. Recall our notational conventions from Appendix A.2.1.1154

Lemma 3.2.1. The real Stiefel manifold V “ V2pRnq (for n ě 4) has1155

Hn´2pVq “

#

Z n even,

Z{2 n odd.

Proof. If we define V2pRnq :“ SOpnq{SOpn´ 2q as the set of pairs of orthogonal elements of Sn´1,1156

or equivalently nˆ 2 matrices with orthonormal columns, then projection q to the first column is1157

the projection of a bundle1158

Sn´2 ÝÑ V2pRnq
q
ÝÑ Sn´1.

The associated Serre spectral sequence is as in Figure 3.2.2, and it is clear the lone potentially1159

nonzero differential is Hn´2pSn´2q
d
ÝÑ Hn´1pSn´1q.1160
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Figure 3.2.2: The differential dn´1 in the Serre spectral sequence of Sn´2 Ñ V2pRnq Ñ Sn´1

n´ 2 z uz

...

...

0 1 u

0 ¨ ¨ ¨ n´ 1

In particular, we have H jpVq “ 0 for j ă n´ 2, and HjpVq “ 0 as well by the universal coefficient1161

Theorem B.1.1. Since we have assumed n ě 4, it follows from the long exact homotopy sequence1162

of the bundle (Theorem B.1.4) that V is simply-connected, so by the Hurewicz Theorem B.1.1,1163

πn´2pVq – Hn´2pVq, and we can concern ourselves with this group instead. The long exact1164

homotopy sequence of Theorem B.1.4 contains the subsequence1165

πn´1pSn´1q
looooomooooon

–Z

B
ÝÑ πn´2pSn´2q

looooomooooon

–Z

ÝÑ πn´2pVq ÝÑ πn´2pSn´1q
looooomooooon

0

,

showing πn´2pVq – Z{ im B, so our task is now to identify im B. Since πn´1pSn´1q is cyclic, it is1166

enough to know what B does to a generator.1167

Recall that the long exact homotopy sequence of the bundle Sn´2 Ñ V Ñ Sn´1 is derived1168

from the long exact homotopy sequence of the pair pV, Sn´2q through the isomorphism induced1169

by the map of pairs q : pV, Sn´2q ÝÑ pSn´1, ˚q, as follows:1170

πn´1pV, Sn´2q

q˚„ ��
B

))
¨ ¨ ¨ // πn´1pVq

q˚ ((

66

πn´1pSn´1, ˚q

„ ��

πn´2pSn´2q // ¨ ¨ ¨ .

πn´1pSn´1q

B

55

The top B takes the class represented by a map of pairs ι : pDn´1, Sn´2q ÝÑ pV, Sn´2q to the1171

homotopy class of the restriction ι æ Sn´2. Since the vertical maps are isomorphisms, such an ι will1172

represent a generator just if qι : pDn´1, Sn´2q ÝÑ pSn´1, ˚q represents a generator of πn´1pSn´1, ˚q.1173

We turn to constructing this ι.1174

It will be convenient to consider V “ V2pRnq as a quotient Opnq{Opn´ 2q.1 Write p2 : Opnq ÝÑ1175

V2pRnq for the natural projection of a matrix to the first two columns, realizing this quotient1176

description, and p1 : Opnq ÝÑ Sn´1 for projection to the first column alone. Note that p1 “ qp21177

1 We introduced it as SOpnq{SOpn ´ 2q, but this is the same; any g P Opnq extending an orthonormal 2-frame
pv, wq P V2pRnq can be made into an element of SOpnq by multiplying the last column by ˘1.
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and that p1 can be seen as the evaluation map g ÞÝÑ ge1 taking an automorphism g P Opnq ă1178

AutRpRnq to its value at the standard basis vector e1 “ p1,~0qJ of Rn. The preimage of e1 under p11179

is the stabilizer Stabpe1q ă Opnq, a block-diagonal t1uˆOpn´ 1q which we write as Opn´ 1q. The1180

image p2
`

Opn´ 1q
˘

« Sn´2 of this subgroup in V is the fiber of the bundle Sn´2 Ñ V Ñ Sn´1
1181

over e1. Summarizing:1182

p1
hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

`

Opnq, Opn´ 1q
˘

ÝÑ
p2
pV, Sn´2q ÝÑ

q
pSn´1, e1q .

The map ι arises from the natural map Sn´1 ÝÑ Opnq taking a unit vector v to the reflection1183

rv : Rn ÝÑ Rn through the hyperplane vK ă Rn orthogonal to v. Write r : Dn´1 ÝÑ Opnq for the1184

restriction of this map to the northern hemisphere Dn´1 “ tv P Sn´1 : v ¨ e1 ě 0u of Sn´1. Note1185

that the composition p1r takes v ÞÝÑ p1prvq “ rvpe1q. If Sn´2 “ BDn´1 is the equator, made up of1186

those unit vectors perpendicular to e1, then we claim r takes Sn´2 to Opn´ 1q:1187

pDn´1, Sn´2q
r
ÝÑ

`

Opnq, Opn´ 1q
˘

.

To see this, note that if v P Sn´2, so that v is perpendicular to e1, then e1 is in the hyperplane vK1188

fixed by rv, so pp1rqpvq “ rvpe1q “ e1. That means the first column of rv is e1, so that rv P Opn´ 1q.1189

We set ι “ p2r : pDn´1, Sn´2q ÝÑ pV, Sn´2q. To see ι represents a generator of πn´1pV, Sn´2q,1190

we show1191

qι “ qp2r “ p1r : pDn´1, Sn´2q ÝÑ pSn´1, e1q

represents a generator of πn´1pSn´1, e1q by demonstrating it takes the interior Dn´1zSn´2 home-1192

omorphically onto Sn´1zte1u. Let v P Dn´1zSn´2. If v “ e1, then re1pe1q “ ´e1, and otherwise v1193

and e1 together span a 2-plane, which cuts Sn´1 in a circle and vK in a line, and pp1rqpvq “ rvpe1q1194

lies in this plane; see Figure 3.2.3. Since p1r preserves these circles, it is be enough to show that1195

the restriction of p1r to each open upper semicircle is injective, but this is the case because if1196

the nonzero angle θ “ >pe1, vq lies in the interval p´π{2, π{2q, then >
`

rvpe1q,´e1
˘

“ 2θ lies in1197

p´π, 0q Y p0, πq.1198

Figure 3.2.3: The reflection of e1 through vK

v
e1

v

(  ) rv e1

e1–

–θ
π
–
2

–θ
π
–
2

2θ

θ

Now, since ι represents a generator of πn´1pV, Sn´2q, the restriction χ “ pι æ Sn´2q : Sn´2 ÝÑ1199

Sn´2 represents a generator of im B. Write Sn´3 Ĺ Sn´2 for the set of those unit vectors v perpen-1200

dicular to both e1 and e2. For such a v, the reflection rv will leave the first two coordinates of an1201
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element of Rn invariant, so χpSn´3q “
 

pe1, e2q
(

P V. Since rv “ r´v, the same argument as for p1r1202

shows that χ takes the interiors of both north and south hemispheres homeomorphically onto1203

Sn´2zte2u, so restrictions to these hemispheres are maps1204

τ˘ : pDn´2, Sn´2q ÝÑ pSn´2, e2q

representing generators of πn´2pSn´2, e2q – πn´2pSn´2q such that rχs “ rτ`s ` rτ´s. These gener-
ators are closely related: if

α : Sn´2 ÝÑ Sn´2,

v ÞÝÑ ´v,

is the antipodal map, then we have τ´ “ τ` ˝ α. Since α is the composition of n´ 1 reflections of1205

Rn´1, it is of degree p´1qn´1, so that χ represents sn :“
`

1` p´1qn´1
˘

times the generator rτ`s of1206

πn´2pSn´2q.1207

Since seven “ 2 and sodd “ 0, the group Hn´2pVq “ πn´2pVq – Z{snZ is as claimed.1208

Remark 3.2.4. Since V2pRnq is the set of pairs pv, wq with v P Sn´1 and w K v, it can be seen as the1209

set of unit vectors in the tangent bundle TSn´1. This is a Sn´2-bundle associated to a principal1210

SOpn´ 1q-bundle, and it can be shown that the image of the element 1 of the fiber cohomology1211

group Z “ Hn´2pSn´2q in the base cohomology group Hn´1pSn´1q “ Z is the Euler class of this1212

bundle (see Section 7.5); the fact that this number alternates between zero and two can be seen1213

as a reflection of the fact that the Euler characteristics (Appendix A.2.3) of spheres obey the rule1214

χpSnq “ 1` p´1qn.1215

Corollary 3.2.5 (Stiefel [Sti35]). The nonzero integral cohomology groups of the real Stiefel manifold1216

V “ V2pRnq are1217

H0pVq – H2n´3pVq – Z, Hn´2pVq “

#

Z n even,

0 n odd,
Hn´1pVq “

#

Z n even,

Z{2 n odd.

In particular, the differential Hn´2pSn´2q
d
ÝÑ Hn´1pSn´1q shown in Figure 3.2.2) is zero if n is even and1218

multiplication by 2 if n is odd. The mod 2 cohomology ring of V is1219

H˚pV;F2q – Λrvn´2, vn´1s

Proof. If n is even, we have πn´2pVq “ Hn´2pVq infinite cyclic from Lemma 3.2.1, so by universal1220

coefficients, Hn´1pVq is also free abelian, and it follows d “ 0 and Hn´2pVq – Z.1221

If n is odd, we have Z{2 – πn´2pVq “ Hn´2pVq, so by universal coefficients, Hn´2pVq “ 0 and1222

Hn´1pVq is the sum of Z{2 and a free abelian group. But Hn´1pVq is cyclic, since it is coker d, so1223

we have Hn´1pVq – Z{2.1224

As for the modulo 2 case, we have 2 ” 0 pmod 2q, so the map d is always zero and the SSS1225

collapses. There is no extension problem simply by a dimension count.1226

The main point of this argument, for us, is that the map d is trivial for n even and an isomor-1227

phism over Zr1
2 s if n is odd. In the mod 2 case, these differentials are all zero, so we can induct up1228

with spheres rather than V2pRnqs, but we do have an extension problem because exterior algebras1229

are not free cgas in characteristic 2.1230
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Corollary 3.2.6. The mod 2 cohomology ring of V “ VjpRnq has a simple system vn´1, . . . , vn´j of1231

generators (see Definition A.2.4), where deg vi “ i. That is,1232

H˚pV;F2q “ ∆rvn´1, vn´2, . . . , vn´js.

Proof. We fix n and prove the result by induction on j P r1, ns. For j “ 1, the result is just1233

H˚pSn´1q “ Λrvn´1s. Suppose by induction the result holds for Vj´1pRnq and the Serre spectral1234

sequence of Sn´pj´1q Ñ Vj´1pRnq Ñ Vj´2pRnq collapses at E2. Then the E2 page of the Serre1235

spectral sequence of Sn´j Ñ VjpRnq ÝÑ Vj´1pRnq is (additively)1236

E2 “ ∆rvn´1, . . . , vn´pj´1qsb∆rvn´j´1s,

so the induction will go through if and only if E2 “ E8 in this spectral sequence as well. The only1237

potentially nontrivial differential is dn´pj´1q, which vanishes on the base ∆rvn´1, . . . , vn´pj´1qs and1238

so is determined by the map1239

Hn´j´1pSn´j´1q
dn´j`1
ÝÝÝÝÑ Hn´j`VjpRnq

˘

indicated in Figure 3.2.7.1240

Figure 3.2.7: The Serre spectral sequence of Sn´j Ñ VjpRnq Ñ Vj´1pRnq over F2

n´ j vn´j

0 n´ j` 1 n´ 1

vn´j

...

0 1 ¨ ¨ ¨ ¨ ¨ ¨ vn´j`1 ¨ ¨ ¨ vn´1

0 ?

To see this map is zero, we identify it with the analogous differential in the Serre spectral se-1241

quence of Sn´j Ñ V2pRn`2´jq Ñ Sn`1´j, which we already know to be zero by Corollary 3.2.5. To1242

do that, consider the following commutative diagram:1243

Sn´j

��

Sn´j

��
V2pRn`2´jq //

��

VjpRnq

��

// Vj´2pRnq

Sn`1´j // Vj´1pRnq // Vj´2pRnq.

Each row and column is a bundle, and the bundle projections are of the form “consider the first1244

few vectors”; for example, the map VjpRnq Ñ Vj´2pRnq simply forgets the last two vectors of a1245
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j-frame on Rn, and the fiber over a pj´ 2q-frame is the set of 2-frames orthogonal to those j´ 21246

vectors in Rn, and so is a V2pRn´j`2q.1247

The map of columns induces a map pψrq of spectral sequences from pEr, drq to the spectral1248

sequence p1Er, 1drq of the left column, which collapses at 1E2. The bottom row is the bundle whose1249

Serre spectral sequence we inductively assumed collapses, so ψn`1´j : Hn`1´j
`

Vj´1pRnq
˘

ÝÑ1250

Hn`1´jpSn`1´jq is an isomorphism. The relation1251

0 “ 1dn`1´jψn`1´j “ ψn`1´jdn`1´j

then ensures dn`1´j “ 0 and we have collapse.1252

Taking j “ n´ 1 yields the result we really were after.1253

Corollary 3.2.8. The mod 2 cohomology ring of the special orthogonal group SOpnq has a simple system
v1, . . . , vn´1 of generators:

H˚
`

SOpmq;F2
˘

“ ∆rv1, v2, . . . , vn´1s,

where F2tvn´1u is the image of Hn´1pSn´1q ÝÑ Hn´1
`

SOpnq
˘

.1254

Remark 3.2.9. We used the induction Sn´j Ñ VjpRnq Ñ Vj´1pRnq to pick up the cohomology of1255

the Stiefel manifolds along the way to that of SOpnq. We could also have inducted the other way,1256

using1257

SOp2q //

„

��

SOp3q //

��

SOp4q //

��

¨ ¨ ¨

��

// SOpnq //

��

SOpn` 1q

��
S1 S2 S3 ¨ ¨ ¨ Sn´1 Sn,

in analogy with (3.1.2). Then the task is to show that the differential Hn´1
`

SOpnq
˘

ÝÑ HnpSnq is1258

zero. We can still use the collapse of the Serre spectral sequence of Sn´1 Ñ V2pRn`1q Ñ Sn to do1259

this; the relevant bundle map is1260

SOpnq

��

// Sn´1

��
SOpn` 1q

��

// V2pRn`1q

��
Sn Sn.

The induction is substantially subtler over Z or even over k “ Zr1
2 s, because the differentials1261

no longer must be trivial. We can use the real Stiefel manifolds V2pRnq – SOpnq{SOpn ´ 2q as1262

building blocks now, though, the same way we used spheres before:1263

¨ ¨ ¨ // SOpn´ 4q

��

// SOpn´ 2q //

��

SOpnq

��
V2pRn´4q V2pRn´2q V2pRnq.

(3.2.10)
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Proposition 3.2.11. Let 2n ` 1 ě 3 be an odd integer and 2j ă 2n ` 1 an even integer. Then taking
coefficients in k “ Zr1

2 s, we have

H˚
`

SOp2n` 1q
˘

– Λrz3, z7, . . . , z4n´1s, deg z4i´1 “ 4i´ 1.

H˚
`

V2jpR2n`1q
˘

– H˚
`

SOp2n` 1q
˘
MM

H˚
`

SOp2n´ 2j` 1q
˘

– Λrz4pn´jq`3, . . . , z4n´1s.

Proof. By Corollary 3.2.5, we have H˚
`

V2pR2j`1q
˘

“ Λrz4j´1s, so the objects in (3.2.10) have the1264

same cohomology as those in (3.1.4) which yielded the same structure (over Z) for H˚
`

Sppnq
˘

.1265

The result for H˚
`

VjpRnq
˘

follows as in Proposition 3.1.8.1266

To recover V2j´1pR2nq, consider the map of bundles1267

V2j´2pR2n´1q

��

V2j´2pR2n´1q

��
V2j´1pR2nq //

��

V2jpR2n`1q

��

// S2n

S2n´1 // V2pR2n`1q // S2n.

The Serre spectral sequence of the middle column collapses at E2 by an elaboration of our calcu-1268

lation above.2 Thus we can use the bundle lemma Theorem 2.4.1 to conclude1269

H˚
`

V2j´1pR2n´1q
˘

– Λre2n´1s b
Λrz4n´1s

Λrz4pn´jq`3, . . . , z4n´1s “ Λre2n´1sbΛrz4pn´jq`3, . . . , z4n´5s.

Taking n “ j, we recover H˚
`

SOp2nq
˘

.1270

Proposition 3.2.12. Let 2n ě 2 be an even integer and 2j ´ 1 ă 2n odd. Then taking coefficients in1271

k “ Zr1
2 s,1272

H˚
`

V2j´1pR2nq
˘

– Λre2n´1sbΛrz4pn´jq`3, . . . , z4n´5s,

where deg zi “ i and deg e2n´1 “ 2n´ 1. In particular,1273

H˚
`

SOp2nq
˘

– Λre2n´1sbΛrz3, . . . , z4n´5s.

We can state the result for SOpmq more uniformly as follows:1274

2 The relevant bundle map is this:

SOp2n´ 2j` 1q // SOp2n´ 1q //

��

V2j´2pR2n´1q

��
SOp2n´ 2j` 1q // SOp2n` 1q // V2jpR2n`1q.

By Proposition 3.2.11, both rows yield tensor decompositions in cohomology and the fiber inclusion SOp2n´ 1q ÝÑ
SOp2n` 1q is surjective in cohomology with kernel pz4n´1q, which is in the image of H˚V2jpR2n`1q, so the same holds
of the right-hand map we are interested in.
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Corollary 3.2.13. Over k “ Zr1
2 s, the cohomology ring of SOpmq is1275

H˚
`

SOpmq;Zr1
2 s
˘

“

#

Λrz3, z7, . . . , z4n´5sbΛre2n´1s, m “ 2n,

Λrz3, z7, . . . , z4n´5sbΛrz4n´1s, m “ 2n` 1,

where k ¨ e2n´1 is the image of H2n´1pS2n´1q ÝÑ H2n´1
`

SOp2nq
˘

.1276

To get the cases V`pRmq where ` ” m pmod 2q, we can use the Serre spectral sequence of1277

Sm´` ÝÑ V`pRmq ÝÑ V`´1pRmq.

as we did in Corollary 3.2.6. The E2 page is H˚
`

V`´1pRmq
˘

b∆rsm´`s, and the only potentially1278

nonzero differential, dm´``1, is determined by a map d : Hm´`pSm´`q ÝÑ Hm´``1
`

V`´1pRmq
˘

. By1279

the last two propositions, the ring H˚
`

V`´1pRmq
˘

is an exterior algebra on generators of degree1280

at least 2m ´ 2` ` 3 if m is odd, and at least m ´ 1 if m is even. In the former case, d is zero1281

by lacunary considerations. In the latter, ` ě 2, since ` is of the same parity as m, so we have1282

m ´ ` ` 1 ď m ` 1, with equality if and only if ` “ 2. Thus, if ` ą 2, then d “ 0 by lacunary1283

considerations, and if ` “ 2, then we showed d “ 0 in Corollary 3.2.5. So no matter what, the1284

sequence collapses at E2, and then by Proposition A.4.4, we have1285

H˚
`

V`pRmq
˘

– H˚
`

V`´1pRmq
˘

b∆rsm´`s.

To compile these cases into one statement, we introduce some notation. Let S be a free k-1286

module or basis thereof and ϕ a proposition whose truth or falsehood is easily verifiable. We1287

write1288

Λ
“

tS : ϕu
‰

“

#

ΛrSs if ϕ is true,

k otherwise.

Then, gathering cases and doing some arithmetic on indices, we arrive at the following.1289

Proposition 3.2.14 ([BCM, Thm. 2.5]). The cohomology of the real Stiefel manifold V`pRmq with coeffi-1290

cients in k “ Zr1
2 s is given by1291

H˚
`

V`pRmq
˘

– Λrz4j´1 : 2m´2``1 ď 4j´1 ď 2m´3s b Λrem´1 : m evens b ∆rsm´` : m´ ` evens.

Remark 3.2.15. The author found the useful notation for abbreviating case distinctions in Propo-1292

sition 3.2.14 in the notes by Bruner, Catanzaro, and May [BCM].3.1293

It is standard to discuss along with SOpnq its simply-connected double cover Spinpnq.1294

Proposition 3.2.16. The cohomology of Spinpnq for n ě 2 satisfies1295

H˚
`

Spinpnq;Zr 1
2 s
˘

– H˚
`

SOpnq;Zr1
2 s
˘

.

Proof. Since π : Spinpnq ÝÑ SOpnq is a connected double cover and 2 is invertible, the isomor-1296

phism follows immediately from Corollary B.2.2.1297

3 It seems uncommon to find another statement of this result without typos. Both the excellent books of Mimura
and Toda [MT00, Thm. III.3.14, p. 121] and of Félix, Oprea, and Tanré [FOT08, Prop. 1.89, p. 84] have misprints in
their statements of the result Proposition 3.2.14 where the (even, even) case is omitted and another case repeated twice
with different results. For example, Mimura and Toda list two nonisomorphic rings for the case (odd, odd). For those
keeping score, the misprint in [FOT08] is nonisomorphic to the misprint in [MT00]
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Finally, we will relate without proof the multiplicative structure of H˚SOpnq and H˚Spinpnq1298

with F2 coefficients. The standard proofs invoke Steenrod squares, which we decided not to1299

assume as background.1300

Proposition 3.2.17. The mod 2 cohomology of SOpnq for n ě 2 is given by1301

H˚
`

SOpnq;F2
˘

“ F2rv1, . . . , vn´1s{a,

where the ideal a is generated by the relations1302

v2
i ”

#

v2i, 2i ă n,

0, 2i ě n.

Shedding excess generators, we can write1303

H˚
`

SOpnq;F2
˘

“ F2rv1, v3, . . . , vtn{2u´1s{b,

where b is the truncation ideal pvrn{is
i q generated by the least powers of vi of degree exceeding n´ 1.1304

The mod 2 cohomology of Spinpnq admits a simple system of generators containing an element z of1305

degree 2rlog2 ns ´ 1 and generators vj for each j P r1, n´ 1s which is not a power of 2:1306

H˚
`

Spinpnq;F2
˘

“ ∆
“

z
2rlog2 ns´1

, vj : 1 ď j ă n, j ‰ 2r‰.

Hopf’s theorem 1.0.4 allows one to be more specific about the ring structure of H˚
`

Spinpnq;F2
˘

,1307

but the description is disappointingly complicated. A simpler description can be obtained for the1308

countable-dimensional group1309

Spin :“ lim
ÝÑ

Spinpnq,

where the colimit is taken along the unique maps Spinpnq� Spinpn` 1q lifting the composition1310

Spinpnq � SOpnq ãÑ SOpn ` 1q of the covering map with the canonical inclusion, which exist1311

because the spinor groups are simply-connected. As by construction the diagrams1312

Spinpnq // //

&&����

Spinpn` 1q

����
SOpnq �

� // SOpn` 1q

commute, Spin can be seen as a simply-connected double covering of SO :“
Ť

SOpnq.1313

Theorem 3.2.18 ([BCM, Thm. 6.10, p. 55]). The mod 2 cohomology ring of Spin is given by1314

H˚pSpin;F2q “ F2rv2n`1 : n ě 1s

and that of SO by1315

H˚pSO;F2q “ F2rv2n`1 : n ě 0s,

the map H˚SO ÝÑ H˚Spin induced by Spin� SO being the obvious surjection.1316

Historical remarks 3.2.19. The lemma 3.2.1 is due to Eduard Stiefel also the namesake of the Stiefel1317

manifolds and the Stiefel–Whitney classes. A comprehensive account of this material, also in-1318

cluding explicit computations for the cohomology of the exceptional groups, can be found in the1319

much-recommended book of Mimura and Toda [MT00]. As an indication of the nontriviality of1320

computing H˚SOpnq, we point out that while the cohomology ring H˚
`

SOpnq; k
˘

for k any field1321

follows immediately from what we have done in this section and extracting the additive structure1322

of the integral cohomology is not hard afterward, the recovery of the integral cohomology ring from1323

this data seems to only have been completed in 1989 [Pit91].1324
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Formality and polynomial differential forms1326

In this chapter we define and develop two concepts from rational homotopy theory to the extent1327

we will need them. Formality will let us exchange a cochain algebra for its cohomology, in a1328

manner of speaking, and the algebra of polynomial differential forms will give us a functorial1329

commutative model for rational singular cohomology.1330

4.1. Formality1331

The real cohomology of a Lie group exhibits a remarkable property. Like the rational singular1332

cohomology, it is an exterior Hopf algebra, but unlike rational cohomology, it admits a classical1333

commutative model. Since G is among other things a smooth manifold, by de Rham’s theorem, one1334

can compute H˚pG;Rq as the cohomology of the de Rham algebra Ω‚pGq of differential forms, an1335

R-cdga. If ~z is an R-basis for the primitive elements of H˚pG;Rq – H˚pG;QqbQR, then we can1336

pick out one closed form ωj P Ω‚pGq representing each zj, and because Ω‚pGq is a commutative1337

graded algebra, we have an exterior subalgebra Λr~ωs of Ω‚pGq representing H˚pG;Rq. That is to1338

say, we have can define an algebra section of the projection Z˚pGq ÝÑ H˚pG;Rq, or, put another1339

way, we have found a quasi-isomorphism1340

`

H˚pG;Rq, 0
˘

ÝÑ
`

Ω‚pGq, d
˘

to the de Rham algebra from its own cohomology, viewed as a cdga with zero differential.1341

Of course, one can of course always find a vector space of representative forms, but the ability1342

to make these to form a subring on the nose, rather than up to homotopy, is rather special. This1343

behavior will be sufficiently useful to us that we formalize the situation.11344

Definition 4.1.1. A differential graded k-algebra pA, dq is said to be formal if there exists a zig-zag1345

of k-dga quasi-isomorphisms1346

pB1, d1q

$$xx

¨ ¨ ¨

""}}

pA, dq

zz
`

H˚pAq, 0
˘

pB2, d2q pBn, dnq

connecting
`

H˚pAq, 0
˘

and pA, dq. A simply-connected topological space X is said to be k-formal1347

if there exists a formal k-dga with cohomology H˚pX;Qq. A zig-zag of k-dga quasi-isomorphisms1348

from pA, dq to the singular cochain algebra
`

C˚pX; kq, δ
˘

is called a model of X.1349

1 Pun unintended, but retained.

56
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Example 4.1.2. We will find in Section 7.4 that for a compact, connected Lie group G, the co-1350

homology H˚pBG;Qq of its classifying space BG (see Chapter 5) is a symmetric algebra, hence1351

a free cga. In Section 4.2, we will produce a commutative model, APL for BG, and then, as1352

for H˚pG;Rq and Ω‚pGq, it will follow by Proposition A.4.3 that after assigning generators,1353

H˚pBG;Qq lifts to back to a subalgebra of cocycles of
`

APLpBGq
˘

, inducing a quasi-isomorphism1354
`

H˚pBGq, 0
˘

ÝÑ APLpBGq and showing BG is formal.1355

Example 4.1.3. Élie Cartan demonstrated that symmetric spaces G{K are formal, in fact showing1356

that the collection of harmonic forms on a symmetric space forms a subring of the differential1357

forms Ω‚pG{Kq consisting of one element from each class in H˚pG{Kq. We will produce a version1358

of this proof in Proposition 8.5.2.1359

It is a remarkable fact about fields k of characteristic zero that they allow one to construct1360

small models. Moreover one can easily piece such models together. We have already found such1361

a model of G. The overall plan of the rest of this work is to find such a simple model for the1362

classifying space BK of a connected Lie group, to be defined and constructed in Chapter 5, and1363

use these models to construct a simple model of a homogeneous space G{K. However, BK will1364

not be a manifold, but will almost always be infinite-dimensional, so the methods of differential1365

topology will not directly apply. Instead, we will find a Q-cdga computing the rational singular1366

cohomology of any topological space.1367

4.2. Polynomial differential forms1368

The obvious stumbling block to defining differential forms on an arbitrary topological space X is1369

the absence of a smooth structure. There are at least two ways around this. The first historically,1370

due to Leray and summarized in Historical remarks C.3.2, is to abstract the features of the de1371

Rham algebra and prove that analogous objects exist over any sufficiently regular space.2 This1372

approach led Leray to sheaf theory and spectral sequences. The second approach is to replace X1373

with a homotopy equivalent space that does admit forms, and it is that tack we take here.1374

We can at least define smooth forms on a single n-simplex1375

∆n “
 

pt0, . . . , tnq P Rn`1 :
ÿ

tj “ 1
(

,

since this is just a manifold with corners. It is reasonable to say a form is continuous if it is1376

smooth on the interior of ∆n, its restriction to the interior of each face ∆n´1 is smooth, etc. Doing1377

this yields a perfectly reasonable complex of forms. Of course the simplex is contractible, so the1378

cohomology of this complex will be trivial.1379

If X is a polyhedron
Ť

∆α, meaning a union of simplices (glued whole face to whole face)1380

then one can define a smooth form on X to be given by a collection of smooth forms ωα on ∆α1381

such that whenever ∆β is a face of ∆α, then ωα|∆β
“ ωβ. This amounts to decomposing X into1382

a union of simplices, defining forms on each, and asking these forms respect the gluings. We1383

should make this more precise, so we will review simplices a bit.1384

4.2.1. Semisimplicial sets1385

A polyhedron X may be embedded, in the case of utmost extremity, as a piecewise affine subspace1386

of a sufficiently high-dimensional vector space V: form the abstract vector space V “ R ¨X0 with1387

2 Compact metrizable will do.
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basis the vertex set X0 of X and on an n-simplex σn in X with vertices x0, . . . , xn, send the element1388

with barycentric coordinates~t in σn to the vector
řn

j“0 tjxj in V.1389

This canonical embedding is evidently monstrously inefficient, and one can usually get away1390

with a much smaller vector space V. It is still the case that an individual embedded affine sim-1391

plex σ « ∆n in V is the convex hull of its n` 1 vertices v0, . . . , vn, so we may parameterize an1392

embedded simplex as a tuple rv0, . . . , vns without losing information about the embedding. This1393

σ has n` 1 faces, given by Bjσ “ rv0, . . . , pvj, . . . , vns for 0 ď j ď n, where the hat denotes omis-1394

sion,3 and any subsimplex is described by a composition of these vertex omissions. A subsimplex1395

is determined by which vertices are omitted, independent of what order they are forgotten in,1396

so there are some relations among the omission operations Bj. These relations are all generated1397

by the familiar relation BiBj “ Bj´1Bi for i ă j responsible for the fact the boundary operator B1398

defining singular and simplicial homology satisfies B2 “ 0.1399

Viewing the polyhedron as a sort of construction kit snapping together pre-packaged parts,1400

one sees that (up to piecewise linear homeomorphism) it is fully specified by a listing of its1401

simplexes and the omission/inclusion operations between them. We extract this specification,1402

writing Kn for the set of n-simplices of X.1403

Definition 4.2.1. A semisimplicial set K‚ “ pKnqnPN is family of sets Kn indexed by nonnegative1404

integers, equipped with functions Bj : Kn ÝÑ Kn´1 for 0 ď j ď n satisfying BiBj “ Bj´1Bi for i ă j.1405

This semisimplicial set is no longer a geometric object in any meaningful sense; it’s closer to
the truth to think of it as a set of labels and gluing instructions. To get X back out of K‚, one
follows the instructions, producing a distinct geometric simplex ∆n for each σ P Kn and including
the simplex corresponding to Bjσ as its jth face. In coordinates, the inclusion of ∆n´1 as the jth

face of ∆n ă Rn`1 is given by

ij : ∆n´1 ÝÑ ∆n, p0 ď j ď nq
~t ÞÝÑ pt0, . . . , tj´1, 0, tj, . . . , tn´1q

and explicitly, one recovers X from K‚ as1406

X «

Ť

nPN Kn ˆ ∆nM

pBjσ,~tq „ pσ, ij~tq
. (4.2.2)

Not every semisimplicial set K‚ comes from a polygon to begin with—for example, there is1407

nothing in the definition preventing us from having Biσ “ Bjτ “ Bkυ a common face of three1408

distinct simplices—but this process produces a topological space even so.1409

Definition 4.2.3 (Milnor, Segal). Given a semisimplicial set K‚, the result }K‚} of the process1410

(4.2.2) is called the (fat) geometric realization of K‚.1411

4.2.2. Forms on semisimplicial sets1412

Now that we have a more exact way of describing how simplices fit together, we are able to1413

describe forms on polyhedra. A differential form on ∆n should be a formal linear combination of1414

terms1415

f I dti1 ^ ¨ ¨ ¨ ^ dtiq

and each f I is the restriction of a real-valued C8 function on a neighborhood of ∆n in Rn`1.1416

3 The convention is due to Eilenberg and Mac Lane.
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Definition 4.2.4. Write C8p∆nq :“ lim
ÝÑUĚ∆n C8pUq. The R-cdga of smooth differential forms on1417

∆n is1418

pADRqn :“ C8p∆nq b
R

Λrdt0, . . . , dtns
L

pdt0 ` ¨ ¨ ¨ ` dtnq.

The differential d is the exterior derivative given on generators by1419

df “
ÿ B f
Btj dtj, dpdtjq “ 0.

The restriction to the jth face is defined on generators by

i˚j : pADRqn ÝÑ pADRqn´1,

f ÞÝÑ f ˝ ij,

dtk ÞÝÑ dpi˚j tkq.

In full detail, for k ă j we have i˚j dtk “ dtk, for k ą j we have i˚j dtk “ dtk´1, and i˚j dtj “ 0.1420

Note that the restrictions are dga homomorphisms and i˚j i˚k “ i˚k´1i˚j for j ă k, so pADRq‚ is a1421

semisimplicial set. We call such an object a semisimplicial cdga.1422

Given a semisimplicial set K‚, to define a smooth differential form consistently on |K‚|, is to1423

give an element ωσ P pADRqn for each σ P Kn in such a way that ωBjσ “ i˚j ωσ.1424

Definition 4.2.5. A semisimplicial map φ‚ : K‚ ÝÑ L‚ between semisimplicial sets is a collection1425

pφn : Kn ÝÑ Lnq of functions satisfying Bjφn “ φnBj for all j ď n. We write the collection of such1426

maps as HomsspK‚, L‚q.1427

The algebra of smooth differential forms on a semisimplicial set is

ADRpK‚q :“ Homss

`

K‚,pADRq‚
˘

,

σ ÞÑ ωσ.

This inherits a “simplexwise” R-cdga structure via1428

pφ` ψqpσq “ φpσq ` ψpσq, pφ^ ψqpσq “ φpσq ^ ψpσq, pdφqpσq “ d
`

φpσq
˘

.

Moreover this algebra is contravariantly functorial in that a semisimplicial map κ : K‚ ÝÑ L‚1429

induces κ˚ : ADRpL‚q ÝÑ ADRpK‚q via precomposition, taking λ : L‚ ÝÑ pADRq‚ to λ ˝κ : K‚ Ñ1430

L‚ Ñ pADRq‚.1431

The distinguished coordinates on a simplex make it possible to isolate a subalgebra of especial1432

interest in pADRq‚.1433

Definition 4.2.6. The semisimplicial Q-cdga of polynomial differential forms is the semisimpli-1434

cial differential graded subalgebra of pADRq‚ defined by1435

pAPLqn :“ Qrt0, . . . , tns b
Q

ΛQrdt0, . . . , dtns
M

p1´
ř

tj,
ř

dtjq
.

The polynomial differential forms on a semisimplicial complex are given by1436

APLpK‚q :“ Homss

`

K‚, pAPLq‚
˘

.
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We claim, and will show that these forms compute cohomology in the standard sense.1437

Recall that the simplicial homology of X “ }K‚} with coefficients in Z is given by taking the1438

homology of the chain complex C∆
n pXq of finite formal sums

ř

`ασn
α of n-simplices under the1439

differential B “
ř

p´1qjBj, and the simplicial cohomology with coefficients in an abelian group1440

k is given by the dual complex Cn
∆pXq :“ HomZ

`

C∆
n pXq, k

˘

“ MappKn, kq. This definition does1441

not depend directly on the space X, and only on the sets of simplices, so it is an instance of the1442

following definition.1443

Definition 4.2.7. Let K‚ be a semisimplicial set and k an abelian group. The homology H˚pK‚, kq1444

of K‚ is the homology of the chain complex
À

k ¨Kn of free k-modules equipped with the k-linear1445

differential B defined on a basis element σ P Kn by Bσ :“
řn

j“0p´1qjBjσ.1446

The cohomology H˚pK‚, kq of K‚ is the cohomology of the cochain complex
À

MappKn, kq of
free k-modules equipped with the dual differential

δ : MappKn, kq ÝÑ MappKn`1, kq,

c ÞÝÑ
`

σ ÞÑ
n`1
ÿ

j“0

p´1qjcpBjσq
˘

.

If k is a ring with unity, MappK‚, kq becomes a dga under the cup product

MappKm, kq ˆMappKn, kq !
ÝÑ MappKm`n, kq

pc ! c1qpσq :“ cpB˝n
m`1σq ¨ c1pB˝m

0 σq.

The cup product induces a product on H˚pK‚, kq making it a cga.1447

The cup product on the level of cochains is not commutative, so it is not immediately obvious1448

if this cohomology relates in any way to those of our new algebras of forms. We can show1449

isomorphisms on the level of semisimplicial sets, but for now we prefer to return to the level of1450

spaces.1451

4.3. Comparison with singular cohomology1452

Singular cohomology can be seen as an instance of simplicial cohomology.1453

Definition 4.3.1. Given any topological space X, the total singular complex is the semisimplicial1454

set C‚pXq1455

CnpXq :“ Topp∆n, Xq,

the set of singular simplices in X, with face maps given by restriction Bjσ “ σij : ∆n´1 ij
Ñ ∆n σ

Ñ X.1456

The total singular complex is functorial in that a continuous map X ÝÑ Y induces a semisimpli-1457

cial map C‚pXq ÝÑ C‚pYq by precomposition.1458

Then singular homology and cohomology with constant coefficients are just the homology1459

and cohomology of C‚pXq under Definition 4.2.7. Moreover, the total singular complex gives us1460

a way to define ADR and APL on an arbitrary space.1461

Definition 4.3.2. Given any topological space X, we define1462

ADRpXq :“ ADR
`

C‚pXq
˘

and APLpXq :“ APL
`

C‚pXq
˘

.

These constructions are functorial in X because ADR, APL, and C‚ are.1463
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[ We need to compare these to singular cohomology. I am considering two tacks at1464

present:1465

1466

• Show they are cohomology theories and show integration induces an isomorphism1467

on the cohomology groups of a point.1468

• Directly construct a zigzag of dga quasi-isomorphisms connecting them to C‚pXq.1469

]1470

Historical remarks 4.3.3. Sullivan attributes the idea of forms on simplices to Whitney and Thom1471

[Track down citations].1472

4.4. Simplicial sets1473

[ We need to introduce simplicial sets and thin geometric realization for Section 5.4. ]1474
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Classifying spaces1476

In this section, we carry out the construction of the universal principal G-bundle EG Ñ BG,1477

which we use essentially as a tool to convert actions into closely related free actions. The existence1478

of this bundle is more important than the details of its construction in almost everything that1479

follows, but we may at some points use the fact that EG admits commuting right and left actions1480

of G.1481

5.1. The weak contractibility of EG1482

The original purpose of the universal principal G-bundle EG Ñ BG was to be a principal G-1483

bundle such that all others G Ñ E Ñ B arose as pullbacks. Moreover, it was seen that under these1484

conditions, isomorphism classes of principal G-bundles over a given CW complex B correspond1485

bijectively to homotopy classes of maps B ÝÑ BG. Thus a map B ÝÑ BG of base spaces inducing1486

E as a pullback of EG “classifies” the bundle E Ñ B, and so is called the classifying map of the1487

bundle; and BG is called a classifying space for principal G-bundles.1488

The fact that EG is weakly contractible—which is much of why we care about the universal1489

bundle—turns out to be a consequence of that demand. In this subsection, we explain the rele-1490

vance of this demand. It will simplify the argument to know that all maps of principal G-bundles1491

are pullbacks.1492

Proposition 5.1.1. Consider a principal G-bundle map1493

P //

��

E

��
X

f // B.

The pullback bundle f ˚E Ñ X is isomorphic to P Ñ X as a principal G-bundle.1494

Proof. Recall from Appendix B.3 that the total space f ˚E “ X is the pullback in Top of the1495

diagram X Ñ B Ð E. Since P also admits a map to such a diagram, there is a continuous map1496

P Ñ f ˚E commutatively filling in1497

P //

  

**f ˚E //

��

E

��
X

f // B.

62
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For any x P X, by assumption, the maps of fibers P|x Ñ E| f pxq Ð p f ˚Eq|x are G-equivariant1498

homeomorphisms, so P Ñ f ˚E is a bijective G-map. To see its inverse is continuous, it is enough1499

to restrict attention to an open U Ď X trivializing both P and f ˚E, so we need only show the1500

inverse of a continuous G-bijection ϕ filling in the diagram1501

U ˆ G
ϕ //

��

U ˆ G

��
U

is continuous. By commutativity, we may write ϕpx, 1q “
`

x, ψpxq
˘

for a continuous ψ : U Ñ G,1502

so that ϕpx, gq “
`

x, ψpxqg
˘

by equivariance. Then ϕ´1px, gq “
`

x, ψpxq´1g
˘

, and since ψ and1503

g ÞÑ g´1 are continuous, so is ϕ´1.1504

Thus the EG Ñ BG we seek needs to be a final object in the category of principal G-bundles.1505

Recall that Top admits CW approximations, so that up to homotopy, we may assume the base1506

space of our principal G-bundle P Ñ X is a CW complex. Then X is built one level at a time1507

from a discrete set X0 of vertices by gluing disks Dn`1
α to the n-skeleton Xn along attaching1508

maps ϕα : BDn`1
α « Sn ÝÑ Xn, so we can view P as being constructed inductively from principal1509

G-bundles over these attached cells.1510

We require one intuitively plausible lemma, which we will not prove.1511

Lemma 5.1.2 ([Ste51, Cor. 11.6, p. 53]). Let B be a contractible, paracompact Hausdorff space and E Ñ B1512

an F-bundle for some fiber F. Then E is isomorphic as an F-bundle to Bˆ F.1513

By the lemma, principal G-bundles over disks are trivial, so P|Xn`1 is the identification space of1514

P|Xn with some bundles Dn`1
α ˆG Ñ Dn`1

α , the identifications given by G-maps Sn
α ˆG ÝÑ P|Xn .1515

The task of constructing a G-map P ÝÑ EG can now be undertaken one cell at a time. To start,1516

P|X0 is a disjoint union of copies of G, and any homeomorphic map of these to fibers of EG Ñ BG1517

will work. Suppose inductively that a G-map P|Xn ÝÑ EG has been built, and we want to extend1518

this to the space P|Xn Y pDn`1ˆGq, where Dn`1ˆG is attached by a G-map Sn ˆG ÝÑ P|Xn . We1519

can do anything we want over the interior of Dn`1, and we know what must happen over P|Xn ,1520

so our only constraint is the composition of the preexisting G-map and the attaching map,1521

ψ : Sn ˆ G ÝÑ P|Xn ÝÑ EG.

Thus the task is really to extend an arbitrary G-map SnˆG ÝÑ EG over the interior of Dn`1ˆG:1522

Dn`1 ˆ G

&&
Sn ˆ G

ψ
//

?�

OO

EG.

But a G-map rψ : Dn`1ˆG ÝÑ EG is uniquely determined by its restriction to the standard section1523

Dn`1 ˆ t1u since rψpx, gq “ rψpx, 1qg, so it is necessary and sufficient to extend the restriction1524

Sn ÝÑ EG to a map Dn`1 ÝÑ EG. If it is possible to do so, then restrictions of the latter map1525

to concentric spheres of decreasing radius form a nullhomotopy of the map Sn ÝÑ EG, so the1526

condition finally turns out to be that πnpEGq “ 0.1527
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Proposition 5.1.3. A principal G-bundle EG ÝÑ BG is universal just if π˚pEGq “ 0: for every principal1528

G-bundle G Ñ P Ñ B, there is a G-bundle map1529

G

��

G

��
P

rχ //

��

EG

��
B

χ // BG

realizing P as the pullback χ˚EG.1530

Thus the collapse EG ÝÑ ˚ of the total space is a weak homotopy equivalence, and so if EG1531

is a CW complex, then it is actually contractible by Whitehead’s theorem B.1.6.1532

[Show that BG is a classifying space.]1533

Now seems as good a time as any to derive a corollary we will use repeatedly later.1534

Corollary 5.1.4. If G is a path-connected group, then BG is simply-connected.1535

Proof. The long exact homotopy sequence Theorem B.1.4 of G Ñ EG Ñ BG contains subse-1536

quences1537

0 “ πn`1pEGq ÝÑ πn`1pBGq ÝÑ πnpGq ÝÑ πnpEGq “ 0,

yielding isomorphisms πn`1pBGq – πnpGq for all n, and in particular for n “ 0.1538

We have not shown existence yet, but it is easy to show uniqueness in a strong sense, using1539

a construction that will be useful again later. For G-spaces X, Y, there is a diagonal G-action on1540

XˆY,1 which gives rise to the following mixing diagram:1541

X

��

XˆYoo //

��

Y

��
X{G

XˆY
G

vXoo vY // Y{G.

(5.1.5)

Exercise 5.1.6. Show that if X ÝÑ X{G in (5.1.5) is a G-bundle (automatically principal), then vX1542

is a bundle with fiber Y.1543

Proposition 5.1.7. Given any two principal G-bundles G Ñ Ej Ñ Bj with π˚Ej “ 0 pj P t1, 2uq, there1544

is a string of weak homotopy equivalences connecting B1 with B2.1545

Proof (Borel [Bor53, Prop. 18.2]). Consider the mixing diagram (5.1.5) for X “ E1 and Y “ E2.1546

The fiber of vE1 is E2, which is weakly contractible, so from the long exact homotopy sequence1547

of this bundle we conclude vE1 is a weak homotopy equivalence; and symmetrically for vE2 .1548

Exercise 5.1.8. Show that the homotopy isomorphism β12 :“ pvE1q˚pv
´1
E2
q˚ is unique in the sense1549

that if we have a third universal principal G-bundle E3 Ñ B3, then β13 “ β12 ˝ β23. Hint: Consider1550

the orbit-space of E1 ˆ E2 ˆ E3.1551

1 This is the product in the category of G-spaces.
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Exercise 5.1.9. Prove a weak homotopy equivalence B1 ÝÑ B2 directly using the universal prop-1552

erty of G Ñ E2 Ñ B2.1553

Remark 5.1.10. The reader has probably seen the Eilenberg–MacLane space Kpπ, 1q for π a non-1554

topological group characterized up to homotopy as a CW complex with π˚Kpπ, 1q “ π1Kpπ, 1q “1555

π the only nonzero homotopy group. This is the case of our BG with G “ π a discrete group.1556

Proposition 5.1.7 and Exercise 5.1.9 show Kpπ, 1q is unique up to homotopy.1557

5.2. An ad hoc construction of EG for G compact Lie1558

As we have seen in the previous section, the specification for EG is somewhat loose; it is really a1559

G–homotopy type rather than any one single space. In this section we construct an avatar which1560

will serve most of our needs.1561

Example 5.2.1. Embedding Cn ãÝÝÑ Cn`1 as Cn ˆ t0u, the direct union is the countable direct sum1562

C8 “
À

NC, which can be seen as the subspace of the countable direct product
ś

NC such that1563

all but finitely many coordinates are 0. Within C8 lies the unit 8-sphere1564

S8 :“ t~z P C8 :
ÿ

z2
j “ 1u.

Write C8ˆ :“ C8zt0u. The scalar multiplication of C on C8 restricts to a free action of Cˆ on C8ˆ1565

and of S1 on S8, with the same orbit space1566

CP8 :“ C8ˆ{Cˆ « S8{S1,

called infinite complex projective space. The fiber space S8 Ñ CP8 can be seen as the increasing1567

union of restrictions S2n´1 Ñ CPn´1, where we conceive S2n´1 as S8 XCn. Each CPn admits an1568

open cover by contractible affines, so these restrictions are all principal S1-bundles, and S8 Ñ1569

CP8 is as well.1570

We claim this bundle satisfies the requirements to be ES1 Ñ BS1. Because S8 is the union of1571

the unit spheres S2n´1 Ĺ Cn, by a compactness argument, any map Sm ÝÑ S8 must lie inside1572

some sufficiently large Sn, and πmSn “ 0 for m ă n. Thus S8 is weakly contractible. There is a1573

natural CW structure on S8 where two hemispheres Dn attach to each Sn´1 to form Sn, so we1574

know from Whitehead’s theorem S8 is contractible, but in fact, it is possible to see so directly as1575

well.1576

Proposition 5.2.2. The unit 8-sphere S8 is contractible.1577

Proof. There is a homotopy taking the subspace S1 :“ S8X
`

t0uˆC8
˘

« S8 with first coordinate1578

zero to the point e1 “ p1,~0q, given by1579

htp~zq :“ psin tqe1 ` pcos tq~z;

this is just a renormalization of the straight-line homotopy. Now it will be enough to find a1580

homotopy from S8 to S1. Write s : ~z ÞÝÑ p0,~zq for the shift homeomorphism. One’s first inclination1581

is to take1582

ftp~zq “ p1´ tq~z` t ¨ sp~zq.

If we can show ftpS8q avoids~0 P C8, then the renormalization f̂t :“ ft{| ft| will suit our purposes.1583

Now note any ~z P C8 has a last nonzero coordinate zn, so the nth and pn ` 1qst coordinates1584
`

p1´ tqzn, tznq of ftp~zq will never simultaneously be zero, and the linear maps ft P EndCC8 are1585

injective. Thus f̂t is an isotopy.1586
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Example 5.2.3. Replacing C with the quaternions H (respectively, the reals R) and S1 with Spp1q «1587

S3 (resp., Op1q « S0 – Z{2), one finds a universal Spp1q-bundle ESpp1q Ñ BSpp1q is1588

S3 ÝÑ S8 ÝÑ HP8

and a universal Op1q-bundle EOp1q Ñ BOp1q is1589

S0 ÝÑ S8 ÝÑ RP8.

Any closed subgroup K ď G acts freely on EG by a restriction of the G-action, so one has1590

a natural map EG ÝÑ EG{K with fiber K. It is intuitively plausible that this is also a fiber1591

bundle, and this is actually the case in the event G is a Lie group: by Theorem B.4.4, G ÝÝ� G{K1592

is a principal K-bundle, and the local trivializations φ : pEGq|U
«
ÝÑ U ˆ G of EG Ñ BG and1593

G|V
«
ÝÑ V ˆ K of G Ñ G{K combine to yield local trivializations φ´1pU ˆ G|Vq ÝÑ U ˆV ˆ K1594

making EG Ñ EG{K a principal K-bundle, so that EG can serve as EK and EG{K as BK.1595

To make use of this observation, we can use the classic result Theorem B.4.8, due to Peter1596

and Weyl, that every compact Lie group has a faithful finite-dimensional unitary representation.1597

Thus, if we can find EUpnq, we will have bundles EG Ñ BG for all compact Lie groups G. Here1598

is one construction.1599

Example 5.2.4. The infinity-sphere S8 can be seen as the collection of orthonormal 1-frames in1600

C8 and CP8 as the space of 1-dimensional vector subspaces of C8. Analogously, one can form1601

the infinite complex Stiefel manifolds VnpC8q of orthonormal n-frames in C8, which is to say,1602

sequences pv1, . . . , vnq of n mutually orthogonal vectors of length one, topologized as a subspace1603

of
ś

n S8, and the infinite complex Grassmannian GnpC8q of n-planes in C8. Just as S8 projects1604

onto CP8, so does each VnpC8q project onto GnpC8q through the span map pv1, . . . , vnq ÞÝÑ1605
ř

Cvj. The unitary group Upnq acts freely on VnpC8q; if one considers an element of S8 as an1606

infinite vertical vector, or a 8ˆ 1 matrix, then an element of VnpC8q can be seen as an 8ˆ n1607

matrix, and right multiplication by an n ˆ n matrix in Upnq produces another 8ˆ n matrix1608

spanning the same column space, so that the fiber of the span map VnpC8q ÝÑ GnpC8q is1609

homeomorphic to Upnq. With a little work, it can be seen that Upnq Ñ VnpC8q Ñ GnpC8q is a1610

fiber bundle.1611

Moreover, an analogue of the contraction of S8 in Example 5.2.1 shows VnpC8q to be con-1612

tractible: the idea is to first conduct the isotopy f̂t of S8 consecutively n times, taking S8 into1613

t0un ˆ S8 and hence VnpC8q into Vn
`

t0un ˆC8
˘

, and then use a renormalized straight-line ho-1614

motopy generalizing ht to take Vn
`

t0un ˆ C8
˘

to the identity matrix In P Cnˆn Ĺ C8ˆn, rep-1615

resenting the standard basis of the subspace Cn ă C8. Write gt for the resulting homotopy1616

VnpC8q ˆ I ÝÑ C8ˆn. In the same way that our first guess for S8 failed to have image strictly1617

unit-length, this map gt, while it preserves linear independence, does not preserve orthogonal-1618

ity. But if we postcompose to gt the Gram–Schmidt orthonormalization procedure, which is a1619

well-defined projection1620

tn-tuples of linearly independent vectors in C8u ÝÑ VnpC8q,

we achieve the desired homotopy.1621

One analogously finds that VnpR8q Ñ GnpR8q and VnpH8q Ñ GnpH8q respectively satisfy1622

the hypotheses for EOpnq Ñ BOpnq and ESppnq Ñ BSppnq. The double cover VnpR8q{SOpnq “:1623

rGnpR8q of GnpR8q, the oriented Grassmannian consisting of all oriented n-planes in R8, is a1624

BSOpnq.1625
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5.3. Milnor’s functorial construction of EG1626

These pleasing constructions do not generalize. In 1955, Milnor [Mil56] found a functorial con-1627

struction of EG Ñ BG that works for any topological group G, not even assumed Hausdorff.1628

To lay the groundwork, the join X ˚Y of two topological spaces X and Y is the quotient of the1629

product X ˆ Y ˆ I with an interval by identifications px, y, 0q „ px, y1, 0q and px, y, 1q „ px1, y, 1q1630

for all x, x1 P X and all y, y1 P Y. We may think of this as an pX ˆYq-bundle over I that has been1631

collapsed to X over 0 and to Y over 1, and consider X and Y to be included as these particular1632

end-subspaces.1633

Figure 5.3.1: Some low-dimensional joins

II * S
0

S
0

* S
0

S
1

*

Examples 5.3.2. The join I ˚ I of two intervals is a 3-simplex ∆3, the join S0 ˚ S0 is a circle S1, and1634

the join S1 ˚ S0 is a 2-sphere S2.1635

It is not hard to see that generally X ˚ pt is the cone CX on X and, as in the examples1636

above, X ˚ S0 is the suspension SX of X, so the process of iteratively joining points generates1637

the simplices ∆n and that of iteratively joining copies of S0 yields spheres Sn. One can also see1638

S3 « S1 ˚ S1 geometrically. The unit sphere in C2 has a singular foliation by1639

Tr :“
 

pz cos r, w sin rq : z, w P S1(,

for r P r0, π{2s, which are tori S1 ˆ S1 for r P p0, π{2q and circles for r P t0, π{2u: the S1 factor1640

corresponding to the w-coordinate collapses at r “ 0 and the S1 corresponding to the z-coordinate1641

collapses at r “ π{2.1642

One important property of joins is that they are (bi)functorial: continuous maps X ÝÑ X1 and1643

Y ÝÑ Y1 uniquely induce a map X ˚Y ÝÑ X1 ˚Y1 in a manner respecting composition of maps.1644

Another key feature is that they are more connected than their factor spaces, as one already sees1645

in the sphere examples above, in the following sense.1646

Definition 5.3.3. A nonempty space X is p´1q-connected, and, for each n P N, is n-connected if1647

πjpXq “ 0 for all j ď n.1648

The relevant fact is that one can find an CW-replacement of an n-connected space such that1649

after the basepoint, the next smallest cell is of dimension n` 1. (This is true but content-free if1650

n “ ´1.)1651

Corollary 5.3.4. If X is n-connected and Y is m-connected, then X ˚Y is pm` n` 2q-connected.1652

We decompose this into two lemmas.1653

Lemma 5.3.5. Let X and Y be spaces homotopy equivalent to CW complexes. Then X ˚ Y is homotopy1654

equivalent to the reduced suspension ΣpX^Yq of the smash product of X and Y.1655
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Proof. Fix basepoints x0 P X and y0 P Y. The subspace x0 ˚Y Ě Y deformation retracts to x and1656

the subspace X ˚ y0 Ě X deformation retracts to y; their intersection x0 ˚ y0 is also contractible,1657

so their union A is as well. Thus the reduced join pX ˚Yq{A is homotopy equivalent to X ˚Y. But1658

A is comprised of elements rx, y, ts P X ˚Y with x “ x0 or y “ y0 or t P t0, 1u which are precisely1659

the things one mods out of XˆYˆ I to get ΣpX^Yq.1660

Recall that reduced suspension is equivalent to smashing with S1. Then Corollary 5.3.4 follows1661

by applying the following lemma twice to X^Y^ S1.1662

Lemma 5.3.6. If X is m-connected and Y is n-connected, then X^Y is pm` n` 1q-connected.1663

Proof. Replace X and Y with weakly homotopy equivalent CW complexes, such that the smallest1664

cells besides the basepoints are of dimensions m` 1 and n` 1 respectively. Then X ˆY decom-1665

poses into cells σˆ τ for σ and τ respectively cells in X and Y, and X _ Y is the union of cells1666

tx0u ˆ τ and cells σ ˆ ty0u. The cells of the inherited CW structure on X ^ Y “ X ˆ Y{X _ Y1667

are the 0-cell representing the collapsed X _Y and the images of the other σˆ τ, the minimum1668

dimension of which is pm` 1q ` pn` 1q.1669

It follows that if X is n-connected, then the n-fold iterated join ˚n X is
`

npm ` 2q ´ 2
˘

-1670

connected. Including ˚n X as the second factor of ˚n`1 X “ X ˚ p˚n Xq, we can form the direct1671

limit1672

EX :“ lim
ÝÑ ˚n X.

Because for all n we have EX « p˚n`1 Xq ˚ EX, it follows that every πnpEXq “ 0. We will show in1673

the next section that EX is actually contractible. Note that Ep´q is functorial: a continuous map1674

ψ : X ÝÑ Y induces a continuous map Eψ : EX ÝÑ EY.1675

Now let G be a topological group. To construct a G-action on EG, we first provide a different1676

description of it. For any topological space X, write CX for the unreduced cone on X, the quotient1677

of the product X ˆ I obtained by pinching X ˆ t0u to a point. Then X ˚ Y can be seen as the1678

subspace of CXˆCY consisting of elements rx, t1, y, t2s such that t1` t2 “ 1 and X as the subspace1679

where t2 “ 0. Similarly, the triple join X ˚Y ˚ Z can be seen as
 

rx, t1, y, t2, z, t3s P CXˆCYˆCZ :1680

t1 ` t2 ` t3 “ 1
(

, and X ˚Y as the subspace where t3 “ 0, and the infinite join EG can be seen as1681

!

`

rgj, tjs
˘

jPN P
ź

N
CG : only finitely many tj ‰ 0 and

ÿ

tj “ 1
)

. (5.3.7)

Write these elements briefly as e “
“

pgjq,~t
‰

. A free, continuous right action of G on EG is given1682

by1683
“

pgjq,~t
‰

¨ g :“
“

pgjgq,~t
‰

.

Set BG :“ EG{G, with the quotient topology.1684

We still must show p : EG Ñ BG : e ÞÝÑ eG is a fiber bundle. Much like projective space,1685

EG admits an open cover by sets Uj “ t´1
j p0, 1s. On Uj, the gj-coordinate is well-defined and1686

continuous, so1687

φj “ pp, gjq : Uj ÝÑ ppUjq ˆ G

is a continuous bijection. To see the inverse φ´1
j is continuous, note that the continuous map1688

e ÞÝÑ e ¨ g´1
j peq determines the unique representative e1 of eG such that g´1

j pe
1q “ 1, and since p1689

is open, the restriction of p to this set of representatives is a homeomorphism pj onto its image1690
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ppUjq, with inverse eG ÞÝÑ eg´1
j peq. Now we can write φ´1

j as peG, gq ÞÝÑ p´1
j peGq ¨ g, which is1691

plainly continuous. Where defined, φi ˝ φ´1
j is given by1692

peG, gq ÞÝÑ φipp´1
j peGq ¨ gq “

´

eG, gi
`

p´1
j peGq ¨ g

˘

¯

,

which is continuous, so the transition function on Ui XUj, is also continuous; explicitly in terms1693

of any representative e of eG, this transition function sends g ÞÝÑ gipeqgjpeq´1g. Thus EG Ñ BG1694

is a principal G-bundle.1695

The classifying space construction B is also functorial, because if ψ : G ÝÑ H is a continuous1696

homomorphism, Eψ is fiber-preserving and equivariant in a sense—1697

Eψ
`

r~gj,~ts ¨ g
˘

“ EψrÝÑgjg,~ts “
“ÝÝÝÝÑ
ψpgjgq,~t

‰

“
“ÝÝÝÑ
ψpgjq,~t

‰

¨ ψpgq “ Eψ
`

r~gj,~ts
˘

¨ ψpgq

—so that Eψ descends to a well-defined continuous map Bψ : BG ÝÑ BH.1698

Remark 5.3.8. The spaces EG can actually be seen to be contractible by an argument due to Dold.1699

Historical remarks 5.3.9. The notation for EG and BG descends from a proud historical precedent.1700

The way to denote a bundle F Ñ E π
Ñ B equipped with a local trivialization with transition1701

functions taking values in G ď HomeopFq, as late as the 1960s [Ste51, BH58, BH59, BH60], was a1702

quintuple pE, B, F, p, Gq, with the last two entries often omitted. This arrowless notation requires1703

one to remember which object lives in which position, but does have the benefit that if a bundle1704

is named ξ, it has canonically associated with it an entourage of ready-named objects1705

pEξ , Bξ , Fξ , πξ , Gξq “ ξ.

The standard name for the universal principal G-bundle under this convention is, naturally1706

enough,1707

pEG, BG, G, πG, Gq.

In subsequent decades, perhaps as the functorial nature of E : G ÞÑ EG and B : G ÞÑ BG is1708

embraced, one can see the subscripts of EG and BG gradually move up until one has the EG ÝÑ1709

BG of modern day.1710

5.4. Segal’s functorial construction of EG1711

Although we only need one functorial construction of EG, there is another that is very attractive,1712

uses ideas we have already seen, and whose generalizations had an important impact on later1713

directions in algebraic topology.1714

The conditions tj ě 0 and
ř

tj “ 1 in (5.3.7) describe, of course, a simplex, so writing J “1715

rj0, . . . , jns for a decreasing tuple of indices j P N with tj ‰ 0, what we have done is represent1716

each element of EG uniquely as a pair p~g,~tq P G J ˆ
˝
∆n. To see how these pieces fit together, we1717

consider elements p~g,~tq P G J ˆ ∆n. If tj “ 0, then the tuple is represented in EG by the same1718

tuple with gj omitted. If we write B` J “ rj0, . . . , p`, . . . , jns, and B` : G J ÝÑ GB` J for the coordinate1719

projection omitting gj, then this identification can be expressed as1720

pB`~g,~tq „ p~g, i ~̀tq for ~g P G J , ~t P ∆n´1,

which is just the relation one has in defining the geometric realization (Definition 4.2.3). In fact,1721

since projection B` are given by entry omission, it is clear the G J fit into a semisimplicial set,1722
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namely N G, where pN Gqn :“
š

|J|“n`1 G J and B` is projection as above, and then it becomes1723

clear that1724

EG “ }N G}.

This change of viewpoint actually makes it easier to see that EG is contractible. Let e be the
semisimplicial subset N G consisting of elements all of whose entries are 1 P G. There is a unique
map ε of semisimplicial sets N G ÝÑ e defined on the 0th level by sending each element of Grns

to 1 P Grn`1s. Let ∆r1s be the semisimplicial set with two 0-simplices p0q and p1q and n-simplices
nonincreasing length-pn` 1q sequences of 0’s and 1’s.2 The maps idN G and ε prescribe a map of
simplicial sets N Gˆ ∆r1s ÝÑ N G determined on the 0-level by

pg`q ˆ p0q ÞÝÑ pg`q,

pg`q ˆ p1q ÞÝÑ p1j`1q.

Compatibility with the face maps means this prescription actually specifies the map completely;
for example, for q ą p ą m ą ` ą j,

phj, hjq ˆ p1, 0q ÞÝÑ p1j`1, hjq,

pg`, hjq ˆ p0, 0q ÞÝÑ pg`, hjq,

pg`, hjq ˆ p1, 1q ÞÝÑ p1``1, 1j`1q,

paq, bp, cm, g`, hjq ˆ p1, 1, 1, 0, 0q ÞÝÑ p1q`1, 1p`1, 1m`1, g`, hjq.

Taking geometric realizations yields a map1725

›

›N Gˆ ∆r1s
›

› ÝÑ EG

which is the identity on the subcomplex EGˆ tp0qu and sends the subcomplex EGˆ tp1qu to }e}.1726

But }e} “ lim
ÝÑ˚n

t1u “ ∆8 is an infinite-dimensional simplex, hence contractible.1727

Exercise 5.4.1. Write an explicit nullhomotopy of ∆8.1728

Theorem 5.4.2 (Dold). The Milnor model of EG is contractible.1729

[simplicial homotopy induces homotopy is [?, Cor., p. 360]]1730

The semisimplicial set N G realizing to EG descends to a semisimplicial set pN Gq{G with1731

realization BG, whose levels are unions of G J{G. An element r~gs of G J{G is represented equally1732

well by ~g and pgjhq for any other h P G, and it would be nice to have unique representatives. One1733

observation to make is that the ratios gjg´1
` are invariant under the substitution ~g ÞÝÑ ~g ¨ h, so1734

an element of G J is uniquely determined by its list of ratios pgj0 g´1
j1

, . . . , gjn´1 gjnq P Gn. Let us see1735

explicitly what the face operators do downstairs, for J “ r3, 2, 1, 0s:1736

pa, b, cq ÞÝÑpabc, bc, c, 1q

$

’

’

’

’

’

&

’

’

’

’

’

%

B0
ÞÝÑ pbc, c, 1q ÞÝÑ pb, cq,
B1
ÞÝÑ pabc, c, 1q ÞÝÑ pab, cq,
B2
ÞÝÑ pabc, bc, 1q ÞÝÑ pa, bcq,
B3
ÞÝÑ pabc, bc, cq ÞÝÑ pa, bq.

(5.4.3)

2 The idea is that α “ p1, 0q represents the nontrivial edge and every other simplex is degenerate, with image one
of the endpoints or this edge. The geometric realization, as we have defined it, will only be homotopy-equivalent to I,
but this is all right.
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Thus B0 and Bn respectively omit the first and last entry, as before, but the other Bj multiply two1737

consecutive entries.1738

This generalizes substantially. We may consider a monoid G as a category in at least two1739

different ways. One way is to construct the category rC G whose objects are the elements of G and1740

whose morphisms are given by the multiplication table: there is a unique morphism `g : h ÝÑ gh1741

for every g, h P H. If G is a group, then for every pair of objects h, x P G, there is a unique1742

morphism `xh´1 : h ÝÑ x. In other words, the space of morphisms is G ˆ G. This category is1743

clearly equivalent to the category ˚ with one object and one morphism, for the unique functor1744

rC G ÝÑ ˚ is surjective on objects and bijective on each hom-set. Another to consider G as a1745

category is to construct the category CG with one object ˚ such that the morphism set CGp˚, ˚q1746

endowed with composition is just G. There is a natural functor πG : rC G ÝÑ CG between these1747

categories, taking every object to ˚ and each morphism `g to g P CGp˚, ˚q.1748

Associated to every category, and these in particular, is a semisimplicial set, as per Defini-1749

tion 4.2.1, whose levels are its strings of composable arrows.1750

Definition 5.4.4. Given a topological category C , we write C0 for its class of objects and C1 for1751

its class of morphisms.3 The nerve NC of C is the simplicial space NC with levels1752

pNC q0 “ C0, pNC qn “
 

p fn´1, . . . , f0q P C n
1 : sourcep f j`1q “ targetp f jq

(

.

If we write down C as a graph, then elements of pNCnq correspond to paths ¨
fn
Ð ¨

fn´1
Ð ¨ ¨ ¨

f2
Ð ¨

f1
Ð ¨.1753

In other words, ~f is an element of Cn if the composition fn fn´1 ¨ ¨ ¨ f2 f1 is defined. The face maps1754

are1755

B0~f :“ p fn, ¨ ¨ ¨ , f2q

Bj~f :“ p fn, ¨ ¨ ¨ , f j`1 f j, ¨ ¨ ¨ , f1q, 0 ă j ă n,

Bn~f :“ p fn´1, ¨ ¨ ¨ , f1q.

(5.4.5)

and the degeneracies are1756

sj~f :“ p fn, ¨ ¨ ¨ , f j`1, idtargetp f jq
, f j, ¨ ¨ ¨ , f1q. (5.4.6)

We write BC :“ |NC | for the geometric realization of the nerve, and call it the classifying space1757

of C .1758

To make it clearer that the nerve is indeed a semisimplicial set, recall that we initially came1759

by the relations BjBi “ BiBj`1 for i ă j by analyzing what happened when we removed entries1760

from an pn` 1q-tuple. To put the nerve back in that framework, note that face map also removes1761

one of n` 1 things from ~f , namely fn, f1, or one of the n´ 1 commas separating entries. Thus1762

the only cases to be checked are pi, jq “ pn´ 1, n´ 1q and pi, jq “ p0, 0q.1763

Exercise 5.4.7. Check these cases.41764

3 In the cases we consider, these will just be sets.
4 In practice, one usually specifies a simplicial set X by describing the sets Xn of n-simplices and then defining the required

face and degeneracy maps. Mercifully, the required relations are often obvious, and even if they are not, it is still advisable to
assert that they are, after privately verifying that they do in fact hold.

—Emily Riehl [Rie11].
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A continuous functor between topological categories induces a continuous simplicial map of1765

simplicial spaces and so a continuous map between classifying spaces. We have already seen an1766

example of this.1767

Example 5.4.8. Our semisimplicial set N G realizing EG is the nerve of the topological category1768

rCNG whose space of objects is N ˆ G, and whose nonidentity morphisms are unique arrows1769

p`, gq ÐÝ pj, hq for ` ą j and any g, h P G. If we agree to write these morphisms as pg`, hjq, we can1770

write a pair of composable arrows pm, cq Ð p`, gq Ð pj, hq as pcm, g`, hjq P Grj,`,ms Ĺ pN Gq2 and so1771

on. With this notational convention, omitting the first or last coordinate corresponds to dropping1772

the first or last arrow and projecting out a middle coordinate corresponds to composition since1773

nonempty hom-sets contain only one element.1774

Example 5.4.9. Our semisimplicial set N G{G realizing EG is the nerve of the topological category1775

CNG whose space of objects is N with hom-sets HomCNGpj, nq – G for j ă n, the identity for j “ n,1776

and empty if j ą n. If we think of these arrows as left multiplication by g, then the face operators1777

in (5.4.3) exactly meet the specification set by (5.4.5).1778

We will show that B rC G ÝÑ BCG is a model for EG ÝÑ BG and in the process provide another1779

proof that the Milnor model of EG is contractible.1780

Proposition 5.4.10. The functor B preserves products.1781

Proof. An object in a product C ˆD of categories is a pair pc, dq of objects of each and a morphism1782

is a pair p f , gq of arrows. It follows NpC ˆDq “ NC ˆ ND as a set and we set Bj “ pBj, Bjq in1783

NpC ˆDq; this is the product simplicial set. By [Create in simplicial set section and cite],1784

then, we have1785

BpC ˆDq “ |NC ˆ NDq| “ |NC | ˆ |ND | “ BC ˆ BD .

Proposition 5.4.11. Let F0, F1 : C ÝÑ D be continuous functors between topological categories. A natu-1786

ral transformation F0 ÝÑ F1 induces a homotopy BC ˆ I ÝÑ BD from BF0 to BF1.1787

Proof. Let C∆1 be the category with two objects 0, 1 linked by one nonidentity arrow 0 Ñ 1. Then
the data of a natural transformation ϑ : F0 ÝÑ F1 is exactly that of a functor H : C ˆ C∆1 ÝÑ D .
Explicitly

HpX, jq “ FjX,

Hp f , idjq “ Fj f for j P t0, 1u,

HpidX, 0 Ñ 1q “ pϑX : F0X Ñ F1Xq.

Taking classifying spaces, since BC ˆ I “ BC ˆ BC∆1 « BpC ˆC∆1q by Proposition 5.4.10, we see1788

H induces a map BC ˆ I ÝÑ BD as claimed.1789

Proposition 5.4.12. A adjunction between topological categories induces a homotopy equivalence of clas-1790

sifying spaces.1791

Particularly, an equivalence C ” D induces a homotopy equivalence BC » BD .1792

Proof. An adjunction of topological categories is a pair of continuous functors F : C ÝÑ D and1793

G : D ÝÑ C such that there are natural transformations η : idC ÝÑ GF and ε : FG ÝÑ idD1794

satisfying universal properties that we don’t actually need here. By Proposition 5.4.11, these1795

induce homotopies from idBC to BG ˝ BF and from BF ˝ BG to idBD , as was to be shown.1796
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Theorem 5.4.13 (Segal). B rC G is contractible.1797

Proof. We have already seen that rC G ÝÑ ˚ is an equivalence.5 Thus, by Proposition 5.4.12, B rC G »1798

B˚ « ˚.1799

It is not always the case that B rC G ÝÑ BCG is a bundle map, although it is if G is a Lie group,1800

as we will always assume. But this model is still relevant.1801

Proposition 5.4.14. There exists a homotopy equivalence BG ÝÑ BCG.1802

Proof. We define a continuous functor rCNG ÝÑ rC G taking
`

pj, gq Ñ p`, hq
˘

ÞÝÑ pg ÞÑ hq. This1803

is not an equivalence6 but is a continuous G-equivariant functor, so it induces a G-map EG ÝÑ1804

B rC G. (It is a homotopy equivalence simply because both spaces are contractible, but this does1805

not imply it is a G–homotopy equivalence.)1806

[This is a hole which still remains to be filled.]1807

Historical remarks 5.4.15. [To be written...]: [ Commentary on the geometric cobar construc-1808

tion, Steenrod–Rothenberg, and group cohomology. ]1809

5.5. The Borel construction1810

We have now constructed, for every topological group G, a universal principal G-bundle G Ñ1811

EG Ñ BG such that EG is weakly contractible. Given a left G-space X, we can construct the1812

mixing diagram (5.1.5) of EG and X. The product space EG ˆ X, equipped with the diagonal1813

action, is another G-space weakly homotopy equivalent to X, but the new action is free since1814

pe, xq “ g ¨ pe, xq “ peg´1, gxq ùñ e “ eg´1

and the G-action on EG is free. The middle entry on the bottom of the diagram, the orbit space1815

of this new, free action, serves as a sort of “homotopically correct” substitute for X{G when the1816

action of G is not free, and a useful auxiliary even when it is.1817

Definition 5.5.1 (Borel [BBF`60, Def. IV.3.1, p. 52]). The orbit space1818

XG :“ EGb
G

X “ EGˆ XLpeg, xq „ pe, gxq,

of the diagonal action of G on EGˆX is the homotopy quotient of X by G (or the Borel construc-1819

tion). We denote the elements of XG by eb x, since egb x “ eb gx.1820

The homotopy quotient is functorial, in that a continuous G-map X ÝÑ Y induces a con-
tinuous map XG ÝÑ YG in a manner respecting composition. Every G-space X admits a G-
map X ÝÑ ˚ to a single point (equipped with the unique possible G-action), inducing, since
˚G “ EGb

G
˚ « EG{G “ BG, a canonical map

XG ÝÑ ˚G « BG

eb x ÞÝÑ eb˚ Ø eG.

The fiber of this map over eG is the set teb x : x P Xu « X.1821

5 As an explicit pseudoinverse, one may take the map ˚ ÞÝÑ 1; any point g P G will do.
6 It is surjective on objects and faithful, but not full because if g ‰ h, then Hom

rCN

`

pn, gq, pn, hq
˘

is empty, while
Hom

rC G
pg, hq is not.
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Definition 5.5.2. The bundle X Ñ XG Ñ BG is the Borel fibration of the action of G on X.1822

Proposition 5.5.3. Let G act freely on a CW complex X. Then the projection XG ÝÑ X{G is a weak1823

homotopy equivalence.1824

Proof. The map eb x ÞÝÑ Gx from XG Ñ X{G has fiber EG{ Stabpxq in general. If G acts freely1825

on X, then all fibers are EG. Since EG is contractible, the long exact homotopy sequence of the1826

bundle EG Ñ XG Ñ X{G shows the map is a weak homotopy equivalence. By Whitehead’s1827

theorem, it is a homotopy equivalence.1828

To use this map as an auxiliary, we will want to be able to replace the map X ÝÑ X{G with1829

X ÝÑ XG and X{G ÝÑ BG with XG ÝÑ BG as needed when the action on X is free. The first is1830

natural: one has a triangle1831

XG

��

eb x_

��

X

88

&&

x
2

88

�

%%
X{G, Kx,

which commutes on the nose. The map χ : X{G ÝÑ BG in question, on the other hand, is the1832

classifying map of G Ñ X Ñ X{G, which exists from the abstract considerations of Proposi-1833

tion 5.1.3, but which we do not typically have any concrete description of. It is not a priori clear it1834

should have anything to do with the projection XG ÝÑ BG of the Borel fibration. To see it does,1835

quotient the G-map1836

idˆ rχ : EGˆ X ÝÑ EGˆ EG

by the diagonal G-action. The projections to the either factor on both sides in the resulting ho-1837

motopy quotient yield the following diagram (this is a map of bottom rows of mixing diagrams1838

(5.1.5)).1839

BG EGb
G

X
{X

oo „ //

idb rχ

��

X{G

χ

��

eK eb x�oo � //
_

��

Kx_

��
BG EGb

G
EG„oo „ // BG eK eb rχpxq�oo � // χpKxq

Here the map XG ÝÑ X{G and the maps along the bottom are weak homotopy equivalences1840

because they are fibrations with fiber EG; this was the proof in Proposition 5.1.7 of the uniqueness1841

of BG. It follows that we can indeed replace χ : X{G ÝÑ BG with the projection XG ÝÑ ˚G “ BG1842

up to homotopy.1843

Proposition 5.5.4. If G Ñ X Ñ X{G is a principal bundle, then the weak homotopy equivalence XG ÝÑ1844

X{G identifies X ÝÑ XG with X ÝÑ X{G and the classifying map X{G ÝÑ BG with the Borel fibration1845

XG ÝÑ BG up to homotopy.1846

Remark 5.5.5. The singular cohomology H˚pXG; )̨ of the homotopy quotient XG is the (Borel equiv-1847

ariant cohomology H˚
GpX; )̨ of the action of G on X [BBF`60, IV.3.3, p. 53], a classical tool in the1848

study of group actions and one of the topics of the thesis this book derives from. The equivariant1849

cohomology of a point is H˚
Gp˚q “ H˚pBGq. As this is the coefficient ring of Borel cohomology,1850

we will abbreviate this ring by H˚
G later on.1851
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The cohomology of complete flag manifolds1853

The algebraic relation between a compact group and its maximal torus informs all discussion of1854

invariant subalgebras going forward, and is epistemologically prior to much of our discussion1855

of the cohomology of homogeneous spaces, being treated with sui generis methods that do not1856

apply in the general case.1857

The quotient G{T of a compact, connected Lie group by its maximal torus T, called a complete1858

flag manifold, was among the first homogeneous spaces other than groups and symmetric spaces1859

whose cohomology was understood. This material will be cited in Section 8.3.2.It is fundamental,1860

and but for the discussion of the Serre spectral sequence in Theorem 2.2.2, could have gone earlier.1861

6.1. The cohomology of a flag manifold1862

The cornerstone result is the following.1863

Theorem 6.1.1. Let G be a compact, connected Lie group and T a maximal torus in G. Then the cohomol-1864

ogy of H˚pG{Tq is concentrated in even dimensions.1865

[cite Bott–Samelson]1866

Proof sketch 1. Associated to G is a complexified Lie group GC which is a complex manifold, and1867

which contains a Borel subgroup B, a complex Lie group containing T and such that1868

GC{B « G{T.

Thus G{T admits a complex manifold structure and hence a CW structure with even-dimensional1869

cells. This actually shows H˚pG{T;Zq is free Abelian.1870

We reproduce Borel’s original 1950 proof. This argument was first published somewhat tele-1871

graphically in Leray’s contribution [Ler51] to the 1950 Bruxelles Colloque, and is elaborated in1872

Borel’s thesis [Bor53]. It invokes two facts we shall not prove about invariant differential forms,1873

which are these.1874

Proposition 6.1.1. Suppose a compact, connected Lie group G acts on a manifold M. Then every coho-1875

mology class in H˚pM;Rq is represented by a G-invariant differential form ω. Such a form is determined1876

uniquely by its value ωx P ΛT˚x M, an alternating multlinear form on the tangent space of one point x of1877

M.1878

75
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Sketch of proof. Given a closed form ω, note that since G is path-connected, for any g P G the1879

left translation `˚g on Ω‚pMq induces an isomorphism on cohomology, so ω ´ `˚g ω is an ex-1880

act form dτg. Using an invariant probability measure µ on G, average ω ´ `˚g ω “ dτg and get1881

ω ´
ş

G `˚g ω dµ “ d
ş

G τg dµ, showing ω is cohomologous to an invariant form.1 Thus inclusion1882

of invariant forms induces a surjection in de Rham cohomology. It is an injection because the1883

composition Ω‚pMqG ãÑ Ω‚pMq
ş

G´ dµ
ÝÝÝÝÑ Ω‚pMqG is the identity.1884

Proposition 6.1.2. Let G be a compact, connect Lie group and K a closed subgroup. The alternating1885

multlinear form ω1K P Λpg{kq_ representing a G-invariant form ω P Ω‚pG{Kq is invariant under the1886

action Ad˚|K of K induced by the conjugation action on K on G.1887

Proof. The adjoint action of G on g is the derivative at 1 P G of the conjugation action x ÞÝÑ gxg´1.1888

The action of K on G{K induced by conjugation is identical to the left action k.gK “ pkgqK, since1889

the right k´1 is absorbed by K, so p`kq
˚ “ Ad˚pkq on Ω‚pG{Kq. Now1890

Ad˚pkqω|1K “
`

Ad˚pkqω
˘

1K “ p`
˚
k ωq1K “ ω1K.

Borel’s proof of Theorem 6.1.1. By Theorem B.1.1, we may use R coefficients. Write ` “ rk G and1891

n “ dim G ´ rk G. We prove the result by a double induction on ` and n. If ` “ 0, then G is1892

discrete, and we are done. Inductively suppose we have proven the result for all groups of rank1893

`´ 1. If n “ 0, then rk G “ dim G, so G “ T is a torus and we are done.1894

Now suppose inductively we have proven the result for ` and n´ 1. Note that without loss1895

of generality, by Theorem B.4.5, G can be taken to be of the form Aˆ K with A a torus and K1896

simply-connected. Since A is a factor of the maximal torus T of G, one has G{T “ K{pTXKq, and1897

rk K “ rk G´ rk A ă ` if rk A ‰ 0.1898

Otherwise G “ K is simply-connected. We claim there exists an element x P G such that1899

x R ZpGq and x2 P ZpGq. Indeed, 1 P ZpGq lies in every maximal torus T. There is y1 P T1900

with y2
1 “ 1, and since a torus is divisible for all m ě 0 there are ym with y2

m “ ym´1. If these1901

simultaneously lay in all tori, then ZpGq would fail to be discrete, so there is some first m such1902

that ym R ZpGq and we may take x “ ym´1. Let K be the identity component of the centralizer1903

ZGpxq of x. Because x lies in the maximal torus T of G, we know rk K “ rk G, and because1904

x R ZpGq, the dimension dim ZGpxq “ dim K is strictly less than dim G. Thus H˚pK{Tq is evenly1905

graded by the inductive assumption.1906

The tangent space g{k “ T1KpG{Kq to the identity coset 1K in G{K can be identified with an1907

orthogonal complement kK to k in g in such a way that the isotropy action of K on T1KpG{Kq1908

corresponds to the adjoint action of K on kK.1909

By Proposition 6.1.1, each de Rham cohomology class on G{K contains a left G-invariant1910

element, which is then determined by its restriction to T1KpG{Kq – kK. Such a restriction is, by1911

Proposition 6.1.2, an alternating Ad˚pKq-invariant multilinear form on kK. Because x2 is central,1912

Adpxq P GLpgq is an involution; thus g splits as the 1-eigenspace k and an orthogonal p´1q-1913

eigenspace, which must be kK. Since Adpxq acts as multiplication by ´1 on kK, a nonzero Ad˚pxq-1914

invariant alternating form on kK can only have even degree. As x P K, it follows we must have1915

H˚pG{Kq concentrated in even degree.1916

Now we can apply the Serre spectral sequence to K{T Ñ G{T Ñ G{K. Both H˚pK{Tq and1917

H˚pG{Kq are evenly-graded, so by Theorem 2.2.2, so also is G{T. In fact, by Corollary 2.2.9, the1918

1 Particularly, this is sketchy because we have not shown how to choose τg such that g ÞÝÑ τg is measurable.
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spectral sequence collapses at E2 and H˚pG{Tq – H˚pG{KqbH˚pK{Tq as an H˚pK{Tq-module.1919

1920

Corollary 6.1.3. Let G be a compact, connected Lie group and T a maximal torus in G. Then the Euler1921

characteristic of χpG{Tq is positive.1922

6.2. The acyclicity of G{NGpTq1923

In this section we prove another result whose importance will not immediately be clear, but1924

which recurs in Section 6.3.1925

Proposition 6.2.1. Let G be a compact, connected Lie group, T a maximal torus in G, and N “ NGpTq1926

the normalizer. Then dim G{N is even and G{N is Q-acyclic:1927

H˚pG{N;Qq “ H0pG{N;Qq – Q.

Proof [MT00, Thm. 3.14, p. 159]. The torus T acts on G{N on the left, fixing the identity coset 1N1928

(since T ď N); we claim this is the only such fixed point. Indeed, let t P T be a topological gener-1929

ator. If an element gN P G{N is fixed under multiplication by t, it is fixed under multiplication1930

by all powers of t, and thus, by continuity, by all of T, so that TgN “ gN, or g´1Tg ď N. Since T1931

is a connected component of N and 1 “ g´11g P T, it then follows g´1Tg “ T, or g P N.1932

Because T fixes 1N, there is an induced isotropy action of T by isometries on the tangent1933

space g{n “ T1NpG{Nq to G{N at the identity coset 1N, which can be identified with the or-1934

thogonal complement nK ă g. Because T acts by isometries on the vector space nK – Rm, it1935

leaves invariant ε-spheres Sm´1 about the origin. The exponential exp : nK ÝÑ G{N will map a1936

sufficiently small sphere isometrically and T-equivariantly into G{N, and this T-invariant image1937

sphere Sm´1 divides G{N into a T-invariant disk Dm and a T-invariant complement M. Since T1938

is path connected, the map `t is homotopic to the identity, so χp`tq “ χpidq on both Sm´1 and1939

M. As only 1N P G{N is fixed by multiplication by T, and this point lies in the interior of Dm, it1940

follows `t acts without fixed points on Sm´1 and M. By the Lefschetz fixed point theorem B.1.10,1941

then,1942

χpMq “ χpSm´1q “ 0.

It follows m is even. Note that by excision H˚pG{N, Mq – H˚pDm, Sm´1q – rH˚pSmq, so that1943

the relative Euler characteristic χpG{N, Mq is p´1qm “ 1. The long exact sequence of the pair1944

pG{N, Mq then gives1945

χpG{Nq “ χpMq ` χpG{N, Mq “ 0` 1 “ 1.

1946

As G{T Ñ G{N is a finite cover with fiber W “ N{T and HoddpG{Tq “ 0 by Theorem 6.1.1, it1947

follows from Proposition B.2.1 that1948

HoddpG{Nq – HoddpG{TqW “ 0.

Thus h‚pG{Nq “ χpG{Nq “ 1, so it must be that H˚pG{Nq “ H0pG{Nq – Q.1949

We have the following useful corollary.1950
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Corollary 6.2.2 (Weil [dig up citation]). Let G be a compact, connected Lie group, T a maximal torus1951

in G, and W the Weyl group of G. Then1952

χpG{Tq “ |W|.

Proof. Since G{T ÝÑ G{N is a |W|-sheeted covering and χpG{Nq “ 1 by Proposition 6.2.1, it1953

follows from Proposition B.2.5 that1954

χpG{Tq “ χpG{Nq ¨ |W| “ |W|.

This means in a homogeneous space G{K, one can for cohomological purposes replace K with1955

the normalizer of its maximal torus.1956

Corollary 6.2.3. Let G be a compact, connected Lie group, K a closed, connected subgroup of lesser rank,1957

S a maximal torus of K, and N “ NKpSq the normalizer of this torus in K. Then the natural projection1958

G{N ÝÑ G{K induces a ring isomorphism1959

H˚pG{Kq „
ÝÑ H˚pG{Nq.

Proof. There is a fiber bundle K{N Ñ G{N Ñ G{K, whose fiber K{N is acyclic by Proposi-1960

tion 6.2.1, so π1pG{Kq acts trivially on H˚pK{Nq “ H0pK{Nq – Q, and the Serre spectral sequence1961

of this bundle collapses on the E2 page, yielding an H˚pG{Kq-module isomorphism1962

gr
‚

H˚pG{Nq “ H˚pG{KqbQ – H˚pG{Kq.

Because the bigraded algebra H˚pG{Nq is concentrated in the bottom row, the associated graded1963

construction leaves it unchanged, so this is a ring isomorphism.1964

There is also the following further result, later generalized by Chevalley.1965

Corollary 6.2.4 (Leray). The ring H˚pG{Tq is isomorphic to the regular representation of the Weyl group1966

W.1967

Proof. One characterization of the regular representation W Aut
`

QrWs
˘

of a group W is
through the character w ÞÝÑ tr w|QrWs of the representation: a representation V is W-isomorphic
to the regular representation just if

tr w|V “

#

|W| w “ 1,

0 w ‰ 1.

Consider the standard right action2 of W “ NGpTq on G{T given by gT ¨ nT :“ gnT. Since1968

gnT “ gT ðñ nT “ g´1gT “ T ðñ n P T,

no element of W other than the identity has any fixed points. Now, this right action induces1969

an representation of W in H˚pG{Tq. For w ‰ 1, since there are no w-fixed points, w has Lef-1970

schetz number χpwq “ 0; but since H˚pG{Tq is evenly graded by Theorem 6.1.1, this means that1971

tr w|H˚pG{Tq “ 0. On the other hand, χp1q “ χpG{Tq “ |W| by Corollary 6.2.2.1972

2 N.B. The proof of this result in [MT00, Prop. VII.3.25, p. 399] is not quite right, as it tries to use the left multipli-
cation action.
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We also can show that the Euler characteristic of a generic compact homogeneous space is1973

zero.1974

Corollary 6.2.5. Let G be a compact, connected Lie group and K a closed, connected subgroup of lesser1975

rank. Then χpG{Kq “ 0.1976

Proof. Let S be a maximal torus of K and T be a maximal torus of G containing S. Then we1977

have a fiber bundle T{S Ñ G{S Ñ G{T. Since the base is simply-connected, it follows from1978

Proposition 2.3.6 that1979

χpG{Sq “ χpG{TqχpT{Sq “ χpG{Tq ¨ 0,

this last since a torus T{S is a product of circles and χpS1q “ 1´ 1 “ 0. Let N “ NKpSq be the1980

normalizer in K of its maximal torus S. Since N Ñ S is a covering with fiber WK, so also is1981

G{S Ñ G{N, so by Proposition B.2.5,1982

χpG{Nq “ χpG{SqL|WK| “ 0.

Now by Corollary 6.2.3 we have χpG{Kq “ χpG{Nq “ 0.1983

Historical remarks 6.2.6. The Euler characteristic dichotomy that χpG{Kq ą 0 or “ 0 depending as1984

rk G “ rk K or rk G ą rk K is due to Hopf and Samelson [HS40, p. 248].1985

6.3. Weyl-invariants and the restricted action a maximal torus1986

In Appendix B.4, we pointed that the maximal torus of a compact, connected Lie group and its1987

Weyl group carry much of its algebraic structure. In this section, we show something analogous1988

holds for the orbit space X{K of a free action and the orbit space X{S of the restricted action by1989

that group’s maximal torus S. To do so, we use Theorem 6.1.1 and the result of Section 7.2, which1990

we will prove later.1991

To start, we state a natural enhancement of the motivating observation Proposition 5.5.3 about1992

free homotopy quotients.1993

Lemma 6.3.1. Let K be a group, S a subgroup, and X and Y free K-spaces admitting a K-equivariant map1994

X ÝÑ Y. Then these diagrams commute:1995

XS //

»

��

XK

»

��

XK
» //

��

X{K

��
X{S // X{K, YK

» // Y{K;

so up to homotopy, XK ÝÑ YK is equivalent to X{K ÝÑ Y{K and XS ÝÑ XK to X{S ÝÑ X{K.1996

In this statement, the horizontal maps in the first square can be realized as the “further1997

quotient” maps eb x ÞÝÑ eb x : EKbS X ÝÝ� ESbK X and xS ÞÝÑ xK : X{S ÝÝ� X{K.1998

Definition 6.3.2. In the rest of this section, we let K be a compact, connected Lie group, S a1999

maximal torus, N “ NKpSq the normalizer of S in K, and W “ N{S the Weyl group of K.2000

Write K-Top for the category of topological spaces with continuous K-actions and K-equivariant2001

continuous maps, K-Free for the full subcategory of free K-actions, Q-CGA for the category of (ho-2002

momorphisms between) graded commutative Q-algebras, and H˚
S -CGA for subcategory of graded2003

commutative H˚
S -algebras.2004
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Observation 6.3.3. Suppose K acts on the right on a space X. Then W acts on the right on the2005

orbit space X{S by xS ¨ nS “ xnS, and so on the cohomology H˚pX{Sq. Given a K-equivariant2006

map X ÝÑ Y, the induced map X{S ÝÑ Y{S is W-equivariant, so the map H˚pX{Sq ÐÝ H˚pY{Sq2007

is as well.2008

Lemma 6.3.4. Suppose a finite group W acts on spaces X and Y and there is a W-equivariant continuous2009

map X ÝÑ Y inducing a surjection H˚pXq ÝÝ�
ϕ

H˚pYq. Then the map H˚pXqW ÐÝ H˚pYqW is also2010

surjective.2011

Proof. The restriction to elements b P H˚pYqW has image in H˚pXqW by W-equivariance: if w ¨ b “2012

b for all w P W, then w ¨ ϕpbq “ ϕpw ¨ bq “ ϕpbq is invariant as well.2013

To see the restriction is surjective, let a P H˚pXqW . Then it has a preimage b P H˚pYq, not a2014

priori W-invariant. However, the W-average b̄ “ 1
|W|

ř

wPW w ¨ b certainly is, and by equivariance,2015

ϕpb̄q “ ā. Since a was assumed invariant, this average is just a again.2016

Lemma 6.3.5 (Leray, 1950). There is a natural isomorphism2017

H˚pX{Kq „
ÝÑ H˚pX{SqW

of functors pK-Freeqop ÝÑ Q-CGA.2018

Proof. The quotient map X{S ÝÑ X{K factors as2019

X{S ÝÑ X{N ÝÑ X{K.

The factor X{S ÝÑ X{N is a regular covering with fiber W, which induces by Proposition B.2.12020

an isomorphism H˚pX{Nq „
ÝÑ H˚pX{SqW . The fiber of the factor X{N Ñ X{K is K{N, and2021

H˚pK{Nq – H˚pK{Sq by Corollary 6.2.3.2022

Naturality follows because the diagram2023

X //

��

X{S //

��

X{N

��

// X{K

��
Y // Y{S // Y{N // Y{K

commutes and because, by Observation 6.3.3, the map X{S ÝÑ Y{S is W-equivariant.2024

This lemma makes available a natural phrasing of an important, well-known result [Hsi75,2025

Prop. III.1, p. 31].2026

Corollary 6.3.6. Let K be a compact, connected Lie group with maximal torus S. Then there is a natural2027

isomorphism of functors pK-Freeqop ÝÑ H˚
S -CGA on spaces X with free K-action taking2028

H˚pBSq b
H˚pBKq

H˚pX{Kq „
ÝÑ H˚pX{Sq.

Proof. We use Lemma 6.3.1 to replace X{S ÝÑ X{K with XS ÝÑ XK for the rest of the proof. Note2029

that ξ0 : BS ÝÑ BK is a pK{Sq-bundle. Because H˚pK{Sq is evenly-graded by Theorem 6.1.1 and2030

H˚
S is evenly-graded by the result of Section 7.2, the E2 page of the spectral sequence associated2031

to ξ0 is concentrated in even rows and columns, meaning it collapses by Corollary 2.2.9 and so2032

the fiber inclusion K{S ãÝÝÑ BS is surjective on cohomology by Corollary 2.2.12.2033



Chapter 6. The cohomology of complete flag manifolds 81

Recall from the beginning of Section 2.4 the category F-Bun{ξ0 of bundles over ξ0. The con-2034

struction p´qSãÑK : X ÞÝÑ pXS Ñ XKq is a functor K-Top ÝÑ F-Bun{ξ0: that is, there is a map of2035

K{S-bundles2036

XS //

ξ

��

BS

ξ0

��
XK // BK.

Here the map XS ÝÑ BS is the projection of the Borel fibration and likewise for XK ÝÑ BK, Now2037

the natural isomorphism follows by Theorem 2.4.1.2038

Corollary 6.3.7. Let K be a compact, connected Lie group with maximal torus S and Weyl group W. Then2039

H˚pBKq – H˚pBSqW .2040

Proof. Take X “ ˚ in Corollary 6.3.6.2041

We will use this result to find explicit generators of H˚pBKq in many examples to come.2042

Remarks 6.3.8. (a) The results Lemma 6.3.5 and Corollary 6.3.6 are classical and very well known,2043

except that the naturality of these isomorphisms is never stated. This minor detail was actually2044

critical to the author’s dissertation results working.2045

(b) Lemma 6.3.5 can fail if there exist elements of H˚pX{S; )̨ annihilated by scalar multiplication
by |W|. For example, consider the action of G “ t˘1u Ĺ Rˆ by scalar multiplication on X “ S8 Ĺ
R8. Then X{G « RP8, and the maximal torus T is trivial, so WG “ G, and X{T “ X “ S8 again.
With Z coefficients, one finds

H˚pX{G;Zq – Zrc1s{p2c1q, deg c1 “ 2,

H˚pX{T;ZqWG “ H0pS8;ZqG “ Z.

Similarly, with F2 coefficients,

H˚pX{G;F2q – F2rw1s, deg w1 “ 1,

H˚pX{T;F2q
WG “ H0pS8;F2q

G “ F2.

Historical remarks 6.3.9. Leray had proved a version of Lemma 6.3.5 for classical G [Ler49b] already2046

in 1949, and proved the general version in his Colloque paper [Ler51, Thm. 2.2]. The author is2047

indebted to Borel’s summary of Leray’s topological output [Bor98] for guiding him to these2048

references. [Dig up Weil CR reference (check Dieudonné).]2049
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The cohomology of classifying spaces2051

The Serre spectral sequence of G Ñ EG Ñ BG allows us to compute the cohomology of the2052

classifying spaces BG. This computation, due to Borel, can be seen (ahistorically) as a motivation2053

for the definition of the Koszul complex, and through it, the definition of Lie algebra cohomology.2054

Later we will use the result of this spectral sequence calculation, and the Koszul complex, to2055

compute the cohomology of G{K.2056

7.1. The Serre spectral sequence of S1 Ñ ES1 Ñ BS1
2057

The ideological mainspring of all the spectral sequence calculations we will do in the rest of this2058

document is a sequence that is only two pages long, the Serre sequence of the universal principal2059

circle bundle S1 Ñ ES1 Ñ BS1.1 We use our knowledge of H˚pS1q and H˚pES1q to work out2060

H˚pBS1q.2061

Proposition 7.1.1. The cohomology of BS1 “ CP8 is given by2062

H˚pCP8q – Zrus, deg u “ 2.

Proof. By Proposition 2.2.3, π1BS1 acts trivially on H˚pS1q, so we can use untwisted coefficients2063

in Theorem 2.2.2.2 Thus we can write2064

Ep,q
2 “ Hp`BS1; HqpS1;Zq

˘

As the total space ES1 is contractible, its cohomology ring H˚pES1q is that of a point, a lone Z in2065

dimension zero, and the associated graded ring E8 again Z because the filtration is trivial.2066

The cohomology H˚pS1q is an exterior algebra Λrz1s, where z1 P H1pS1q is the fundamental2067

class, so in particular it is a graded free abelian group, and2068

Ep,q
2 – HppBS1qbH1pS1q.

Since the second factor is nonzero only for q P t0, 1u, the entire sequence is concentrated in these2069

two rows.2070

1 We earlier, in Section 5.2, identified S8 Ñ CP8 as a model, but the calculation does not actually require this
“geometric” datum.

2 In fact, from the homotopy long exact sequence of S1 Ñ ES1 Ñ BS1, it follows that π2BS1 – Z is its only
nonzero homotopy group, so CP8 » BS1 is an Eilenberg–Mac Lane space KpZ, 2q. In particular, BS1 is in particular
simply-connected.

82
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Figure 7.1.2: The potentially nonzero region in the Serre spectral sequence of S1 Ñ ES1 Ñ BS1

.

.

.

2

1 ¨ ¨ ¨

0 ¨ ¨ ¨

0 2 4 6 8 10 12 ¨ ¨ ¨

Thus d “ d2 is the only differential between nonzero rows, so E3 “ E8 “ Z and d must kill2071

everything else in E2. Because the rows E‚,q
2 “ 0 except for q P t0, 1u and d decreases q by 1, the2072

complex pE2, dq breaks, for each p P Z, into short complexes2073

0 Ñ Ep,1
2 ÝÑ Ep`2,0

2 Ñ 0.

Because the SSS is concentrated in the first quadrant, all groups in the short complex are defini-2074

tionally zero for p ă ´2. For p “ ´2, we have the very short complex2075

0 Ñ E0,0
2 Ñ 0,

red in Figure 7.1.3, witnessing the apotheosis of E0,0
2 – Z to H0pES1q “ E8. This in fact happens2076

for any SSS where the fiber and base are path-connected, and must happen, since H0 “ Z for all2077

three spaces.2078

For p “ ´1, we have the very short sequence2079

0 Ñ E1,0
2 Ñ 0,

green in Figure 7.1.3. The middle object must zero because otherwise it would survive to E3 “ E8,2080

which would mean H1pES1q ‰ 0. (Then again, we already knew this because BS1 is simply-2081

connected and H0 is always free abelian, so that the universal coefficient theorem B.1.1 yields2082

H1pBS1q – H1pBS1q – π1pBS1qab “ 0.)2083

Figure 7.1.3: The first few subcomplexes of E2 in the Serre spectral sequence of S1 Ñ ES1 Ñ BS1

0

0 0 E0,1
2

Z E1,0
2 E2,0

2

0 0 0

For p ě 0, the total degrees p ` 1 and p ` 2 are positive, so that both groups in the short2084

complex must die in E3. The only way this can happen is if the d linking them is both injective2085
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and surjective, so an isomorphism: that is,2086

Ep,1
2 – Ep`2,0

2 for all p ě 0.

The first occurrence of this, for p “ 0, is blue in Figure 7.1.3. On the other hand, the simple fact2087

that H0pS1q – Z – H1pS1q as abstract groups implies, on tensoring with HppBS1q, that likewise2088

Ep,0
2 – Ep,1

2 .

Assembling these isomorphisms, all groups in even columns p “ 0, 2, 4, . . . (red in Figure 7.1.4),2089

and all groups in odd columns (green) are isomorphic. The base cases E0,0
2 “ H0pES1q “ Z and2090

E1,0
2 “ π1BS1 “ 0 then determine all the other entries: zero in odd columns and Z in even.2091

Figure 7.1.4: The partitioning by isomorphism class of groups Ep,q
2 in the Serre spectral sequence

of S1 Ñ ES1 Ñ BS1

1 Z ¨ ¨ ¨

0 Z 0 Z ¨ ¨ ¨

0 1 2 3 4 5 6 7 ¨ ¨ ¨

Reading off the bottom row E‚,0
2 – H˚pBS1qbH0pS1q – H˚pBS1q, we find the cohomology2092

groups of BS1 “ CP8 are2093

HnpCP8q “

#

Z n even,

0 n odd.

Recall that the differential d “ d2 was an antiderivation restricting to an isomorphism H1pS1q
„
ÝÑ2094

H2pBS2q. If we write u “ dz P H2pBS2q for the image of the fundamental class of S1, then since2095

du “ 0, applying the product rule yields2096

dpuk`1zq “ pk` 1q du
ljhn

0

¨ukz ` uk`1 ¨ dz
ljhn

u

“ uk`2

for k ě 0. Since this d is an isomorphism E2k,1
2

„
ÝÑ E2k`2,0

2 and z and u are nonzero, it follows by2097

induction that uk generates H2kpCP8q for all k.2098

We could more easily have found the graded group structure of H˚pCP8q through cellu-2099

lar cohomology after pushing down the increasing union S8 “ S1 Y S3 Y S5 Y ¨ ¨ ¨ to a strictly2100

even-dimensional CW structure CP8 “ e0 Y e2 Y e4 Y ¨ ¨ ¨ , but the spectral sequence also makes2101

computing the ring structure almost trivial.2102

For later reference, note that, topology aside, the calculation we just made is a manifestation2103

of the following algebraic fact. Define B to be the graded ring Zrus, where deg u “ 2, and assign2104

it the trivial differential. Let A be the graded ring BbΛrzs, where deg z “ 1. Make A a Z-cdga2105

extending pB, 0q by assigning as differential the unique antiderivation d that vanishes on 0 and2106

satisfies2107

dz “ u.
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Then pA, dq is acyclic: H0pAq “ Z and HnpAq “ 0 for n ą 0. The reason we were able to deduce2108

H˚pCP8q “ Zrus is that Zrus is the unique B that makes an A “ BbΛrzs constructed as above2109

acyclic.2110

7.2. The Serre spectral sequence of T Ñ ET Ñ BT2111

The circle is the one-dimensional case of the torus Tn “
śn S1. By the Künneth theorem, one has2112

H˚pTnq –
n
â

H˚pS1q “
n
â

Λrzs “ Λrz1, . . . , zns “ ΛH1pTnq,

where zj is the fundamental class of the jth factor circle and H1pTnq “ Ztz1, . . . , znu is the primitive2113

subspace as discussed in Proposition 1.0.9.2114

To understand H˚pBTq, there are at least two options. The first is an analysis analogous to,2115

but more intricate than, that in the last section: one sees easily d2 : H1pTq ÝÑ H2pBTq must be2116

an isomorphism and then puts more work into showing that means d2 is injective on the entire2117

first column E0,‚
2 – H˚pTq and that E3 “ E8 “ Z. The second invokes the functoriality of the2118

universal principal bundle construction G ÞÝÑ pG Ñ EG Ñ BGq to make the problem trivial. As2119

the functors E and B preserve products, one has the bundle isomorphism2120

T „ //

��

ś

S1

��
ET „ //

��

ś

ES1

��
BT „ //

ś

BS1,

so that BT “
śn CP8 and H˚pBTq “

Â

Zrujs – Zru1, . . . , uns.2121

The bundle isomorphism in fact induces a Künneth isomorphism of SSSs, so that2122

E2 “
n
â

j“1

`

SrujsbΛrzjs
˘

– Sr~usbΛr~zs,

with differential d2 the unique antiderivation taking zj ÞÑ uj for each j (and hence annihilating2123

Sr~us). Thus2124
´

Sr~usbΛr~zs, zj ÞÑ uj

¯

is another example of an acyclic cdga. We will investigate the natural algebraic generalization of2125

this phenomenon in the next section.2126

7.3. The Koszul complex2127

In the spectral sequences of universal bundles T Ñ ET Ñ BT, the cohomology H˚pTq of the2128

fiber is an exterior algebra and the cohomology H˚
T of the base is a polynomial algebra on the2129

same number of generators, and the algebra generators of fiber and base cancel one another in a2130

one-to-one fashion in the spectral sequence.2131



Chapter 7. The cohomology of classifying spaces 86

For another such example, consider the Lie group Spp1q. Recall that his group can be seen as2132

the multiplicative subgroup of quaternions of norm 1, and hence is a homeomorphic 3-sphere,2133

and that one can take ESpp1q “
Ť

S4n´1 “ S8 and BSpp1q “ HP8. Now, E2 page of the Serre2134

spectral sequence of the universal bundle2135

Spp1q ÝÑ ESpp1q ÝÑ BSpp1q

is thus E‚,0
2 b E0,‚

2 – H˚
`

BSpp1q
˘

bH˚pS3q. As with the spectral sequence of S1 Ñ ES1 Ñ BS1,2136

then, there are only two nonzero rows, now the 0th and the 3rd, so the only nontrivial differential2137

can be d4.2138

Figure 7.3.1: The potentially nonzero region in the Serre spectral sequence of S3 Ñ ES3 Ñ BS3

.

.

.

3 ¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

0 ¨ ¨ ¨

0 2 4 6 8 10 12 ¨ ¨ ¨

Z 0 0 0

Because E8 “ E5 “ Z is trivial, all the differentials d4 in and out of the other shaded boxes2139

must be diffeomorphisms. Since the E2 “ E4 page is a tensor product, the two entries in each2140

column must be the same, so as in the S1 case, one has isomorphisms2141

HppBS3q “ Ep,0
2 – Ep`4,0

2 – Hp`4pBS3q

for each p. We know H0pBS3q “ Z and since there are no nonzero differentials to or from the2142

next three boxes, these are zero. If we write z for a generator of H3pS3q and q “ d4z P H4pBS3q,2143

then as in the S1 case, we find d4pzqnq “ qn`1, so that finally H˚pBS3q “ Zrqs. This example is2144

very closely analogous to the S1 example: in particular, the E2 “ E4 page was of the form2145

ZrqsbΛrzs, |z| “ 3, |q| “ 4,

and there was only one nonzero differential, d42146

This example and the torus examples share the property of being tensor products of a very2147

simple kind of spectral sequence, and we claim that for all compact, connected Lie groups G, the2148

spectral sequence of G Ñ EG Ñ BG is such a tensor product. To facilitate future reference, we2149

axiomatize this situation.2150

Definition 7.3.2. Let Λrvs be the exterior k-algebra on one element v of odd degree ` and Srdvs2151

the symmetric algebra on one element dv of degree `` 1. Then2152

Krvs “ SrdvsbΛrvs

is a k-algebra. The exterior factor Λz naturally has a grading defined by |1| “ 0 and |v| “ `, and2153

Srdvs inherits the natural grading
ˇ

ˇpdvqn
ˇ

ˇ “ np`` 1q, so Krvs is bigraded by2154

Krvsp,q :“ SrdvspbΛrvsq
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and singly graded by total degree:2155

Krvsn :“
à

n“p`q
Krvsp,q “

à

n“p`q
SrdvspbΛrvsq.

The map d : v ÞÝÑ dv uniquely defines a derivation of (total) degree one on Krvs since dpdvq “ 0,2156

explicitly given by2157

d
`

v ¨ pdvqn
˘

“ pdvqn`1.

It should be clear from our discussions of the Serre spectral sequences of S1 Ñ ES1 Ñ BS1
2158

and Spp1q Ñ ESpp1q Ñ BSpp1q that the cohomology of Krvs with respect to d is trivial. More2159

complicated examples arise from tensoring these primordial contractible complexes.2160

Definition 7.3.3. Let V “
À

ją0 V2j´1 be a positively- and oddly-graded free graded k-module.2161

The grading on V induces a grading on ΛV making it a free cga. Let ΣV “ V‚´1 be the suspen-2162

sion, the even regrading of V achieved by moving each graded level up one degree: symbolically,2163

pΣVqj :“ Vj´1.3 There is a naturally induced grading on the symmetric algebra SΣV, making it a2164

free cga.2165

Let KV :“ SΣVbΛV. As an algebra, this is just the tensor product of the Krvαs for any basis2166

vα of V. Because S1rΣVs ‘Λ1rVs generates KV as a k-algebra, to characterize a derivation on KV,2167

it is enough to describe it on this submodule. The natural derivation is that which restricts on2168

Λ1V to the defining isomorphism2169

d “ Σ : Λ1rVs „ÝÑ V „
ÝÑ S1rΣVs

of ungraded free k-modules; consequently, dS1rΣVs “ 0 and hence dpSΣVq “ 0. It is called the2170

Koszul differential and the complex pKV, dq is the Koszul algebra of V. As d is just the sum of2171

the differentials on the Krvαs, so pKV, dq –
Â

αpKrvαs, dαq is a tensor product of the elementary2172

Koszul cdgas. It admits a natural bigrading2173

pKVqp,q :“ pSΣVqpbpΛVqq.

additively extending the gradings on V and ΣV. In addition to the associated single grading2174

KVn :“
À

n“p`q KVp,q, there is also another useful grading, setting2175

K´nrVs :“
n
à

j“0
SjrΣVsbΛn´jrVs,

the submodule of KV spanned by products of n ě 0 generators. This grading of KV, called the2176

multiplicative grading, induces a grading of the cohomology of KV such that H´npKVq is the2177

image of the cocycles in K´nrVs.2178

From the Serre spectral sequence of T Ñ ET Ñ BT, we expect this cohomology to be trivial.2179

Proposition 7.3.4 (Koszul). Let V be a free k-module and KV the Koszul complex. If k is of characteristic2180

zero and contains Q, or if V is of finite rank, then KV is acyclic.2181

3 The notation is meant to suggest the suspension ΣX of a topological space X, which satisfies Hn`1pΣXq – HnpXq.
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First proof [Car51, Thm. 1]. Assume that Q ď k, so that all naturals n ě 1 are invertible in k.2182

The inverse isomorphism h “ d´1 : S1rΣVs „
ÝÑ Λ1rVs extends uniquely, just as d does, to an2183

antiderivation of KV of degree ´1. We claim it is a chain homotopy of pKV, dq.2184

The composition dh is the projection K´1rVs Ñ S1rVs and hd the projection K´1rVs Ñ Λ1rVs,2185

so hd` dh “ id on K´1rVs. Inductively assume that also L “ dh` hd “ n id on K´nrVs and write2186

a decomposable (e.g., basis) element of K´pn`1qrVs as ab, for a P K´1rVs and b P K´nrVs. Then by2187

the product rule, the base case, and the inductive assumption,2188

Lpabq “ pLaqb` aLpbq “ ab` nab “ pn` 1qab,

concluding the induction. For any n-cocycle a we then have na “ phd ` dhqa “ dha, so each2189

d-cocycle is a coboundary for n ě 1. Thus H˚pKVq “ H0pKVq – k.2190

This argument same argument incidentally also shows the h-cohomology of KV is trivial.2191

Second proof. Assume V is of finite rank over k. Find a k-basis vj of V, so that V “
À

kvj and2192

ΣV “
À

kdvj. Then we have algebra isomorphisms2193

KV “ SΣVbΛV – S
“à

kdvj
‰

bΛ
“à

kvj
‰

–
â`

SrdvjsbΛrvjs
˘

“
â

Krvjs,

and this also holds on the level of cdgas, as discussed in Definition 7.3.3. As everything in sight2194

is a free k-module, the simplest version of the algebraic Künneth formula Corollary A.3.3 holds,2195

and2196

H˚
d pKVq –

â

j
H˚

dj

`

Krvjs
˘

– kb rkk V – k.

As the Koszul algebra will be our chosen cdga model for a universal bundle G Ñ EG Ñ BG,2197

we will introduce a notation for its filtration spectral sequence.2198

Definition 7.3.5. Let V be a positively- and oddly-graded free graded k-module. Filter its corre-2199

sponding Koszul algebra pKV, dq by the p-grading induced by the factor SΣV. We denote by EV‚2200

the associated filtration spectral sequence. Explicitly, for V “ kv one-dimensional, we have2201

`

Ervsr, dr
˘

“
`

Krvs, 0
˘

for r ď |v|, Ervs|v|`1 “
`

Krvs, d
˘

, Ervs|v|`2 “ Ervs8 – k,

and if pvjq is a homogeneous basis for V, then EV‚ “
Â

Ervjs‚ on every page.2202

The Koszul complex, which makes its first appearance in thesis work of Koszul dealing with2203

the Lie algebra cohomology which had been recently defined by Chevalley and Eilenberg, was2204

soon discovered to have uses in commutative algebra. Here is a more general definition.2205

Definition 7.3.6. Let A be a unital commutative ring over k. Given a sequence ~a “ pajqjPJ of2206

elements of A, we can form the k-algebra ΛrzjsjPJ “
Â

jPJ Λrzjs and the tensor algebra2207

KA~a :“ ΛrzjsjPJ b
k

A.

Viewing A as a cga graded in degree zero, we can make KA~a a cdga by extending the k-linear2208

map
À

jPJ k ¨ zj ÝÑ A given by zj ÞÑ aj to an antiderivation d and assigning the |zj| “ ´1. Then2209

deg d “ 1 and2210

K´n
A ~a “ ΛnrzjsjPJ b A.
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We call this grading the resolution grading. The k-cdga pKA~a, dq is the Koszul complex associated2211

to the sequence~a.2212

Given an A-module M, the tensor product module2213

KAp~a, Mq :“ KA~ab
A

M “
`

Λrzjs b
k

A
˘

b
A

M – Λprzjs b
k

M,

inherits a differential, vanishing on M, given by

dpzjb 1q “ 1b aj pj P Jq,

and the resulting chain complex is again called a Koszul complex.2214

Koszul complexes KAp~a, Mq being defined by sequence of ring elements, their potential acyclic-2215

ity is related to properties of this sequence.2216

Definition 7.3.7. Let A be a unital commutative ring over k. A finite or countable sequence pajq2217

of elements of A is called a regular sequence if for each n, the image of an is not a zero-divisor2218

in the quotient ring A{pa1, . . . , an´1q. Given an A-module M, the same sequence is called M-2219

regular (or an M-sequence) if each an annihilates no nonzero elements of the quotient module2220

M{pa1, . . . , an´1qM. An ideal aE A is called a regular ideal if it can be generated by a regular2221

sequence.2222

Regular sequences do not normally remain regular under permutation, but do if all elements2223

lie in the Jacobson radical of A, and in particular if A is a local ring and the elements aj are2224

non-units [Eis95, Cor. 17.2, p. 426].2225

Proposition 7.3.8. Let A be a connected cga and aj elements of the augmentation ideal rA; then the2226

sequence pajq is regular just if each permutation is.2227

Since we really care only about cohomology rings, order in a regular sequence shall never be2228

an issue for us. The connection between Koszul complexes and regular sequences is the following.2229

Proposition 7.3.9 ([Ser00, IV.A.2, Prop. 3, p. 54]). Given a Noetherian commutative ring A, a sequence2230

~a of elements of the Jacobson radical of A, and a finitely-generated A-module M, the following conditions2231

are equivalent:2232

1. H´n
`

KAp~a, Mq
˘

“ 0 for n ě 1;2233

2. H´1
`

KAp~a, Mq
˘

“ 0;2234

3. the sequence~a is M-regular.2235

The last relevant fact about Koszul complexes is that they compute Tor.2236

Proposition 7.3.10. Let A “ Sr~as be a free commutative k-cga generated by a sequence~a of elements of2237

even degree, and let B be an A-cga. Then the Koszul complex KAp~a, Bq associated to ~a computes Tor, in2238

that2239

H´ppKA~ab
A

Bq – TorA
p pk, Bq, p ě 0.
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Proof. The base ring k is an A-algebra in a natural way via A � A{ rA „
ÝÑ k. Since the generators2240

are independent, by Proposition 7.3.9, the Koszul complex pKA~a, dq is acyclic, with2241

H˚pKA~aq “ H0pKA~aq – kr~as{p~aq – k.

It follows that K‚A~a, with the resolution grading from Definition 7.3.6, is an A-module resolution2242

of k, so that the ´pth cohomology of the sequence2243

¨ ¨ ¨ ÝÑ K´2
A ~a b

A
B ÝÑ K´1

A ~a b
A

B ÝÑ K0
A~a bA

B ÝÑ 0

computes TorA
p pk, Bq.2244

Note that in fact TorA
‚ pk, Bq is a bigraded cga. The product descends from the product on2245

Λrzjsbk B, and the second component of the grading from the grading
À

Bq on B. We set2246

Tor´p,q
A pk, Bq “ TorA

p pk, Bqq “ Hp`Λrzjs b
k

Bq˘.

Historical remarks 7.3.11. Regular sequences were introduced by Serre in 1955 as E-sequences [Bor67,2247

p. 93], and this terminology apparently hung on for quite a while [Bau68, Def. 3.4]. Smith [Smi67,2248

p. 79] uses ESP-sequence and calls a graded ideal generated by such a sequence a Borel ideal.2249

7.4. The Serre spectral sequence of G Ñ EG Ñ BG2250

“. . . the behavior of this spectral sequence . . . is a bit like an Elizabethan drama, full of action,2251

in which the business of each character is to kill at least one other character, so that at the end2252

of the play one has the stage strewn with corpses and only one actor left alive (namely the2253

one who has to speak the last few lines).”4 —J. F. Adams2254

7.4.1. Statements2255

We have found H˚pBTq for all tori and by Corollary 6.3.7, we know that H˚pBG;Qq can be2256

viewed as the Weyl-invariant subring H˚pBT;QqW , so theoretically, we understand H˚pBGq now.2257

In practice, and especially if one wants to understand the torsion—something we will eventually2258

punt on—there is more work to be done.2259

In the torus computation, the algebra generators H1pTq “ PH˚pTq of H˚pTq (the primitives, as2260

defined in Definition 1.0.8) and H2pBTq – QH˚pBTq of H˚pBTq (the indecomposables, as defined2261

in Definition 1.0.8) were linked bijectively by nontrivial differentials and were annihilated, and2262

the algebraic repercussions of this bijection sufficed to force E8 “ Z. To work with merely2263

generators greatly simplifies any computation, so one might hope that such a pattern holds as2264

well for nonabelian groups. The proof of this result is due to Borel in his thesis [Bor53]. Our2265

moderately modernized version is based somewhat unfaithfully on the treatments contained in2266

Mimura and Toda [MT00, p. 379–80] and Hatcher [Hat, Thm. 1.34].2267

The ultimate goal is the following, to be borne in mind as we regress further and further into2268

the algebraic abstraction required for its proof in the next subsection. The transgression in the2269

Serre spectral sequence is described in Proposition 2.2.21 and will return again in the proof of2270

Theorem 8.1.5.2271

4 This memorable analogy is repurposed from a famous description of the Adams spectral sequence [Ada76].
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Theorem 7.4.1 (Borel [Bor53, Théorème 19.1]). Let G be a compact, connected Lie group and let k be a2272

ring (such as a field of characteristic zero) such that H˚pG; kq – ΛPG is an exterior algebra on odd-degree2273

generators (by Proposition 1.0.9, these are the primitives). Then H˚pBG; kq – krτPGs is a polynomial2274

ring on generators τPG – ΣPG of degree one greater, given by a choice of transgression on PG.2275

In all this, it is to be remembered that the transgression on HppGq is really a only a map from2276

a submodule of E0,p
p`1 ď E0,p

2 – HppGq to Ep`1,0
p`1 , which is a quotient of Ep`1,0

2 “ Hp`1pBGq, so that2277

when we lift this maps to E2, what we get is for each p a relation τ Ď HppGq ˆ Hp`1pBGq, rather2278

than a map, and what it retains of the homomorphism dp`1 is additivity: if pzj, yjq are finitely2279

many elements of τ, then so also is p
ř

zj,
ř

yjq. Despite the imprecision, it is useful notationally2280

and psychologically to write τ as a map in the event that the precise lift to E2 is irrelevant, and2281

we engage in this abuse already in the statement of Theorem 7.4.1 above.2282

That said, an precise rephrasing of Borel’s result can be obtained as follows. Writing QpBGq2283

for the space of indecomposables (defined in Definition 1.0.8), and noting that we have a well-2284

defined isomorphism ΛPG – H˚pGq and an isomorphism H˚pBGq – S
“

QpBGq
‰

only defined up2285

to some arbitrary lifting, the transgression in the spectral sequence of G Ñ EG Ñ BG nevertheless2286

descends to a sequence of well-defined isomorphisms2287

PpG „
ÝÑ Qp`1pBGq

summing to the isomorphism5
2288

τ : PG „
ÝÑ QpBGq.

Setting V “ PG and constructing the Koszul complex KV, this τ uniquely extends uniquely to2289

the Koszul differential. Because H˚pBGq is free on QpBGq, on the level of cgas, we recover2290

rE2 “ H˚pBGqbH˚pGq “ KV

and can consider τ as an antiderivation rE2 ÝÑ rE2, sometimes called a choice of transgression,2291

which we will use extensively in Chapter 8. By construction, it satisfies the following proposition.2292

2293

Proposition 7.4.2. A choice of transgression τ lifts the edge homomorphisms d̃r in the sense that for each2294

r ě 0, the following diagram commutes:2295

H˚pGq τ // H˚pBGq

����
rE0,r´1

r
d̃r

„ //

OO

OO

rEr,0
r .

As the differences produced by starting with a different choice of transgression turn out to2296

be immaterial, we will at times identify QpBGq with a graded subspace of H˚pBGq. We also2297

need one corollary about the original, unlifted transgression to prove Cartan’s theorem later in2298

Theorem 8.1.5 and Theorem 8.1.14.2299

5 I owe this description to Paul Baum’s thesis [Bau62, p. 3.3].
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Corollary 7.4.3 (Borel). Let G Ñ E π
Ñ B be a principal G-bundle classified by χ : B ÝÑ BG. Write τ2300

for the transgression of the universal bundle G Ñ EG Ñ BG. In the spectral sequence of π, each primitive2301

z P PH˚pGq transgresses to χ˚τz.2302

Proof. This follows from the existence of the bundle map from G Ñ E Ñ B to G Ñ EG Ñ BG,2303

which induces a spectral sequence map as in Theorem 2.2.2 intertwining the edge homomor-2304

phisms.2305

7.4.2. Two proofs2306

We provide two proofs of Borel’s key Theorem 7.4.1 on classifying spaces. The first is an imme-2307

diate application of the following algebraic result to the Serre spectral sequence of the universal2308

bundle G Ñ EG Ñ BG. It invokes the notion of transgression discussed in Section 2.8.2309

Theorem 7.4.4 (Borel [Bor53, Thm. 13.1].). Let k be a commutative ring and P an oddly-graded free2310

k-module. Suppose pEr, drq is a spectral sequence of bigraded k-algebras such that2311

• E2 admits a tensor decomposition E‚,0
2 b E0,‚

2 with E0,‚
2 – ΛP the exterior algebra on P and2312

• the final page E8 “ E0,0
8 – k is trivial.2313

Then P admits a homogeneous basis of transgressive elements and E‚,0
2 – krτPs is the symmetric algebra2314

on these transgressions.2315

This in turn is the n “ 8 case of the following more general theorem involving simple systems2316

of generators as discussed in Definition A.2.4.2317

Theorem 7.4.5 (Borel transgression theorem). Let k be a commutative ring and pEr, drq is a spectral2318

sequence of bigraded k-dgas with2319

E2 – E‚,0
2 b E0,‚

2 “: B‚b F‚

a tensor product of connected k-dgas up to total degree n` 2. Suppose that2320

• Eďn`2
8 :“

À

p`qďn`2 Ep,q
8 “ E0,0

8 – k, and that2321

• there exists a free k-module P ă Fďn, oddly graded,2322

such that the induced map ∆P ÝÑ F‚ is

#

bijective in degrees ď n,

injective in degree “ n` 1.
2323

Then2324

• P admits a transgressive basis, and2325

• writing Q “ τP ă B‚, the induced map SQ ÝÑ B‚ is

#

bijective in degrees ď n` 1,

injective in degree “ n` 2.
2326

We need the fiddly degree bounds because the proof itself is inductive. We would actually2327

not need to induct if we knew in advance the exterior generators transgress, and the proof is2328

substantially easier in that special case, so we will prove it first. The essential idea is the same2329

in both cases. We already know an acyclic algebra of the form ∆Pb SΣP, namely the Koszul2330

complex KP “ ΛPb SΣP of Section 7.3, and the strategy behind the proof of both results will be2331



Chapter 7. The cohomology of classifying spaces 93

to use our knowledge of the transgressions to construct a map of spectral sequences EP‚ ÝÑ E‚2332

that shows E2 – KP as a bigraded SΣP-module, at least in a prescribed range of degrees. This can2333

be seen as a natural generalization of our analysis of the Serre spectral sequence of a universal2334

torus bundle T Ñ ET Ñ BT. Recall that we constructed the Koszul algebra KP in analogy with2335

the E2 cdga of that spectral sequence; now we reverse the process.2336

Theorem 7.4.6 (Borel “little” transgression theorem). Let k be a commutative ring. Suppose pEr, drq2337

is a spectral sequence of bigraded k-algebras such that2338

• E2 admits a tensor decomposition E‚,0
2 b E0,‚

2 ,2339

• the k-algebra E0,‚
2 – ∆pzαq is free as a k-module and admits a simple system of generators zα,2340

• these zα transgress in the spectral sequence, and2341

• the final page E8 “ E0,0
8 – k is trivial.2342

Then E‚,0
2 – krτzαs is the symmetric algebra on the transgressions of the zα.2343

As Zeeman noted, this result will apply to the case ∆P “ H˚pGq to yield the structure the-2344

orem 7.4.1 for H˚pBGq as soon we know the odd-degree generators P in that spectral sequence2345

transgress. Thus there is the following easier proof.2346

Alternate proof of Theorem 7.4.1. Considering the homology Serre spectral sequence of the universal2347

bundle G Ñ EG Ñ BG, Remark 1.0.13 shows the homological primitives PH˚pGq ă H˚pGq are2348

all in the image of the transgression. Because H˚pGq – H˚pGq and H˚pBGq – H˚pBGq on the2349

level of graded vector spaces and the homological and cohomological transgressions are dual2350

(Remark 2.2.23), this means all elements of PG transgress in the cohomological Serre spectral2351

sequence. Thus, by Theorem 7.4.6, we have H˚pBGq – krτPs.2352

Here is the promised proof of the little transgression theorem.2353

Proof of Theorem 7.4.6 ([Zee58][McC01, Thm. 3.27, p. 85]). Select a homogeneous k-basis vα of P
and for each vα lift the transgression d|vα|`1vα to an element τvα of E|vα|`1,0

2 . We construct a map
of spectral sequences λ‚ : EP‚ ÝÑ E‚, where the source is the filtration spectral sequence of KP
defined in Definition 7.3.5, by

λ2 : EP2 ÝÑ E2,

1b vα ÞÝÑ 1b vα,

dvαb 1 ÞÝÑ τvαb 1.

and λr`1 “ H˚pλrq. To see this is a cochain map, one need only check on generators of each page2354

EPr, which are (represented by) 1b vα and dvαb 1 for vα P Pěr´1. There is nothing to see for2355

the symmetric generators dvαb 1 as all differentials vanish on SΣP “ EP‚,0
2 and E‚,0

2 and their2356

descendants. As for exterior generators, dr vanishes by construction on generators (descending)2357

from the complement in P of the graded component Pr´1, and writing rxsr an element on the rth
2358

page represented by x on the second to be maximally careful, one has drr1b vαsr “ rdvαb 1sr for2359

vα P Pr´1 by construction, so2360

λrdrr1b vαsr “ λrrdvαb 1sr “
“

λ2pdvαb 1q
‰

r “ rτvαb 1sr “ drr1b vαsr “ drλrr1b vαsr.
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Because SΣP is a free k-cga in any characteristic and we extended λ multiplicatively from a2361

map on the generators ΣP, the row restriction λ‚,0
2 : SΣP ÝÑ E‚,0

2 is a ring homomorphism. The2362

column restriction λ0,‚
2 : ΛP ÝÑ ∆P is a linear isomorphism, because both ∆P and ΛP admit a2363

k-basis of ordered monomials in the vα. (If the characteristic of k is not 2, then ∆P “ ΛP, so2364

this column map is a ring isomorphism, but it need not be in characteristic 2, because then it2365

is not required that v2
α “ 0 in ∆P.) The limiting map λ8 : EP8 ÝÑ E8 is by construction the2366

identity map on k, so the Zeeman–Moore comparison theorem 2.7.1 applies to tell us the ring2367

map λ‚,0
2 : SΣP ÝÑ E‚,0

2 is a linear isomorphism.2368

Our proof of the big transgression theorem is an adaptation of the proof of Mimura and2369

Toda [MT00, p. 379–80].62370

Proof of Theorem 7.4.5. The proof is an induction on n. In the n “ 0 case, we assume Eď2
8 “ k and2371

P “ 0. The conclusion that a basis of P transgresses is vacuously true, and since B1 “ E1,0
2 “2372

E1,0
8 “ 0, we do indeed have SQ “ k ÝÑ B‚ bijective in degrees 0 and 1 and injective in degree 2.2373

For the induction step, note from Definition A.2.4 of a simple system of generators that on2374

the level of graded k-modules we have ∆P – ΛP, and that from the view of differentials in this2375

spectral sequence, the two are indistinguishable. Thus, when P ă F‚ transgresses to Q ă B‚,2376

we can define a map EP‚ ÝÑ E‚ from the filtration spectral sequence of the Koszul algebra KP,2377

as defined in Definition 7.3.5, sending ΛP ÝÑ ∆P and SΣP ÝÑ SQ. Then we use the Zeeman–2378

Moore comparison theorem 2.7.1 on this map:2379

• the hypothesis on ∆P ÝÑ F‚ in the present theorem is the condition pFqn,2380

• the hypothesis Eďn`2
8 – k implies the condition pEqn`1, and2381

• the conclusion about SQ ÝÑ B‚ is the condition pBqn`1.2382

Now we assume the theorem holds for n´ 1 odd and must show it for n even. In this case,2383

there is nothing to do: by hypotheses generators P are of odd degree ď n, so P admits a transgres-2384

sive basis by the induction hypothesis, and we apply the implication pFqn & pEqn`1 ùñ pBqn`12385

of Theorem 2.7.1 to EP‚ ÝÑ E‚ to conclude.2386

Now we assume the theorem holds for n´ 1 even and must show it for n odd. The hypothesis2387

is that Eďn`2
8 “ k and there is a graded subspace P ă F‚ generated by elements of odd degree2388

ď n such that ∆P ÝÑ F‚ is an isomorphism in degrees ď n and an injection in degree n ` 1.2389

Write Pn “ P X Fn and Păn ă P for its complementary subspace. Then ∆Păn ÝÑ F‚ is an2390

isomorphism in degrees ď n´ 1 and an injection in degree n, so by the inductive hypothesis, Păn2391

admits a transgressive basis, and map SQăn`1 ÝÑ B‚ induced by inclusion of the transgressions2392

Qăn`1 ă B‚ is a bijection in degree ď n and an injection in degree n ` 1. It follows we may2393

pick out a basis of a complementary subspace Qn`1 to the image in Bn`1, and then setting2394

Q “ Qăn`1 ‘Qn`1, we have SQ ÝÑ B‚ bijective in degrees ď n` 1 by construction and injective2395

in degree n` 2 odd because Q is evenly graded.2396

It remains to show that dn`1 is a bijection Pn
„
ÝÑ Qn`1. First we show that Qn`1 lies in the2397

image of the transgression. We know that En`1,0
n`2 “ En`1,0

8 “ 0, so Qn`1 ă En`1,0
n`1 must be the2398

image of some differential dr. The potential differentials have source in bidegree pn` 1´ r, r´ 1q,2399

and we must show it is only possible that r “ n` 1; see Figure 7.4.7. Now consider the spectral2400

6 Which we believe is incomplete.
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Figure 7.4.7: The differentials to En`1,0
‚ originate in the region receiving only differentials induced

by those of ErPăns‚

An Pn A A A A A A A A

A A A A A A A A A A

5 A A A A A A A A A

A A A A A A A A A A

3 A A A A A A A A A

A A A A A A A A A A

1 A A A A A A A A A

0 A A A A A A A A AQn`1

A A0 A A2 A A4 A A6 A An` 1

sequence map ErPăn`1s‚ ÝÑ E‚. We know it is an isomorphism onto the rectangle Eďn,ďn´1
2 .2401

None of the entries of bidegree pn` 1´ r, r´ 1q receive differentials from outside this rectangle,2402

so their elements correspond bijectively to elements of ErPăn`1sr, which is the Koszul subalgebra2403

generated by Pj for r ´ 1 ď j ď n ´ 2. Thus, if q P Qn`1 were in the image of one of these2404

differentials, it would lie in SQăn`1, contrary to assumption. It follows there is P1 ď Pn such that2405

τP1 – Qn`1. Now we may construct a map from the Koszul spectral sequence ErPăn`1 ‘ P1s‚ to2406

E‚, and applying the implication pBqn`1 & pEqn ùñ pFqn of Theorem 2.7.1, we conclude that the2407

map on E‚,0
2 is a bijection ΛrPăn`1 ‘ P1s „

ÝÑ ∆P in degrees ď n. It follows P1 “ Pn, which we2408

already knows transgresses to Qn`1, concluding the proof.2409

Historical remarks 7.4.8. Coming at a later point in history affords us many luxuries Borel did2410

not have when he was proving Theorem 7.4.6 and Theorem 7.4.5. For one, the Zeeman–Moore2411

theorem was not available to him, so he did not construct a comparison map, but explicitly,2412

inductively, and through careful bookkeeping ruled out the possibility of H˚pBGq being anything2413

other than a polynomial ring, keeping track at the same time of what elements of ΛP transgressed2414

and ultimately determining them to be only the primitives P themselves.2415

More historically remarkably, in determining H˚pBGq Borel did not have access to BG itself.2416

In 1952, it was only known in general that n-universal principal bundles Epn, Gq ÝÑ Bpn, Gq2417

existed for each n P N with πiEpn, Gq “ 0 for i ď n. Borel’s H˚pBGq is actually defined as the2418

inverse limit of the rings H˚
`

Bpn, Gq
˘

, known cohomology rings of already-existing manifolds.2419

Resultingly, for numerous topological applications in which we cavalierly deploy BG, Borel must2420

instead invoke H˚
`

Bpn, Gq
˘

for n sufficiently large. This approximation technique is still used in2421

algebraic geometry, where each Bpn, Gq can be considered an algebraic variety but BG cannot.2422

We imagine the alternate proof of Theorem 7.4.1 following Theorem 7.4.6 was known, but2423

have no reference.2424

7.4.3. Complements2425

The rest of this section is devoted to related results we will not have need of in the sequel. For2426

example, there is also a dual result whose proof falls out of what we have already done.2427
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Corollary 7.4.9 (Borel [Bor54, Thm. 6.1, p. 297]). Let k be a commutative ring and Q – ktyαu an2428

evenly-graded free k-module. Suppose pEr, drq is a spectral sequence of bigraded k-algebras such that2429

• E2 admits a tensor decomposition SQb E0,‚
2 , with E2 – SQ the symmetric algebra on Q and2430

• the final page E8 “ E0,0
8 – k is trivial.2431

Then E0,‚
2 – ∆rvαs admits a simple system of transgressive generators vα such that τvα “ yα.2432

Proof. Since E8 – k, each yα must eventually be annihilated by some differential. There can be2433

no generators of degree 1 since all differentials out of this box are zero. The generators Q2 of2434

degree 2 can only be annihilated by elements E0,1
2 . Since d2 is a differential, it follows E‚,0

3 –2435

SQ{pQ2q – SrQě3s is the subalgebra on generators of degree three or more. Assume inductively2436

that Qr survives in Er. Since it doesn’t survive to E8, it must be annihilated by the elements E0,2
r ,2437

which are hence all transgressive. Inductively continuing this way, each element of Q must be2438

killed by a transgressive element of E0,‚
2 .2439

Now define a cochain map λ : SQbΛrvαs ÝÑ E2 as in the proof of Theorem 7.4.5. Applying2440

the Zeeman–Moore comparison theorem 2.7.1 again, one sees the restriction Λrvαs ÝÑ ∆rvαs ď2441

E0,‚
2 must a linear isomorphism, so that E0,‚

2 “ ∆rvαs.2442

Combining the two, one has the following.2443

Corollary 7.4.10. Let k be a commutative ring. Suppose pEr, drq is a spectral sequence of bigraded k-2444

algebras such that2445

• E2 admits a tensor decomposition E‚,0
2 b E0,‚

2 ,2446

• the final page E8 “ E0,0
8 – k is trivial.2447

Then the following are equivalent:2448

• The k-algebra E0,‚
2 – ∆rzαs admits a simple system of transgressive generators zα.2449

• The k-algebra E‚,0
2 – Sryαs is a symmetric algebra on generators yα.2450

If the statements hold, the zα and yα are related by τzα “ yα.2451

Remarks 7.4.11. (a) In fact, there is a strengthening requiring only that the triangle
À

p`qďn Ep,q
8 – k2452

is trivial, the map from ∆rzαs is a bijection in degrees ď n´ 1 and an injection in degree n and2453

that the map from Sryαs is a bijection in degrees ď n and an injection in degree n` 1, as in the2454

proof of Theorem 7.4.5.2455

(b) The full strength version of Corollary 7.4.10 reflects a sort of duality between the category of2456

modules over a symmetric algebra and that over an exterior algebra, called Koszul duality.2457

To round out this subsection we include without proof some other finite-characteristic results2458

and conclude with some historical remarks. As regards the applicability of the little transgres-2459

sion theorem 7.4.6 in characteristic ‰ 2, it is not universal. Borel found the following example.2460

Recall that the cohomology rings H˚
`

Spinpnq;F2
˘

do admit simple systems of generators (Propo-2461

sition 3.2.17).2462

Theorem 7.4.12. Consider a simple system of generators for H˚
`

Spinpnq;F2
˘

. These are all transgressive2463

if and only if n ď 9. Accordingly, H˚
`

BSpinpnq;F2
˘

is a polynomial ring if and only if n ď 9.2464
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Specifically, as described in Proposition 3.2.17, one has2465

H˚
`

Spinp10q;F2
˘

– ∆rv3, v5, v6, v7, v9, z15s,

but there is an element u of degree 15, congruent to z15 modulo decomposables, which has2466

d10pub 1q “ d10pv9b 1q ¨ p1b v6q. The nontransgression of this u is related to the failure of the2467

homology ring H˚
`

Spinp10q;F2
˘

to be an exterior algebra, as described in Example A.2.8.2468

Nevertheless, in the universal bundle for the limiting group Spin “ lim
ÝÑ

Spinpnq, all generators2469

transgress again. One has then the following corollary of Theorem 3.2.18.2470

Theorem 7.4.13 ([BCM, Thm. 6.10, p. 55]). The mod 2 cohomology ring of BSpin is given by2471

H˚pBSpin;F2q “ F2rwj : j ‰ 2` ` 1s

and that of BSO by2472

H˚pBSO;F2q “ F2rwjs,

the map H˚BSO ÝÝ� H˚BSpin induced by Spin� SO being the obvious surjection. The transgressions2473

are given, for j odd, by2474

τpv2`
j q “ w2` j`1.

Borel also found a complement in characteristic not equal to 2, showing even-dimensional2475

spheres (other than S0) can’t show up as factors in the fiber of a bundle with contractible total2476

space.2477

Theorem 7.4.14. Let k be a ring of characteristic not equal to 2. Suppose pEr, drq is a spectral sequence of2478

bigraded k-algebras such that2479

• E2 admits a tensor decomposition E‚,0
2 b E0,‚

2 such that E0,‚
2 “ ∆rpαs for a simple system ppαq of2480

generators with p2
α “ 0 and2481

• the final page E8 “ E0,0
8 – k is trivial.2482

Then all of the pα are of odd degree.2483

Explicitly, in this case, we have in the hypothesis that2484

E0,‚
2 “ ∆rpαs “ Λ

“

pj : |pα| odd
‰

b
â

|pα|even

Srpαs
L

pp2
αq

and in the conclusion that ∆rpαs “ ΛP for P oddly graded. Clearly, then, if one wanted to2485

generalize the “simple system of generators” to even-degree generators in characteristic p ą 2,2486

asking that they be nilsquare would not be the way to go. Postnikov would find the proper2487

strategy in 1966 to generalize Theorem 7.4.6 to odd characteristic.2488

Definition 7.4.15 ([Pos66, p. 36]). Let p be an odd prime. A graded commutative Fp-algebra F is2489

said to admit a p-simple system of generators pzα, yβqαPA,βPB, where the zα are of odd degree and2490

the yβ even, if F is spanned as an Fp–vector space by the basis of ordered monomials2491

zα1 ¨ ¨ ¨ zαm y`1
β1
¨ ¨ ¨ y`n

βn
,

where the indices αi and β j are strictly increasing and the exponents `j ď p´ 1.2492
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Theorem 7.4.16 ([Pos66, p. 36]). Let p be an odd prime. Suppose pEr, drq is a spectral sequence of2493

bigraded Fp-algebras such that2494

• E2 admits a tensor decomposition E‚,0
2 b E0,‚

2 such that E0,‚
2 admits a p-simple system pzα, yβq of2495

transgressive generators, the zα being of odd degree and the yβ even,2496

• the final page E8 “ E0,0
8 – Fp is trivial.2497

Then E‚,0
2 is the free commutative algebra on the transgressions2498

xα :“ τzα, vβ :“ τyβ, uβ :“ τpvβb yp´1
β q.

Explicitly, E‚,0
2 – FprxαsbFpruβsbΛrvβs2499

Sketch of proof. Assume first the elements τyβb yp´1
β transgress. Then we will be able to find the2500

proper bigraded comparison complex admitting a chain map to pE2, τq, where τ is a choice of2501

transgression in E2, and the proof will proceed exactly as the proof of Theorem 7.4.6.2502

For the odd generators zα, one retains the bigraded Koszul spectral sequence Erzαs as before,2503

but for each even generator yβ one introduces a tensor-factor (not a dga)2504

`

Λrv̄βs b Fprūβs
˘

b Frȳβs
L

pȳp´1
β q, dyβ “ v̄β, dpv̄βb ȳp´1

β q “ ūβ

bigraded with the expected degrees with vβ and uβ in the bottom row and yβ in the left column.2505

Collecting all of these, the assignment zα ÞÑ zα, ȳβ ÞÑ yβ, v̄β ÞÑ vβ, ūβ ÞÑ uβ is by definition a2506

chain map, and restricts to a ring map Fprτzα, ūβsbΛrv̄βs ÝÑ E‚,0
2 because on this subdomain it2507

is defined by unique extension from free cga generators.2508

That the τyβb yp´1
β must transgress is an induction like that in Theorem 7.4.5. To prove it for2509

maxβ |yβ| “ n` 1, inductively assume it for degrees ď n and as well that E‚,0
2 agrees up to degree2510

ppn` 1q ` 1 with the free cga on2511

xα, vβ

`

for |yβ| ď n` 1
˘

, uβ

`

for |yβ| ď n´ 1
˘

.

It follows from this assumption and the eventual triviality of E8 – Fp that on the page Epn`1qpp´1q`1,2512

the rectangle
“

0, pn` 1qp` 1
‰

ˆ
“

0, pn` 1qpp´ 1q ´ 1
‰

is trivial, the cancellations being due solely2513

to the elements in the induction hypothesis. This means that the differentials of the τyβb yp´1
β2514

for |yβ| “ n` 1 which land in this rectangle must be trivial, and so the map τ : En`1,pn`1qpp´1q
pn`1qpp´1q`1 ÝÑ2515

Epn`1qp`2,0
pn`1qpp´1q`1 must be an isomorphism, showing all the new τyβb yp´1

β also transgress.2516

[2517

Remark 7.4.17.2518

]2519

7.5. Characteristic classes2520

Borel’s Theorem 7.4.1, the mod 2 addendum Section 7.4.2.(a), and knowledge of the cohomology2521

rings of classical groups from Chapter 3 make instantly available a great deal of information2522

about classifying spaces.2523
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Corollary 7.5.1. Let k “ Zr1{2s. The cohomology rings of the classifying spaces of the classical groups are

H˚
`

BOpnq;F2
˘

– F2rw1, . . . , wns, deg wj “ j,

H˚
`

BSOpnq;F2
˘

– F2rw2, . . . , wns, deg wj “ j,

H˚
`

BUpnq;Z
˘

– Zrc1, . . . , cns, deg cj “ 2j,

H˚
`

BSUpnq;Z
˘

– Zrc2, . . . , cns, deg cj “ 2j,

H˚
`

BSppnq;Z
˘

– Zrq1, . . . , qns, deg qj “ 4j,

H˚
`

BSOp2n` 1q; k
˘

– krp1, . . . , pn´1, pns, deg pj “ 4j,

H˚
`

BSOp2nq; k
˘

– krp1, . . . , pn´1, es, deg pj “ 4j, deg e “ 2n.

Definition 7.5.2. The wj in the preceding corollary are the Stiefel–Whitney classes, the cj the2524

Chern classes, the qj the symplectic Pontrjagin classes, the pj the Pontrjagin classes, and e the2525

Euler class.2526

Remark 7.5.3. For G P tU, Sp, SOu, the inclusions Gpnq ãÑ Gpn ` 1q preserve cj, qj, pj respec-2527

tively for j ď n and annihilate cn`1, qn`1, pn`1, with the exception that H˚
`

BSOp2n ` 1q
˘

ÝÑ2528

H˚
`

BSOp2nq
˘

takes pn ÞÝÑ e2.2529

The Pontrjagin classes and Euler class as described above are actually integral in that they2530

are in the image of the canonical map H˚
`

BSOpmq;Z
˘

ÝÑ H˚
`

BSOpmq;Zr1{2s
˘

. These classes2531

carry certain well-known relations. For example, the inclusion Upnq SOp2nq induces a2532

map H2n
`

BSOp2nq;Z
˘

ÝÑ H2n
`

BUpnq;Z
˘

carrying e ÞÝÑ cn, and mod-2 coefficient reduction2533

Hn
`

BSOpnq;Z
˘

ÝÑ Hn
`

BSOpnq;F2
˘

takes e ÞÝÑ wn.2534

All of these rings can also be calculated independently with Q coefficients from the result2535

Corollary 6.3.7 that H˚pBGq – H˚pBTqW and an understanding of the Weyl group action on BT.2536

For example, the existence of the Euler class can be seen as a result of the fact that WSOp2n`1q “2537

t˘1un ¸ Sn and WSOp2nq is the subgroup St˘1un ¸ Sn, where St˘1un ă t˘1un is the index-two2538

subgroup whose elements contain an even number of ´1 entries. The product e “ t1 ¨ ¨ ¨ tn P2539

Zrt1, . . . , tns is invariant under St˘1un but not under all of t˘1un, and as a result does not occur2540

in H˚
`

BSOp2n` 1q
˘

; its square pn “ t2
1 ¨ ¨ ¨ t

2
n is however invariant under the larger group’s action.2541

The cohomology classes of Definition 7.5.2, elements of a cohomology ring BG only known2542

after 1955 to globally exist, are abstract manifestations of objects associated to vector bundles2543

which were defined in the 1930s and early 1940s by their namesakes.72544

Definition 7.5.4. Let E ÝÑ B be a principal G-bundle and χ : B ÝÑ BG a classifying map. Given2545

c P H˚pBGq, its pullback χ˚pcq P H˚pBq is written c˚pEq and called a characteristic class of2546

E ÝÑ B.2547

These characteristic classes are functorial invariants of principal bundles: because the univer-2548

sal bundle is terminal, a map of bundles induces a homotopy-commutative triangle of maps of2549

base spaces.2550

Proposition 7.5.5. Let E Ñ B be a principal G-bundle, let f : B1 Ñ B be a continuous map, and let2551

c P H˚pBGq. Then the pullback bundle f ˚E satisfies2552

cp f ˚Eq “ f ˚cpEq P H˚pBq.
7 With the obvious exception of the Euler class.
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Given a vector bundle F Ñ V
ξ
Ñ B with transition functions in a linear group G, there is an2553

associated principal G-bundle G Ñ P Ñ B as described in Appendix B.3.1, and one can associate2554

to V Ñ B the characteristic classes of P Ñ B,2555

cpVq :“ cpPq,

calling them the characteristic classes of the vector bundle V Ñ B. For example2556

• if ξ : V Ñ B is a quaternionic vector bundle it defines symplectic classes qjpξq P H4jpB;Zq,2557

• if ξ is a complex vector bundle one has Chern classes cjpξq P H2jpB;Zq,2558

• if ξ is a real vector bundle one has Pontrjagin classes pjpξq P H4jpB;Zq and Stiefel–Whitney2559

classes wjpξq P H jpB;F2q, and2560

• if ξ is an orientable vector bundle with fiber F “ Rn, it has an Euler class epξq P HnpB;Zq,2561

and the first Stiefel–Whitney class w1 can be shown to vanish.2562

[Tie this in to the earlier discussion in the context of the Gysin sequence]2563

A smooth manifold M determines a tangent bundle TM Ñ M, which thus defines a charac-2564

teristic class2565

cpMq :“ cpTMq P H˚pMq

for each characteristic class c of the tangent bundle. For example, we can equip TM with a2566

Riemmannian or Hermitian metric to reduce its structure group to Opnq or Upnq, so all smooth2567

manifolds carry Pontjagin and Stiefel–Whitney classes, orientable smooth manifolds carry an2568

Euler class epMq P HtoppMq, and almost complex manifolds carry Chern classes.2569

These classes turn out to be well-defined invariants of the topological manifold underlying M2570

in that they are independent of the chosen metrics and smooth or almost complex structures. To2571

see at least that the metrics are irrelevant, one way to proceed is to note that the Gram–Schmidt2572

construction can be seen as a product decomposition [BT82, Ex. 6.5(a)]2573

SLpn,Rq “ SOpnq ¨ F,

where F is the contractible space of positive-definite symmetric matrices. If we consider ESOpnq2574

to be ESLpn,Rq, which is valid, as discussed in Section 5.2, since SOpnq and SLpn,Rq are Lie2575

groups, the former closed in the latter, then taking quotients yields the bundle2576

F ÝÑ BSLpn,Rq ÝÑ BSOpnq,

with fiber F contractible, so that BSLpn,Rq » BSOpnq. Similar homotopy equivalences hold for2577

other classifying spaces of linear groups, so one can dispense with the metrics at the negligible2578

cost of viewing the characteristic classes instead as arising in BGLpn;Fq or BSLpn;Fq for F P2579

tR,C,Hu.2580

Assume now M is compact and oriented. A characteristic class c in HtoppM;Zq – Z is then2581

some integer multiple n ¨ rMs˚ of the cohomological fundamental class rMs˚; alternately, evalu-2582

ation of c against the homological fundamental class rMs yields an integer n. These integers are2583

called characteristic numbers of the manifold, and the data given by characteristic numbers for2584

a real manifold can be seen as the composition2585

Hn`BSOpnq;Z
˘ χ˚
ÝÑ HnpM;Zq „

ÝÑ Z,
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where χ : M ÝÑ BSOpnq is the characteristic map of the associated principal SOpnq-bundle.2586

The Pontrjagin numbers are the images under this composition of the degree-n level of the2587

subring Zrp1, . . . , pns, and the Euler characteristic can be seen as the image of e:2588

Theorem 7.5.6. Let M be a smooth, compact, oriented n-manifold. Then the Euler class e P HnpM;Zq2589

and cohomological fundamental class rMs˚ P HnpM;Zq and the Euler characteristic χpMq P Z satisfy the2590

relation2591

e “ χpMq ¨ rMs˚.

This is the reason behind the nomenclature Euler class. This equivalence also yields an out-2592

landishly complicated way of seeing the Euler characteristic of an odd-dimensional closed man-2593

ifold is zero.2594

[Connect these Euler classes and Stiefel–Whitney classes with those introduced in2595

Section 2.3.1.]2596

7.6. Maps of classifying spaces2597

The machine for computing H˚pG{Kq depends critically on an understanding of the map2598

ρ˚ “ pBiq˚ : H˚pBGq ÝÑ H˚pBKq

induced by the inclusion i : K ãÝÝÑ G; this understanding (in what by now should be starting to2599

seem like a familiar theme) is also due to Borel [Bor53, §28].2600

7.6.1. Maps of classifying spaces of tori2601

To start, let i : S ãÝÝÑ T be an inclusion of tori. By using a functorial construction of the universal2602

bundle as in Section 5.3, or else by taking ES “ ET and representing BS ÝÑ BT as the “further2603

quotient” map ET{S ÝÝ� ET{T, we have a bundle map2604

S �
� i //

��

T

��
ES » //

��

ET

��
BS Bi // BT,

which induces a map
`

ψr : prEr, d̃rq ÝÑ pEr, drq
˘

between the spectral sequences of the bundles.2605

Because these sequences both collapse on the third page, ψr is just an isomorphism H0pETq „
ÝÑ2606

H0pESq “ Z for r ě 3, so we may as well drop page subscripts and consider the lone interesting2607

map ψ “ ψ2, which by Theorem 2.2.2 is2608

ψ “ pBiq˚b i˚ : H˚pBTqbH˚pTq ÝÑ H˚pBSqbH˚pSq.
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Because, by the definition of a chain map, we have dψ “ ψd̃, and, as we have just seen, d : H1pSq ÝÑ2609

H2pBSq and d̃ : H1pTq ÝÑ H2pBTq are group isomorphisms, we have the commutative square2610

H1pSq

„

��

H1pTq

„

��

i˚oo

H2pBSq H2pBTq.
pBiq˚oo

(7.6.1)

Thus i˚ : H1pTq ÝÑ H1pSq is conjugate through the transgression isomorphisms to pBiq˚ : H2pBTq ÝÑ2611

H2pBSq. Since H2pBTq generates H˚pBTq as an algebra, and pBiq˚ is a ring homomorphism, this2612

means pBiq˚ is determined uniquely by i˚. This i˚, in turn, is described by i in a transparent way.2613

It is dual to the map i˚ : H1S ÝÑ H1T, or equivalently to the map π1piq.2614

In a case we will explore completely later, S will just be a circle, which we will identify with
the standard complex unit circle S1 ă Cˆ. Similarly identify T with pS1qn. Then i : S ãÝÝÑ T can
be written as

i : S1 ÝÑ pS1qn,

z ÞÝÑ pza1 , . . . , zanq,

where the exponent vector~a P Zn is a list of integers with greatest common divisor 1, so that i is2615

injective.8 If xj P π1pTq “ H1pTq is the fundamental class of the jth factor circle and y P H1pSq the2616

fundamental class of S, then2617

i˚ : y ÞÝÑ
ÿ

ajxj.

Let px˚j q be the dual basis for H1pTq and y˚ P H1pSq the cohomological fundamental class. Then2618

the dual map i˚ : H1pTq ÝÝ� H1pSq in cohomology takes x˚j ÞÝÑ ajy˚ since2619

pi˚x˚j qy “ x˚j
`

i˚y
˘

“ x˚j
`

ÿ

a`x`
˘

“ aj.

Put another way, the matrix of i˚ is the transpose of the matrix of i˚. Write s “ d2y˚ P H2pBSq and2620

uj “ d2x˚j P H2pBTq so that H˚pBSq “ Zrss and H˚pBTq “ Zr~us. Then, the square above implies2621

that pBiq˚pujq “ ajs, so that if pp~uq P Zr~us is any homogeneous polynomial,2622

pBiq˚pp~uq “ ppa1s, . . . ansq “ ppa1, . . . , anqsdeg p.

7.6.2. Maps of classifying spaces of connected Lie groups2623

Let K ãÝÝÑ G be an inclusion of compact, connected Lie groups. If S is a maximal torus of K, then2624

there exists a maximal torus T of G containing S. Through the functoriality of the classifying2625

space functor B and cohomology, this square of inclusions gives rise to two further commutative2626

squares:2627

S �
� i //
_�

��

T� _

��
K �� // G

ùñ

BS Bi //

��

BT

��
BK

ρ
// BG

ùñ

H˚pBSq H˚pBTq
pBiq˚oo

H˚pBKq
� ?

OO

H˚pBGq.
ρ˚
oo

?�

OO

8 This vector~a is only well-defined up to the choice of identifications S – S1 and T – pS1qn, but will suffice for our
later applications.
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The vertical maps in the last square are inclusions by Corollary 6.3.7. Thus ρ˚ can be computed2628

as the composition2629

H˚pBGq „
ÝÑ H˚pBTqWG

pBiq˚
ÝÝÝÑ H˚pBSq;

it follows from the commutativity of the square that the image lies in H˚pBSqWK – H˚pBKq.2630

Example 7.6.2. Let G “ Up4q and K “ Spp2q, identified as a subgroup of G through the injective2631

ring map H C2ˆ2 given by α` jβ ÞÝÑ
”

α ´β̄
β ᾱ

ı

. A standard maximal torus for G is given by2632

the subgroup T “ Up1q4 of diagonal unitary matrices, which meets K in the subgroup2633

S “
!

diagpz, z̄, w, w̄q P Up1q4 : z, w P S1
)

.

With respect to the expected basis of H1pTq and the fundamental classes of the factor circles2634

w “ 1 and z “ 1 of S, and the dual bases in H1, the maps H1pSq ÝÑ H1pTq and H1pSq ÐÝ H1pTq2635

are given respectively by2636

»

—

—

–

1 0
´1 0

0 1
0 ´1

fi

ffi

ffi

fl

and
„

1 ´1 0 0
0 0 1 ´1



.

By the commutative square (7.6.1), the second matrix also represents H2pBSq ÐÝ H2pBTq with2637

respect to the transgressed bases t1, t2, t3, t4 of H2pBTq and s1, s2 of H2pBSq.2638

The Weyl group of Up4q is the symmetric group S4 on four letters acting on T and hence2639

BT by permutation of the four coordinates. It follows that when H˚
`

Up4q
˘

is conceived as the2640

invariant subring H˚pBTqS4 of H˚pBTq, it is generated by the elementary symmetric polynomials2641

σ1, σ2, σ3, σ4 in t1, t2, t3, t4, lying in respective degrees 2, 4, 6, 8. These are the first four Chern classes2642

cj.2643

The Weyl group of Spp2q is the group t˘1u2 ¸ S2, acting on H1pSq and hence on H2pBSq “
Qts1, s2u by negating and/or switching the two coordinates. It follows the invariant subring
H˚

`

BSpp2q
˘

– H˚pBSqWSpp2q is generated by q1 “ s2
1 ` s2

2 and q2 “ ps1s2q
2. These are the first two

symplectic Pontrjagin classes. The generators cj exhibit the following properties under H˚pBTqS
4

ãÝÝÑ

H˚pBTq ÝÑ H˚pBSq:

c1 “ t1 ` t2 ` t3 ` t4 ÞÝÑ ps1 ´ s1q ` ps2 ´ s2q “ 0,

c2 “
1
2
`

σ2
1 ´ σ1pt2

1, t2
2, t2

3, t2
4q
˘

ÞÝÑ
1
2
`

0´ ps2
1 ` s2

1 ` s2
2 ` s2

2q
˘

“ ´ps2
1 ` s2

2q “ ´q1,

c3 “ pt1 ` t2qt3t4 ` t1t2pt3 ` t4q ÞÝÑ p0 ¨ ´s2
2q ` p´s2

1 ¨ 0q “ 0,

c4 “ t1t2t3t4 ÞÝÑ s2
1s2

2 “ q2.

That is, H˚
`

BUp4q
˘

ÝÑ H˚
`

BSpp2q
˘

is surjective, a fact we will later be able to see as a conse-2644

quence of the surjectivity of H˚
`

Up4q
˘

ÝÑ H˚
`

Spp2q
˘

.2645

Example 7.6.3. Let G “ Spp2q and K “ S “ SOp2q, identified as a subgroup of G through the
standard inclusion R ãÝÝÑ H. One maximal torus T of Spp2q containing S is that generated by S
and the block-diagonal subgroup S1 “ Up1q ‘ r1s. As |S X S1| “ 1, the standard isomorphisms
S1 ÝÑ S and S1 ÝÑ S1 determine a basis of π1pTq “ H1pTq. With respect to this basis, the
map H1pSq ÝÑ H1pTq is given by the matrix

“

1
0

‰

so H1pSq ÐÝ H1pTq is given, with respect
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to the dual basis, by the transpose
“

1 0
‰

. By (7.6.1) again the second matrix also represents
H2pBSq ÐÝ H2pBTq with respect to the transgressed bases t1, t2 of H2pBTq and t1 of H2pBSq.
Generators for H

`

BSpp2q
˘

are q1, q2 as in Example 7.6.2, and we have

q1 “ t2
1 ` t2

2 ÞÝÑ t2
1,

q2 “ t2
1t2

2 ÞÝÑ t2
1 ¨ 0 “ 0.

Example 7.6.4. Let G “ Up2q and S, S1, T as in the previous example. The map H˚pBTq ÝÑ
H˚pBSq is again given by the map Zrt1, t2s ÝÑ Zrt1s, preserving t1 and killing t2. Generators for
H
`

BSpp2q
˘

are c1, c2 as in Example 7.6.2, and we have

d1 “ t1 ` t2 ÞÝÑ t1,

q2 “ t1t2 ÞÝÑ t1 ¨ 0 “ 0.

Example 7.6.3 illustrates a general result about the map ρ˚ in the event G is semisimple and2646

S a circle, which we will later use in determining the rings H˚pG{S1q.2647

Lemma 7.6.5. Let K be a semisimple Lie group containing a circle S. The image of H˚
K ÝÑ H˚

S – Qrss2648

contains s2 P H4
S.2649

Proof. Let T be a maximal torus of K containing S, so that H˚
K ÝÑ H˚

S factors as HW
T ãÑ H˚

T Ñ H˚
S ,2650

where W is the Weyl group of K. Identifiying H˚
T “ Qru1, . . . , uns and H˚

S “ Qrss, the exponents aj2651

of the inclusion S1 ãÑ T – pS1qn give the matrix ra1 ¨ ¨ ¨ ans of H1pSq “ π1pSq ÝÑ π1pTq “ H1pTq,2652

and so the transpose is the matrix of H1pTq ÝÑ H1pSq, which we can identify with H2
T ÝÑ2653

H1
S. Thus uj ÞÝÑ ajs and H4

T ÝÑ H4
S, takes a homogeneous quadatric polynomial qp~uq in the2654

generators uj to qp~aqs2.2655

To show H4pBK;Qq ÝÑ H4pBS;Qq is surjective is equivalent to showing H4pBK;Rq ÝÑ2656

H4pBS;Rq is surjective, and elements of H4pBT;Rq can be seen as quadratic forms on the vector2657

space H2pBT;Rq – H1pT;Rq – π1TbR – t. Under this identification, the restriction H4pBT;Rq ÝÑ2658

H4pBS;Rq corresponds to restriction of a quadratic form q on t to s. Thus, showing the map2659

H4pBT;RqW ÝÑ H4pBS;Rq is surjective regardless of the choice of the circle S is equivalent to2660

showing that for each tangent line s in t, there is W-invariant quadratic form q not vanishing on2661

s. In particular, it would more than suffice to find a W-invariant q such that qpvq ‰ 0 for all v ‰ 0.2662

But the Killing form Bp´,´q : kˆ k ÝÑ R is an Ad-invariant, negative definite bilinear form by2663

Proposition B.4.13, so its restriction to tˆ t is W-invariant, and its restriction to the diagonal is a2664

W-invariant, quadratic form q on t strictly negative on tzt0u.2665

Historical remarks 7.6.6. The choice of notation ρ˚ for this important map follows historical prece-2666

dent dating back to the heroic era of large tuples described in Historical remarks 5.3.9. Borel and2667

later Hirzebruch canonically assigned the name ρpU, Gq to the map BU ÝÑ BG induced by an2668

inclusion U ãÝÝÑ G and ρ˚pU, Gq to the resulting map H˚pBGq ÝÑ H˚pBUq in cohomology.2669



Chapter 82670

The cohomology of homogeneous spaces2671

In this chapter we finally arrive at our stated goal, to compute the cohomology of a homogenous2672

space G{K in terms of the transitively acting group G and the isotropy subgroup K.2673

Moreover, the Serre spectral sequence of G Ñ EG Ñ BG induces a machine, invented by2674

Borel in his thesis, computing the cohomology of homogeneous spaces G{K. The machine is,2675

in slightly disguised form, the Cartan algebra computing the Borel K-equivariant cohomology2676

of G. This Cartan algebra was one of the motivating examples behind the definition of minimal2677

models, which developed into a central tool of rational homotopy theory in the late 1960s. We use2678

one tool from rational homotopy theory, the algebra of polynomial differential forms, to update2679

Borel’s 1953 proof that the Cartan algebra computes the cohomology of a homogeneous space.2680

The innovation of this chapter is that we are able to present the Cartan algebra and its appli-2681

cation in algebraic terms with essentially no use of the Lie algebra of G, of the Lie derivative, or2682

of connections, and without developing rational homotopy theory. Though many sources cover2683

this material in more or less detail [Cen51, And62, Ras69, GHV76, Oni94], all of them rely on2684

Lie-algebraic methods. Rational homotopy theoretic proofs of Cartan’s theorem can be found in2685

texts [FHT01, FOT08], as an application of a much more of a general theory we for lack of space2686

do not develop here. In fact, Cartan’s theorem was an early instance of and an inspiration for2687

such methods [Hes99].2688

Now seems like a good time to formalize the setup.2689

Definition. Let G be a compact, connected Lie group, and K a closed, connected subgroup. In2690

this situation we call pG, Kq a compact, connected pair of Lie groups.2691

Our discussion will really be about properties of such pairs. Associated to a compact pair2692

pG, Kq are three fiber bundles. The first, K Ñ G Ñ G{K, follows from Theorem B.4.4. The second2693

is the Borel fibration G Ñ GK Ñ BK, which is a principal G-bundle. The third is the fibration2694

G{K Ñ BK Ñ BG, where the projection ρ » Bi : BK ÝÑ BG can be seen as the “further quotient”2695

map EG{K ÝÝ� EG{G. Substituting the homotopy quotient GK for G{K when convenient, we can2696

then see that each three consecutive terms of the sequence2697

K i
ÝÑ G

j
ÝÑ G{K

χ
ÝÑ BK

ρ
ÝÑ BG (8.0.1)

form a bundle up to homotopy. Here χ : gK ÞÝÑ e0gK is the classifying map of K Ñ G Ñ2698

G{K and also the fiber of BK ÝÑ BG over e0G, and we are able to substitute GK in for G{K2699

without changing j or χ up to homotopy by Proposition 5.5.4. This section is devoted to a general2700

105



Chapter 8. The cohomology of homogeneous spaces 106

discussion of the implications of this fiber sequence in the resulting cohomology sequence2701

H˚pKq i˚
ÐÝ H˚pGq

j˚
ÐÝ H˚pG{Kq

χ˚
ÐÝ H˚

K
ρ˚

ÐÝ H˚
G. (8.0.2)

It is a curious historical coincidence that the study of the cohomology of homogeneous spaces2702

seems to break into three basic periods, the first studying the Leray spectral sequence of the first2703

three terms, the second studying the Leray–Serre spectral of the second three terms, and last2704

studying the Eilenberg–Moore spectral sequence of the last three terms. It is the second period2705

characterization that we employ in what follows, but these maps will all have some relevance for2706

us.2707

Remark 8.0.3. We always assume our groups are compact and connected in what follows. Con-2708

nectedness is essential, but what we say also goes for noncompact Lie groups. [Include this2709

argument.]2710

8.1. The Borel–Cartan machine2711

We begin by introducing the device that will carry out our computations.2712

8.1.1. The fiber sequence2713

The five terms of (8.0.1), up to homotopy, form the labeled subdiagram in the following diagram2714

of bundle maps, where the columns are bundles.2715

K �
� i //

��

G

j
��

G

��
EK //

��

GK //

χ

��

EG

��
BK BK

ρ // BG

(8.1.1)

Here the middle row should be seen as2716

EKb
K

K ãÝÝÑ EGb
K

G ÝÝ� EGb
G

G,

the outer terms being homeomorphic to EG » EK, and the fiber inclusions from the preceding2717

row given by g ÞÝÑ e0b g. The first and last columns are universal bundles and the second2718

column is the Borel fibration. It is clear that j ˝ i and ρ ˝ χ are nullhomotopic because they factor2719

through EG. The classifying map ρ : BK ÝÑ BG is explicitly given by ρ “ Bi : eK ÞÝÑ eG.2720

The Borel approach ([Bor53, §22]) to understanding the cohomology of H˚pG{Kq depends on2721

the G-bundle map between the second two bundles,2722

G

j
��

G

��
GK //

χ

��

EG

��
BK

ρ
// BG.

(8.1.2)
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This bundle map induces a map from the spectral sequence prEr, d̃rq of the universal bundle,2723

which we now completely understand, to the spectral sequence pEr, drq of the Borel fibration,2724

which we do not. As GK » G{K, the latter sequence converges to H˚pG{Kq. We write2725

pψrq : pEr, drq ÐÝ prEr, d̃rq

for this map of spectral sequences. Recall from Section 2.6 that these maps ψr : rEr ÝÑ Er are dga2726

homomorphisms, meaning dr ˝ ψr “ ψr ˝ d̃r, and each descends from that on the previous page,2727

meaning ψr`1 “ H˚pψrq. The map ψ2 : E2 ÐÝ rE2 between second pages is2728

ρ˚b id : H˚pBKqbH˚pGq ÐÝ H˚pBGqbH˚pGq,

where idH˚pGq is the isomorphism rE0,‚
2

„
ÝÑ E0,‚

2 of the leftmost columns and ρ˚ “ pBiq˚ : H˚pBKq ÐÝ2729

H˚pBGq is the map rE‚,0
2 Ñ E‚,0

2 of bottom rows.2730

It is a consequence of the following lemma that the map ρ˚ at least largely determines2731

H˚pG{Kq.2732

Proposition 8.1.3. Let G be a compact, connected Lie group whose primitive subspace PG ă H˚pGq is2733

concentrated in degree ď q´ 1. Then if G Ñ E Ñ B is a principal G-bundle, its SSS collapses at Eq`1.2734

Proof. Recall that the spectral sequence prEr, d̃rq of the universal G-bundle collapses at rEq`1 “2735

rE8 “ Q. Because G Ñ E Ñ B is principal, it admits a bundle map to the universal bundle, as2736

in (8.1.2) inducing a spectral sequence map pψrq : prEr, d̃rq ÝÑ pEr, drq, which is a cochain map,2737

meaning drψr “ ψrd̃r. Thus the edge maps dr : E0,r´1
r ÝÑ Er,0

r all vanish for r ą q. Now, the dr also2738

vanish on the bottom row E‚,0
r by lacunary considerations, and are antiderivations with respect to2739

an algebra structure on Er descending from that of E2 “ H˚pBqbH˚pGq, so they vanish entirely2740

for r ą q.2741

In particular, since the edge homomorphisms of the universal bundle spectral sequence2742

prEr, d̃rq are determined entirely composition by an isomorphism τ : PG „
ÝÑ QpBGq restricting2743

the transgression, it follows much of the structure of pEr, drq is determined by the composition2744

ρ˚ ˝ τ. In fact, in the next subsection we will show that this composition itself yields a differential2745

d on E2, the Cartan differential, such that H˚pE2, dq – H˚pG{Kq and pEr, drq is the filtration spectral2746

sequence associated to the filtered dga pE2, dq, equipped with the horizontal filtration induced2747

from H˚
K.2748

[Add proof of Samelson’s 1941 result about transitive actions on spheres.]2749

8.1.2. Chevalley’s and Cartan’s theorems2750

In this subsection, we prove Cartan’s theorem that the complex described above actually deter-2751

mines H˚pG{Kq completely. To do so, we will have to briefly invoke a cochain-level description2752

of the situation, and rather than use singular cochains, we compute cohomology with APL. We2753

only need two features: it is a cdga and the filtration spectral sequence induced by the filtration2754
`

APLpX, Xp´1q
˘

of a bundle F Ñ X Ñ B agrees with the cochain Serre spectral sequence after E2.2755

Temporarily taking a step back from homogeneous spaces, consider the universal bundle2756

G Ñ EG Ñ BG. Lifting indecomposables, which is possible by Proposition A.4.3 since H˚pBGq is2757

a free cga, the transgression yields a map2758

PpGq „
ÝÑ

τ
QpBGq ãÝÝÑ H˚pBGq,
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Since H˚pBGq is also a free cga, there exists a cga section i˚ : H˚pBGq ÝÑ APLpBGq, so we can2759

lift τ to i˚τ : PH˚pGq ÝÑ APLpBGq.2760

Now consider a principal G-bundle G Ñ E π
Ñ B. This bundle is classified by some map2761

χ : B ÝÑ BG, inducing a ring map χ˚ : APLpBGq ÝÑ APLpBq, and we can form the composition2762

χ˚i˚τ : PpGq ÝÑ H˚pBGq ÝÑ APLpBGq ÝÑ APLpBq

Because H˚pGq “ ΛPpGq is a free cga, we can extend this lifted transgression uniquely to an2763

antiderivation on2764

C :“ APLpBqbH˚pGq

which we will again call χ˚i˚τ and which vanishes on APLpBq. Similarly, the differential dB of2765

APLpBq extends uniquely to an antiderivation on C annihilating QbH˚pGq, which we again call2766

dB. We consider C as a Q-cdga with respect to the unique differential dC :“ dB` χ˚i˚τ extending2767

both dB and χ˚i˚τ. See Figure 8.1.4.2768

Figure 8.1.4: The differential of the algebra C “ APLpBqbH˚pGq as defined on generators

...
...

5 P5pGq

3 P3pGq

1 P1pGq

0 A0
PLpBq A1

PLpBq A2
PLpBq A3

PLpBq A4
PLpBq A5

PLpBq A6
PLpBq ¨ ¨ ¨

0 1 2 3 4 5 6 ¨ ¨ ¨

χ˚i˚τ

χ˚i˚τ

χ˚i˚τ

dB dB dB dB dB dB dB

Let pz`q be a basis of PpGq and set β` “ pχ
˚i˚τqz` for each `, so that we have

dCpαb 1q “ dBαb 1, α P APLpBq;

dCp1b z`q “ β`b 1.

The cochain maps
`

APLpBq, dB
˘

Ñ pC, dCq Ñ
`

H˚pGq, 0
˘

induce ring homomorphisms H˚pBq Ñ2769

H˚pCq Ñ H˚pGq.2770

Theorem 8.1.5 (Chevalley [Car51][Kos51][Bor53, Thm 24.1, 25.1]). Let G
j
Ñ E π

Ñ B be a principal G-2771

bundle, and let pC, dCq be as above. Then there exists an isomorphism λ˚ : H˚pC, dCq
„
ÝÑ H˚pEq making2772
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the following diagram commute:2773

H˚pCq

λ˚

��

!!
H˚pBq

π˚   

>>

H˚pGq.

H˚pEq
j˚

==

Proof. We want to construct a cochain map λ : C ÝÑ APLpEq into the algebra of polynomial2774

differential forms on E (any cdga calculating H˚pEq would do), which we will then show to be a2775

quasi-isomorphism by showing it induces an isomorphism between later pages of the associated2776

filtration spectral sequences. The spectral sequence corresponding to H˚
`

APLpEq
˘

– H˚pEq will2777

be the Serre spectral sequence pEr, drq of G
j
Ñ E π

Ñ B with respect to APL cochains.2778

Note that by construction and by Corollary 7.4.3 a primitive z` P Hr´1pGq transgresses in2779

Er to drrz`s “ rβ`s. By the description in Proposition 2.2.21 of the transgression in the Serre2780

spectral sequence, this means there exists a form γ` P APLpEq such that rj˚γ`s “ z` P H˚pGq and2781

dEγ` “ π˚β` P APLpEq. Define λ on algebra generators by2782

λ : APLpBqbH˚pGq ÝÑ APLpEq,

αb 1 ÞÝÑ π˚α,

1b z` ÞÝÑ γ`.

(8.1.6)

Then λ is a cochain map by construction, for following through the formulas on generators,

dEλpαb 1q “ dEπ˚α “ π˚dBα “ λdCpαb 1q;

dEλp1b z`q “ dEγ` “ π˚β` “ λdCp1b z`q.

Filter B “
Ť

Bp by its p-skeleta, E by the preimages π´1Bp of these, and C and APLpEq by2783

FpC “
à

iěp
Ai

PLpBqbH˚pGq, Fp APLpEq “ ker
`

APLpEq ÝÑ APLpπ
´1Bp´1q

˘

.

Then λ preserves filtration degree for elements of H˚pBq, which is enough to see that it sends2784

FpC ÝÑ Fp APLpEq.2785

Write pEr, drq still for the spectral sequence of the filtration on APLpEq and p1Er, 1drq for that of2786

the filtration on C. The former is just the SSS of G Ñ E Ñ B using APL cochains (Theorem 2.2.2,2787

Proposition 2.2.3),2788

E2 “ H˚pBqbH˚pGq.

On the other hand, following through the reasoning in Corollary 2.6.8 in this case, 1E0 is the2789

associated graded algebra gr C – C, and 1d0 is the differential induced by dC “ dB ` χ˚i˚τ.2790

Since χ˚i˚τ is induced by the transgression τ, it has filtration degree ě 2 on all elements it fails2791

to annihilate outright, and so vanishes under the associated graded algebra construction, and2792

likewise dB adds one to the filtration degree, so 1d0 “ 0 and 1E1 “
1E0 – C. Thus 1d1 “ dB and2793

1E2 – H˚pBqbH˚pGq – E2.

Now that we know these pages can both be identified with H˚pBqbH˚pGq in a natural way, it2794

remains to show λ2 : 1E2 ÝÑ E2 becomes the identity map under these identifications. But this is2795
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also the case by construction: the base elements α P APLpBqb 1 and λpαb 1q “ π˚α P APLpEq both2796

become rαsb 1 in 1E2 “ E2 and the fiber elements 1b z` P 1bH˚pGq and λp1b z`q “ γ` P APLpEq2797

each become 1brj˚γ`s “ 1b z`.2798

Since λ2 is a cochain isomorphism, it follows from the general principle Proposition 2.7.2 that2799

λ˚ “ H˚pλq : H˚
`

APLpBqbH˚pGq, dC
˘

ÝÑ H˚pEq

is an isomorphism.2800

Remark 8.1.7. We are committed to a very classical viewpoint in this work, but those with some2801

grounding in rational homotopy theory might note that pSQpBKqbΛPG, dq is a pure Sullivan2802

model.2803

Remark 8.1.8. If we are willing to sacrifice multiplicative structure, we can take coefficients in a2804

ring k of arbitrary characteristic, subject only to the condition H˚pF; kq be a free k-module [Hir53].12805

Given a fibration F Ñ E π
Ñ B with trivial π1pBq-action on H˚pF; kq, assign to each element y of a2806

basis of H˚pF; kq a representing cocycle in C˚pF; kq and extend this to a cochain γpyq P C˚pE; kq.2807

There is a k-linear map λ1, the analogue of λ from (8.1.6), taking C1 “ C˚pB; kqbk H˚pF; kq ÝÑ2808

C˚pE; λq via bb 1 ÞÝÑ π˚b for b P C˚pB; kq and 1b y ÞÝÑ γpyq. A differential can be defined on2809

C1 [Find the article to determine how] such that the obvious filtration induces an isomor-2810

phism of H˚pB; kq-modules on the E2 page, so that H˚pC1q – H˚pE; kq on the level of graded2811

H˚pB; kq-modules.2812

The algebra C “ APLpBqbH˚pGq, although simpler than APLpEq, still involves the algebra2813

APLpBq of polynomial forms on the base B, which though graded-commutative and hence simpler2814

than the algebra of singular cochains on B, is still typically a large ring (if B is a CW complex of2815

positive dimension, then dimQ APLpBq ě 2ℵ0), which we would rather replace with H˚pBq.2816

The E2 page of the filtration spectral sequence associated to the filtration induced from the2817

“horizontal” grading on APLpBq is the algebra we want, namely H˚pBqbH˚pGq equipped with2818

the differential d2 vanishing on H˚pBq and sending z P PG to pχ˚τqz “
“

pχ˚i˚τqz
‰

P H|z|`1pBq.2819

Definition 8.1.9. The algebra C “ H˚pBqbH˚pGq equipped with the antiderivation d extending2820

PpGq τ
Ñ QpBGq ãÑ H˚pBGq

χ˚
Ñ H˚pBq

is the Cartan algebra of the principal bundle G Ñ E Ñ B.2821

Remark 8.1.10. Observe that the Cartan algebra of a principal bundle G Ñ E Ñ B is the Koszul2822

complex (Definition 7.3.6) of a sequence ~a in H˚pBq of images of generators of H˚pBGq under2823

the characteristic map χ˚ : H˚pBGq ÝÑ H˚pBq. This follows because indeed H˚pBGq “ S
“

QpBGq
‰

2824

by Borel’s Theorem 7.4.1 and ΛPGb SQpBGq, equipped with τ : PG „
ÝÑ QpBGq, is the Koszul2825

complex of PG. In particular, one has the following isomorphism.2826

Proposition 8.1.11. Let G Ñ E Ñ B be a principal bundle and C its Cartan algebra. Then there is an2827

isomorphism2828

H˚pCq – Tor‚,‚
H˚G

`

Q, H˚pBq
˘

.

Proof. By Remark 8.1.10, C is the Koszul complex of the map χ˚ : H˚pBGq ÝÑ H˚pBq, and by2829

Proposition 7.3.10, the cohomology of this complex is Tor‚,‚
H˚G

`

Q, H˚pBq
˘

.2830

1 Hirsch actually wants k to be a field.
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We would like to find a zig-zag of quasi-isomorphisms linking
`

APLpBqbH˚pGq, dC
˘

with2831

C “
`

H˚pBqbH˚pGq, d
˘

.2 Recall from Definition 4.1.1 that in this case the space B and the2832

complex
`

APLpBq, dAPLpBq
˘

are both called formal.2833

Proposition 8.1.12. If the base B of a principal bundle G Ñ E Ñ B is formal, then the Cartan algebra of2834

Definition 8.1.9 computes the cohomology H˚E of the total space.2835

Proof. This is an application of the later lemma lemma 8.4.11 to the zig-zag of quasi-isomorphisms2836

connecting pA, dq “ APLpBq and H˚pAq “
`

H˚pBq, 0
˘

. In the lemma, let V “ PpGq and ξ : PpGq ÝÑ2837

APLpBq a lifting of2838

PpGq τ
ÝÑ QpBGq ãÝÝÑ H˚pBGq ÝÑ H˚pBq.

The ring endomorphism ψ in the above proof can actually be seen to be an automorphism by2839

a filtration argument; if one filters by B-degree, then ψ induces the identity map on the associated2840

graded algebras.2841

We will be able to use this result later to discuss bundles over formal homogeneous spaces2842

G{K, but the case of critical interest to us, of course, is the Borel fibration G ÝÑ GK ÝÑ BK.2843

Definition 8.1.13. The Cartan algebra of the Borel fibration G ÝÑ GK ÝÑ BK, given by C “2844

H˚pBKqbH˚pGq equipped with antiderivation d extending ρ˚ ˝ τ : PpGq ÝÑ QpBGq ÝÑ H˚pBKq,2845

is the Cartan algebra of the pair pG, Kq.2846

The key theorem, due to Cartan, is that the Cartan algebra of a compact pair pG, Kq does2847

indeed compute H˚pG{Kq.2848

Theorem 8.1.14 (Cartan, [Car51, Thm. 5, p. 216][Bor53, Thm. 25.2]). Given a compact pair pG, Kq,2849

there is an isomorphism H˚
`

H˚pBKqbH˚pGq
˘ „
ÝÑ H˚pG{Kq making the following diagram commute:2850

H˚
`

H˚pBKqbH˚pGq
˘

��

  
H˚pBKq

χ˚ !!

==

H˚pGq

H˚pG{Kq
j˚

>>
(8.1.15)

Proof. Because H˚pBKq – S
“

QpBGq
‰

is a free cga, it is formal and Proposition 8.1.12 applies.2851

To avoid use of Lemma 8.4.11 in full generality, note that picking generators for H˚pBKq2852

defines a cdga quasi-isomorphism H˚pBKq ÝÑ APLpBKq and apply the spectral sequence of the2853

filtration with respect to the grading of APLpBKq to the induced cdga map H˚pBKqbH˚pGq ÝÑ2854

APLpBKqbH˚pGq to get an isomorphism on E2 pages.2855

Remark 8.1.16. If B is not formal, the Cartan algebra of a bundle can indeed fail to compute the2856

cohomology of the total space. For an example of this phenomenon, see Section 3 of Baum and2857

Smith [BS67, p. 178].2858

2 There exists a single quasi-isomorphism
`

H˚pBGq, 0
˘

ÝÑ
`

APLpBGq, dAPLpBGq
˘

, but for general B, a chain of
quasi-isomorphisms is required.
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Corollary 8.1.17. There is an isomorphism2859

H˚pG{Kq – Tor‚,‚
H˚pBGq

`

Q, H˚pBKq
˘

.

Proof. By Theorem 8.1.14 and Proposition 8.1.11, H˚pG{Kq – H˚pCq – Tor‚,‚
H˚pBGq

`

Q, H˚pBq
˘

.2860

Remark 8.1.18. If we set K “ G, this statement makes precise our motivating claim in the introduc-2861

tion to Section 7.3 that the differentials in the SSS of the universal bundle G Ñ EG Ñ BG filter an2862

antiderivation τ extending the transgression which can be seen as the “one true differential.” In2863

the same way, the SSS of the Borel fibration G Ñ GK Ñ BK filters the differential on the Cartan2864

algebra. This does not make this SSS, which we have already exploited to such effect, any less2865

valuable: we will see examples in the next section where the Cartan algebra is unpleasantly com-2866

plicated and it behooves us to look at the associated graded algebra E8 “ gr H˚pG{Kq instead.2867

Moreover, in precisely the complement of this “bad” case, the associated graded construction is2868

an isomorphism, so that the SSS of the Borel fibration calculates H˚pG{Kq on the algebra level.2869

Rather than one description being more powerful, it is the equivalence of these two descriptions2870

that turns out to be critical.2871

Remark 8.1.19. It is only fair to say at one point why we insist so fervently that K be connected.2872

The main issue is that if K is not connected, then BK will not be simply-connected, and the2873

Serre spectral sequence of the Borel fibration is calculated with local coefficients. One can still2874

say some things, for if K0 ă K is the identity component, then BK0 ÝÑ BK and G{K0 ÝÑ G{K2875

are finite coverings, so if |π0K| is invertible in k, one can embed H˚pG{Kq as the π0K-invariants2876

of H˚pG{K0q by Proposition B.2.1 and likewise H˚
K as the π0K-invariants of H˚

K0
.2877

That G be connected, on the other hand, is not a real restriction if we insist K be connected,2878

for then K will lie in the identity component G0 of G and G{K will factor homeomorphically as2879

π0Gˆ G0{K, a finite disjoint union of copies of G0{K.2880

Historical remarks 8.1.20. The original, unpublished statement of Chevalley’s theorem [Kos51,2881

p. 70][Bor53, p. 183][Car51, p. 61], as best the author can tell, applied to the de Rham cohomology2882

of a smooth principal G-bundle with compact total space. This statement is cited by Cartan and2883

Koszul both (without proof) in the Colloque proceedings. Borel’s generalization of this result, as2884

proved in his thesis, removes the smoothness hypotheses by relying, instead of on forms, on2885

an object of Leray’s creation known as a couverture, which was superseded so quickly and so2886

thoroughly by the ring of global sections of a fine R-cdga resolution of the constant sheaf R that2887

it never acquired an English translation. Borel’s statement of the result still requires compactness2888

of the base because it relies on (what is essentially) sheaf cohomology with compact supports2889

and a result of Cartan which in modern terms can be interpreted as saying a resolution of the2890

constant sheaf R on a paracompact Hausdorff space by a fine sheaf of R-cdgas always exists.2891

Neither the principal bundle G Ñ EG Ñ BG nor a Q-cdga model of cohomology was available2892

to Borel at the time, so in his statement [Bor53, Thm 24.1] of Chevalley’s theorem, our H˚pBq is2893

replaced with (essentially, again) a fine resolution B of the real constant sheaf on B.2894

As we have noted in Historical remarks 7.4.8, the unavailability of BK available, complicated2895

Borel’s proof, which hence needed to invoke n-universal K-bundles Epn, Kq ÝÑ Bpn, Kq for n2896

sufficiently large. Borel’s proof also applied not the Serre spectral sequence as we do, but the2897

Leray spectral sequence, applied simultaneously to an early formulation of a sheaf and a couverture.2898

We will reproduce a less drastic modernization of Borel’s original argument in Appendix C.3,2899

and delve slightly further there into the meaning of the Leray spectral sequence, fine sheaves,2900

and couvertures.2901
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8.2. The structure of the Cartan algebra, I2902

The Cartan algebra makes a few results on H˚pG{Kq easy which would require more sophisti-2903

cation if attacked with the map of spectral sequences that was the subject of Section 8.1.1. We2904

reproduce here the important bundle diagram (8.1.2) whose induced spectral sequence map the2905

Cartan algebra encodes.2906

G

j
��

G

��
GK //

χ

��

EG

��
BK

ρ
// BG.

One important subobject of the Cartan algebra is related to the image of the map j˚ : H˚pG{Kq ÝÑ2907

H˚pGq induced by j : G ÝÝ� G{K » GK.2908

Definition 8.2.1. The image of j˚ : H˚pG{Kq ÝÑ H˚pGq is called the Samelson subring of H˚pGq.2909

It meets the primitives PH˚pGq ď H˚pGq in the Samelson subspace pP.2910

The importance of the Samelson subspace is that in fact it generates im j˚.2911

Proposition 8.2.2. The Samelson subring is the exterior algebra ΛpP.2912

Proof (Borel [Bor53, Prop. 21.1, p. 179]). By definition pP ď im j˚, so that ΛpP ď im j˚, and we2913

want to see the reverse inclusion. Because primitives are involved, we will need the coproduct2914

on H˚pGq. Recall that the left translation action of G on G{K descends from the multiplication of2915

G, in the sense that the left diagram below commutes:2916

Gˆ G

idˆ j

��

µ // G

j

��

H˚pGqbH˚pGq H˚pGq
µ˚oo

Gˆ G{K
ψ // G{K, H˚pGqbH˚pG{Kq

idb j˚

OO

H˚pG{Kq.
ψ˚oo

j˚

OO

The right diagram is that induced in cohomology, applying the Künneth theorem and assuming2917

the torsion of G is invertible in k. From commutativity of the diagram2918

Suppose that we have shown the inclusion in degrees less than that of y P H˚pG{Kq. Fix an2919

ordered basis pziq
rk G
i“1 of PH˚pGq, so that monomials zI “

ś

iPI zi for I Ď t1, . . . , rk Gu form a basis2920

of H˚pGq. Then we can write p˚pyq “ ax`
ř

bKzK with x P PH˚pGq and a, bK P k, and2921

pidb j˚qψ˚pyq “ µ˚p˚pyq “ ap1b x` xb 1q `
ÿ

K

ÿ

I>J“K

˘bKxI b x J

in the resulting basis for H˚pGqbH˚pGq. In particular, for each K with bK ‰ 0, and each i P K the2922

sum contains the term ˘bKzKztiub zi P H˚pGqbH˚pGq, which implies that zi P pP “ PH˚pGq X2923

im j˚. Thus
ř

bKzK P im j˚, so ax “ p˚pyq´
ř

bKzK P im j˚. But x was assumed primitive, so x P pP2924

and p˚pyq P ΛpP.2925

Proposition 8.2.3. If Hě1
K denotes the augmentation ideal of H˚

K, then one has pP “ d´1
`

Hě1
K ¨ im d

˘

.2926
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Proof. By construction, the Serre spectral sequence of G Ñ GK Ñ BK is the filtration spectral2927

sequence of the Cartan algebra pH˚
KbH˚G, dq with respect to the grading of H˚

K. Elements z of2928

pPr´1 “ Pr´1H˚GX im j˚ are represented by elements 1b z P E0,‚
2 which survive to E8, meaning2929

all differentials vanish on the class of 1b z. This means that the image under the Cartan dif-2930

ferential, xb 1 “ dp1b zq P H˚
KbQ, represents zero in the quotient E‚,0

r , or in other words lies2931

in the kernel of the quotient map H˚
KbQ “ E‚,0

2 ÝÝ� E‚,0
r . This kernel is, by induction, the ideal2932

generated by the lifts to E2 of the images of previous transgressions di : E0,i´1
i ÝÑ Ei,0

i . Since these2933

transgressions lie in degree ă r, it follows dz P Hě1
K ¨ im d.2934

On the other hand, if dz P Hě1
K ¨ im d, say dz “

ř

aj dzj with aj P Hě1
K and zj P PH˚pGq, then2935

|zj| “ |z| ´ |aj| ă |z|, so E‚,0
|z| is a quotient of H˚

K{pdzjq and particularly dzb 1 represents 0 in Er,2936

meaning 1b z survives to E8 in the filtration spectral sequence and z P pP.2937

The Samelson subring is in fact a tensor factor of H˚pG{Kq.2938

Definition 8.2.4. Let pG, Kq be a compact pair. We write qP :“ PG{pP, and call this the Samelson2939

complement; the notation is supposed to indicate its complementarity to pP.2940

Proposition 8.2.5. The Cartan algebra admits a coproduct decomposition2941

pH˚
KbΛPG, dq –

`

H˚
KbΛqP, dqb pΛpP, 0q.

The proof is just what one would naively hope; we paraphrase from Greub et al [GHV76,2942

3.15 Thm. V, p. 116].2943

Proof. Choose some Q-linear section2944

pP ÝÑ ker d ď H˚
KbΛPG

of the column projection ker d � H˚pG{Kq
j˚
Ñ H˚pGq. This section extends uniquely to a ring

injection f : ΛpP ÝÑ ker d which we can extend further to a ring map

pH˚
KbΛqPqbΛpP ÝÑ H˚

KbΛPG

pab žqb ẑ ÞÝÑ pab žq ¨ f pẑq.

This ring map is also a cochain map, since it is the identity on the first tensor-factor of its domain2945

and since for ẑ P ΛpP we have 0 “ dp f ẑq “ f
`

0pẑq
˘

.2946

It remains to see f is bijective. Note that f is the identity on HKbΛqP and that given an2947

element z P pP, since f is defined to be a section of the projection to the leftmost column, we2948

have f pzq ” 1b z
`

mod Hě1
K

˘

. Thus f preserves the the horizontal filtration induced by the2949

filtration FpH˚
K “

À

iěp Hp
K on the base H˚

K and induces an isomorphism gr
‚

f on associated2950

graded algebras. By Proposition 2.7.2, f is an isomorphism.2951

Corollary 8.2.6. Let pG, Kq be a compact pair. Then there exists a tensor decomposition2952

H˚pG{Kq – H˚pH˚
KbΛqP, dqbΛpP,

where the subring ΛpP “ im j˚ ď H˚pGq is induced from the projection j : G ÝÑ G{K.2953

We write the first factor as J.2954
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Corollary 8.2.7. The factor J satisfies Poincaré duality.2955

Proof. Since G{K is a compact manifold, H˚pG{Kq is a PDA by Theorem A.2.10, and the exterior2956

algebra ΛpP is a PDA, so by Proposition A.2.12, so also must be the remaining factor J.2957

The same way that im j˚ admits a description as the leftmost column of E8 for the SSS of2958

G Ñ GK Ñ BK, so also the image of χ˚ admits a description as the bottom row E‚,0
8 .2959

Definition 8.2.8. The map χ˚ : H˚
K ÝÑ H˚pG{Kq is traditionally called the characteristic map and2960

im χ˚ – H˚
K {{H˚

G the characteristic subring of the pair pG, Kq. The factor J “ H˚
`

H˚
KbΛqP, d

˘

of2961

H˚pG{Kq in the decomposition Corollary 8.2.6 is called the characteristic factor.2962

The name characteristic subring arises because, up to homotopy, the classifiying map G{K ÝÑ2963

BK of the principal K-bundle K Ñ G Ñ G{K is the projection χ : GK ÝÑ BK of the Borel fibration2964

(see (8.0.1)), and the characteristic classes of the former K-bundle bundle lie in im χ˚. The charac-2965

teristic factor is so called because H˚
K ãÝÝÑ H˚

KbH˚pGq factors through H˚
KbΛqP, making clear the2966

following containment.2967

Proposition 8.2.9. The characteristic ring im χ˚ is contained in the characteristic factor J.2968

The cohomology sequence (8.0.2) is coexact at H˚
K, yielding the following pleasing description2969

of the characteristic subring.2970

Proposition 8.2.10. The characteristic subring is given by im χ˚ – H˚
K {{H˚

G.2971

Proof. The bottom row H˚
K lies in the kernel of the Cartan differential dC, and meets the image2972

im dC in the ideal j generated by ρ˚pim τq. Since τ : PpGq „
ÝÑ QpBGq surjects onto generators2973

of H˚
G, it follows that the ideal j which is the kernel of H˚

K ÝÑ H˚
`

H˚
KbH˚pGq

˘

is generated2974

by the image ρ˚Hě1
G of the augmentation ideal, so this image is H˚

K{pρ
˚Hě1

G q “ H˚
K {{H˚

G, the2975

ring-theoretic cokernel. By the commutativity of the diagram (8.1.15), this image subalgebra cor-2976

responds to im χ˚ in H˚pG{Kq.2977

This information is already enough to compute H˚pG{Kq in many cases of interest.2978

8.3. Cohomology computations, I2979

Lest we miss the trees for the forest in fleshing out our general description of the Cartan algebra,2980

we take a detour to describe the cohomology of two popular classes of homogeneous spaces G{K,2981

namely those for which H˚pGq Ñ H˚pKq is surjective and those for which rk G “ rk K.2982

8.3.1. Cohomology-surjective pairs2983

The map (8.1.2) of spectral sequences lets us easily reobtain Hans Samelson’s classic theorem2984

that H˚pGq – H˚pKqbH˚pG{Kq whenever H˚pGq ÝÝ� H˚pKq. Pictorially, this means the Serre2985

spectral sequence of G Ñ GK Ñ BK looks like that of Up4q Ñ Up4qSpp2q Ñ BSpp2q, as pictured in2986

Figure 8.3.3; for now, just look at the E8 page, on the right.2987

Definition 8.3.1. If pG, Kq is a compact pair such that K ãÑ G induces a surjection H˚pGq ÝÑ2988

H˚pKq in cohomology, we call pG, Kq a cohomology-surjective pair.2989



Figure 8.3.3: The Serre spectral sequence of Up4q Ñ Up4qSpp2q Ñ BSpp2q; nonzero differentials (shown) send ˆ ÞÑ ˝, whereas ‚s survive to the next page
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Theorem 8.3.2 (Samelson [Sam41, Satz VI(b), p. 1134]). Suppose that pG, Kq is a cohomology-surjective2990

pair. Then2991

1. ρ˚ : H˚
G ÝÑ H˚

K is surjective,2992

2. χ˚ : H˚
K ÝÑ H˚pG{Kq is trivial,2993

3. the Samelson subspace pP is complementary to PpKq in PpGq,2994

4. H˚pG{Kq is the exterior algebra ΛpP – ΛPpGq {{ΛPpKq, and2995

5. H˚pGq – H˚pKqbH˚pG{Kq.2996

6. If the Poincaré polynomials of PG and PK are respectively ppPGq “
řn

j“1 tdj and ppPKq “
ř`

j“1 tdj ,2997

then ppG{Kq “
śn

j“``1p1` tdjq.2998

Proof. By Proposition 1.0.11 the fact i : K ãÝÝÑ G is a group homomorphism implies i˚ : H˚pGq ÝÝ�2999

H˚pKq takes the primitives PpGq ÝÑ PpKq. Because we have assumed i˚ surjective, it follows3000

i˚PpGq “ PpKq and because i˚ is a ring homomorphism that ker i˚ – Λ
“

PpGq{PpKq
‰

.3001

The outer columns of (8.1.1) are a bundle map between the universal principal K- and G-3002

bundles, inducing a map of Serre sequences interleaving the transgressions. Restricting to prim-3003

itives, one has the commutative diagram3004

PpKq

τK„

��

PpGqi˚oooo

τG „

��
QpBKq QpBGq,

Qρ˚
oo

(8.3.4)

which implies that Qpρ˚qQpBGq “ QpBKq and hence that ρ˚ : H˚pBGq ÝÑ H˚pBKq is also sur-3005

jective. It follows from the triviality of χ˚ ˝ ρ˚ that the characteristic subring im
`

χ˚ : H˚
K ÝÑ3006

H˚pG{Kq
˘

is Q.3007

If we embed PpKq � PpGq by taking a section of i˚, we see from the transgression square3008

(8.3.4) that the complement of PpKq is annihilated by ρ˚ ˝ τG, so that the Samelson subspace3009

pP ď PpGq is a complement to PpKq, or pP – PpGq{PpKq.3010

Because ρ˚ ˝ τ ends PpKq onto QpBKq and annihilates pP, we have a ring factorization of3011

E2 – H˚pBKqbH˚pGq as3012
“

H˚pBKqbH˚pKq
‰

bΛpP,

which respects the transgression in that all differentials are trivial on pP, and the left tensor factor3013

is the beginning of the filtration spectral sequence corresponding to the Koszul complex on3014

QpBKq (cf. Proposition 7.4.2). It follows E8 “ E0,‚
8 – ΛpP. Thus we can identify the short coexact3015

sequence H˚pKq Ð
i˚

H˚pGq Ð
j˚

H˚pG{Kq with3016

0 Ð ΛPpKq ÐÝ Λ
“

PpKq ‘ pP
‰

ÐÝ ΛpP Ð 0;

the tensor factorization is valid simply because by Proposition A.4.3 the free cga ΛPpKq is pro-3017

jective.3018

The result on Poincaré polynomials follows from the statements in Appendix A.2.3, since3019

ppΛPGq “
śn

j“1p1` tdiq and ppΛPKq “
ś`

j“1p1` tdiq.3020
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Remarks 8.3.5. (a) With the benefit of hindsight, our calculations of the cohomology rings of SUpnq3021

in Proposition 3.1.6 and of VjpCnq and VjpHnq in Proposition 3.1.8 can all be seen to be of this3022

form.3023

(b) The Samelson isomorphism H˚pGq – H˚pG{KqbH˚pKq also follows directly from Corol-3024

lary 1.0.7 independent of any consideration of classifying spaces.3025

[Introduce minimal models here.]3026

Proposition 8.3.6 ([Car51, 1˝, p. 69][Bor53, Corollaire, p. 179]). Let i : K ãÝÝÑ G be an inclusion of3027

compact, connected Lie groups. Then ρ˚ : H˚
G ÝÑ H˚

K is surjective if and only if i˚ : H˚pGq ÝÑ H˚pKq3028

is.3029

Proof. This follows immediately from the commutative square (8.3.4) in the proof of Theorem 8.3.23030

since the vertical maps are isomorphisms.3031

Most of these conditions are clearly equivalent. In fact, a weaker dimension condition on3032

H˚pG{Kq is equivalent to cohomology-surjectivity.3033

Proposition 8.3.7 ([GHV76, Thm. 10.19.X(6) p. 466]). Let pG, Kq be a compact pair. One has3034

h‚pGq ď h‚pG{Kq ¨ h‚pKq,

with equality if and only if pG, Kq is cohomology-surjective.3035

Proof [GHV76, Cor. to Thm. 3.18.V, p. 125]. This follows from Corollary 2.3.5 as applied to the3036

Serre spectral sequence of K Ñ G Ñ G{K, evaluating the Poincaré polynomials at t “ 1.3037

Example 8.3.8. Recall from Example 7.6.2 that H˚
`

BUp4q
˘

ÝÑ H˚
`

BSpp2q
˘

is surjective. From
Proposition 8.3.6, we see as well that H˚

`

Up4q
˘

ÝÑ H˚
`

Spp2q
˘

, as promised. We had

c1 ÞÝÑ 0,

c2 ÞÝÑ ´q1,

c3 ÞÝÑ 0,

c4 ÞÝÑ q2,

so in the primitive subspace P
`

Up4q
˘

“ Qtz1, z3, z5, z7u we have PSpp2q “ Qz3 ‘Qz7 and pP “3038

Qz1 ‘Qz5. It follows from Section 8.3.1 that3039

H˚
`

Up4q{Spp2q
˘

– Λrz1, z5s, deg zj “ j.

The resulting spectral sequence, Figure 8.3.3, appears complicated, but this complexity is only3040

apparent. Staring closely at the picture, one sees that ΛpP “ Λrz1, z5s is a tensor-factor, to which3041

nothing ever happens, and the massive simplifications after the 4th and 8th pages just witness3042

that the Koszul complexes Krz3s and Krz7s are other tensor-factors.3043

Alternately, not bothering with the picture, the transgression in the universal principal Up4q-3044

bundle takes z1 ÞÝÑ c1 and z5 ÞÝÑ c3, this means that ΛpP “ Λrz1, z5s splits off in the Cartan3045

algebra immediately, and Srq1, q2sbΛrz3, z7s is a Koszul complex, so acyclic.3046

A little more work shows that H˚
Up2nq ÝÑ H˚

Sppnq is surjective for all n with kernel the odd3047

Chern classes, and it follows3048

H˚
`

Up2nq{Sppnq
˘

– Λrz1, . . . , z4n´3s, deg zj “ j.
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As an example application of Samelson’s theorem, we prove a result which will be of use to3049

us later in investigating equivariant formality of isotropy actions.3050

Lemma 8.3.9. Let S be a torus in a compact, connected Lie group G and Z “ ZGpSq its centralizer in Z.3051

The cohomology of Z decomposes as3052

H˚pZq – H˚pSqbH˚pZ{Sq.

Consequently, H˚pZ{Sq is an exterior algebra on rk G´ rk S generators and h‚pZ{Sq “ 2rk G´rk S.3053

Proof. By Theorem 8.3.2, it will be enough to show the inclusion S ãÝÝÑ Z surjects in cohomology.3054

Since S is normal in Z, the quotient Z{S is another Lie group, so π2pZ{Sq “ 0 by Corollary 1.0.123055

and in the long exact homotopy sequence (Theorem B.1.4) of the bundle S Ñ Z Ñ Z{S we find the3056

fragment 0 “ π2pZ{Sq Ñ π1S Ñ π1Z. Since S and Z are topological groups, their fundamental3057

groups are abelian by Proposition B.4.3 and hence isomorphic to their first homology groups3058

by Proposition B.1.5, so H1pS;Zq ÝÑ H1pZ;Zq is injective. It follows from Theorem B.1.1 that3059

H1pS;Qq ÝÑ H1pZ;Qq is injective, and, dualizing, that H1pZ;Qq ÝÑ H1pS;Qq is surjective. Since3060

H1pSq generates H˚pSq, it must be that H˚pZq ÝÑ H˚pSq is surjective as well.3061

The statement on Betti number follows because Z must have the same rank as G, since S is3062

contained in some maximal torus of G by Theorem B.4.11.3063

Historical remarks 8.3.10. Proposition 8.3.6 was first proven by Cartan [Car51, 1˝, p. 69][Bor53,3064

Corollaire, p. 179].3065

A surjection H˚pGq ÝÑ H˚pKq in cohomology corresponds dually to an injection H˚pKq ÝÑ3066

H˚pGq in homology, and it was this condition Hans Samelson researched in the work in which3067

the tensor decomposition Theorem 8.3.2.5 above was first proven [Sam41]. It has since been said3068

that K is totally nonhomologous to zero in G. Samelson said the Isotropiegruppe U nicht homolog in3069

der Gruppe G ist or U  0, the letter U for Untergruppe (our K), and showed if the fundamental3070

class rKs P H˚pKq did not become zero in H˚pGq, then H˚pKq ÝÑ H˚pGq: the fundamental class3071

rKs P H˚pK;Qq – ΛpPKq˚ is the product of a set of algebra generators, so if ρ˚rKs ‰ 0 in H˚pGq,3072

then ρ˚ is injective. The “totally” is redundant and sometimes dropped for this reason.3073

When the cohomology ring rather than the homology ring became the primary actor, later3074

expositors named the condition, by analogy, totally noncohomologous to zero, though that name3075

taken literally would imply the surjection H˚pGq ÝÑ H˚pKq should be injective. These conditions3076

have been abbreviated variously TNHZ, TNCZ, and n.c.z. For safety’s sake, in dealing with this3077

situation we will always simply say a map surjects in cohomology.3078

8.3.2. Pairs of equal rank3079

We recast some of the results from Chapter 6 in this framework.3080

Definition 8.3.11. A compact, connected pair pG, Kq is an equal-rank pair if rk G “ rk K.3081

Theorem 8.3.12 (Leray). Let pG, Kq be an equal-rank pair. Then3082

1. ρ˚ : H˚
G ÝÑ H˚

K is injective,3083

2. χ˚ : H˚
K ÝÑ H˚pG{Kq is surjective,3084

3. the Samelson subspace pP is trivial,3085
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4. H˚pG{Kq – HK {{H˚
G – HWK

T {{HWG
T .3086

5. If the Poincaré polynomials of PH˚pGq and PH˚pKq are respectively given by ppPGq “
řn

j“1 t
2gj´1
j3087

and ppPKq “
řn

j“1 t
2k j´1
j , then the Poincaré polynomial of G{K is3088

ppG{Kq “
ppBKq
ppBGq

“

n
ź

j“1

1´ t2k j

1´ t2gj
. (8.3.13)

Proof. The inclusion K ãÝÝÑ G induces an injection of Weyl groups WK WG and in turn an3089

inclusion HWG
T ãÝÝÑ HWK

T ãÑ H˚
T of Weyl invariants. Recalling from Corollary 6.3.7 that H˚

G –3090

HWG
T , this means ρ˚ : H˚

G ÝÑ H˚
K are injective.3 Since the transgression τ : PG „

ÝÑ QpBGq is also3091

injective, the composition ρ˚ ˝ τ : PG ÝÑ H˚
K is as well, so its kernel pP is 0. The injectivity of3092

ρ˚ combined with the fact im χ˚ – H˚
K {{H˚

G means H˚
K – H˚

Gb im χ˚ as an H˚
G-module, so the3093

Cartan algebra H˚pBKqbH˚pGq factors as3094

pim χ˚, 0qb
`

H˚
GbH˚pGq, d

˘

.

Since the second term is a Koszul complex, which has trivial cohomology by Proposition 7.3.4,3095

we have H˚pG{Kq – im χ˚ “ H˚
K {{H˚

G by the Künneth theorem.3096

As far as Poincaré polynomials are concerned, the statements assume the results of Chapter 1,3097

that H˚pGq and H˚pKq are exterior algebras, and by Theorem 7.4.1 we know QpBGq – ΣPG is3098

spanned by generators of degree 2gj and H˚pBGq “ S
“

QpBGq
‰

is a polynomial ring on these3099

generators. By the results of Appendix A.2.3, we have3100

ppBGq “
ź

j

1
1´ t2gj

and ppBKq “
ź

j

1
1´ t2k j

.

The H˚
G-module isomorphism H˚

K – H˚
GbH˚pG{Kq reduces on the the level of graded vector3101

spaces to3102

ppBKq “ ppBGq ¨ ppG{Kq.

Multiplying through by ppBGq´1 “
ś

jp1´ t2gjq yields the claimed formula.3103

Corollary 8.3.14 (Leray [Bor53, Prop. 29.2, p. 201]). Let G be a compact, connected Lie group and T a3104

maximal torus. Then the characteristic map χ˚ : H˚pBTq ÝÑ H˚pG{Tq is surjective, and if the Poincaré3105

polynomial of PpGq is ppPGq “
řn

j“1 t
2gj´1
j , then3106

ppG{Tq “
n
ź

j“1

1´ t2

1´ t2gj
.

3 We have proved this from abstract results about invariants, but these maps arise from the cohomology of the base
spaces in the sequence

GT //

��

GK //

��

EG

��
BT // BK // BG,

of principal G-bundles maps, where the maps of total spaces can be conceived as “further quotient” maps among
quotients of EGˆ G.
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We have also a converse.3107

Proposition 8.3.15. If H˚pG{Kq is concentrated in even degrees, then K and G are of equal rank.3108

Proof. If H˚pG{Kq is concentrated in even degrees, then the Euler characteristic χpG{Kq ą 0.3109

Thus the result follows from Corollary 6.2.5; if we had rk K ă rk G, then we would also have3110

χpG{Kq “ 0.3111

This result also admits a purely algebraic proof involving commutative algebra and the Samel-3112

son subspace.3113

Corollary 8.3.16 (Borel [Bor53, Corollaire, p. 168]). Suppose pG, Kq is a pair of compact, connected3114

Lie groups such that the characteristic homomorphism χ˚ : H˚
K ÝÑ H˚pG{Kq is surjective. Then for every3115

principal G-bundle G Ñ E Ñ B, the fiber inclusion of the quotient bundle G{K ÝÑ E{K Ñ B is3116

surjective in cohomology.3117

Proof. The principal bundle G Ñ E Ñ B is classified by a map B ÝÑ BG, inducing a bundle3118

map to the universal bundle G Ñ EG Ñ BG. Taking the right quotient of the total spaces of both3119

bundles by K yields a bundle map3120

G{K

f
��

G{K

χ

��
E{K

��

h // BK

��
B // BG.

But the existence of this map puts us in the situation of Theorem 2.4.1, so one has H˚pE{Kq ÝÑ3121

H˚pG{Kq surjective, and moreover3122

H˚pE{Kq – H˚pBq b
H˚G

H˚
K.

Example 8.3.17. Consider the pair
`

Upnq, Tn
˘

. The Weyl group WUpnq is the symmetric group Sn3123

acting on H˚
T “ Qrt1, . . . , tns by permuting the generators tj P H2pBTq, so H˚

Upnq “ Qrc1, . . . , cns is3124

generated by the elementary symmetric polynomials cj “ σjp~tq. It follows that the cohomology of3125

the complex flag manifold Upnq{Tn is3126

H˚
`

Upnq{Tn˘ – Qrt1, . . . , tns{pc1, . . . , cnq,

with Poincaré polynomial3127

p
`

Upnq{Tn˘ “
p1´ tqn

N

śn
j“1p1´ tqj “ 1p1` tqp1` t` t2q ¨ ¨ ¨ p1` t` t2 ` ¨ ¨ ¨ ` tn´1q,

which, evaluated at t “ 1, yields rational dimension n! “ |Sn| “ |WUpnq|. We will see this is no3128

coincidence.3129

If we take n “ 2, then3130

Up2q{T2 “
Up2q

N

Up1q ˆUp1q « Gp1,C2q “ CP1 « S2,
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so we know what to expect. Indeed, c1 “ t1 ` t2 and c2 “ t1t2 in H˚
T “ Qrt1, t2s, so3131

H˚
`

Up2q{T2˘ – H˚
T2 {{H˚

Up2q “
Qrt1, t2s

N

pt1 ` t2, t1t2q
– Qrt1s{pt2

1q

as predicted.3132

For a less trivial example, take n “ 3, so that c1 “ t1 ` t2 ` t3 and c2 “ t1t2 ` pt1 ` t2qt3 and
c3 “ t1t2t3. Since we are setting each cj ” 0, we can eliminate out the generator t3 ” ´pt1 ` t2q

and know 0 ” c2 ” t1t2´ pt1` t2q
2 “ ´pt2

1` t2
2` t1t2q. Simplifying c3 ” 0 yields t1t2

2` t2
1t2 ” 0, so

H˚
`

Up3q{T3˘ –
Qrt1, t2s

N

pt2
1 ` t2

2 ` t1t2, t2
1t2 ` t1t2

2q.

See Figure 8.3.18.3133

Figure 8.3.18: The E8 page for Up3q{T3

0 1 t1, t2 t2
1, t2

2 t3
1 ` t3

2

0 2 4 6

Example 8.3.19. Consider the pair
`

Sppnq, SppkqˆSppn´ kq
˘

, yielding as quotient the quaternionic3134

Grassmannian Gpk,Hnq. The Weyl group WSppnq is the signed perrmution group t˘1un ¸ Sn: in3135

the semidirect product, Sn acts by permuting the entries of t˘1un, and WSppnq acts on H˚
T “3136

Qrt1, . . . , tns by permuting and negating the generators tj P H2pBTq, so H˚
Sppnq “ Qrq1, . . . , qns is3137

generated by the elementary symmetric polynomials qj “ σjpt2
1, . . . , t2

nq in the squares t2
j P H4pBTq.3138

The factors of the Weyl group WSppkqˆSppn´kq “ WSppkq ˆWSppn´kq separately permute the tensor3139

factors Qrt1, . . . , tks and Qrtk`1, . . . , tns, so3140

H˚
`

Gpk,Hnq
˘

– Qrt1, . . . , tks
WSppkq bQrtk`1, . . . , tns

WSppn´kq
M

pq1, . . . , qnq
.

We will calculate explicitly what happens if n “ 5 and k “ 3. For convenience, set uj “ t2
j . The3141

numerator ring H˚
Spp3qbH˚

Spp2q is the polynomial subring Qrr1, r2, r3, s1, s2s of Qru1, u2, u3, u4, u5s3142

generated by the five generators on the left, and the denominator ideal is generated by the3143

elements on the right:3144

r1 “ u1 ` u2 ` u3,

r2 “ u2pu1, u2, u3q,

r3 “ u1u2u3,

s1 “ u4 ` u5,

s2 “ u4u5;

q1 “ r1 ` s1,

q2 “ r1s1 ` r2 ` s2,

q3 “ r3 ` r2s1 ` r1s2,

q3 “ r3s1 ` r2s2,

q5 “ r3s2.

Imposing the congruences generated by setting each qj ” 0 and crunching relations a few times3145

yields3146

H˚
`

Gp3,H5q
˘

– Qrr1, r2s
M

pr4
1 ´ r2

1r2 ´ r2
2, 2r3

1r2 ` 3r1r2
2q,

|r1| “ 4, |r2| “ 8.
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Historical remarks 8.3.20. Leray’s determination of H˚pG{Tq dates back to 1946 in the event G is a3147

compact, connected, classical simple group [Ler46b]. By 1949, he only requires that the universal3148

compact cover (see Theorem B.4.5) rG of G contain no exceptional factors [Ler49a]. His original3149

statement of Theorem 8.3.12 requires no exceptional group to occur as factors of the universal3150

compact cover rG of G, but allows K to be any closed subgroup, not necessarily connected, of3151

equal rank. His additional requirement on G is removed by the time of his contribution [Ler51] to3152

the 1950 Brussels Colloque de Topologie. The formula (8.3.13) was first conjectured by Guy Hirsch3153

and is hence traditionally called the Hirsch formula. According to Dieudonné [Die09, p. 448],3154

Cartan and Koszul obtained this result independently around the same time. The initial proof3155

that H˚pG{Tq is the regular representation of WG also dates to Leray in the Bruxelles conference;3156

he had earlier [Ler49a] shown the same result holds if G is finitely covered by a product of3157

classical groups.3158

8.4. The structure of the Cartan algebra, II: formal pairs3159

Returning to our discussion of homogeneous spaces, let pG, Kq be a compact pair and consider3160

the Cartan algebra H˚
KbH˚pGq with differential d induced by ρ˚ ˝ τ.3161

Recall that if the Samelson subspace pP ď H˚pGq is the subspace of the primitives of G where3162

d vanishes and qP “ PG{pP is the Samelson complement, we defined the characteristic factor to be3163

J :“ H˚
`

H˚
KbΛqP, d

˘

and found a tensor decomposition (Corollary 8.2.6)3164

H˚pG{Kq – JbΛpP.

One would like in a similar way to be able to tensor-factor out the characteristic subring im χ˚3165

from J, but this is not generally possible. The best we are able to do in this regard is the following.3166

Proposition 8.4.1. The characteristic ring im χ˚ is simultaneously a subring and quotient ring of the3167

characteristic factor J “ H˚pH˚
KbΛqPq.3168

Proof. Since the image of d meets H˚
K in ρ˚H˚

G, the composite projection3169

H˚
KbH˚pGq ÝÝ� H˚

K ÝÝ� H˚
K {{H˚

G “ im χ˚

descends in cohomology to a homomorphism H˚pG{Kq ÝÝ� im χ˚ split by the defining inclusion3170

im χ˚ ãÝÝÑ H˚pG{Kq.3171

In this section, we explore the propitious case in which the characteristic subring im χ˚ is the3172

characteristic factor J.3173

Definition 8.4.2. If H˚pG{Kq – im χ˚bΛpP, we call pG, Kq a formal pair (traditionally, such a pair3174

is called a Cartan pair).3175

Example 8.4.3. Suppose pG, Kq is a cohomology-surjective pair. Then, by Theorem 8.3.2, the char-3176

acteristic factor J is trivial.3177

Example 8.4.4. Suppose pG, Kq is an equal-rank pair. Then, by Theorem 8.3.12, the Samelson sub-3178

ring ΛpP is trivial and the characteristic factor J is the characteristic ring im χ˚.3179
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One can see formal pairs as the smallest class of cases that contains both these extreme3180

examples. Another way of seeing it is this: the first interesting page of the Serre spectral sequence3181

of the Borel fibration G Ñ GK Ñ BK is E2 “ E‚,0
2 b E0,‚

2 – H˚
KbH˚pGq, a coproduct of cgas,3182

with one tensor-factor each arising from the base and the fiber of the fibration. In our examples3183

in Section 8.3.2 and Section 8.3.1, this tensor-product structure persisted throughout the entire3184

sequence, in that the decomposition Er “ E‚,0
r b E0,‚

r continued to hold, and3185

E8 “ E‚,0
8
b E0,‚

8 “
`

H˚
K {{H˚

GqbΛpP

was the tensor product of the characteristic subring im χ˚ and the Samelson subring ΛpP.4 For a3186

representative example, see Figure 8.7.4. This is also the optimal situation from a purely numer-3187

ical perspective, because, in particular, the tensor decomposition yields a factorization3188

ppG{Kq “ ppE‚,0
8 q ¨ ppE0,‚

8 q, (8.4.5)

of Poincaré polynomials and in particular, setting the formal variable t to 1, a factorization3189

h‚pG{Kq “ dimQ E‚,0
8 ¨ dimQ E0,‚

8 .

We will expound a number of properties of and equivalent characterizations of the formal3190

pair condition, in the process justifying the nomenclature. The very fact that there are so many3191

ways of stating this property should be a further argument, were one needed, for the naturality3192

of the concept.3193

But first we introduce an important bound on the dimension of the Samelson subspace.3194

Definition 8.4.6 (Paul Baum). The deficiency of a compact pair pG, Kq is the integer3195

dfpG, Kq :“ rk G´ rk K´ dim pP.

Proposition 8.4.7. The deficiency is a natural number. That is, for any compact pair pG, Kq, one has3196

dim PG´ dim PK ě dim pP.

Proof (Baum [Bau68, Lem. 3.7, p. 26]). Since qP ‘ pP “ PG by definition, it is enough to show3197

dim qP ě dim PK. This can be shown through Poincaré polynomials. We may view H˚
K as an3198

algebra over the polynomial ring A “ S
“

τpqPq
‰

by restricting ρ˚ : H˚
G ÝÑ H˚

K. If we lift a basis of3199

H˚
K {{H˚

G “ H˚
K {{ A back to H˚

K, this basis spans H˚
K as an A-module (typically with some redun-3200

dancy; we do not expect H˚
K to be a free A-module). Thus ppH˚

K {{H˚
Gq ¨ ppAq ě ppH˚

Kq (in that3201

each coefficient of tn on the left is at least its counterpart on the right), or dividing through,3202

ppH˚
K {{H˚

Gq ě
ppH˚

Kq

ppAq
.

Both the numerator and denominator on the right-hand side are products of factors 1´ tn, by3203

(A.2.13). There are dim PK such factors in the numerator and dim qP in the denominator, so if we3204

had dim PK ą dim qP, the rational function ppH˚
Kq{ppAq would have a pole at t “ 1, but this is3205

impossible because it is majorized by the polynomial ppH˚
K {{H˚

Gq.3206

4 We concede that in those examples, it was the tensor product of precisely one of those factors—there are historical
reasons why those cases were studied first.
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Theorem 8.4.8 ([Oni94, Thm. 12.2, p. 211]). Let pG, Kq be a compact pair. The following conditions are3207

equivalent:3208

1. pG, Kq is a formal pair.3209

2. The kernel pim rρ˚q of the characteristic map H˚
K

χ˚
ÝÑ H˚pG{Kq is a regular ideal in the sense of3210

Definition 7.3.6.3211

3. The sequence H˚
K

χ˚
ÝÑ H˚pG{Kq

j˚
ÝÑ H˚G is coexact.3212

4. The characteristic factor J in the decomposition H˚pG{Kq – JbΛpP is evenly-graded.3213

5. The deficiency dfpG, Kq “ dim PG´ dim PK´ dim pP is zero.3214

Proof. We always have H˚pG{Kq – JbΛpP, so the task is to prove the remaining conditions are3215

equivalent to the statement J “ im χ˚.3216

1 ðñ 2. If we singly grade the cdga C “ H˚
KbΛqP, by3217

¨ ¨ ¨ ÝÑ H˚
KbΛ2

qP ÝÑ H˚
KbΛ1

qP ÝÑ H˚
K Ñ 0, (8.4.9)

where the differential d vanishes on H˚
K and is induced by3218

qP ãÝÝÑ PG „
ÝÑ

τ
QpBGq

ρ˚

ÝÑ H˚
K

then J “ im χ˚ “ H˚
K {{H˚

G if and only if H˚pCq “ H0pCq. But if we write ~x for a basis of3219

τpqPq ď H˚
G, then C is the Koszul complex KH˚G

p~x, H˚
Kq of Definition 7.3.6. Then Proposition 7.3.93220

states this Koszul complex is acyclic if and only if the sequence is regular.3221

1 ùñ 3. By the definition Definition 8.2.1 of the Samelson subring, j˚ factors as H˚pG{Kq ÝÝ�3222

ΛpP ãÝÝÑ H˚G, so one can replace H˚G by ΛpP in the coexact sequence above. Once we factor out3223

ΛpP, the new claim is that the sequence3224

H˚
K

χ˚
ÝÑ J Ñ Q

is coexact, or that every class of positive degree in J has a representative in H˚
KbΛqP lying in the3225

ideal χpHě1
K q. But this is clearly the case if χ surjects onto J.3226

3 ùñ 1. Assume every class of positive degree in J admits a representative in the ideal pHě1
K q of3227

H˚
KbΛqP. Then the quadruple3228

a :“ Hě1
K C A :“ H˚

K, V :“ Q “ J0 ă M :“ J

satisfies M “ aM`V, so the corollary A.1.3 of Nakayama’s lemma yields J “ M “ AV “ A ¨ 1,3229

meaning χ˚ is surjective.3230

1 ùñ 4. This is clear since im χ˚ “ H˚
K {{H˚

G inherits an even grading from H˚
K.3231

4 ùñ 2. If J is evenly graded, then H1 of the Koszul complex C of (8.4.9) above must be zero3232

because qP ď PG is oddly-graded. But by Proposition 7.3.9, this also means J “ H˚pCq “ H0pCq “3233

H˚
K {{H˚

G “ im χ˚.3234
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2 ðñ 5. ([Oni94, p. 144]) Write y1, . . . , yn for a basis of QpBKq and b1, . . . , b` for a basis of3235

τpqPq ď Sryis. Note that we know that dfpG, Kq ě 0 in any event by Proposition 8.4.7, and if3236

dfpG, Kq “ 0, then dim qP “ dim PK.3237

Working over k “ Q or C, the ring kryis{pbjq is finite-dimensional as a k-module, so the variety3238

V “ Vpb1, . . . , b`q Ď kn is zero-dimensional. By a result of algebraic geometry [VA67, Ch. 16], the3239

sequence pbjq is regular if and only each component of V is pn ´ `q-dimensional. Thus pbjq is3240

regular if and only if rk K “ n “ ` “ dim qP.3241

To justification our choice of terminology, we need to bring in a concept from rational homo-3242

topy theory.3243

Theorem 8.4.10 ([Oni94, p. 145][GHV76, Thm. 10.17.VIII]). A compact pair pG, Kq is formal if and3244

only if its Cartan algebra is formal in the sense of Definition 4.1.1.3245

The proof needs a level of sophistication with models we have not needed elsewhere. The3246

crux is the following lemma, distilled from the material in Section 3.7 of Greub et al. [GHV76,3247

pp. 147–152].3248

Lemma 8.4.11. Suppose pBi, diq
n
i“0 is a zig-zag of quasi-isomorphic k-cdgas as depicted in Defini-3249

tion 4.1.1, that F “ SQbΛP is a free k-cga on a strictly-positive graded subspace V “ Q ‘ P and3250

that we are given a k-linear map ξ0 : V ÝÑ ZpB0q “ ker d0 increasing degree by one. Extend ξ0 uniquely3251

to a derivation on B0b F vanishing on B0 and define a new derivation on B0b F by δ0 “ ξ ` d0. Then3252

there exist k-cdga structures pBib F, δiq extending the δi such that the rings H˚pBib Fq are isomorphic3253

through isomorphisms which preserve the images H˚pB0q
„
ÝÑ H˚pBiq ÝÑ H˚pBib Fq3254

In particular, if pA, dq is formal, then there exists a k-cdga structure on H˚pAqb F with isomorphic3255

cohomology to that of pAb F, ξq and such that the triangle3256

H˚pAq

&&ww
H˚

`

H˚pAqb F
˘ „ // H˚pAb Fq

commutes.3257

Proof. To guarantee the second condition, that the quasi-isomorphisms to be defined among the3258

pBib F, δiq preserve the image of H˚pB0q, we stipulate at the beginning all the quasi-isomorphisms3259

we construct must restrict on the bases Bi to the original quasi-isomorphisms. Now inductively3260

suppose the construction has been established up to B “ Bi and that the differential δ “ δi on3261

Bb F is a derivation of degree 1. Write C “ Bi`1. There are two cases for the induction step,3262

quasi-isomorphisms κ : pB, dq ÝÑ pC, dCq or λ : pB, dq ÐÝ pC, dCq.3263

In the former case, using the assumed differential δ on Bb F and the fact that κ is a cochain3264

map, we extend3265

V δB
ÝÑ ZpBq κ

ÝÑ ZpCq,

uniquely to a derivation ξC on Cb F. Then δC :“ dC ` ξC is again a derivation of degree one3266

because δ is. The map κb id : Bb F ÝÑ Cb F is a ring map because κ was, and a cochain map3267

because it is so on generators.3268

In the latter case, pick a homogeneous basis pvq of V. Since λ : pB, dq ÐÝ pC, dCq is a quasi-3269

isomorphism, for each v there is a unique class in H˚pCq mapping onto rδvs P H˚pBq under3270
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H˚pλq, and we may choose an element ξCv P Z˚pCq representing this class. Since λξCv and δv3271

are cohomologous, we can then write3272

λξCv “ δv` dαpvq “ δ
`

v` αpvq
˘

for some elements αpvq P B. These maps of the basis extend k-linearly to α : V ÝÑ B and3273

ξC : V ÝÑ Z˚pCq. Uniquely extend ξC to a derivation on Cb F and define δC “ dC ` ξC. An3274

extension ψ : Cb F ÝÑ Bb F of λ to a ring map is determined uniquely by its restriction to V,3275

and for this extension to also be a cochain map pCb F, δCq ÝÑ pBb F, δq, it is necessary and3276

sufficient to demand that for v P V one have3277

δψpvq “ ψδCpvq “ ψ pξCvq
loomoon

PC

“ λξCv “ δ
`

v` αpvq
˘

.

But we can achieve this by just letting ψpvq “ v` αpvq on V.3278

It remains to see κb idF and ψ are quasi-isomorphisms; we do this for ψ, the other case3279

being slightly simpler without the complication of α. Filter Bb F and Cb F “horizontally” with3280

respect to the degree of B- and C-tensor components respectively. Then it is clear that both δ and3281

δC increase filtration degree and that ψ preserves filtration degree since the filtration degrees of3282

v and v ` αpvq are equal for v P V, so ψ induces a map of filtration spectral sequences. Since3283

deg αpvq “ 1, the element v` αpvq becomes just v in the associated graded algebra, so the map3284

of E0 pages is just λb id : Cb F ÝÑ Bb F. Since elements of the generating space V ď F are3285

sent forward at least two degrees in the filtration by δC, we find E1 “ E0 in both sequences3286

and the map of E2 pages is H˚pλqb id : H˚pBqb F ÝÑ H˚pCqb F, which by assumption is an3287

isomorphism. By Proposition 2.7.2, then, ψ is a quasi-isomorphism.3288

Proof of Theorem 8.4.10 ([GHV76, Thm. 2.19.VIII, Thm. 3.30.XI, Thm. 10.17.VIII]). For the forward
direction, one always has an algebra map

λ : pH˚
KbΛPG, dq ÝÑ

`

pH˚
K {{H˚

GqbΛpP, 0
˘

,

ab 1 ÞÝÑ
`

a` pČim ρ˚q
˘

b 1,

1b z ÞÝÑ 1b
`

z` pqPq
˘

,

which is in fact a dga homomorphism since dp1b qPq is contained in im ρ˚. If pG, Kq is a formal3289

pair, so that H˚pG{Kq – pH˚
K {{H˚

GqbΛpP, then λ is a quasi-isomorphism, so the Cartan algebra3290

pH˚
KbΛPG, dq is formal.3291

For the other direction, the strategy is to show the sequence3292

H˚
K

χ
ÝÑ H˚pG{Kq

j˚
ÝÑ H˚G

is coexact, this being one of the equivalent formulations in Theorem 8.4.8. Start by noting the3293

Cartan cdga C “ pH˚
KbH˚G, dq is quasi-isomorphic to APLpG{Kq by Theorem 8.1.14, and that by3294

the assumption that G{K is formal there also exists a zigzag of quasi-isomorphisms connecting3295

C with H˚pCq – H˚pG{Kq as equipped with the zero differential. Proposition 8.1.12 then allows3296

us to connect a cdga structure on H˚pG{KqbH˚K via a zig-zag of quasi-isomorphisms to the3297

Chevalley algebra
`

APLpG{KqbH˚K, d
˘

of the bundle K Ñ G Ñ G{K, which calculates H˚G by3298

Theorem 8.1.5.3299
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Since this zigzag connects the subalgebra APLpG{Kq of APLpG{KqbH˚K with the factor3300

H˚pCq – H˚pG{Kq of H˚pCqbH˚K, when we take cohomology, we obtain an isomorphism3301

H˚
`

H˚pG{KqbH˚K
˘ „
ÝÑ H˚G such that the following triangle commutes:3302

H˚pG{Kq
j˚

%%uu
H˚

`

H˚pG{KqbH˚K
˘ „ // H˚G.

Thus we can identify these two maps, the left being induced by the obvious inclusion H˚pG{KqbQ ãÑ3303

H˚pG{KqbH˚K and the right by the quotient map j : G Ñ G{K.3304

To show the sequence is coexact, it remains to show the common kernel of these maps is the3305

ideal generated by χpHě1
K q in H˚pG{Kq. But the differential in the algebra on the bottom left of3306

the triangle is induced by the composition3307

PK „
ÝÑ QpBKq ãÑ H˚

K
χ˚
ÝÑ H˚pG{Kq.

It follows that the image of H˚pG{Kq in H˚
`

H˚pG{KqbH˚K
˘

is the quotient of H˚pG{KqbQ by3308

the image of the generators of H˚
K, so the kernel is the ideal in H˚pG{Kq generated by χ˚pHě1

K q3309

as claimed.3310

Proposition 8.4.12. Let pG, Kq be a formal pair of Lie groups. If the Poincaré polynomials of the Samelson3311

subspace pP, the Samelson complement qP, and the primitive space PK are given respectively by3312

pppPq “
rk G´rk K

ÿ

j“1

tdj , ppqPq “
rk K
ÿ

`“1

tcj , ppPKq “
rk K
ÿ

`“1

tk j ,

then the Poincaré polynomial of G{K is3313

ppG{Kq “ ppΛpPq ¨
ppBKq

p
`

SrΣqPs
˘
“

rk G´rk K
ź

j“1

p1` tdjq ¨

rk K
ź

`“1

1´ tcj`1

1´ tk j`1

and its total Betti number is3314

h‚pG{Kq “
2rk G

2rk K ¨

rk K
ź

`“1

c` ` 1
k` ` 1

“

śrk K
`“1pc` ` 1q
|WK|

2rk G´rk K.

Proof. Given the equations (8.4.5) and (A.2.13), all that remains to be shown is that ppH˚
K {{H˚

Gq “3315

ppBKq{p
`

SrΣqPs
˘

as claimed. But Theorem 8.4.8, the generators of im ρ˚ form a regular sequence3316

of rk K elements of H˚
K of degrees cj` 1. These generators are thus algebraically independent and3317

form a polynomial subalgebra S – SrΣqPs of H˚
K such that H˚

K is a free S-module. The result then3318

follows from Proposition A.2.14.3319

Proposition 8.4.13 ([Oni94, Rmk., p. 212]). Suppose pG, Kq is a compact pair and S a maximal torus of3320

K. Then pG, Kq is a formal pair if and only if pG, Sq is.3321
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Proof. This follows from Corollary 6.3.6, with X “ G. Write W for the Weyl group of K. If pG, Sq is3322

formal, then H˚
S pGq “ H˚pG{Sq – pH˚

S {{H˚
GqbΛpP. Since the W-action on H˚pGq descends from3323

the K-action, which is trivial since K is path connected, the action of W on H˚
S pGq affects only the3324

bottom row H˚
S {{H˚

G, and we have3325

H˚pG{Kq “ H˚
KpGq – H˚

S pGq
W –

´

H˚
S
LL

H˚
G

¯

W bΛpP –

´

pH˚
S q

W LL

H˚
G

¯

bΛpP –
`H˚

K
LL

H˚
G

˘

bΛpP.

On the other hand, if pG, Kq is formal, so that H˚
KpGq – pH

˚
K {{H˚

GqbΛpP, then3326

H˚pG{Sq – H˚
S b

H˚K
H˚pG{Kq – H˚

S b
H˚K

H˚
K
LL

H˚
G
bΛpP – H˚

S
LL

H˚
G
bΛpP.

Remarks 8.4.14. Though the formality condition on pairs pG, Kq is convenient, is natural, has3327

many equivalent formulations, is guaranteed by several commonly studied sufficient conditions,3328

and is invariant under the act of replacing the isotropy group K with its maximal torus S, there3329

still seems to be no simpler way of determining formality of a randomly given pair pG, Kq than3330

carefully examining the image of the map ρ˚ : H˚
G ÝÑ H˚

S , and our knowledge has arguably not3331

improved in any major way since regular sequences were introduced into commutative algebra3332

in the mid-1950s. Indeed, it seems computing the map ρ˚ is an NP-hard problem [Ama13, Sec. 1].3333

Historical remarks 8.4.15. The deficiency first appears in Paul Baum’s 1962 doctoral disserta-3334

tion [Bau62], where it is shown inter alia that if k “ Z or k is any field and H˚pG; kq and H˚pK; kq3335

are exterior algebras and the analogue of the deficiency with k coefficients satisfies dfpG, Kq ď 2,3336

then the Eilenberg–Moore spectral sequence of G{K Ñ BK Ñ BG collapses at E2 “ TorH˚K
pk, H˚

Gq.3337

The deficiency thus links our account with the Eilenberg–Moore spectral sequence analysis of3338

the cohomology of homogeneous spaces discussed in Section 8.8.2. This deficiency is actually an3339

invariant of the homogeneous space G{K and not just of the compact pair pG, Kq, according to a3340

theorem of Arkadi Onishchik; see Onishchik [Oni72].3341

What we call a formal pair is traditionally called a Cartan pair (as seen, e.g., in the standard3342

reference by Greub et al. [GHV76, p. 431]). The condition already arises in Cartan’s classic trans-3343

gression paper in the Colloque [Car51, (3) on p. 70], so the attribution is just, but the name is3344

made inconvenient by the vast prolificacy of the Cartans: pursuant to the work of Cartan père on3345

symmetric spaces, the pair pk, pq of ˘1-eigenspaces of the Lie algebra g induced by an involutive3346

Lie group automorphism θ : G Ñ G is also called a Cartan decomposition or a Cartan pair. (The3347

author spent an embarrassingly long time in grad school finally convincing himself these two3348

concepts of “Cartan pair” are entirely unrelated.)3349

The formal pair condition also appears in the (Russian-language) writings of Doan Kuin’,3350

where—at least as the translator would have it—K is said to be in the normal condition in G. This3351

locution did not catch on. We hope that despite the existence of standard terminology, this section3352

has made the case that ours is preferable.3353

The proof of Theorem 8.4.10 is due to Steve Halperin, and in fact (personal communication)3354

is the first result he proved as a graduate student. The first published proof was in Greub et al.3355

8.5. Cohomology computations, II: symmetric spaces3356

Now we are able to discuss the cohomology of a famous class of homogeneous spaces which3357

has been intensively studied since the early 1900s, the so-called symmetric spaces. The irreducible3358
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examples have been completely classified and we will be able to study them thoroughly. It is3359

possible to discuss generalized homogeneous spaces in the same breath, so we do.3360

Definition 8.5.1. Let G be a connected Lie group and θ P Aut G a smooth automorphism of3361

finite order. Then the fixed point set Gxθy is a closed subgroup of G. Let K be a subgroup of Gxθy3362

containing the identity component pGxθyq0. Then G{K is called a generalized symmetric space. In3363

the event θ is an involution, G{K is a symmetric space. If in addition G and K are compact and3364

connected, we call pG, Kq a generalized symmetric pair.3365

It turns out all symmetric pairs are formal. The argument, already due in its essence to Élie3366

Cartan [find citation], turns into a proof G{K is geometrically formal if one verifies that the3367

representing forms we find are in fact harmonic.3368

Proposition 8.5.2. Suppose pG, Kq is a compact pair such that G{K is a symmetric space. Then pG, Kq is3369

a formal pair.3370

Proof. Recall from Proposition 6.1.1 that elements of H˚pG{K;Rq can be represented by G-invariant3371

differential forms on G{K, which are determined by their values at the identity coset, elements of3372

the exterior algebra Λpg{kq_. Recall further, from Proposition 6.1.2, that G-invariance on Ω‚pG{Kq3373

translates to Ad˚pKq-invariance in Λpg{kq_. Thus elements of H˚pG{Kq are represented by el-3374

ements of
`

Λpg{kq_
˘K. Let θ P Aut G be the involution fixing K, so that g, viewed as an xθy-3375

representation decomposes as the direct sum of the with 1-eigenspace k, the Lie algebra of K, a3376

p´1q-eigenspace p. This p is orthogonal to k under the Killing form B, for θ˚ is an isometry, and3377

if u P k and v P p, then Bpu, vq “ Bpθ˚u, θ˚vq “ Bpu,´vq. Since k is Ad˚pKq-invariant so also is p,3378

so that g{k – p as an AdpKq-representation, and hence
`

Λpg{kq_
˘K
– Λrp_sK.3379

We claim every one of these elements corresponds to a closed differential form. Indeed, be-3380

cause θ is a Lie group automorphism, the induced map θ˚ on Ω‚pG{Kq commutes with the3381

exterior derivative d, and hence with the induced differential on Λrp_s. Now, since θ˚ acts as ´id3382

on p, its dual θ˚ acts as ´id on p_ and so acts as p´1q` ¨ id on Λ`rp_s, which is spanned by wedge3383

products of ` elements of p_. Let ω be one such element. Then, since d ˝ θ˚ “ θ˚ ˝ d, we have3384

p´1q``1dω “ θ˚dω “ dθ˚ω “ p´1q`dω,

so dω “ 0. Thus all elements of
`

Λrp_sK, d
˘

are closed. Translating back, every element of3385

Ω‚pG{KqG ă Ω‚pG{Kq is closed, so
`

H˚pG{K;Rq, 0
˘

–
`

Ω‚pG{KqG, d
˘

and G{K is formal over3386

R.3387

Corollary 8.5.3. Let B be a generalized symmetric space in the sense of Definition 8.5.1 and G Ñ E Ñ B3388

a principal G-bundle over B. Then the Cartan algebra calculates H˚pEq.3389

Proof. By Remark 8.5.5, a generalized symmetric space is formal, so Proposition 8.1.12 applies.3390

3391

Corollary 8.5.4 (Koszul, [Kos51]). Let pG, Kq be a pair such that G{K is a symmetric space. Then the3392

Cartan algebra of K Ñ G Ñ G{K calculates H˚pGq.3393

[The rest of this section will include all irreducible symmetric spaces as examples,3394

with some of the calculations left as exercises.]3395
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Remark 8.5.5. Svjetlana Terzić [Ter01] and independently Zofia Stępień [Stęb] have also shown3396

that compact generalized symmetric spaces G{K with isotropy group K connected are formal.3397

It is not, however, the case that wedge products of harmonic forms on such spaces are again3398

harmonic (that such should happen is called geometric formality); see Terzić’s later joint article3399

with Dieter Kotschick [KT03].3400

8.6. Cohomology computations, III: informal spaces3401

This section comprises a pair of computations demonstrating the case the pair is informal, in this3402

case of deficiency 1. The first example, Spp5q ą SUp5q, is also done in Paul Baum’s thesis. Both3403

also appear in the book of Greub et al. [GHV76, pp. 488–9].3404

8.6.1. Spp5q{SUp5q3405

This is an example Paul Baum says Armand Borel showed him in the ’60s. We understand
H˚

Spp5q ÝÑ H˚
SUp5q in terms of invariants of H˚

T5 “ Qrt1, t2, t3, t4, t5s under the actions of the Weyl
groups of Spp5q and Up5q, which are respectively t˘1u5 ¸ S5 and S5 acting on the tj in the ex-
pected way. We find that generators of H˚

Spp5q are given by elementary symmetric polynomials
pn of degree 4n in the variables ´t2

j and those of H˚
Up5q by elementary symmetric polynomials cn

of degree 2n in the tj. These are of course the symplectic Pontrjagin classes and Chern classes.
The restriction maps between them are a matter of combinatorics: Write c̄n for the elementary
symmetric polynomials in the ´tj, so that c̄n “ p´1qncn, and set p0 “ c0 “ c̄0 “ 1. Then the total
Pontrjagin and Chern classes satisfy

c “
ÿ

cn “
ź

p1` tjq,

p “
ÿ

pn “
ź

p1´ t2
j q “

ź

p1` tjqp1´ tjq “ cc̄,

from which, collecting terms of like degree, we read off pn “
ř2n

j“0 cj c̄2n´j. Recalling the map3406

H˚
Up`q ÝÑ H˚

SUp`q “ Qrc2, . . . , c`s induced by the inclusion is given by c1 ÞÑ 0 and cn ÞÑ cn for n ą 1,3407

we can strip out all the c1 from the expressions for the pn and finally compute H˚
Spp5q ÝÑ H˚

SUp5q3408

as3409

p1 ÞÝÑ c2 ` c̄2 “ 2c2,

p2 ÞÝÑ c4 ` c̄4 “ 2c4,

p3 ÞÝÑ c2c̄4 ` c3c̄3 ` c4c̄2 “ 2c2c4 ´ c2
3,

p4 ÞÝÑ c3c̄5 ` c4c̄4 ` c5c̄3 “ c2
4 ´ 2c3c5,

p5 ÞÝÑ c5c̄5 “ ´c2
5.

(8.6.1)

One observes the image ring is3410

Qrc2, c4, c2
3, c3c5, c2

5s.

Now to compute the cohomology of Spp5q{SUp5q is to determine the cohomology of the3411

resulting Cartan algebra3412

C :“ Qrc2, c3, c4, c5sbΛrσp1, σp2, σp3, σp4, σp5s,

where the σpn are suspensions of the Pontrjagin classes, living in H4n´1Spp5q, and the differential3413

is the unique one taking σpn to the image of pn in H˚
SUp5q. A clever choice of generators helps3414
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compute the cohomology of C, but we will find it easier to filter C by the base degree in H˚
SUp5q3415

and run the filtration spectral sequence. This is stable until E4 “ C, and then the first nonzero3416

differential cancels σp1 against c2 and we get3417

E5 “ Qrc3, c4, c5sbΛrσp2, σp3, σp4, σp5s

with differentials

σp2 ÞÝÑ 2c4,

σp3 ÞÝÑ ´c2
3,

σp4 ÞÝÑ c2
4 ´ 2c3c5,

σp5 ÞÝÑ ´c2
5.

The next differential is on E8, and after we get3418

E9 “ Qrc3, c5sbΛrσp3, σp4, σp5s

with3419

σp3 ÞÝÑ ´c2
3,

σp4 ÞÝÑ ´2c3c5,

σp5 ÞÝÑ ´c2
5.

(8.6.2)

Up to an irrelevant rescaling of the generators σpn, this is Baum’s presentation.53420

Everything we have done so far could have been done on the algebra level. To see what3421

happens next, we prefer to proceed via the spectral sequence. Although this should destroy3422

multiplication, in fact we will be able to reconstruct it through degree considerations. The next3423

page of the spectral sequence is the last at which we can afford not to draw a picture. The3424

differential d12 cancels σp3 and c2
3, so the next page is3425

E13 “ Qrc3, c5s
L

pc2
3q
bΛrσp4, σp5s

Figure 8.6.3: The E16 page for Spp5q{SUp5q

15 z zc3 zc5 zc3c5 zc3c2
5 zc3c2

5 zc3
5

0 1 c3 c5 c3c5 c2
5 c3c2

5 c3
5

0 6 10 16 20 26 30
.

The next nontrivial differential, d16, annihilates σp5, and so leaves the tensor-factor Λrσp5s3426

inert, so we will just look at the other factor Qrc3, c5s
L

pc2
3q
bΛrσp4s. Since by this page we have3427

5 Morally, this process has factored a Koszul algebra Qrc2, c4sbΛrσp1, σp2s out of C.
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c2
3 “ 0, any differential of a term divisible by c3 vanishes, so the nontrivial differentials originate3428

from terms divisible by z and end at terms divisible by c3c5. Here we have made the abbreviation3429

z “ ´σp4{2. The parallel copy, σp5 times the displayed part, is omitted.3430

The last differential is on the page E20. The nonzero differentials on this page come from3431

generators divisible by w “ ´σp5 and land in squares divisible by c2
5, as follows:3432

Figure 8.6.4: The E20 page for Spp5q{SUp5q

34 wzc3 wzc3c5 wzc3c2
5 wzc3c3

5

19 w wc3 wc5 wc2
5 wc3

5 wc4
5

15 zc3 zc3c5 zc3c2
5 zc3c3

5

0 1 c3 c5 c2
5 c3

5 c4
5

0 6 10 16 20 26 30 36 40
.

What remains on E21 “ E8 is the following:3433

Figure 8.6.5: The E8 page for Spp5q{SUp5q

19 wc3

15 zc3 zc3c5

0 1 c3 c5

0 6 10 16
.

The degrees of the surviving vector space generators are3434

0, 6, 10, 21, 25, 31

and the only nonzero products are those determined by Poincaré duality. The bottom row of the3435

E8 page represents the image3436

Qrc3, c5s
L

pc3, c5q
2

of H˚
SUp5q ÝÑ H˚

`

Spp5q{SUp5q
˘

. We can see from the picture that the familiar (base)b (fiber)3437

structure that obtains in the formal examples has been destroyed by the decomposable differen-3438

tials.3439

8.6.2. SUp6q{SUp3q23440

In this example we consider the inclusion of the block-diagonal subgroup SUp3qˆSUp3q of SUp6q.3441
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We understand H˚
SUpnq in terms of the classifying space of its maximal torus Tn´1 as the3442

subring of invariants of H˚
Tn´1 under the action of the Weyl group Sn´1. It will be easier to think3443

about this in terms of H˚
Upnq and H˚

Tn first, and then restrict. So before considering H˚
SUp6q ÝÑ3444

H˚
SUp3qˆSUp3q we will assess H˚

Up6q ÝÑ H˚
Up3qˆUp3q. Since Up6q and Up3q ˆUp3q share the diagonal3445

unitary matrix subgroup T6 as maximal torus, we can think about this map as3446

pH˚
T6q

S6 ãÝÝÑ pH˚
T6q

S3ˆS3 .

Writing H˚
T6 “ Qrt1, t2, t3, t11, t12, t13s, the total Chern class whose components are the symmetric3447

polynomials on all six variables is3448

rc “
ÿ

rcn :“
ź

p1` tjq
ź

p1` t1jq “:
ÿ

cn
ÿ

c1n “ c ¨ c1

Gathering terms one finds3449

rcn “

n
ÿ

j“0

cjc1n´j.

Recalling that H˚
SUpnq – H˚

Upnq{pc1q, we find the map we want is given from the preceding by
setting all of rc1, c1, c11 to 0 and cn, c1n “ 0 for n ą 3. Explicitly, H˚

SUp6q ÝÑ H˚
SUp3qˆSUp3q can be

identified with

Qrrc2, rc3, rc4, rc5, rc6s ÝÑ Qrc2, c3, c12, c13s :
rc2 ÞÝÑ c2 ` c12,
rc3 ÞÝÑ c3 ` c13,
rc4 ÞÝÑ c2c12,
rc5 ÞÝÑ c3c12 ` c2c13,
rc6 ÞÝÑ c3c13.

It can be observed that the image is precisely the subring invariant under the involution given3450

by cj ÐÑ c1j. The resemblance to (8.6.1) will not escape the watchful reader.3451

To compute the cohomology we just need to find the cohomology of the Cartan algebra3452

C :“ Qrc2, c3, c12, c13sbΛrσrc1, σrc2, σrc3, σrc4, σrc5s,

where the σcn are suspensions of the Chern classes rcn living in H2n´1SUp5q, and the differential3453

is the unique one taking σrcn to the image in H˚
SUp3qˆSUp3 just determined. We filter C by the base3454

degree in H˚
SUp3qˆSUp3q and run the filtration spectral sequence. This is stable until E4 “ C, and3455

then the first nonzero differential cancels σrc2 against c2 ` c12. The result is that c12 ” ´c2 in E5.3456

Writing c̄2 for the class c2 mod c2 ` c12, one has3457

E5 “ Qrc̄2, c3, c13sbΛrσrc3, σrc4, σrc5, σrc6s

with differentials

rc3 ÞÝÑ c3 ` c13,
rc4 ÞÝÑ ´c̄2

2

rc5 ÞÝÑ c̄2pc13 ´ c3q,
rc6 ÞÝÑ c3c13.
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The next differential is on E6, and cancels σrc3 against c3 ` c13. Writing c̄3 for the class c33458

mod c3 ` c13, we get3459

E7 “ Qrc̄2, c̄3sbΛrσrc4, σrc5, σrc6s

with

σrc4 ÞÝÑ ´c̄2
2,

σrc5 ÞÝÑ ´2c̄2c̄3,

σrc6 ÞÝÑ ´c̄2
3.

This, of course, looks exactly like (8.6.2), and what happens in the spectral sequence from this3460

point on will be the same up to grading. For thoroughness, we include the entire calculation. The3461

differential d8 cancels σrc4, and c̄2
2, so3462

E9 –
Qrc̄2, c̄3s

M

pc̄2
2q
b Λrσrc5, σrc6s.

The next nontrivial differential, d10, annihilates σrc6 and takes z “ ´σrc5{2 ÞÝÑ c̄2c̄3. We show this3463

in Figure 8.6.6, omitting the parallel copy, which is σrc6 times the displayed part.3464

Figure 8.6.6: The E10 page for SUp6q{SUp3q2

11 z zc̄2 zc̄3 zc̄2 c̄3 zc̄2
3 zc̄2 c̄2

3 zc̄3
3

0 1 c̄2 c̄3 c̄2 c̄3 c̄2
3 c̄2 c̄2

3 c̄3
3

0 4 6 10 12 16 18
.

Now take w “ ´σrc6.3465

Figure 8.6.7: The E12 page for SUp6q{SUp3q2

24 wzc̄2 wzc̄2 c̄3 wzc̄2 c̄2
3 wzc̄2 c̄3

3

13 w wc̄2 wc̄3 wc̄2
3 wc̄3

3 wc̄4
3

11 zc̄2 zc̄2 c̄3 zc̄2 c̄2
3 zc̄2 c̄3

3

0 1 c̄2 c̄3 c̄2
3 c̄3

3 c̄4
3

0 4 6 10 12 16 18 22 24
.
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Finally, E8 is as follows:3466

Figure 8.6.8: The E8 page for SUp6q{SUp3q2.

13 wc̄2

11 zc̄2 zc̄2 c̄3

0 1 c̄2 c̄3

0 4 6 10
.

The degrees of the surviving vector space generators are3467

0, 4, 6, 15, 17, 21

and the products are determined by Poincaré duality. The bottom row of the E8 page represents3468

Qrc̄2, c̄3s
L

pc̄2, c̄3q
2,

the image of H˚
SUp3qˆSUp3q in H˚

`

SUp6q{SUp3q2
˘

.3469

Remark 8.6.9. Aleksei Tralle [Tra93] commented that one similarly has informality for the same3470

K “ SUp3q ˆ SUp3q embedded in the top-left 6ˆ 6 entries of G “ SUpnq for n ě 6.6 The point is3471

that the differentials of the first five generators of PH˚SUpnq are always the same, so formality is3472

always destroyed, and one cannot partition 7 into two integers ď 3, so the differentials of σrcn for3473

n ě 7 are zero. Thus3474

H˚
`

SUpnq{SUp3q2
˘

– H˚
`

SUp6q{SUp3q2
˘

b

H˚pSUpnq{SUp6qq
hkkkkkkkikkkkkkkj

Λrσrc7, . . . σrcns .

Remark 8.6.10. It is possible to show that SUp3nq{SUp3qn is always of deficiency n´ 1.3475

Remark 8.6.11. Manuel Amann has a general theorem constructing many informal pairs, all of3476

deficiency 1 [Ama13, Thm. E, Table 2]. In particular, he has an example in every dimension ě 72.3477

8.7. Cohomology computations, IV: G{S1
3478

In order to obtain what was arguably the main result of the thesis this monograph evolved from,3479

we needed a grasp on the cohomology rings H˚pG{S;Qq of homogeneous spaces G{S for G3480

compact connected and S a circle. It is not hard with the tools we have developed to describe3481

these completely. In 2014, the author found the following dichotomy; note these are the only two3482

options because dimQ H1pSq “ 1.3483

Proposition 8.7.1. Let G be a compact, connected Lie group and S a circle subgroup. Then the rational3484

cohomology ring H˚pG{Sq has one of the following forms.3485

6 His point is actually to exhibit a nontrivial Massey product: the generator of order thirteen above represented by
zc̄2 ` F5 lies in the product

@

rc̄2s, rc̄2s, drc̄3s
D

. In terms of the generators on the E7 page, which is a dga factor of the
Cartan algebra, we find dp´σrc4q “ c̄2

2 and dpσrc5q “ ´2c̄2 c̄3, so dpc2σrc5 ´ 2c3σrc4q “ 0.
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1. If H1pGq ÝÑ H1pSq is surjective, then there is z1 P H1pGq such that3486

H˚pG{Sq – H˚pGqLpz1q.

In terms of total Betti number, h‚pGq “ 1
2 h‚pG{Sq.3487

2. If H1pGq ÝÑ H1pSq is zero, there are z3 P H3pGq and s P H2pG{Sq such that3488

H˚pG{Sq –
H˚pGq
pz3q

b
Qrss
ps2q

.

In terms of total Betti number, h‚pGq “ h‚pG{Sq.3489

As it happens, we were not here first. General statements on the cohomology of a homo-3490

geneous space were already available to Jean Leray in 1946, the year after his release from3491

prison [Mil00, sec. 3, item (4)]. In the second of his four Comptes Rendus announcements from3492

that year [Ler46a, bottom of p. 1421], he states the following result.73493

Theorem 8.7.2 (Leray, 1946). Let G be a compact, simply-connected, Lie group and S a closed, one-3494

parameter subgroup [viz. a circle]. Then there exist an n P N, a primitive element z2n`1 P H2n`1pGq, and3495

a nonzero s P H2pG{Sq such that3496

H˚pG{Sq –
H˚pGq
pz2n`1q

b
Qrss
psn`1q

The following year, Jean-Louis Koszul published a note [Kos47b, p. 478, display] in the3497

Comptes Rendus regarding Poincaré polynomials for these spaces.3498

Theorem 8.7.3 (Koszul, 1947). Let G be a semisimple Lie group and S a circular subgroup. Then the3499

Poincaré polynomials (in the indeterminate t) of G{S and G are related by3500

ppG{Sq “ ppGq
1` t2

1` t3 .

This result implies that in fact n “ 1 in Leray’s theorem. This enhanced version of Leray’s3501

result follows from Proposition 8.7.1 simply because H1pGq – H2
G “ 0 for semisimple groups.3502

The author is unaware of any published proof of the Leray and Koszul results, which is part of3503

the motivation for including a proof of Proposition 8.7.1 here.3504

Before doing so, we illustrate the result with a representative example. Let S be a circle3505

contained in the first factor Spp1q of the product group G “ Spp1q ˆUp2q. The cohomology of G3506

is the exterior algebra3507

H˚pGq “ Λrq3, z1, z3s, deg z1 “ 1, deg z3 “ deg q3 “ 3,

and that of BS is3508

H˚
S “ Qrss, deg s “ 2.

The spectral sequence pEr, drq associated to G Ñ GS Ñ BS is as follows. Its E2 page is the3509

tensor product H˚
S bH˚pGq. Because the map H1pGq ÝÑ H1pSq is zero, the differential d2 is zero,3510

7 See also Borel [Bor98, par. 12]; only owing to Borel’s summary are we confident “compact Lie group” is the
contextually-correct interpretation of Leray’s groupe bicompact, which translated literally would mean only that the
group be compact Hausdorff.
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and d3 is zero for lacunary reasons, so E4 “ E2. The differential d4 annihilates each of s, z1, z33511

and takes q3 ÞÝÑ s2.3512

Figure 8.7.4: The Serre spectral sequence of Spp1q ˆUp2q Ñ
`

Spp1q ˆUp2q
˘

S Ñ BS

z1z3q3 sz1z3q3 s2z1z3q3 ¨ ¨ ¨

6 z3q3 sz3q3 s2z3q3 ¨ ¨ ¨

z1z3 z1q3 sz1z3 sz1q3 s2z1z3 s2z1q3 ¨ ¨ ¨

3 z3 q3 sz3 sq3 s2z3 s2q3 ¨ ¨ ¨

z1 sz1 s2z1 ¨ ¨ ¨

0 1 s s2 ¨ ¨ ¨

E4 0 2 4 ¨ ¨ ¨

z1z3 sz1z3

3 z3 sz3

z1 sz1

0 1 s

E8 0 2

Because d4 is an antiderivation, its kernel is the subalgebra QrssbΛrz1, z3s and its image the3513

ideal ps2q in that subalgebra. Elements mapped to a nonzero element by d4 are marked as blue3514

in the diagram and elements in the image in red; the vector space spanned by these elements3515

vanishes in E5. Thus E5 “ ∆rssbΛrz1, z3s, where ∆rss “ Qrss{ps2q – H˚S2. For lacunary reasons,3516

E5 “ E8. In fact,3517

G{S “ Spp1q
L

S ˆ Up2q « S2 ˆUp2q, (8.7.5)

so this tensor decomposition was not unexpected.3518

This example has all the features of the general case; the pair is always formal, and either it3519

is cohomology-surjective or else d4 is a nontrivial differential taking some z3 ÞÝÑ s2 P H4
S, which3520

then collapses the sequence at E5. If H1pGq ‰ 0, then the exterior subalgebra of H˚pGq generated3521

by H1pGq, an isomorphic H˚pAq, is in the Samelson subring, and can be split off before running3522

the spectral sequence; the factoring out of this subalgebra is the algebraic analogue of the product3523

decomposition (8.7.5) of G{S.3524

Lemma 8.7.6. A compact pair pG, S1q is formal.3525

Proof. Consider the map ρ˚ : H˚
G ÝÑ H˚

S in the sequence3526

H˚
G

ρ˚

ÝÑ H˚
S

χ˚
ÝÑ H˚pG{Sq.

Because ρ˚ is a homomorphism of graded rings and H˚
S – Qrss is a polynomial ring in one3527

variable, the cokernel pρ˚ rHSq of χ˚ is generated by a single homogeneous element and hence is3528

a regular ideal psnq for some n. By Theorem 8.4.8, it follows pG, Sq is a formal pair.3529

Proof of Proposition 8.7.1. If H1pGq ÝÝ� H1pSq, then Samelson’s Corollary 1.0.7 applies and yields3530

the result, so assume instead this map is zero. By Lemma 8.7.6, pG, Sq is a formal pair, so3531

H˚pG{Sq – H˚
S
LL

H˚
G
bΛpP
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with dim pP “ rk G ´ rk S “ rk G ´ 1 and dim qP “ 1. It follows that ρ˚ ˝ τ takes qP „
ÝÑ Qs` for3532

some `, yielding Leray’s theorem. To obtain Koszul’s, it remains to show ` “ 2.3533

By Proposition B.2.4, we may replace G with its universal compact cover Aˆ K, where A is3534

a torus and K simply-connected, and S with the identity component of its lift in this cover. If3535

H1pGq ÝÑ H1pSq is trivial, then because H˚pAq is generated by H1pAq, it follows H˚pAq ď ΛpP3536

splits out of the Cartan algebra, so we may as well assume G “ K is semisimple.3537

[Update from published eqf_torus]3538

We now return to the map of spectral sequences described in Section 8.1.1. Recall the differ-3539

entials in the spectral sequence pEr, drq of the Borel fibration K Ñ KS Ñ BS vanish on H˚
S and are3540

otherwise completely determined by by the composition3541

ρ˚ ˝ τ : PK ÝÑ H˚
K ÝÑ H˚

S .

Because K is semisimple, H1pKq “ 0, so it follows H2
K “ 0 as well by Borel’s calculation from3542

Section 7.4 of the spectral sequence of K Ñ EK Ñ BK. The edge homomorphisms d2 and d3 then3543

must be zero, so3544

E4 “ E2 “ H˚
S bH˚pKq

and the first potentially nontrivial differential is3545

d4 : H3pKq „Ñ H4
K ÝÑ H4

S.

By Lemma 7.6.5, this is surjective, so dz “ ρ˚τz “ s2 for some z P P3pKq. Thus pČim ρ˚q is generated3546

by s2 as claimed, concluding the proof.3547

8.8. Valediction3548

At this point we have completed the exposition the author wished was available when he started3549

work on his dissertation problem. We hope we have been able to do justice to the material so3550

that the reader may find some measure of the beauty in it that the author does. This is of course3551

neither the end nor the beginning of this story. We round out our account with some historical3552

remarks and connections.3553

8.8.1. Cartan’s approach to the Cartan algebra3554

Our presentation of the Cartan algebra computation of the cohomology ring H˚pG{K;Qq of a ho-3555

mogeneous space G{K in this work introduced what we believe to be the least possible algebraic3556

overhead, but is not the original version.3557

Cartan’s account [Car51] was cast in Lie-algebraic terms, with the “choice of transgression”3558

we have been somewhat casual about explicitly determined by a connection and induced from3559

an R-cdga called the Weil algebra, Wk “ SΣk˚bΛk˚, where k˚ is the dual to the Lie algebra3560

of K, equipped with natural actions of k by inner multiplications ιξ and the Lie derivative Lξ .3561

The Weil algebra, as an algebra, is the Koszul algebra of Definition 7.3.3 but outfitted with a3562

different differential which incorporates the adjoint action of the Lie algebra of G. It does this3563

to emulate the behavior of connection and curvature forms determined by a connection on a3564

principal bundle, and these in turn arise due to a desire to understand the cohomology of the3565

total space of a principal bundle in terms of forms arising from pullback in its base. Thus it is3566
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an algebraic model of the cohomology of EG Ñ BG and the homotopy quotient predating the3567

general (1956) discovery of these objects. In particular, H˚pBGq had not been calculated before3568

this note.83569

Given a principal K-bundle K Ñ E π
Ñ B, Cartan views a connection, as a linear map k˚ ÝÑ3570

Ω1pEq respecting both actions of k. Using the fact (Proposition 6.1.1) that there exist K-invariant3571

representative forms for the classes on H˚pE;Rq, Cartan constructs the Weil model
`

SΣk˚bΛk˚bΩ‚pEq
˘

bas3572

of H˚
KpE;Rq – H˚pB;Rq; here the subscript denotes the basic subalgebra annihilated by all ιξ and3573

Lξ . The idea is that this should serve as a model for the base B, and indeed Cartan shows the3574

natural inclusion of π˚Ω‚pBq – Ω‚pBq in the Weil model is a quasi-isomorphism. He then shows3575

the Weil model is quasi-isomorphic to the Cartan model
`

SΣk˚bΩ‚pEq
˘

K.9 This in turn, when3576

our principal bundle is K Ñ G Ñ G{K for G another compact, connected Lie group, is quasi-3577

isomorphic to a dga with underlying algebra pSΣk˚qKbH˚pGq.10 This is the original version of3578

the Cartan algebra.3579

8.8.2. The Eilenberg–Moore approach3580

There is a later chapter in the story of the cohomology of a homogeneous space, due to authors3581

including Paul Baum, Peter May, Victor Gugenheim, Hans Munkholm, and Joel Wolf, using the3582

Eilenberg–Moore spectral sequence.3583

The issue is that we only have a Cartan algebra over a field of characteristic zero. Without3584

strictly commuting cochain models, we are not able to pick representatives for H˚pGq in C˚pGKq3585

in such a way as to get a ring structure, and in general torsion makes commutativity impossible.3586

Proposition 8.8.1 ([Bor51, Thm. 7.1]). Let p be a positive prime. Then there is no functorial Fp-cdga3587

model pA, dq for H˚p´;Fpq such that a closed inclusion i : F ãÝÝÑ X induces a surjection ApXq ÝÑ ApFq.3588

Proof. Suppose there were such a model. Let F “ CPn for n ě p and X “ CF » ˚ be the cone over3589

it. Let a P A2pCPnq represent a generator α in cohomology, so that H˚pCPn;Fpq – Fprαs{pα
n`1q,3590

and let ra P A2pXq be some extension of a to X. Then dprapq “ prap´1 “ 0, so rap represents a3591

class in H2ppX;Fpq “ 0 and hence rap “ drb for some rb P A2p´1pXq. But then we would have3592

di˚rb “ i˚drb “ i˚prapq “ pi˚raqp “ ap, so that αp “ 0 in H2ppCPn;Fpq, a contradiction.3593

The last step in our journey to the Cartan algebra that worked with arbitrary coefficients3594

was the map Section 8.1.1 of spectral sequences. If k is chosen such that H˚pG; kq is an exterior3595

algebra, then Theorem 7.4.1 does go through in characteristic ‰ 2, so one still have H˚pBG; kq a3596

polynomial algebra on the transgressions and the map does still control many of the differentials3597

in the Serre spectral sequence of G Ñ GK Ñ BK. Because the Serre spectral sequence with Q3598

coefficients is the filtration spectral sequence of the Cartan algebra by construction, we are able3599

to recover what happens to elements that come from the free part of H˚pG{K;Zq but rather little3600

about the torsion.3601

8 There also seems to have been a desire to stay in the realm of manifolds, so that finite-dimensional truncations
of BK are mentioned instead. In Chevalley’s review of this work, he states that BG does not exist, a statement that only
makes sense if one demands finite-dimensionality.

9 Cartan credits this reduction to Hirsch, as clarified by Koszul, but this point of view is not evident in Hirsch’s
Comptes Rendus announcement [Hir48] and Koszul’s reworking is unpublished.

10 For generic E, one can find a differential on the graded vector space SΣk˚bH˚pB;Rq whose cohomology is
H˚KpE;Rq – H˚pB;Rq, but this isomorphism does not generally respect multiplication.
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The cohomological Eilenberg–Moore spectral sequence starts from a pullback square and its3602

resulting square of cochain algebras and cohomology rings3603

Xˆ
B

Y //

��

Y

��
X // B

C˚pXˆ
B

Yq C˚pYqoo H˚pXˆ
B

Yq H˚pYqoo

C˚pXq

OO

C˚pBqoo

OO

H˚pXq

OO

H˚pBq.oo

OO

(8.8.2)

The commutativity of the last square makes H˚pXˆB Yq a module over H˚pXqbH˚pBq H˚pYq; if B3604

is a point and k a field the Künneth theorem says this is an isomorphism. The bundle eq. (2.4.1)3605

says this map is an isomorphism if F Ñ Y Ñ B is a bundle and H˚pYq ÝÑ H˚pFq is surjective.3606

To generalize this, consider the middle square, which allows us to make the observation that3607

C˚pXˆB Yq a module over C˚pXqbC˚pBq C˚pYq in a differential-preserving manner.3608

This means the following. In general, a differential graded k-module pM‚, dMq can be said to3609

be a differential module over a k-dga pA‚, dq if dMpaxq “ da ¨ x` p´1q|a|a ¨ dMpxq for a P A‚ and3610

x P M‚. One can construct a so-called proper projective pA‚, dq-module resolution pP‚p , dpq of such3611

a pM, dMq conducive to the differential homological algebra setting. This carries both internal3612

differentials dp and resolution maps Pp ÝÑ Pp`1, and filtering the total complex by the internal3613

degree, one has E0 “ P‚‚ and E1 – M, so E8 “ E2 “ H˚pMq and P‚‚ is a projective replacement3614

for M. One uses this to define a differential Tor, written Torp,n
pA,dqpM

‚, N‚q, as the cohomology of3615

the total complex of P‚bA N‚, analogously to the conventional Tor.3616

Filtering the algebra by filtration degree p yields a filtration spectral sequence with E1 –3617

P‚‚ bH˚pAq H˚pNq and E2 – Tor‚,‚
H˚pAq

`

H˚pMq, H˚pNq
˘

the traditional non-differential Tor. Because3618

we resolve projectively, p is nonpositive, so this is a left-half plane spectral sequence and any square3619

can receive arbitrarily many differentials, so convergence to the intended target, the differential3620

Tor‚,‚
pA‚,dq

`

pM‚, dMq, pN‚, dNq
˘

, is not ensured.3621

Back in the motivating case, assume F Ñ Y ÝÑ B is a Serre fibration, so that F Ñ XˆB Y ÝÑ3622

X is as well. Pick a proper projective resolution P‚‚ of C˚pXq; then there is an induced dga3623

map φ : P‚‚ bC˚pBq C˚pYq ÝÑ C˚pX ˆB Yq factoring through P‚0 bC˚pBq C˚pYq. If we filter C˚pX ˆB3624

Yq by the Serre filtration over X, C˚pYq by the Serre filtration over B, P‚‚ by total degree, and3625

P‚‚ bC˚pBq C˚pYq by the sum of degrees, then φ is filtration-preserving and so induces a map3626

of spectral sequences. It is not hard to check that if π1B acts trivially on H˚pFq, then E2pφq is3627

the identity on H˚
`

X; H˚pFq
˘

, so that φ is a quasi-isomorphism and TorC˚pBq
`

C˚pXq, C˚pYq
˘

–3628

H˚pX ˆB Yq. The filtration spectral sequence of the previous paragraph in this case has E2 “3629

TorH˚pBq
`

H˚pXq, H˚pYq
˘

, and, if π1B “ 0, the sequence converges. This is the Eilenberg–Moore3630

spectral sequence.3631

Our case of interest is given by pY Ñ Bq “ pBK Ñ BGq and X “ ˚, so that X ˆY B » G{K. In3632

this case the E2 page is Tor‚,‚
H˚pBK;kq

`

k, H˚pBGq
˘

, which in case Q ď k is exactly the cohomology3633

of the Cartan algebra, so the spectral sequence collapses and even gives the correct result at the3634

algebra level. The desired generalization is that if H˚pBK; kq and H˚pBG; kq are polynomial rings,3635

then the sequence should collapse at E2. This is not at all obvious. The main line of approach3636

runs through the following result.3637
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Proposition 8.8.3. If the vertical maps in a commutative diagram of differential graded k-modules3638

A

��

Γoo //

��

B

��
M Λoo // N,

(8.8.4)

are additive quasi-isomorphisms, then they induce an isomorphism TorΓpA, Bq „
ÝÑ TorΛpM, Nq. If the3639

vertical maps are multiplicative, this is an algebra isomorphism.3640

Remark 8.8.5. We do not in fact need A, B, M, and N to be algebras for the algebra automorphism,3641

just differential modules equivariant with respect to the map Γ Ñ Λ.3642

Proof. The map of algebraic Eilenberg–Moore spectral sequences is an isomorphism on E2.3643

Since TorC˚pBG;kq
`

k, C˚pBK; kq
˘

– H˚pG{K; kq, if we had quasi-isomorphisms between C˚pBG; kq3644

and H˚pBG; kq making (8.8.4) commute, we would have a collapse result. It was only known how3645

to construct such quasi-isomorphisms for K a torus, although it is now known they exist gener-3646

ally [Fra06, Prop. 1.3], and when they could be constructed, (8.8.4) did not usually commute. The3647

proofs that emerged relied on extending the category k-DGA to a “homotopy version” requiring3648

less than a dga map but still inducing quasi-isomorphisms and showing (8.8.4) could be taken3649

to commute up to homotopy. The strongest of these results is the following.3650

Theorem 8.8.6 (Munkholm [Mun74]). Let k be a principal ideal domain such that H˚pX; kq, H˚pY; kq,3651

and H˚pB; kq in (8.8.2) are polynomial rings in at most countably many variables. If char k “ 2, assume3652

further that the Steenrod square Sq1 vanishes on H˚pX; kq and H˚pY; kq. Then the Eilenberg–Moore3653

spectral sequence of the square collapses at E2, and H˚pXˆB Y; kq – E2 as a graded k-module.3654

Thus the graded additive structure and bigraded multiplicative structure of the associated3655

graded of H˚pG{K; kq agree with Tor‚,‚
H˚G
pk, H˚

Kq.3656

8.8.3. Biquotients and Sullivan models3657

Our expression for the cohomology of a homogeneous space generalizes to the quotient of G3658

by the two-sided action pu, vq ¨ g :“ ugv´1 of a subgroup U of Gˆ G, and one can consider the3659

Borel fibration G Ñ GU Ñ BU. If U acts freely on G, then GU „ G{U is a biquotient, a sort of3660

space intensely studied in positive-curvature geometry, but if not, the algebra still makes sense,3661

and if U “ K ˆ H, then H˚pGUq “ H˚
KpG{Hq is the Borel K-equivariant cohomology of G{H, as3662

discussed in Remark 5.5.5, whose study was the purpose of the dissertation this book emerged3663

from.3664

The new Borel fibration looks like the bundle leading to the Cartan algebra but is no longer
a principal G-bundle because G is not free on either side. Particularly, there is not a classifying
map to BG-bundle. On the other hand, Eschenburg [Esc92] noticed that since U ď Gˆ G, there
is still a map BU ÝÑ BG ˆ BG. Moreover, let us write EpG ˆ Gq “ EG ˆ EG, with the action
pg, hq ¨ pe, e1q :“ peg´1, he1q. Then there is a natural map

GU “ Gb
U
pEGˆ EGq ÝÑ EGb

G
EG “ BG,

gbpe, e1q ÞÝÑ eb e1,
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where the object on the right is BG because it is the quotient of the contractible total space of a
principal G-bundle by G. The map

∆ : EGb
G

EG ÝÑ BGˆ BG,

eb e1 ÞÝÑ peG, Ge1q

then makes the following diagram commute:3665

G

��

G

��
GU //

��

BG

∆
��

BU
Bi
// BGˆ BG.

(8.8.7)

One can actually check that GU is isomorphic to the pullback. We would like to use this map the3666

same way we used the Borel map before.3667

Exercise 8.8.8. Convince yourself that the map we called ∆ can be identified up to homotopy with3668

the diagonal map BG ÝÑ BGˆ BG.3669

The map ∆˚ induced in cohomology is exactly the cup product, which, when k is taken3670

such that H˚pBG; kq – kr~xs, has kernel the ideal generated by xjb 1 ´ 1b xj, so one expects3671

τzj “ xjb 1´ 1b xj in the Serre spectral sequence of the bundle ∆. One can check this guess3672

by including the universal bundle in ∆ two ways, via EG „
ÝÑ EGbG Ge0 ãÑ EGbG EG, which3673

induces BG „
ÝÑ BG ˆ tGe0u ãÑ BG ˆ BG on the base, and via EG „

ÝÑ te0ubG EG. One of the3674

projection picks up a sign due to the fact that one of the maps takes a right G-action to a left.3675

So the Serre spectral sequence of ∆ is the filtration sequence of the cdga pH˚
GbH˚

GbH˚G, dq3676

with dz “ 1b τz´τzb 1 on generators. Borel, in deriving the Chevalley algebra of Theorem 8.1.5,3677

makes a generalization [Bor53, Thm. 24.11] extracting a submodel Ω‚pBqbH˚F of Ω‚pEq, for a3678

fiber bundle F Ñ E Ñ B, so long as H˚F is an exterior algebra on generators that transgress3679

in the Serre spectral sequence, as this part of the argument no longer needs that the bundle is3680

principal. Thus, using the same argument we used to obtain the Cartan model, then, we can use3681

the map (8.8.7) to construct a model3682

pH˚
U bH˚

G, dq

of G{U where d vanishes on H˚
U and takes a primitive z P PH˚G to3683

pBiq˚p1b τz´ τzb 1q.

It turns out Vitali Kapovitch discovered this model ten years before the author by more general3684

considerations [Kap04, Prop. 1][FOT08, Thm. 3.50], which we will now elaborate.3685

Definition 8.8.9. We adopt the new convention that ΛQ :“ SQ as well if Q is an evenly-graded3686

rational vector space, so that any Q-cdga can be written as ΛV for V a graded rational vec-3687

tor space. A Sullivan algebra is a cdga pΛV, dq such that V is an increasing union of graded3688

subspaces Vp`q such that Vp´1q “ 0 and dVp`q ď ΛVp` ´ 1q. (The effect is that any finitely3689
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generated subalgebra is annihilated by some power of d.) A Sullivan model of a space X is a3690

quasi-isomorphism pΛV, dq ÝÑ APLpXq from a Sullivan algebra.3691

A pure Sullivan algebra is a Sullivan algebra pΛV “ ΛQbΛP, dq with Q evenly graded such3692

that Vp0q “ Q and P oddly-graded such that Vp1q “ Q‘ P. That is, dQ “ 0 and dP ď ΛQ. All3693

the finitely generated models we have discussed in this book have been pure Sullivan models.3694

Sullivan models behave well with respect to fibrations and pullbacks.3695

Theorem 8.8.10 ([FHT01, Prop. 15.5,8]). Given a map of Serre fibrations3696

F //

��

F1

��
E //

��

E1

q
��

B
f
// B1

and Sullivan models pΛVB1 , dq ÝÑ pΛVB, dq for f and pΛVB1 , dq ÝÑ pΛVB1 bΛVF1 , dq for q, if H˚F1 ÝÑ3697

H˚F is an isomorphism, π1B, π1B1, π0E, and π0E1 “ 0 are zero and either H˚F or both of H˚B and3698

H˚B1 are of finite type, then E admits a Sullivan model3699

pΛVE, dq “ pΛVB, dq b
pΛVB1 ,dq

pΛVB1 bΛVF1 , dq – pΛVBbΛVF1 , dq.

The Cartan algebra is probably the first instance of this theorem, and Kapovitch derives his3700

model as a consequence. It is clear this amalgamation of models has great flexibility. Here is3701

another classical example.3702

Theorem 8.8.11 (Baum–Smith [BS67]). Given a bundle G{H Ñ E Ñ B induced from a principal3703

G-bundle, with G and H connected Lie groups and B a formal space, one has a rational isomorphism3704

H˚pEq – TorH˚G

`

H˚pBq, H˚
K
˘

of graded algebras.3705

Baum and Smith actually additionally assume B is a Riemannian symmetric space, because3706

they know these are formal Proposition 8.5.2, and that G is compact.3707

Proof. The assumption of the theorem is that there is some principal G-bundle G Ñ rE Ñ B such3708

that E “ rE{H. Let pX, χq : pE Ñ Bq ÝÑ pEG Ñ BGq be both components of the classifying map,3709

so that χ ˝ p “ ρ ˝X. Then reducing X modulo H induces the map rE{H ÝÑ EG{H in the diagram3710

below.3711

G{H

��

G{H

��
E //

��

BH
ρ
��

B
χ
// BG
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A model for G{H is given by the Cartan algebra pH˚
KbH˚G, dG{Hq. To extend this to a model3712

of BH inducing the right map to G, take A “ pH˚
GbH˚

KbH˚G, dBHq, with dBHz “ τzb 1 `3713

1b ρ˚τz P H˚
GbH˚

K for z P PH˚G, where τ is a choice of transgression in the Serre spectral3714

sequence of G Ñ EG Ñ BG. Filtering by H˚
K degree and running the filtration spectral sequence,3715

one sees H˚pAq “ H˚
K.3716

To get a model for χ, start with APLpχq : APLpBGq ÝÑ APLpBq and precompose with H˚
G ÝÑ3717

APLpBGq. Each generator of H˚
G – ΛQH˚

G goes to some cocycle in APLpBq; lifting these to any Sul-3718

livan model pΛVB, dbq of B gives a map χ# : H˚
G ÝÑ ΛVB inducing χ˚. Applying Theorem 8.8.103719

yields a model3720

ΛVB b
H˚G
pH˚

GbH˚
KbH˚Gq “ ΛVBbH˚

KbH˚G.11

The factor H˚
GbH˚

KbH˚G – pH˚
GbH˚GbH˚

GqbH˚G
H˚

K can be seen as a free H˚
G-module resolu-3721

tion of H˚
K, so the cohomology E, which is the cohomology of our model, can be identified with3722

(differential) Tor:3723

H˚pEq – TorpH˚G ,0q
`

pΛVB, dBq, pH˚
K, 0q

˘

.

Now, since we assume B is formal, we can take pΛVB, dBq “
`

H˚pBq, 0
˘

, so this collapses to the3724

regular Tor of the claim.3725

Remark 8.8.12. Baum and Smith of course did not use this language, but recalled the Eilenberg–3726

Moore theorem that H˚pE;Rq – TorΩ‚pBGq
`

Ω‚pBq, Ω‚pBKq
˘

. Here they have taken real coef-3727

ficients to be able to use harmonic forms as representatives of H˚pB;Rq and used finite ap-3728

proximations of BG and BK to be able to describe their cohomology via forms. They take our3729

model H˚
GbH˚

KbHG as an H˚
G-module resolution of H˚

K and then use the three dga quasi-3730

isomorphisms
`

H˚pB;Rq, 0
˘

ÝÑ Ω‚pBq, etc.3731

[Email Joel Wolf about that bizarre paper]3732

8.8.4. Further reading3733

The story of understanding the cohomology of the base of a bundle through invariant forms3734

starts with the work of Élie Cartan in the early 1900s and continues through the work of Henri3735

Cartan and his school (Koszul, Borel, and for a time Leray, with major unpublished contributions3736

by Chevalley and Weil) in the late 1940s and early 1950s. The main and classical source for these3737

developments is the conference proceedings [Cen51] to the 1950 Colloque de Topologie (espaces3738

fibrés), held in Bruxelles, with contributions by Beno Eckmann, Heinz Hopf, Guy Hirsch, Koszul,3739

Leray, and Cartan. The second of the two papers by Cartan in this volume, “La transgression3740

dans un groupe de Lie et dans un espace fibré principal” [Car51], promulgates in Lie-algebraic3741

terms what we have called the Cartan algebra, as summarized in Section 8.8.1. This was later3742

responsible for the institution of the Cartan model of equivariant cohomology, a full ten years3743

before the Borel model gained currency. The classic sketched proof of the equivariant de Rham3744

theorem showing the equivalence between these two models of equivariant cohomology is also3745

contained in this terse paper.3746

11 We do not need this level of detail, but the differential d restricts to dB on VB and to 0 on H˚K , and sends z P PH˚G
to χ#τzb 1` 1b ρ˚τz P ΛVBbH˚K .
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There is also no shortage of secondary sources for the work of this school [And62, Ras69,3747

GHV76, Oni94], especially as it applies to the Cartan model of equivariant cohomology [GS99,3748

GLS96, GGK02].3749



Appendix A3750

Algebraic background3751

In this appendix we gather a ragtag assortment of algebraic preliminaries. Notationally, in all3752

that follows we denote containment of an algebraic substructure by “ď,” containment of an ideal3753

by “E,” isomorphism by “–,” and bijection by “Ø.” The restriction of a map f : A ÝÑ B to a3754

subset U Ď A is written f |U .3755

A.1. Commutative algebra3756

We will take tensor products, direct products, and modules as given. Beyond this, we only need3757

a very little pure commutative algebra, a corollary of Nakayama’s lemma and a version of the3758

Krull intersection theorem.3759

Lemma A.1.1 (Nakayama’s lemma; [AM69, Cor. 2.7, p. 22]). Let A be a commutative ring, M a3760

finitely generated A-module, N a submodule of M, and aE A an ideal contained in the Jacobson radical.3761

If M “ aM` N, then M “ N.3762

Proposition A.1.2 ([AM69, Cor. 10.19, p. 110]). Let A be a Noetherian ring, a an ideal contained in its3763

Jacobson radical, and M a finitely-generated A-module. Then
Ş8

n“0 a
n M “ 0.3764

Corollary A.1.3 ([GHV76, Lemma 2.8.I, p. 62]). Let k be a commutative ring and A “ krx1, . . . , xns a3765

polynomial ring in finitely many indeterminates, and write a “ px1, . . . , xnqC A for the ideal of positive-3766

degree polynomials. Let M be a finitely-generated A-module and V a k-submodule of M, and suppose3767

M “ aM`V. Then M “ AV.3768

This is just an application of Nakayama’s lemma A.1.1 to the case N “ AV.3769

Alternate proof. Iteratively substituting the entire left-hand side of M “ aM`V in for the occur-
rence of M on the same-side, one inductively finds

M “ aM`V

“ a2M` aV `V

¨ ¨ ¨

“ an`1M`

n
ÿ

j“0

ajV.

Intersecting all right-hand sides yields M “
Ş8

n“0 a
n M `

ř8
n“0 a

nV, but by Proposition A.1.2,3770
Ş

n m
n M is zero.3771

147
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A.2. Commutative graded algebra3772

A Z-graded k-module is an A P k-Mod admitting a direct sum decomposition A “
À

nPZ An. An3773

element a P A is homogeneous if there exists some integer |a| “ deg a, the degree of A, such that3774

a P Adeg a. We blur the distinction between 0 P An and 0 P A, and leave the degree of the latter3775

indeterminate. A k-module homomorphism f : A ÝÑ B between graded k-modules is said to be a3776

graded k-module homomorphism of degree n “ deg f if3777

deg f paq “ n` deg a “ deg f ` deg a

for all homogeneous a P A. We let gr-k-Mod be the category of graded k-modules and graded3778

k-module homomorphisms.3779

A cohomology ring A will be a graded commutative k-algebra. This means A is a graded3780

k-module, and additionally the product is such that3781

Am ¨ An ď Am`n;

and for all homogeneous elements a, b P A, one has3782

ba “ p´1q|a||b|ab.

For us, these rings will actually be N-graded, so that An “ 0 for n ă 0, and the absolute coho-3783

mology rings H˚pXq (as opposed to relative cohomology rings H˚pX, Yq) will be unital, so that3784

the map x ÞÑ x ¨ 1 embeds k� A0 ãÑ A and the k-algebra structure can be seen as the restriction3785

of the ring multiplication Aˆ A ÝÑ A. We will call these k-cgas for short, and the category of3786

graded commutative k-algebras and degree-preserving k-algebra homomorphisms will be writ-3787

ten k-CGA. The product in k-CGA is the ring product Aˆ B, graded by pAˆ Bqn “ An ˆ Bn.3788

Some k-algebras A we will encounter will have a bigrading:3789

A “ A‚,‚ “
à

p,qPZ
Ap,q

in such a way that the bidegrees pp, qq add under multiplication:3790

Ai,j ¨ Ap,q ď Ai`p,j`q.

We conventionally visualize such a ring as a grid in the xy-plane, with the pth column3791

Ap,‚ “
à

q
Ap,q

residing in the strip p ď x ď p` 1 and the qth row3792

A‚,q “
à

p
Ap,q

residing in the strip q ď y ď q` 1. For us, such gradings will always reside in the first quadrant:3793

we demand pp, qq P NˆN. A linear map f : A Ñ B of bigraded algebras is said to have bidegree3794

bidegp f q “ pp, qq if f pAi,jq ď Bi`p,j`q. The associated singly-graded k-algebra of a bigraded3795

algebra is A‚ “
À

n An, graded by An :“
À

p`q“n Ap,q, and a bigraded algebra will be said to be3796

commutative if this associated singly-graded algebra is a cga.3797
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As a particular example, given two graded k-algebras A, B, we can form the graded tensor3798

product: this is Abk B as a group, equipped with the bigrading pAbk Bqp,q “ Apbk Bq. The asso-3799

ciated singly graded algebra is also written Abk B and is the coproduct in k-CGA. The resulting3800

commutation rule is p1b bqpab 1q “ p´1q|a||b|ab b for a P A|a| and b P B|b|. As often as feasible, we3801

suppress ring subscripts on tensor signs, and in elements, we omit the tensor signs themselves,3802

letting ab b “: ab, so that for example we recover the reassuring expression ba “ p´1q|a|b|ab.3803

Given a graded unital k-algebra A with a preferred basis pajq of A0 ‰ 0, the map

A0
„
ÝÑ ktaju ÝÑ k,
ÿ

γjaj ÞÝÑ
ÿ

γj

induces a natural ring homomorphism A ÝÝ� A0 ÝÑ k called the augmentation. Its kernel rA is3804

called the augmentation ideal; the notation is in analogy with reduced cohomology.1 If A0 – k,3805

we say A is connected; the terminology is because the singular cohomology of a connected space3806

satisfies this condition. In this case, the augmentation ideal is
À

ně1 An.3807

Given a degree-zero homomorphism f : A ÝÑ B of connected augmented k-algebras, write3808

B {{ A :“ B{
`

f p rAq
˘

.

This is the right conception of cokernel for maps between cohomology rings: one wants the 0-3809

graded component to stay the same and the rest of the image of f to vanish. This sort of quotient3810

will become relevant to us in Section 8.4, where it will be found that an important subring of3811

the cohomology ring H˚pG{K;Qq, of a compact homogeneous space, namely the image of the3812

characteristic map χ˚ : H˚pBK;Qq ÝÑ H˚pG{K;Qq, is of this form.3813

If A is a graded subalgebra of B, then one wants to think of3814

0 Ñ A Ñ B Ñ A {{ B Ñ 0

as a “short exact sequence” of rings, but of course this doesn’t make sense: the sequence A Ñ3815

B Ñ C of k-modules is exact at B if impA Ñ Bq “ kerpB Ñ Cq, but the image of a ring map is a3816

ring, while the kernel is an ideal, a different type of algebraic object. The appropriate modification3817

is the following.3818

Definition A.2.1. A sequence A Ñ B Ñ C of homomorphisms of unital k-algebras is said to be3819

exact at B if3820

kerpB Ñ Cq “
`

imp rA Ñ rBq
˘

.

One should think of this as the ring-theoretic substitute for exactness in sequences of groups.3821

Example A.2.2. Let A be a graded k-subalgebra of a graded k-algebra B. Then 0 Ñ A Ñ B Ñ3822

A {{ B Ñ 0 is a short exact sequence, by design. If A and C are k-algebras, free as k-modules (in3823

the applications we care most about, k “ Q), then taking B “ AbC, we see the sequence3824

0 Ñ A ÝÑ AbC ÝÑ C Ñ 0

is short exact.3825

1 Industry standard seems to be A, but I have resisted this because rH˚ is the kernel of the augmentation in
cohomology and I am used to overbar notation referring to quotients.
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Remark A.2.3. This condition is usually called coexactness [MS68, p. 762]. The idea is that in any3826

category C equipped with a zero object 0, there is a unique zero map 0AÑB between two any3827

objects, and one can define the (co)kernel of any map A ÝÑ B to be the (co)equalizer of it and3828

0AÑB. Suppose a composition A
f
Ñ B

g
Ñ C is zero. Then f factors as pker gq ˝ f̄ for some morphism3829

f̄ and dually g factors as ḡ ˝ pcoker f q. One says the sequence is exact at B if f̄ is an epimorphism3830

and coexact at B if ḡ is an monomorphism. However [Car15], these notions are equivalent in the3831

category of k-cdgas equipped with zero object the field k.3832

A.2.1. Free graded algebras3833

Suppose that char k ‰ 2. As with modules, there are free objects in the category of k-cgas, which3834

have the following description. Given a free graded k-module V if we separate it into even- and3835

odd-degree factors Veven and Vodd, then the free graded commutative k-algebra on V is the graded3836

tensor product3837

SVevenb
k

ΛVodd

of the symmetric algebra SVeven on the even-degree generators and the exterior algebra ΛVodd on
the odd-degree generators. Given k-bases~t “ pt1, . . . , tmq of Veven and ~z “ pz1, . . . , znq of Vodd, we
also write these as

Sr~ts :“ SVeven;

Λr~zs :“ ΛVodd.

Write3838

∆rzms :“ kt1, zmu,

for the unique rank–two unital k-algebra with elements of degrees zero and m, which is the3839

cohomology of an m-sphere. This is Λrzms for m odd and Srzms{pz2
mq for m even.3840

In the event char k “ 2, the graded commutativity relation xy “ p´1q|x| |y|yx, or equivalently3841

xy˘ yx “ 0, forces genuine commutativity xy “ yx for all elements since 1 “ ´1 in k. Thus a free3842

k-cga is a symmetric algebra SV in characteristic 2, independent of the grading on V. Algebras3843

which merely resemble ΛV still play an important role in characteristic two.3844

Definition A.2.4. Let k be a commutative ring. A k-algebra A (not assumed graded commutative),3845

free as a k-module, is said to have a simple system of generators V “ pv1, . . . , vn, . . .q if a k-basis3846

for A is given by the monomials3847

vj1 ¨ ¨ ¨ vj` , j1 ă ¨ ¨ ¨ ă j`,

where each generator occurs at most once. If A has a simple system of generators, we write3848

A “: ∆V “: ∆rv1, . . . , vn, . . .s

despite the fact that this description does not specify A up to algebra isomorphism.3849

Example A.2.5. The exterior algebra Λrz1, . . . , zns admits z1, . . . , zn as a simple system of genera-3850

tors.3851

This is of course the motivating example. Polynomial rings also afford examples.3852
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Example A.2.6. The polynomial ring krxs admits x, x2, x4, x8, . . . as a simple system of generators,3853

as consequence of the binary representability of natural numbers.3854

Example A.2.7. The property of admitting a simple system of generators is preserved under tensor3855

product (e.g., krx, ys admits x2i
y2j

for i ` j ą 0 and krxsbΛrzs admits x2j
b 1 and x2j

b z) so in3856

fact all free cgas are examples.3857

The multiplication in a ∆V need not be anticommutative, as one can see from the following3858

example.3859

Example A.2.8 ([Bor54, Théorème 16.4]). Borel found that the mod 2 homology ring of Spinp10q is3860

given by3861

H˚
`

Spinp10q;F2
˘

“ ∆rv3, v5, v6, v7, v9, v15s,

where all v2
j “ 0 and all pairs of vj commute except for pv6, v9q, which instead satisfies3862

v6v9 “ v9v6 ` v15.

A.2.2. Poincaré duality algebras3863

The real cohomology ring of a compact manifold exhibits an important phenomenon which we3864

generalize to an arbitary cga.3865

Definition A.2.9. Let A be a k-cga, free as a k-module. Suppose there exists a maximum n P N3866

such that An ‰ 0, that An – k, and that for all j P r0, ns the natural pairing3867

Aj ˆ An´j ÝÑ An

obtained by restricting the multiplication of A is nondegenerate. Then we call A a Poincaré3868

duality algebra (or pda) and a nonzero element of An a fundamental class for A, which we write3869

as rAs. If we fix a homogeneous basis pvjq of A, we can define a linear map a ÞÝÑ a˚ on A by3870

setting v˚j :“ vn´j whenever vjvn´j “ rAs and extending linearly. Such a linear map is called a3871

duality map.3872

Theorem A.2.10 (Poincaré; [BT82, I.(5.4), p. 44]). If M is a compact manifold, the real singular coho-3873

mology ring H˚pM;Rq is a pda.3874

Example A.2.11. Let V be a finitely generated, oddly-graded free k-module. Then the exterior3875

algebra ΛV is a Poincaré duality algebra with fundamental class given by the product of a basis3876

of V.3877

Poincaré duality is a severe restriction on the structure of a ring, with powerful consequences,3878

and it is inherited by tensor-factors.3879

Proposition A.2.12. Let A and B be k-cgas, free as k-modules, and suppose B is a pda. Then Ab B3880

exhibits Poincaré duality just if A does.3881

Sketch of proof. If A and B are pdas with duals given by a ÞÝÑ a˚ and b ÞÝÑ b˚, then ab b ÞÝÑ3882

a˚b b˚ is easily seen to be a duality on Ab B up to sign. If, on the other hand, b ÞÝÑ b˚ is a3883

duality on A and ab b ÞÝÑ ab b is a duality on Ab B, then for any homogeneous a P A one has3884

ab 1 “ a˚brBs for some a˚ P A, and a ÞÝÑ a˚ is a duality on A.3885
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A.2.3. Polynomials and numbers associated to a graded module3886

A graded k-module A is said to be of finite type if each graded component An has finite k-rank.3887

Given a graded k-module A of finite type, we define the Poincaré polynomial of A to be the3888

formal power series3889

ppAq :“
ÿ

nPZ
prkk Anqtn.

The sum ppXq|t“1 “
ř

rkk An is the total rank or total Betti number of A. If the total Betti3890

number of A is finite, then when we evaluate at t “ ´1 instead, we get the Euler characteristic3891

χpAq :“ ppXq|t“´1 “
ř

p´1qn rkk An; otherwise the Euler characteristic is undefined.3892

In most cases we care about, the Poincaré polynomial will applied to a nonnegatively-graded3893

k-cga of finite type. The Poincaré polynomial is a homomorphism gr-k-Mod ÝÑ krts in the sense3894

that3895

ppAˆ Bq “ ppAq ` ppBq, ppAb Bq “ ppAq ¨ ppBq.

Usually the cga in question will be the cohomology ring H˚pX; kq of a space, and we will write3896

ppXq :“ p
`

H˚pX; kq
˘

“
ÿ

nPN
rkk HnpX; kqtn.

The individual ranks hkpXq :“ dimQ HkpX;Qq are called the Betti numbers of X; the associated
total rank ppXq|t“1 “

ř

hnpXq is called the total Betti number of the space and denoted h‚pXq.
The Euler characteristic ppXq|t“´1 “

ř

p´1qnhnpXq of H˚pX; kq is called the Euler characteristic
of the space, and written χpXq; it does not depend on k. If we write hevenpXq “

ř

h2npXq and
hoddpXq “

ř

h2n`1pXq, then

h‚pXq ` χpXq “ 2 ¨ hevenpXq;

h‚pXq ´ χpXq “ 2 ¨ hoddpXq

Free cgas behave pleasantly under the Poincaré polynomial because pp´q is multiplicative. If3897

deg x “ n is odd, then p
`

Λrxs
˘

“ 1` tn. Thus given an exterior algebra ΛV on an oddly-graded3898

free k-module V of finite type, with Poincaré polynomial ppVq “
ř

tnj (where it is fine if some nj3899

occur more than once), the tensor rule yields3900

ppΛVq “
ź

p1` tnjq.

Likewise, if deg x “ n is even, then Srxs “ krxs is spanned by 1, x, x2, . . ., so3901

p
`

Srxs
˘

“
ÿ

jPN
tjn “

1
1´ tn .

Given a symmetric algebra SV on an evenly-graded free k-module V of finite type with ppVq “3902
ř

tnj , thenthe tensor rule yields3903

ppSVq “
ź 1

1´ tnj
. (A.2.13)

Proposition A.2.14. Let k be a field, V be a positively-graded k–vector space, SV the symmetric algebra,3904

and W a graded vector subspace of SV such that the subalgebra it generates is a symmetric algebra SW3905

and SV is a free SW-module. Then3906

ppSV {{ SWq “
ppSVq
ppSWq

.
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Proof. Let pqαq be a homogeneous A-basis for SV. Then pqαb 1q forms a graded basis for SV {{ SW “3907

SVb
ĄSW k, so on the level of graded k-modules, one has SV – SWbk ktqαb 1u – SWbpSV {{ SWq.3908

Taking Poincaré polynomials and dividing through by ppSV {{ SWq gives the result.3909

A.3. Differential algebra3910

Our cohomology theories will always take coefficients in an ungraded, commutative ring k with3911

unity; usually, k will be Q or R. The category of k-modules and k-module homomorphisms is3912

denoted k-Mod. A differential k-module is a pair pA, dq, where A P k-Mod is a k-module and3913

d P Endk A, the differential, is a nilsquare endomorphism, so that the composition d2 :“ d ˝ d “ 03914

is the constant map to the zero element. A homomorphism f : pA, dq Ñ pB, δq in the category of3915

differential k-modules, a group homomorphism f : A Ñ B such that f d “ δ f .3916

A cochain complex pA, dq is a differential k-module such that A P gr-k-Mod and additionally3917

d is of degree 1. A homomorphism of cochain complexes, as described in the first paragraph of3918

the subsection, is then called a cochain map.2 We write d æ An “: dn. A map f : pA, dq Ñ pB, δq of3919

cochain complexes is a cochain map of differential k-modules that is additionally a graded map3920

of degree 0, so that f An ď Bn. We let k-Ch denote the category of cochain complexes and cochain3921

maps of k-modules,3922

The cohomology HpA, dq of a differential k-module pA, dq is the quotient pker dq{pim dq, which3923

makes sense because d2 “ 0. We also write this as HdpAq. The differential k-module is exact if3924

HdpAq “ 0. A cochain map f : pA, dq Ñ pB, δq induces a homomorphism f ˚ : HpA, dq Ñ HpB, δq3925

of k-modules. If this map is an isomorphism, then one says f is a quasi-isomorphism.3926

If A is a chain complex, then HpA, dq is graded by3927

HnpA, dq :“ H˚pA, dqn :“ ker dn{ im dn´1.

Then a (graded) cochain map induces a map of graded modules, so cohomology is a functor3928

k-Ch ÝÑ gr-k-Mod. A cochain complex pA, dq is said to be acyclic if H˚pA, dq “ H0pA, dq “ k,3929

meaning HnpA, dq “ 0 for n ‰ 0.3930

We will say a map A ÝÑ B of differential k-modules surjects in cohomology or is H˚-3931

surjective if it induces a surjection H˚pAq ÝÝ� H˚pBq. In the opposite extreme case, that the3932

map H˚pAq ÝÑ H˚pBq is zero in dimensions ě 1 and is the isomorphism H0pAq ÝÑ H0pBq in di-3933

mension 0, we call this map trivial, and say the map X ÝÑ Y is trivial in cohomology. If A ÝÑ B3934

is the map f ˚ : H˚pYq ÝÑ H˚pXq in cohomology induced by a continuous map f : X ÝÑ Y, then3935

we likewise say f is surjective in cohomology or trivial in cohomology if f ˚ is.3936

Given a chain complex, Euler characteristic is preserved under cohomology: one has the3937

following corollary of the fundamental rank–nullity theorem of linear algebra, as applied to the3938

differential d.3939

Proposition A.3.1. Let pA, dq be a chain complex over k of finite total Betti number. Then3940

χpAq “ χ
`

H˚pA, dq
˘

.
2 A chain complex is a graded differential group pA‚, dq with deg d “ ´1; a homomorphism of chain complexes is

a chain map. Chain and cochain complexes are mirror images of each other under the reindexing An “ A´n, and we
will focus our attention on cochain complexes.
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A.3.1. Differential graded algebras3941

A cohomology ring is a commutative graded algebra, and it is defined as the cohomology of a3942

chain complex which is itself a graded algebra. We set out some commonplaces of these objects.3943

A chain complex pA‚, dq concentrated in nonnegative degree such that A‚ is also a graded3944

ring satisfying the product rule3945

dpabq “ da ¨ b` p´1q|a|a ¨ db

for homogeneous elements a, b is a differential graded algebra (or k-dga). A differential d on3946

a graded ring satisfying this condition is called an derivation.3 An derivation on a unital k-3947

algebra satisfies d1 “ 0 and hence dpk ¨ 1q “ 0. A morphism of dgas is a k-algebra map that is3948

simultaneously a cochain map. If A was a k-cga, then we say pA, dq is a commutative differential3949

graded algebra (henceforth k-cdga).3950

The kernel of an derivation d is a subalgebra, because d is additive and because if da “ db “ 0,3951

then dpabq “ pdaqb˘ apdbq “ 0. The image of d is an ideal of ker d, because if b “ da P B and3952

c P ker d, then b P ker d and dpacq “ pdaqc` apdcq “ bc. It follows that H˚pA‚, dq is again a graded3953

k-algebra.3954

The product in the category of dgas is the graded ring direct product Aˆ B, equipped with3955

the differential dpa, bq :“ pda, dbq. The coproduct is the same tensor product Ab
k

B as for cgas,3956

equipped with the unique derivation given by3957

dpab bq “ dAab b` p´1q|a|ab dBb

on pure tensors. If we omit the tensor signs, this gives back, formally, the same product rule.3958

A differential bigraded algebra pA, dq is a bigraded algebra such that d is an antideriviation on3959

the associated singly-graded algebra A‚ of degree 1. We make no additional demands as to how3960

d interacts with the bigrading, but note that since dAn ď An`1, one has for each bidegree pi, jq3961

that dAi,j ď
À

` Ai``,j`1´`, and composing with projections to Ai``,j`1´`, one obtains component3962

maps d` : Ai,j ÝÑ Ai``,j`1´` of bidegree p`, 1´ `q such that3963

d “
ÿ

`PZ
d`.

A.3.2. The algebraic Künneth theorem3964

It is trivial that a product of dgas induces a product decomposition in taking cohomology. In an3965

ideal world, the same would remain true of coproducts, and this ideal world is achieved in the3966

event one of the dgas lacks torsion.3967

Theorem A.3.2. Let k be a principal ideal domain and suppose A and C are free graded differential3968

k-modules. Then3969

HnpAb
k

Cq –
à

0ďjďn

`

H jpAqbHn´jpCq
˘

‘
à

0ďjďn
Tork

1
`

H j`1pAq, Hn´jpCq
˘

.

3 Classically, this was an antiderivation and a derivation was required to satisfy dpabq “ da ¨ b` a ¨ db independent of
degree, but this is never the right notion in the graded context.
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Proof. Write Zn “ kerpdn : An ÝÑ An`1q and Bn “ impdn´1 : An´1 ÝÑ Anq. Then one has a short3970

exact sequence3971

0 Ñ Z ÝÑ A ÝÑ B‚`1 Ñ 0

of complexes where the differentials on Z and B‚`1 are 0. Since we have assumed C is flat, on3972

tensoring these complexes with C, we obtain a short exact sequence3973

0 Ñ ZbC ÝÑ AbC ÝÑ B‚`1bC Ñ 0

of complexes, where the differentials on Z‚bC and B‚`1bC are both idAb dC and the differen-3974

tial on A‚bC is the expected dAb idC˘ idAb dC. Write i‚ : B‚ ÝÑ Z‚ for the inclusion; then it3975

is not hard to see the the connecting map in the long exact sequence in cohomology is the map3976

pib idCq
˚ : B‚bH˚pCq ÝÑ Z‚bH˚pCq induced by ib idC. Thus we get a short exact sequence3977

0 Ñ cokerpib idCq
˚ ÝÑ H˚pAbCq ÝÑ kerpi‚`1b idCq

˚ Ñ 0.

Because 0 Ñ B‚`1 ÝÑ Z‚`1 ÝÑ H‚`1pAq Ñ 0 is exact, the first term is H˚pAqbk H˚pCq and3978

the last is Tork
1
`

H˚`1pAq, H˚pCq
˘

. Re-sorting summands to gather equal total degrees yields the3979

statement of the theorem.3980

In particular, one has the following.3981

Corollary A.3.3. Let A and C be k-dgas free as k-modules and such that H˚pCq is flat over k. Then3982

H˚pAb
k

Cq – H˚pAq b
k

H˚pCq

as k-algebras.3983

Proof. The hypotheses precisely ensure the Tork
1 term vanishes.3984

Note that it more than suffices k be a field.3985

A.4. Splittings3986

An epimorphism A ÝÝ� B is said to split if there exists a monomorphism B A, called a3987

section, such that the composition B Ñ A Ñ B is the identity on B. This section is virtually3988

never canonical, but it is frequently still useful to be able to lift the structure of B back into A in3989

however haphazard a manner.3990

Surjective homomorphisms onto free objects always split in categories whose objects carry a3991

group structure (we always assume the axiom of choice), and we use this simple fact repeatedly.3992

Proposition A.4.1. Let π : A ÝÝ� F be a surjection in gr-k-Mod and suppose F is free. Then π splits.3993

Proof. Let S be a k-basis for F and for each s P S pick a preimage as P π´1tsu. This assignment3994

extends to the needed section.3995

Restricting to the case everything lies in one graded component, one obtains the result in3996

k-Mod. Specializing to the category S1-Mod of modules over S1 – R{Z one obtains the following3997

useful statement.3998
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Proposition A.4.2. Any exact sequence 0 Ñ A ÝÑ B ÝÑ C Ñ 0 of tori splits: we can write B –3999

A ‘ σpCq as an internal direct sum of topological groups for some suitable section σ : C B of the4000

projection to C.4001

Alternate proof. Any short exact sequence of free abelian groups splits, and the functors

A ÞÝÑ Ab
Z
R{Z,

π1pT, 1q ÞÝÑT

furnish an equivalence of categories between finitely generated free abelian groups and tori.4002

We will also need to apply this principle to cgas.4003

Proposition A.4.3. Let F be a free k-cga and π : A ÝÝ� F a surjective k-cga homomorphism. Then there4004

exists a section i : F A of π.4005

Proof. Suppose F is free on the graded k-module V. Since V is free as a graded module, there4006

exists a section i : V A of π over V by Proposition A.4.1. As π is a ring homomorphism, the4007

subalgebra A1 generated in A by iV projects back onto F under π. Were A1 not itself a free k-cga,4008

there would be some relation between homogeneous elements of A1 other than those ensured by4009

the cga axioms, and π would transfer that relation to F, so there is no such relation. Thus π|A1 is4010

a cga isomorphism; now extend i to be its inverse.4011

When we deal with principal bundles, the following simple proposition will be useful.4012

Proposition A.4.4. Let 0 Ñ B ÝÑ E ÝÑ F Ñ 0 be a exact sequence of k-cga maps with F free and E4013

of finite type. Suppose further that for each degree n we have rkk En “ rkkpBb
k

Fqn. Then E – Bb F.4014

Proof. The projection E ÝÑ F splits by Proposition A.4.3, and together with rB, the lift of rF4015

generates E as an algebra, so there is a commutative diagram4016

Bb F

��

B

??

��

F,

``

  
>>

~~
E

of ring maps with the vertical map surjective. If this vertical map failed to also be injective, the4017

rank assumption would fail, so it is an isomorphism.4018
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Topological background4020

In this appendix we state some well-known results in algebraic topology and Lie theory. We will4021

take homotopy groups and singular homology and cohomology groups as known concepts, and4022

cite basic results in algebraic topology without proof, but will restate that the 0th homotopy set π0X4023

of a space X is its set of path-components, which inherits a group structure if X is a group. We4024

denote homotopy equivalences by “»,” homeomorphisms by “«,” and Lie group isomorphisms4025

by “–.” If a group G acts on a space X via φ : Gˆ X ÝÑ X, we write φ : G ñ X. The interior of a4026

manifold M with boundary BM is
˝

M. The complement of a set A Ď B is BzA.4027

B.1. Algebraic topology grab bag4028

This section is just a collection of useful algebro-topological results we will need later, presented4029

without much in the way of motivation, which one might have encountered in a first topology4030

or Lie theory course.4031

Let Top be the category whose objects are pairs pX, Aq of topological spaces, A closed in X,4032

with morphisms pX, Aq ÝÑ pY, Bq those continuous maps f : X ÝÑ Y such that f pAq Ď B. The4033

category whose objects are individual topological spaces and morphisms continuous maps is4034

included as a full category through the inclusion X ÞÝÑ pX,∅q, where ∅ is the empty space.4035

B.1.1. Cell complexes4036

A CW complex is a topological space X equipped with a decomposition into a union of disks4037

of increasing dimension. Less elliptically, such an X must admit a filtration pXnq into n-skeleta4038

meeting the following conditions:4039

• The 0-skeleton X0 is a discrete space.4040

• Given the n-skeleton Xn, index a collection of distinct pn` 1q-disks as pDn`1
α qαPA. From each4041

boundary Sn
α , let a continuous map ϕα : Sn

α ÝÑ Xn, the attaching map, be given. These maps4042

assemble into a map ϕ :
š

αPA Sn
α ÝÑ Xn, and Xn`1 is defined to be the quotient space4043

Xn >
š

αPA Dn`1
α

N

s „ ϕpsq

of the disjoint union: we’ve identified the boundaries of the Dn`1
α with their images in Xn.4044

157
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• The entire space X is X “
Ť

nPN Xn, the colimit, with the direct limit topology. This amounts4045

to saying U Ď X is open just if each U X Xn is open in Xn.4046

A map f : X ÝÑ Y between two CW complexes is said to be cellular if it respects the skeleta:4047

f : Xn ÝÑ Yn for all n.4048

Write CW for the subcategory of Top whose objects are CW pairs consisting of a CW complex4049

X and closed subcomplex A, and whose maps pX, Aq ÝÑ pY, Bq are required to be cellular,4050

meaning both X ÝÑ Y and the restriction A ÝÑ B are cellular. The category CW is a homotopy-4051

theoretic skeleton of Top in the sense that given any pX, Aq P Top there exists prX, rAq P CW and4052

a weak homotopy equivalence prX, rAq ÝÑ pX, Aq in Top. This map (or pX, Aq itself) is called a4053

CW approximation [Hat02, Example 4.15, p. 353]. Moreover, any map of pairs is the same up to4054

homotopy as a map between CW complexes: given a map pX, Aq ÝÑ pY, Bq of pairs there exists4055

a map between CW approximations making the following square commute up to homotopy:4056

prX, rAq //

��

pX, Aq

��
prY, rBq // pY, Bq.

Although CW is unstable under the formation of mapping spaces, with judicious use of CW4057

approximations, we may basically assume every space that follows is a CW complex.4058

The algebraic Künneth Theorem A.3.2 has at least two major topological repercussions.4059

Theorem B.1.1 (Universal coefficients [Hat02, Thms. 3.2, 3.A.3, pp. 195, 264]). Let X be a topological4060

space and k a principal ideal domain. For each n P N one has the following short exact sequences of abelian4061

groups:4062

0 Ñ HnpX;Zq b
Z

k ÝÑ HnpX; kq ÝÑ Tork
1
`

Hn´1pX;Zq, k
˘

Ñ 0,
4063

0 Ñ Ext1
k
`

Hn´1pX;Zq, k
˘

ÝÑ HnpX; kq ÝÑ HomZ
`

HnpX;Zq, k
˘

Ñ 0.

Proof. The homology sequence follows from Theorem A.3.2 by taking C “ C0 “ k and A “ C‚pXq4064

the singular chain complex, taking into account the differentials go in the opposite direction4065

expected. The cohomology sequence arises from taking C “ k and A “ HomZ
`

C‚pXq,Z
˘

the4066

singular cochain complex, noting Ab
Z

k – HomZ
`

C‚pXq, k
˘

.4067

Theorem B.1.2 (Topological Künneth [Hat02, Thm. 3B.6, 3.21][Mas91, Thm. 11.2, p. 346]). Let X
and Y be topological spaces and k an abelian group. Suppose H˚pXq is of finite type. Then for each n P N
one has the following split short exact sequences of abelian groups:

0 Ñ
à

0ďjďn

`

HjpXqbHn´jpYq
˘

ÝÑHnpXˆY; kq ÝÑ
à

0ďjďn
Tork

1
`

HjpX; kq, Hn´j´1pY; kq
˘

Ñ 0;

0 Ñ
à

0ďjďn

`

H jpX; ZqbHnpY; kq
˘

ÝÑHnpXˆY; kq ÝÑ
à

0ďjďn`1
TorZ1

`

H jpX;Zq, Hn`1´jpY; kq
˘

Ñ 0.

When one of the rings H˚pX; kq or H˚pY; kq is free as a k-module, the Ext and Tor terms4068

disappear and these isomorphisms assume a product form4069

H˚pXˆYq – H˚XbH˚Y.

One also obtains the following relation between integral homology and cohomology.4070
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Proposition B.1.3. Let X be a topological space. The torsion subgroups and torsion-free quotients of the4071

singular homology and cohomology groups H˚pX;Zq and H˚pX;Zq satisfy4072

HnpX;Zq – HnpX;Zqfree ‘ Hn´1pX;Zqtors

We will use fiber bundles frequently, and need a criterion for determining when the funda-4073

mental groups of their base spaces are trivial.4074

Theorem B.1.4 ([Hat02, Thm. 4.3]). Let F Ñ E Ñ B be a fiber bundle. Then there is associated a long4075

exact sequence of homotopy groups4076

¨ ¨ ¨ ÝÑ π2pFq ÝÑ π2pEq ÝÑ π2pBq ÝÑ π1pFq ÝÑ π1pEq ÝÑ π1pBq ÝÑ π0pFq ÝÑ π0pEq Ñ 0.

There are important but subtle relations between the homology and homotopy groups.4077

Proposition B.1.5. The first singular homology group of a space X is the abelianization of its fundamental4078

group: H1pX;Zq – π1pXqab.4079

Theorem B.1.1. Let X be a simply-connected topological space and let n ą 1 be the least natural number
such that πnX is nontrivial. Then the same n is also minimal such that HnX is nontrivial, and the natural
Hurewicz map

πnX ÝÑ HnX,

rσ : Sn ÝÑ Xs ÞÝÑ σ˚rSns,

taking the homotopy class of a map from a sphere to the pushforward of the fundamental class, is an4080

isomorphism.4081

The homotopy groups completely determine homotopy type in the following sense.4082

Theorem B.1.6 (Whitehead [Hat02, Thm. 4.5, p. 346]). Let f : X ÝÑ Y be a map of CW complexes4083

such that πn f : πnX „
ÝÑ πnY is an isomorphism for all n ě 0 (a weak homotopy equivalence). Then4084

f is a homotopy equivalence.4085

Theorem B.1.7 (Whitehead [Hat02, Thm. 4.21, p. 356]). Let f : X ÝÑ Y be a weak homotopy equiva-4086

lence of topological spaces. Then Hn f : HnY „
ÝÑ HnX is an isomorphism for all n.4087

We will also need the Lefschetz fixed point theorem. Note that if X is of finite type, the natural4088

maps HnpX;Zq� HnpX;Zqfree � HnpX;Qq carry a Z-basis of the free Z-module HnpX;Zqfree to4089

a Q-basis of HnpX;Qq.4090

Definition B.1.8. Let f : X Ñ X be a continuous self-map of a topological space X of finite4091

type. Then associated endomorphisms Hnp f q P AutQ HnpX;Qq are defined for each n ě 0. The4092

Lefschetz number4093

χp f q :“
ÿ

ně0

p´1qn tr Hnp f q

is the alternating sum of these traces, where each trace is taken with respect to a basis of HnpX;Qq4094

inherited from HnpX;Zqfree.4095

Since the trace of the identity map of a vector space is just the dimension of that space and4096

HnpidXq “ idHnpX;Qq one immediately has the following.4097
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Proposition B.1.9. Let f : X ÝÑ X be a continuous self-map of a topological space of finite type. Then4098

the Lefschetz number of the identity map idX is the Euler characteristic of X:4099

χpXq “ χpidXq.

The more interesting fact about the Lefschetz number is the Lefschetz fixed point theorem.4100

Theorem B.1.10 (Lefschetz, [Hat02, Thm. 2C.3, p. 179]). Let X be a topological space which is a4101

deformation retract of a simplicial complex and f : X ÝÑ X a continuous map without fixed points. Then4102

the Lefschetz number χp f q is 0.4103

B.2. Covers and transfer isomorphisms4104

In this section, we leverage a standard result on the cohomology of covers to a statement we use4105

later about the cohomology of homogeneous spaces.4106

Proposition B.2.1 ([Hat02, Prop. 3G.1]). Let F be a finite group acting by homeomorphisms on a space4107

X, so that p : X ÝÑ X{F is a finite covering. Suppose |F| is invertible in k. Then the map4108

p˚ : H˚pX{F; kq ÝÑ H˚pX; kq

is an injection with image the invariant subring H˚pX; kqF.4109

Proof. Since simplices ∆n are simply-connected, each singular simplex σ : ∆n ÝÑ X{F lifts to a4110

singular simplex rσ : ∆n ÝÑ X. The map τ : σ ÞÝÑ
ř

fPF f ˝ rσ summing over all such lifts then4111

induces a transfer map τ : CnpX{Fq ÝÑ CnpXq of singular chain groups. For each lift frσ we4112

have pp frσq “ σ, so p ˝ τ “ |F| ¨ id on CnpX{Fq. Dualizing yields a cochain map τ˚ : CnpX; kq ÝÑ4113

CnpX{F; kq such that τ˚ ˝ p˚ “ |F| ¨ id on CnpX; kq, so the same holds in H˚pX; kq.4114

If we demand |F| be a unit in k, then τ˚ ˝ p˚ is an isomorphism, so p˚ is injective. Since4115

p ˝ f “ p for all f P F, it follows im p˚ is contained in the invariant subring H˚pX; kqF. On the4116

other hand, since τ ˝ p sends rσ ÞÝÑ
ř

fPF f ˝ rσ, it follows p˚τ˚α “
ř

fPF f ˚α for all α P H˚pX; kq.4117

In particular, if α P H˚pX; kq is F-invariant, then p˚τ˚α “ |F|α, so p˚ surjects onto HpX; kqF.4118

Corollary B.2.2. In the situation of Proposition B.2.1, suppose the action of F on X is the restriction of a4119

continuous action of a path-connected group Γ on X. Then4120

H˚pX{F; kq – H˚pX; kq

Proof. Let f P F. Since Γ is path-connected, the left translation γ ÞÝÑ f γ on Γ is homotopic to the4121

identity. It follows f acts trivially on H˚pX; kq. Thus H˚pX; kqF – H˚pX; kq.4122

Proposition B.2.3. Let Γ be a path-connected group, H0 a connected subgroup, and F a finite central4123

subgroup of Γ. Write F0 “ FX H0 and suppose |F{F0| is invertible in k. Then4124

H˚pΓ{FH0q – H˚pΓ{H0q.

Proof. The space Γ{FH0 is the quotient of Γ{H0 by the left action of F{F0 given by f F0 ¨ γH0 “4125

γ f H0, which is well defined because F is central in Γ. But F{F0 is a subgroup of the path-4126

connected group Γ{F0, so the result follows from Corollary B.2.2.4127
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Proposition B.2.4. Let G be a compact, connected Lie group, K a closed, connected subgroup, rG Ñ G a4128

finite cover, rK the preimage of K, and rK0 the identity component of rK. Then4129

H˚pG{Kq „ÝÑ H˚p rG{rKq „ÝÑ H˚p rG{rK0q.

Proof. By Theorem B.4.5, F is central, so taking rG “ Γ and H0 “ rK in the statement of Proposi-4130

tion B.2.3 we have Γ{H0 “ rG{rK and Γ{FH0 « G{pprKq “ G{K and the result follows.4131

The preceding two results are too simple not to have been known, yet the author knows no4132

reference.4133

Proposition B.2.5. Let F Ñ X Ñ B be a finite-sheeted covering. If either of the Euler characteristics4134

χpXq, χpBq is finite, then so is the other, and χpXq “ χpBq ¨ |F|.4135

Proof sketch. Taking a CW approximation, we may assume X and B to be CW complexes and4136

X Ñ B cellular. Each cell of B is covered by |F| cells in X, so the result follows from cellular4137

homology.4138

B.3. Fiber bundles4139

A fiber space with is a continuous surjection E ÝÑ B such that for each b P B, we have h´1tbu « F4140

for some fixed space F, the fiber. Each h´1tbu is also called a fiber, E is the total space, and B4141

the base. We abbreviate this assemblage as F Ñ E Ñ B. Given two fiber spaces p : E Ñ B and4142

p1 : E1 Ñ B1, a map h : E ÝÑ E1 of total spaces is fiber-preserving if it sends fibers into fibers.4143

Equivalently, there is a map h̄ of bases making the following diagram commute:4144

E h //

p
��

E1

p1
��

B h̄ // B1.

Then hp´1tbu Ď pp1q´1
 

h̄pbq
(

for all b P B. Fiber spaces with fiber F and fiber-preserving maps4145

form a category whose isomorphisms are fiber-preserving homeomorphisms.4146

A fiber space p : E Ñ B with fiber F is a fiber bundle, or an F-bundle (or locally trivial), if4147

• the base B admits an open cover of sets U such that there are fiber space isomorphisms4148

φU : p´1pUq «
ÝÑ U ˆ F, called (local) trivializations, and4149

• these trivializations are compatible in the sense that given two overlapping trivializing
opens U and V, the transition functions gU,V defined by the composite homeomorphism

φU,V : pU XVq ˆ F
φ´1

V
ÝÑ p´1pU XVq

φU
ÝÑ pU XVq ˆ F

px, f q ÞÝÑ
`

x, gU,Vpxqp f q
˘

,

are continuous maps U XV ÝÑ Homeo F. Morally, different coordinatizations of the same4150

trivial subbundle should differ continuously.4151
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Given a fiber space F Ñ E
p
Ñ B and an subset U Ď B, the restriction E|U is the F-bundle4152

pp|Uq : p´1pUq Ñ U. This generalizes to the following construction. a continuous map h : X ÝÑ B4153

(for restrictions, an inclusion), we can construct a pullback space h˚E Ñ X with fiber F fitting4154

into the commutative square4155

h˚E
rh“pr2 //

h˚p :“pr1
��

E

p
��

X h // B,

where the new total space is4156

f ˚E “ Xˆ
B

E :“
 

px, eq P Xˆ E : hpxq “ ppeq
(

Ĺ Xˆ E

and the new maps the restrictions of the factor projections from Xˆ E. This total space is called4157

the fiber product, and (with the maps), it is the pullback of the diagram X Ñ B Ð E in Top.1 If4158

E Ñ B was an F-bundle, so also is h˚E Ñ X: given a local trivialization4159

φ “ pp, ρq : p´1U «
ÝÑ U ˆ F,

a trivialization of the pullback ph˚Eq|h´1pUq is given by4160

idX ˆ ρ : px, eq ÞÝÑ
`

x, ρpeq
˘

,

and such sets h´1pUq cover X. The resulting bundle is a pullback bundle.4161

If F, E, B are all smooth manifolds and the fiber inclusion, projection, and transition functions4162

are all C8, we say F Ñ E Ñ B is a smooth bundle. One can similarly define holomorphic and4163

algebraic bundles, but smooth and merely continuous bundles are all we shall work with.4164

B.3.1. Principal bundles4165

Now suppose we are given a fiber bundle F Ñ E Ñ B admitting trivializations pφUqUPU , such4166

that each transition function gU,V takes values in some subgroup G of the group Homeo F of4167

self-homeomorphisms of the fiber. As G is a topological group, its multiplication is continuous,4168

and left multiplication `g by any element of g P G is a self-homeomorphism of G. In this way the4169

transition function values gU,Vpxq P G can be viewed as elements of Homeo G, and we can form4170

a G-bundle G Ñ P Ñ B by starting with the disjoint union
š

UPU U ˆ G and gluing the pieces4171

by the relations4172

px, gq „
`

x, gU,Vpxq ¨ g
˘

for all nonempty intersections U XV of sets in U and all x P U XV and g P G.4173

The disjoint union we started with admits a global right G-action pu, gq ¨ g1 “ pu, gg1q, which4174

descends to a right G-action on P since the transition functions act on the left of the fibers G.4175

This right action is simply transitive on each fiber. We call a G-bundle admitting a right G-action4176

acting simply transitively on each fiber a principal G-bundle; this motivating bundle G Ñ P Ñ B4177

is one such.4178

1 This notation Xˆ
B

E, now universal, is due to Paul Baum [Smi67, p. 68].
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We can recover the original F Ñ E Ñ B from G Ñ P Ñ B and the map ψ : G ÝÑ Homeo F by4179

a pushout construction:4180

E « Pb
G

F :“
Pˆ F

`

rx, gs, f
˘

„
`

rx, 1sψpgq f
˘ «

š

UPU U ˆ Gˆ F
`

x, gU,Vpxqg, f
˘

„ px, g, f q „
`

x, 1, ψpgq f
˘ (B.3.1)

Verbally, this can be seen as extracting the G-valued transition functions from a principal G-4181

bundle and applying them to F instead of G. For this reason, the bundles E Ñ B and P Ñ B4182

are said to be associated. Because this correspondence is reversible, principal bundles carry4183

essentially all information about fiber bundles.4184

Every homogeneous space G{K is the base space of a principal K-bundle K Ñ G Ñ G{K by4185

Theorem B.4.4. Further, in Chapter 5, we construct a universal principal G-bundle EG Ñ BG that4186

every principal G-bundle is a pullback of. Given such a bundle, a space F, and a homomorphism4187

ψ : G ÝÑ Homeo F, it follows the the associated F-bundle EG ˆG F Ñ BG is universal for F-4188

bundles with transition functions in ψpGq; for example, EGLpn,RqbGLpn,RqRn Ñ BGLpn,Rq is a4189

universal vector bundle. Once we have done this, we will be able to associate to each G{K a4190

homotopy-equivalent space GK fitting into a principal G-bundle G Ñ GK Ñ BK.4191

B.3.2. Fibrations4192

[To be written...]4193

B.4. The structure of Lie groups4194

In this section, we record—without much in the way of explanation or interstitial verbiage—4195

the background we require on compact Lie groups. Dwyer and Wilkinson [DW98] develop this4196

material in an atypical algebro-topological manner concordant with the approach adopted here.4197

Bröcker and tom Dieck [BtD85] is another standard reference.4198

Let G be connected Lie group and H a closed, connected subgroup. By the Cartan–Iwasawa–4199

Malcev theorem, there exists a maximal compact subgroup KH of H, unique up to conjugacy4200

[HM07, Cor. 12.77], which is necessarily connected, such that there is a homeomorphism H «4201

KH ˆRn for some n [HM07, Cor. 12.82]. Likewise G contains a maximal compact subgroup KG,4202

which after conjugation can be chosen to contain KH. This yields a reduction result.4203

Proposition B.4.1. Suppose G is a connected Lie group and H a connected, closed subgroup, with re-4204

spective compact, connected subgroups KG and KH, the one containing the other. Then G{H is homotopy-4205

equivalent to KG{KH.4206

Proof. A left–KG-equivariant deformation retraction of G to KG induces a deformation retraction4207

from G{KH to KG{KH. The fiber of G{KH ÝÑ G{H is H{KH, which is homeomorphic to Eu-4208

clidean space, and G{KH and G{H each have the homotopy type of a CW complex so the long4209

exact sequence of homotopy groups and Whitehead’s theorem shows the maps is a homotopy4210

equivalence.4211

Proposition B.4.2. There exists a smooth map exp : g ÝÑ G, the exponential, which is surjective if G4212

is compact and connected, which restricts to a homomorphism on the preimage of any connected abelian4213

subgroup (in particular, on any line), and whose inverse in a neighborhood of 1 P G serves as a smooth4214

chart.4215



Appendix B. Topological background 164

Proposition B.4.3 ([Wik14]). The fundamental group of a topological group is abelian.4216

Theorem B.4.4 ([War71, Thm. 3.58, p. 120][GGK02, Prop. B.18, p. 179]). Let G be a Lie group and K4217

a closed subgroup. Then G{K is a manifold and K Ñ G Ñ G{K a principal K-bundle.4218

One of the main structure theorems for compact Lie groups is the following.4219

Theorem B.4.5 ([HM06, Thm. 2.19, p. 207]). Every compact, connected Lie group G admits a finite4220

central extension4221

0 Ñ F ÝÑ rG ÝÑ G Ñ 0

such that rG is the direct product of a compact, simply-connected Lie group K and a torus A. Thus4222

G – Aˆ K L

F.

We call rG the universal compact cover of G; it is uniquely determined up to isomorphism.24223

Proposition B.4.6 (Élie Cartan–Wilhelm Killing). Every simply-connected Lie group K is a direct4224

product of finitely many simple groups, groups whose proper normal subgroups are finite. A simply-4225

connected simple group is one of the following:4226

SUpnq, Sppnq, Spinpnq, G2, F4, rE6, rE7, E8,

with the exception of Spinp1q “ Op1q and Spinp4q “ SUp2q ˆ SUp2q; the three infinite families comprise4227

the simply-connected classical groups and the last five the exceptional groups.4228

We will not explain the exceptional groups, but the groups Spinpnq are double covers of SOpnq4229

for n ě 3 (when π1SOpnq – Z{2) and Spinp2q “ SOp2q – S1. A compact group whose universal4230

cover is a direct product of simple groups is called semisimple.34231

Proposition B.4.7. Let G be a compact, semisimple Lie group. Then H1pG;Qq “ 0.4232

Proof. By our definition, G admits a simply-connected finite cover rG. By the universal coefficient4233

theorem B.1.1, we have H1p rG;Qq – H1p rG;Qq – H1p rG;ZqbQ, and by Proposition B.4.3 and4234

Proposition B.1.5 we know H1p rG;Zq – π1 rG, which we have assumed to be a finite group.4235

A classification-type result in the opposite direction is that all compact Lie groups can be seen4236

as closed subgroups of Upnq.4237

Theorem B.4.8 (Fritz Peter–Hermann Weyl [BtD85, Thm. III.4.1, p. 136]). Every compact Lie group4238

G admits a faithful representation.4239

This is a corollary of the Peter–Weyl theorem, and implies in particular [say why] that every4240

compact Lie group embeds as a closed subgroup of Upnq for n sufficiently large.4241

2 This is arguably a misnomer; this object cannot be initial in that we can always cover the toral factor A with
another torus, and in particular the fiber F is not uniquely determined by this characterization.

3 It is much more usual to equivalently demand that the Lie algebra g be a direct sum of simple Lie algebras, but
our focus is away from the Lie algebra level.
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Proof, assuming Peter–Weyl. The Peter–Weyl theorem states, in one version, that the span of the4242

set of continuous functions G ÝÑ C that appear as coefficient functions ρi,j in irreducible unitary4243

representations ρ : G ÝÑ Upnq ă Cnˆn is dense in L2pG;Cq. Particularly, the matrix coefficients4244

must separate points of G, meaning that for any g, h P G there is some irreducible unitary rep-4245

resentation ρ such that some coefficient ρi,jpgq ‰ ρi,jphq. Particularly, taking h “ 1, it follows4246

ρpgq ‰ ρp1q “ id; in words, no nontrivial element is in the kernel of every irreducible unitary4247

representation ρ, or
Ş

ker ρ “ t1u. Each intersection of finitely many ker ρ is a closed submani-4248

fold of G, so in fact one can select finitely many ρn such that
Ş

ker ρn “ t1u and hence
À

ρn is4249

faithful.4250

Exercise B.4.9. Why does one only need to take a finite intersection in the preceding proof?4251

B.4.1. The maximal torus4252

A real torus is a Lie group smoothly isomorphic to the direct product of finitely many copies4253

of the complex circle group S1 – Up1q; for us tori are always considered as Lie groups. A one-4254

dimensional torus is a circle. Much of the structure of the structure of compact, connected Lie4255

groups arises due to tori they contain. The centralizer ZGpKq of a subgroup K of a group G is the4256

set of g P G such that gkg´1 “ k for each k P K.4257

Lemma B.4.10. Any torus T contains a topological generator, an element generating a dense subgroup.4258

Sketch of proof. Any element of R` none of whose coordinates is a rational multiple of any other4259

will project to such an element in pR{Zq` – T.4260

Theorem B.4.11. Let G be a compact, connected Lie group. Every torus S of G is contained in a torus T4261

which is properly contained in no other torus; such a T is called a maximal torus of G. Every element lies4262

in some maximal torus, each maximal torus is its own centralizer in G, and all maximal tori are conjugate4263

in G. The centralizer ZGpTq of a maximal torus is T itself.4264

Given a group G, and a subgroup K of G, we write NGpKq for the normalizer of K in G, the set4265

of elements g P G such that gKg´1 “ K. The Weyl group WpGq of G is defined to be the quotient4266

group NGpTq{T, the collection of nontrivial symmetries of T induced by conjugation. It is always4267

a finite reflection group.4268

Proposition B.4.12. Let G be a connected, compact Lie group. Then the center ZpGq is the intersection4269

of all maximal tori in G.4270

Proof [DW98, Prop. 7.1]. Any element of ZpGq must lie in ZGpTq “ T for any maximal torus T.4271

Conversely, any element x P G has some conjugate gxg´1 in any given maximal torus. If x itself4272

does not lie in that torus, then x ‰ gxg´1, so x is not central.4273

Proposition B.4.13 ([BtD85, Prop. V.(5.13), p. 214]). On the Lie algebra g of a compact, connected Lie4274

group G, there exists a symmetric bilinear form Bp´,´q, the Killing form, which is invariant under the4275

adjoint action of G. This form is negative definite if G is compact.4276

[4277
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Sketch construction. Conjugation cg : h ÞÝÑ ghg´1 on G is smooth, so induces a derivative Adpgq :“4278

pcgq˚ : g ÝÑ g on the tangent space g :“ T1G. The map Ad: G ÝÑ AutR g is itself smooth when4279

AutR g – AutRRn is topologized as an open subset of the space Rnˆn of matrices, thus inducing4280

a derivative ad : g ÝÑ EndR g. This is the multiplication in the Lie algebra g: one sets rx, ys :“4281

adpxqy. Once a basis of g is selected, a trace is well defined, and one sets Bpx, yq :“ trpad x ˝ ad yq.4282

This is clearly bilinear. To see it is AdpGq-invariant, one notes that if γx is a curve in G with4283

γxp0q “ 1 and γ1xp0q “ x, then c : t ÞÝÑ gγxptqg´1 satisfies cp0q “ 1 and c1p1q “ Adpgqx, so that4284

ad
`

Adpgqx
˘

“
d
dt

Ad
`

gγxptqg´1q
ˇ

ˇ

t“0 “ Adpgq
d
dt

Ad
`

γxptq
˘ˇ

ˇ

t“0 Adpg´1q “ Adpgq adpxqAdpgq´1

and recalls the trace of a matrix is invariant under conjugation. [negative-def?]4285

]4286



Appendix C4287

Borel’s proof of Chevalley’s theorem4288

Borel’s proof of Cartan’s theorem in his thesis does not use the Serre spectral sequence, but4289

the Leray spectral sequence, which was at the time phrased in a vocabulary no longer in use.4290

This appendix rephrases his original proof, hopefully without too much violence, in still-current4291

terminology. The translation effort was not entirely trivial; needless to say, any errors belong to4292

the author, not to Borel.4293

C.1. Sheaf cohomology4294

We will require standard material on sheaves and sheaf cohomology to proceed [War71, Ch. 5][ET14,4295

Sec. 2]. The development to follow is no longer standard; this is what things looked like circa4296

1950.4297

We take as known the concepts of sheaf, presheaf, constant sheaf, and stalk. Let k be a prin-4298

cipal ideal domain and k the constant sheaf in the rest of this subsection.4299

Definition C.1.1. Let A be a sheaf of k-modules over a topological space X. A resolution C ‚ of4300

A is a sequence4301

0 Ñ A ÝÑ C 0 ÝÑ C 1 ÝÑ C 2 ÝÑ ¨ ¨ ¨

of sheaf homomorphisms such that the induced sequence of stalks over each point of X is exact.4302

We say A is acyclic if the induced sequence4303

0 Ñ A pXq ÝÑ C 0pXq ÝÑ C 1pXq ÝÑ C 2pXq ÝÑ ¨ ¨ ¨

of global sections is exact. If C ‚ is a resolution of A by acyclic sheaves, then the sheaf cohomology4304

H˚pX; A q of A is the cohomology of the complex4305

0 Ñ C 0pXq ÝÑ C 1pXq ÝÑ C 2pXq ÝÑ ¨ ¨ ¨ .

If space X is paracompact, we say A is fine if for every open cover pUαq of X, there is a family4306

pϕαq of k-linear sheaf endomorphisms of A such that
ř

ϕα “ id and the closure of each set4307

tx P X : ϕαpxq ‰ 0u (the support) lies in Uα.4308

Note what is implicit in this definition, that the choice of acyclic resolution of A does not4309

affect the end result. Our interest in sheaf cohomology is the following:4310

167
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Proposition C.1.2. Let X be a topological space homotopy equivalent to a finite CW complex. Then the4311

singular cohomology and sheaf cohomology rings4312

H˚pX; kq – H˚pX; kq

are isomorphic.4313

By the following proposition, then, to compute singular cohomology, we can resolve k by fine4314

sheaves and take the cohomology of the sequence of global sections.4315

Proposition C.1.3. Fine sheaves are acyclic.4316

Example C.1.4. The canonical fine sheaves are the sheaves Ωp of differential forms on a smooth4317

manifold M. The Poincaré lemma is that the sequence Ω‚ of sheaves resolves the constant sheaf4318

R on M. In this guise, de Rham’s theorem that the cohomology of the de Rham complex is4319

H˚pM;Rq becomes a consequence of Proposition C.1.2. In fact, it is still a little stronger in that4320

the sequence of sheaves Ω‚ has its own internal multiplication (we say it is a sheaf of R-cdgas)4321

and this multiplication of global sections induces a multiplicative structure on H˚pX;Rq which4322

corresponds to the cup product on H˚pX;Rq.4323

This situation is important enough that we codify it.4324

Definition C.1.5. Let X be a paracompact space and F ‚ a sheaf valued in k-cdgas. This can4325

be seen, forgetting the multiplication, as a complex F 0 Ñ F 1 Ñ F 2 Ñ ¨ ¨ ¨ of sheaves of R-4326

modules, and the inclusion of locally constant functions via c ÞÝÑ c ¨ 1 is a sheaf homomorphism4327

k ÝÑ F 0. If the resulting sequence 0 Ñ k Ñ F 0 Ñ F 1 Ñ ¨ ¨ ¨ is exact, such a sheaf of k-dgas can4328

be seen as an acyclic resolution as required in Definition C.1.1. If additionally the values F ‚pUq4329

are free k-modules, we will say F ‚ is a cdga-resolution of k. In general, if F ‚ is sheaf of chain4330

complexes on a space X, write H ppF ‚q for its pth cohomology sheaf , whose stalk at x P X is4331

HppF ‚|xq.4332

These exist in the cases we are interested in, via a clever trick.4333

Proposition C.1.6 (Cartan (unpublished)). Let X be a compact metrizable space. Then there exists a4334

fine sheaf of R-cdgas on X resolving the constant sheaf R.4335

Proof. By the Menger–Nöbeling theorem, X with any compatible metric embeds isometrically4336

into a Euclidean space (specifically R1`2 dim X, where dim X is the Lebesgue covering dimension).4337

The de Rham sheaf U ÞÝÑ Ω‚pUq is a fine sheaf of R-cdgas resolving R on Euclidean space, and4338

so, by restriction, induces such a sheaf on X.4339

We will need to compare and combine sheaves to prove Leray’s theorem.4340

Definition C.1.7. By a tensor product of sheaves of k-dgas G ‚bF ‚ we mean the sheaf whose
stalks are the rings G ‚|xbF ‚|x, singly graded by pG ‚bF ‚qn :“

À

p`q“n G pbF q equipped
with the unique differential restricting to the original differentials on G ‚b k and k bF ‚. Let
f : X ÝÑ Y be a continuous map, F a sheaf on X, and G a sheaf on Y. Then the direct image
sheaf f˚F on Y and inverse image sheaf f´1G on X are given respectively by

V ÞÝÑ F
`

f´1pVq
˘

,

U ÞÝÑ lim
ÝÑ

VĚπpUq
G pVq.
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The following is unsurprising, since we can reuse the same partition of unity:4341

Proposition C.1.8. If F is a sheaf and G a fine sheaf of k-modules on a paracompact topological space X,4342

then the sheaf tensor product F bG is again fine.4343

A cdga-resolution of k allows us to find resolutions of sheaves in a canonical way.4344

Proposition C.1.9. Let F be a sheaf on a paracompact space X and G ‚ a fine cdga-resolution of k. Then4345

G ‚bF is a fine resolution of F , so that H˚pX; F q can be calculated as the cohomology of the complex4346

pG ‚bF qpXq.4347

Proof. Because the stalks G ‚pxq are free k-modules, F Ñ G 0bF Ñ G 1bF Ñ ¨ ¨ ¨ is a resolution4348

of F . Because each G p is fine, so is G pbF , by Proposition C.1.8.4349

Remark C.1.10. Borel actually takes this as his definition of sheaf cohomology.4350

Proposition C.1.11. Let f : X ÝÑ Y be a continuous map of Hausdorff spaces, F a fine sheaf on X, and4351

G a sheaf on Y. Then pullback along f induces an isomorphism4352

G b f˚F – f˚p f ˚G bF q.

Proof. The stalk of the former sheaf over y P Y is4353

pG b f˚F qpyq “ G pyqb p f˚F qpyq “ G pyq b lim
ÝÑVQy F

`

f´1pVq
˘

– G pyqbF
`

f´1pyq
˘

since tyu is closed and F is fine. On the other hand4354

`

f˚p f ˚G bF q
˘

pyq “ lim
ÝÑVQy

`

f˚p f ˚G bF q
˘

pVq “ lim
ÝÑVQyp f ˚G bF q

`

f´1pVq
˘

“ p f ˚G bF q
`

f´1pyq
˘

for the same reason. This last is the module of continuous sections over f´1pyq of an étalé space4355

whose stalk at x P X is4356

p f ˚G bF qpxq “ lim
ÝÑ
UQx

lim
ÝÑ

VĚ f pUq
G pVqbF pxq – G

`

f pxq
˘

bF pxq.

But then a continuous section is precisely an element of G pyqbF
`

f´1pyq
˘

.4357

Corollary C.1.12. Let f : X ÝÑ Y be a continuous map of Hausdorff spaces, F a fine sheaf on X, and G4358

a sheaf on Y. Then pullback along f induces an isomorphism4359

pG b f˚F qpYq – p f ˚G bF qpXq.

Proof. Now pG b f˚F qpYq –
`

f˚p f ˚G bF q
˘

pYq, but this is p f ˚G bF qpXq by definition.4360

Corollary C.1.13. Let f : X ÝÑ Y be a continuous map of Hausdorff spaces, F ‚ a fine cdga-resolution4361

of k on X, and G ‚ a fine cdga-resolution of k on Y. Then f ˚G ‚bF ‚ is also a fine cdga-resolution of k4362

on X.4363

Proof. By Proposition C.1.8, f ˚G ‚bF ‚ is fine, and we saw in the proof of Proposition C.1.11 that4364

its stalk at x P X is G ‚
`

f pxq
˘

bF ‚pxq. This stalk is a free k-module since the tensor factors are,4365

and an acyclic cdga by the Künneth theorem Corollary A.3.3 since the tensor factors are acyclic4366

and free over k.4367
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Example C.1.14. Let π : E ÝÑ B be a smooth fiber bundle with compact total space. Let Ω‚
E be4368

the sheaf of de Rham algebras over E and Ω‚
B that over B. The tensor sheaf C :“ π˚Ω‚

BbΩ‚
E,4369

which is another cdga-resolution of R on E by Corollary C.1.13. Thus the de Rham cohomology4370

H˚pE;Rq is the cohomology of the complex4371

A “ C pEq “
`

π˚Ω‚
BbΩ‚

E
˘

pEq.

This looks at first as if it will violate the Künneth theorem Corollary A.3.3, since π˚Ω‚
BpEq “4372

Ω‚pBq, but C is the sheaf associated to the presheaf U ÞÝÑ Ω‚
`

πpUq
˘

bΩ‚pUq, which is very4373

different from the presheaf itself.4374

C.2. The Leray spectral sequence4375

We paraphrase Borel’s 1951 ETH exposition of the Leray spectral sequence [Bor51, Exposé VII-3].4376

Let f : X ÝÑ Y be a map of Hausdorff spaces, with Y paracompact, F ‚ a fine cdga-resolution of4377

k on X, and G ‚ a fine cdga-resolution of k on Y.4378

Now f ˚G ‚bF ‚ is again a fine cdga-resolution of k on X by Corollary C.1.13. Thus the4379

complex p f ˚G ‚bF ‚qpXq of global sections computes H˚pX; kq. Note from Corollary C.1.12 that4380

this complex of global sections can equally be viewed as pG ‚b f˚F ‚qpXq.4381

Let us filter this by base degree, taking pth filtrand4382

pGěpb f˚F ‚qpXq,

and consider the associated filtration spectral sequence as described in Corollary 2.6.8. We know4383

already that it converges to H˚pX; kq, and we seek to identify the first two terms. The zero term,4384

the associated graded algebra of the p-filtration, is just
À

pG pb f˚F qpXq “ pG ‚b f˚F qpXq again.4385

The complex pG ‚b f˚F ‚qpYq is actually bigraded and by definition its differential is the sum4386

of two components, one of bidegree p1, 0q and extending the differential dG ‚ and the other of4387

bidegree p0, 1q and extending the differential d f˚F‚ . The former increases the filtration degree so4388

differential induced on the associated graded E0 is d0 “ pidb d f˚F‚qpXq.4389

We claim the cohomology E1 of this complex can be identified with the space of global sections4390
`

G ‚bH ‚p f˚F ‚q
˘

pXq. It is easiest to see this first at the stalk level, where clearly an element of4391

G ‚pxqbker
`

d f˚F‚pxq
˘

ď G ‚pxqb f˚F ‚pxq is the same as an element of ker
`

idb d f˚F‚qpxq
˘

since4392

G ‚pxq is a free k-module, and similarly an element of impidG ‚pxqb d f˚F‚qpxq is the same as an4393

element of G ‚pxqb im
`

d f˚F‚pxq
˘

.4394

The differential d1 on E1 takes elements in the kernel of d0 one level forward in the filtration,4395

and hence iis nduced by dG ‚ , so it is given under our identification by pdG ‚ b idqpYq. Recall from4396

Proposition C.1.9 that since G is acyclic, sheaf cohomology on Y with coefficients in any sheaf4397

A is given by the cohomology of the module of global sections of G ‚bA q. In particular fixing4398

A “ H qp f˚F q, one finds4399

Ep,q
2 – Hp`Y; H qp f˚F q

˘

.

To conceptualize this, recall that the pushforward f˚F is the sheaf whose stalk at y P Y is the4400

direct limit of F pUq over neighborhoods U of f´1tyu, so4401

p f˚F qpyq “ H˚
`

f´1tyu; k
˘

.

Thus the E2 page is the cohomology of Y with coefficients varying over the cohomology of the4402

fibers. This spectral sequence pEr, drq is the Leray spectral sequence of the map f : X ÝÑ Y.4403
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Theorem C.2.1 (Leray). Let f : X ÝÑ Y be a map of spaces, with Y paracompact. Let F be a fine4404

cdga-resolution of k on X and G a fine cdga-resolution of k on Y. Then the filtration spectral sequence4405

of the sheaf G ‚b f˚F ‚ with the horizontal filtration induced by the grading of G ‚ is a spectral sequence4406

of k-dgas satisfying4407

• Ep,q
0 – pG pb f˚F qqpYq,4408

• Ep,q
2 – Hp

`

Y; H qp f˚F q
˘

,4409

• Ep,q
8 – grp Hp`qpX; kq.4410

Corollary C.2.2 (Vietoris–Begle [Vie27, Beg50]). Let f : X ÝÑ Y be a map of Hausdorff spaces, Y4411

paracompact, and suppose each for each y P Y that rHďn
`

f´1pyq; k
˘

“ 0. Then f ˚ : H jpY; kq ÝÑ H jpX; kq4412

is an isomorphism for 0 ď j ď n and an injection for j “ n` 1.4413

Proof. This is immediate from the E2 term of the Leray spectral sequence, where rows 1 through4414

n` 1 are empty, so that no differential can hit the first segment Eďn`1,‚
‚ of the bottom row, which4415

hence survives to E8. As the diagonals of total degree ď n are only inhabited by these elements,4416

there is no extension problem.4417

Remark C.2.3. Borel states this a bit more generally. Without complicating the proof, one can4418

replace F ‚ with the extended sheaf pF ‚bMqpUq :“ F ‚pUqbM for any k-module M to get4419

a Leray spectral sequence with coefficients in M. More generally still, although his exposition4420

does not do this, one can replace M with another sheaf A on X to arrive at a spectral sequence4421

H˚
`

Y; H ‚p f˚A q
˘

ùñ H˚pX; A q.4422

Another important difference is that Borel works with compactly supported cohomology on4423

locally compact Hausdorff spaces. This makes no difference for compact total spaces, but the4424

compactness necessary to construct the cdga-resolution of R an important reason why Serre4425

had to reformulate the theory in his thesis, which deals extensively, for example, with the path4426

fibration ΩX Ñ PX Ñ X.4427

Now suppose f : X ÝÑ Y is a bundle with fiber F. Then preimages of small enough neighbor-4428

hoods V Ď Y are of the form V ˆ F, so f˚F ‚ : V ÞÝÑ F ‚pV ˆ Fq and H qp f˚F ‚qpyq “ Hq
`

Fy; kq4429

is a locally constant sheaf, so the cohomology groups H˚pFq of individual fibers are isomorphic.4430

They are related to one another by isomorphisms γ˚ : H˚pE|γp0qq ÝÑ H˚pE|γp1qq induced by lift-4431

ing paths γ : r0, 1s ÝÑ Y in the base to homeomorphisms between fibers, and it is possible to4432

convert these sheaves into a local coefficient system. Thus E‚,q
2 can be shown to isomorphic to4433

the cohomology of the complex Homπ1pYq
`

C‚pYq, HqpF; kq
˘

, where HqpF; kq is viewed as a π1pYq-4434

module through the conversion just hinted at, and in fact the Leray spectral sequence of a bundle4435

agrees with the Serre spectral sequence from E2 onward.4436

C.3. Borel’s proof4437

In this section, we provide a proof of Chevalley’s theorem close to Borel’s original. Most of it is4438

in the setup; once the relevant dgas are defined, the quasi-isomorphisms are nearly immediate.4439

Let k “ R, let G be a compact, connected Lie group, and let G Ñ E π
Ñ B be a smooth principal4440

G-bundle. Write P “ PG for the space of primitives of H˚pGq “ H˚pG;Rq, so that H˚pGq – ΛP.4441

Fix a transgression4442

τ : P „
ÝÑ QH˚pBGq H˚pBGq.
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As π : E Ñ B is a principal G-bundle, there is a classifying map χ : B ÝÑ BG. Let rxjs be a basis4443

of P and rbjs “ χ˚τpxjq P H˚pBq for each j.4444

Let B be an fine sheaf of R-cdgas resolving the constant sheaf R on B, as guaranteed by4445

Proposition C.1.6 and likewise E be a fine sheaf of R-cdgas resolving the constant sheaf R on E,4446

so that by Definition C.1.1 and Proposition C.1.2,4447

H˚pBq – H˚
`

BpBq
˘

; H˚pEq – H˚
`

E pEq
˘

.

We can pull B back to a sheaf π˚B on E and then the tensor product π˚BbE is another fine4448

sheaf on E. If we set C “ pπ˚BbE qpEq with the expected differential, then by Corollary C.1.13,4449

H˚pCq “ H˚
`

pπ˚BbE qpEq
˘

– H˚pEq

as well. This C can be seen as the quotient of BpBqbE pEq by the ideal n spanned by elements of4450

empty support.4451

By Theorem 7.4.5, the classes rxjs P PG are universally transgressive, which in particular4452

means in this instance they transgress in the filtration spectral sequence pEr, drq of C as filtered4453

by4454

Cp :“
à

iěp
pπ˚BibE qpEq.

By Theorem C.2.1, this is a version of the Leray spectral sequence of π : E ÝÑ B, which from4455

E2 – H˚pBqbH˚pGq on, is isomorphic to the Serre spectral sequence of this bundle. Thus, as4456

discussed in Proposition 2.2.21, the transgression of the primitive classes rxjs P PG means there4457

exist elements cj P C such that dCcj “ π˚bjb 1 pmod nq,4458

These transgressive cochains allow us to compile a simpler model of H˚pEq as in the previ-4459

ously cited version Theorem 8.1.5 of Theorem C.3.1. As ΛP is a free CGA, we can lift it to a subal-4460

gebra Λrxjs of pπ˚BbE qpEq generated by global sections xj of π˚BbE . Let C1 “ BpBqbΛrxjs,4461

with differential the unique antiderivation dC1 satisfying4462

dC1pbb 1q “ dBbb 1, dC1p1b xjq “ bjb 1

and filtration4463

pC1qp :“
à

iěp
BipBqbH˚pGq.

Then the map

λ : C1 ÝÑ C :

bb 1 ÞÝÑ π˚bb 1,

1brxjs ÞÝÑ cj

is a filtration-preserving dga homomorphism, which we hope to show is a quasi-isomorphism.4464

Theorem C.3.1 (Chevalley). This map λ is a quasi-isomorphism completing a commutative diagram4465

H˚pC1q

λ˚

��

!!
H˚pGq

!!

==

H˚pBq.

H˚pEq

==
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Proof (Borel). Apply the filtration spectral sequence of (Corollary 2.6.8) to both dgas and the map4466

λ˚. As discussed above, the spectral sequence pEr, drq of C is the Leray spectral sequence of4467

π : E ÝÑ B. Write p1Er, 1drq for the spectral sequence of C1. The 0th page is the associated graded4468

algebra of the filtration:4469

1Ep,‚
0 “ BppBqbH˚pGq.

Since deg xj ě 1, we have deg bj ě 2, so dC1 increases the filtration degree of each element of4470

H˚pGq by at least 2, and the filtration degree of elements of BpBq by 1. Thus no image of dC14471

survives the “associated graded” procedure, so 1d0 “ 0 and4472

1E1 “
1E0 “ BpBqbH˚pGq.

The differential 1d1 still sends generators of H˚pGq at least two filtration degrees forward, but acts4473

as dB on BpBq, so that 1d1 “ δB b idH˚pGq and4474

1E2 – H˚pBqbH˚pGq.

Thus 1E2 – E2; it just remains to see the map λ2 : 1E2 ÝÑ E2 itself is such an isomorphism4475

in a manner making the diagram commute. But 1 brxjs P C1 and 1 b xj pmod nq P C both4476

become 1brxjs in H˚pBqbH˚pGq, and bb 1 P C1 and b b 1 pmod nq P C both become rbsb 1 in4477

H˚pBqbH˚pGq.4478

Historical remarks C.3.2. The proof presented above is in terms of a historically late formulation of4479

Leray’s technology; there were several such accounts, of gradually improving comprehensibility.4480

The entirety of the recounting that follows is derived from work of Borel expositing Leray’s4481

approach, both in 1951 and 1997 [Bor51, Bor98].4482

Leray’s original motivation for the topological edifice he erected seems to have been the de4483

Rham complex. This is an R-CGA of forms supported on various subsets, yielding a complex4484

which Poincaré already had shown to be trivial on Euclidean subsets, but which collate together4485

nonetheless to contain global information about a manifold, as conjectured by Élie Cartan and4486

proven by Georges de Rham in his thesis. Recall that if ω, τ are forms on a manifold M and f a4487

smooth function, the support satisfies these axioms:4488

supppτ`ωq Ď supp τY supp ω; supp 0 “ ∅; suppp f ¨ωq Ď supp ω ;

supppτ^ωq Ď supp τX supp ω; supp dω Ď supppωq.

Leray’s idea, beautiful in its audacity, is to equip a topological space X with a complex (complexe4489

concrete) K of “forms on a space,” equipped with a support function k ÞÝÑ |k|, valued in closed4490

subsets of X, satisfying the first three axioms above despite the absence of any native notion of4491

smoothness (or notion of what “the germ of k at a point” would mean, k not being a function4492

in any real sense). As a purely algebraic object, a complex is a module over a commutative4493

coefficient ring (which we will write as A to allow us to write k P K); only the support function4494

imparts any topological content. If the complex is a dga, we ask the last two axioms be satisfied4495

as well.4496

With this setup, and some further definitions, Leray is able to reprove a good amount of4497

existing algebraic topology as of 1945, proving that the cohomology of certain types of complexes4498

recovers Hopf’s and Samelson’s theorems on Lie groups, the Lefschetz fixed-point theorem, the4499

Brouwer fixed-point theorem, invariance of domain, Poincaré duality, and Alexander duality.4500
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Building up couvertures (defined below) associated to nerves of a cofinal sequence of closed4501

covers of a topological space, Leray can show his cohomology is isomorphic to Čech cohomology4502

on compact Hausdorff spaces X.4503

Here are some of those further definitions. Given a function f : X ÝÑ Y and a complex K4504

on X, one defines the complex f K on Y to have the same underlying module and new support4505

function |k|Y “ f p|k|Xq. Given a complex L on Y, one defines, on the module level,4506

f´1L :“ L{
 

` P K : f´1|`| “ ∅
(

with supports
ˇ

ˇr`s
ˇ

ˇ :“ f´1|`|. As a particular example, if F Ď X is a closed subset, the intersection4507

F.K is defined to be the quotient4508

F.K :“ K{
 

k P K : |k| X F “ ∅
(

with support function k ÞÝÑ |k| X F, and there is a natural restriction homomorphism K ÝÑ F.K.4509

If F “ txu is a singleton, one writes xK; these are the germs of forms if K “ ΩpMq is the de4510

Rham complex. The system of such restrictions F ÞÝÑ F.K is an example of a sheaf (faisceau)4511

under Leray’s later (1946) definition, which should be contrasted with the modern definition4512

depending on an open cover; at this point, Leray was interested in cohomology with compact4513

supports on a locally compact space. An element z of the tensor product KbK1 of two complexes4514

is assigned support4515

|z| :“ tx P X : the image of z is nonzero under KbK1 ÝÑ xKb xK1u.

The intersection K M K1 is given by4516

K M K1 :“ KbK1L z P KbK1 : |z| “ ∅
(

.

An A-complex is fine (fin) if every finite cover pUjq of X admits a partition of unity, which is4517

a set of A-endomorphisms ϕj : K ÝÑ K such that for each k P K4518

supp ϕjpkq Ď Uj X supp k and
ÿ

ϕjpkq “ k.

An A-complex which is a dga is a couverture if is A-torsion free, its stalks are acyclic, i.e.,4519

if H˚pxKq “ H0pxKq – A for every x P X, and there exists u P K such that xu Ø 1 under4520

H0pxKq – A for all x P X. This is the notion our “cdga-resolution of k” translates. Leray’s original4521

cohomology theory on a normal space was the cohomology of the union of all couvertures.4522

The intersection K M F of a sheaf and a complex is defined in a way that winds up equivalent4523

to taking the associated sheaf K : F ÞÝÑ F.K and forming the tensor sheaf K bF in the modern4524

sense. One can also extend the coefficients of a complex K to an A-module M by considering M4525

as a complex with |m| “ X for m ‰ 0 and taking K M M.4526

By the time of Borel’s 1951 lectures on Leray’s work [Bor51], a sheaf (Borel credits this defini-4527

tion to Lazard) has become the espace étalé, associated to a presheaf satisfying the gluing axioms,4528

which is equivalent to the modern definition. The statement of the Leray spectral sequence in4529

these lecture notes is as follows (translation due to the present author).4530

Theorem C.3.3 (Leray). Let f : X ÝÑ Y be a continuous map, K and L fine A-couvertures, M an4531

A-algebra, and F the sheaf associated to f pKbMq. Then there exists a spectral sequence in which4532

E0 “ G
`

f´1pLqM KbM
˘

, E1 “ L M HpFq, E2 “ H
`

L M HpFq
˘

,

(d0 is the derivation with respect to K, d1 the derivation with respect to L) and which terminates in the4533

associated graded algebra of H˚pX, Mq, suitably filtered.4534
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