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Erratum

Proposition 1.8.2 is false because in general the map (1.35) does not commute
with the differential. The error in the proof is that hM is not a module over Λ∗. The
calculations in Appendix 5 are correct, but they only show that hM is also a left
module overM , which is not really interesting because in cohomology mutiplication
is commutative. It could be of interest in the context of intersection homology, see
Section 5 of my (correct) article “Koszul duality and equivariant cohomology for
tori”.

As a consequence, all statements about products on complexes of the form hM
lack proof. In particular, in Theorem 2.12.3 and Corollary 2.12.4 (comparison of
simplicial and algebraic Koszul functors) the word “Λ-algebra” must be replaced
by “Λ-module”. The same applies to Theorem 3.3.2 (toric varieties). Hence the
complex Λ∗ ⊗̃ R[Σ] computes H(XΣ) as Λ-module and as algebra (Buchstaber–
Panov). I guess that by combining my techniques with those of Buchstaber–Panov
one can show that there is an isomorphism between H(Λ∗ ⊗̃ R[Σ]) and H(XΣ)
which is compatible with both structures at the same time.

I doubt that there always exists a product on hM extending the one on M ,
even for M = C∗(Y ). The reason is that already for r = 1 the fact ξ′ ∪1 ξ

′ 6= 0
is an obstruction to the use of the higher products of the homotopy Gerstenhaber
algebra C∗(Y ).



Zusammenfassung

Zentrales Thema dieser Arbeit ist der Zusammenhang zwischen der gewöhn-
lichen und der äquivarianten (singulären) Kohomologie von Räumen mit Torusope-
rationen. Dabei ist die äquivariante Kohomologie eines T -Raumes X definiert als
die Kohomologie der Borelkonstruktion XT . Sie trägt eine Modulstruktur über der
Kohomologie S∗ = H∗(BT ) des klassifizierenden Raumes, welche eine symmetrische
Algebra ist. Die gewöhnliche Kohomologie H∗(X) ist vermöge der Torusoperation
ein Modul über der äußeren Algebra Λ = H(T ).

Man kann nicht erwarten, daß eine Kohomologie die andere eindeutig bestimmt
– sonst gäbe es keinen Grund, äquivariante Kohomologie einzuführen. Schon seit
langem ist aber bekannt, daß im Falle einer T -Mannigfaltigkeit X das Cartanmodell

S∗ ⊗ ΩT (X)

mit Differential

d(σ ⊗ α) = σ ⊗ dα−
r∑
i=1
ξiσ ⊗ xiα

die äquivariante Kohomologie von X mit reellen Koeffizienten aus dem Komplex
der T -invarianten Differentialformen auf X berechnet. Hierbei bezeichnet (xi) die
durch eine Zerlegung T ∼= (S1)r gegebene Basis von Λ1 = H1(T ) und (ξi) die dazu
„duale“ Basis von S2 = H2(BT ). Auf Differentialformen wirkt Λ durch Kontraktion
mit erzeugenden Vektorfeldern.

Goresky, Kottwitz und MacPherson [GKM] haben dieses Ergebnis auf subana-
lytische T -Räume ausgeweitet und in einen größeren algebraischen Zusammenhang
gestellt: Zu jedem solchen Raum X gibt es einen Kokettenkomplex C∗(X), der
durch die T -Wirkung zu einem differentiellen Λ-Modul wird. Der Koszulfunktor t
ordnet jedem differentiellen Λ-Modul N einen S∗-Modul tN = S∗ ⊗ N mit Diffe-
rential

d(σ ⊗ n) = σ ⊗ dn−
r∑
i=1
ξiσ ⊗ xin

zu. Goreskys, Kottwitz’ und MacPhersons Verallgemeinerung des Cartanmodells
ist nun ein Isomorphismus von S∗-Moduln

H(tC∗(X)) ∼= H∗T (X).

Der Funktor t besitzt ein Gegenstück, nämlich den Koszulfunktor h, der jeden
differentiellen S∗-Modul M auf einen Λ-Modul hM = Λ∗ ⊗M mit Differential

d(α⊗m) = (−1)|α|α⊗ dm+
r∑
i=1
xiα⊗ ξim(∗)
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iv ZUSAMMENFASSUNG

abbildet. Koszuldualität bezeichnet die Tatsache, daß beide Funktoren quasiinvers
zueinander sind. In [GKM] wird nun weiter ein Kokettenkomplex C∗(XT ) der
Borelkonstruktion mit einer differentiellen Modulstruktur über S∗ konstruiert und
gezeigt, daß man aus ihm die gewöhnliche Kohomologie von X gewinnen kann:

H(hC∗(XT )) ∼= H∗(X),

und dieser Isomorphismus ist einer von Λ-Moduln. Diese Ergebnisse gelten all-
gemeiner für beliebige zusammenhängende, kompakte Liegruppen (wie auch das
Cartanmodell) und zusätzlich beispielsweise für Schnitthomologie.

Allday und Puppe [AP′] wiesen kurze Zeit später darauf hin, daß die Koszul-
dualität hier eine zugrundeliegende topologische Dualität widerspiegelt: Die Borel-
konstruktion ist ein Funktor t von der Kategorie der T -Räume zu der der Räume
über BT . Ein dazu quasiinverser Funktor h ordnet jedem Raum Y über BT das
Faserprodukt Y ×BT ET zu. Das obengenannte Ergebnis von [GKM] kann man
daher im wesentlichen so formulieren, daß für subanalytische Räume und reelle Ko-
effizienten die Funktoren C∗ ◦ t und t ◦ C∗ von der Kategorie der T -Räume zu
der der differentiellen Λ-Moduln quasiisomorph sind, und ebenso die Funktoren
C∗ ◦h und h ◦C∗ von der Kategorie der Räume über BT zu der der differentiellen
S∗-Moduln.

In der vorliegenden Arbeit wird der Frage nachgegangen, inwieweit sich dieses
Ergebnis von reellen Koeffizienten auf beliebige Ringe R überträgt, insbesondere
natürlich auf die ganzen Zahlen. Als größtes Hindernis bei diesem Unterfangen
stellt sich die Tatsache heraus, daß der singuläre Kokettenkomplex eines Raumes
über BT im allgemeinen kein Modul über S∗ = H∗(BT ;R) ist, da das Cup-Produkt
singulärer Koketten nicht (graduiert) kommutativ ist. Dies ist ein fundamentaler
Unterschied zu den in [GKM] verwandten Differentialformen.

Einen Ausweg bietet das Cup1-Produkt, das eine Homotopie zwischen dem ge-
wöhnlichen Cup-Produkt und dem mit vertauschen Faktoren darstellt und zudem
eine Rechtsderivation des Cup-Produktes ist. Mit seiner Hilfe kann man auf dem
graduierten R-Modul Λ∗⊗C∗(Y ;R) ein Λ-äquivariantes Differential einführen, das
eine Deformation des Differentiales (∗) ist. Komplexe, die eine solche Konstruktion
zulassen, nenne ich schwache S∗-Moduln. Der Koszulfunktor h wird auf sie erwei-
tert vermöge der Zuordnung M 7→ Λ∗ ⊗M zusammen mit dem neu konstruierten
Differential.

Das Hauptergebnis dieser Arbeit lautet wie folgt:

Theorem Bezeichne R einen kommutativen Ring mit Einselement.
1. Sei X ein T -Raum. Dann ist der singuläre Kokettenkomplex C∗(X;R) ein

differentieller Λ-Modul, und H(tC∗(X;R)) ∼= H∗(tX;R) als S∗-Moduln.
2. Sei Y ein Raum über BT . Dann ist der singuläre Kokettenkomplex C∗(X;R)

ein schwacher S∗-Modul, und H(hC∗(Y ;R)) ∼= H∗(hY ;R) als Λ-Moduln.

Der Beweis geschieht durch Konstruktion verbindender äquivarianter Abbildun-
gen zwischen den betreffenden Komplexen. Hierbei erweist es sich als entscheidend,
statt in der Kategorie der topologischen Räume in der der simplizialen Mengen zu
arbeiten. Wie in der Arbeit gezeigt wird, hat dieses keinen Einfluß auf die Kohomo-
logien. Wichtig ist außerdem, stets normalisierte Kokettenkomplexe zu verwenden.
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Weil die Kohomologie eines jeden Raumes ein Produkt besitzt, liegt die Frage
nahe, ob auch die Multiplikation in einem Kokettenkomplex die Multiplikation in
der dualen Kohomologie bestimmt. Als Antwort definiere ich explizite Produkte auf
tC∗(X) und hC∗(Y ) und zeige:
Addendum Die im Theorem auftretenden Isomorphismen sind multiplikativ.

Als eine Anwendung bestimme ich die gewöhnliche Kohomologie einer durch
einen Fächer Σ beschriebenen, (hinreichend) glatten torischen Varietät XΣ über
den Umweg der äquivarianten Kohomologie. Letztere ist gleich dem Stanley-Reis-
ner-Ring R[Σ], der sich als quasiisomorph zum singulären Kokettenkomplex der
Borelkonstruktion von XΣ erweist. Mit Hilfe obigen Theorems und Addendums
folgt für die Kohomologie von XΣ der multiplikative Isomorphismus von Λ-Moduln

H∗(XΣ) ∼= H(hR[Σ]).
Dieses Ergebnis verfeinert ein Resultat von Buchstaber und Panow [BP] insofern,
als es die Modulstruktur miteinbezieht.
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Introduction

Let G be a topological group, X a G-space, and R a commutative ring with
unit element. The equivariant cohomology H∗G(X) = H∗G(X;R) of X is usually
defined as the singular cohomology of the total space of the bundle XG → BG with
fibre X, associated with the universal G-bundle EG → BG. This construction is
natural in G and X. In particular, H∗G(X) is a module over the cohomology of the
classifying space BG.

Since its introduction by Borel some 40 years ago, several methods have been
studied to substitute the equivariant cochain complex C∗(XG), for theoretical and
practical reasons, by a simpler model. In the case of a Lie group G acting smoothly
upon a manifold X and real coefficients one was found to be the Cartan model(

S(g∗)⊗ Ω(X)
)G(0.1)

(which actually predates the Borel construction). Here Ω(X) denotes the de Rham
complex of X and S(g∗) the algebra of polynomials on the Lie algebra g of G with
twice the usual degree. The subspace of G-invariants is a complex with differential

d(σ ⊗ α) = σ ⊗ dα−
m∑
i=1
ξiσ ⊗ iXi α,(0.2)

where (ξi) is a basis of g∗ and (Xi) the family of generating vector fields onX corres-
ponding to the basis (xi) of g dual to (ξi). Then the homology of the complex (0.1)
is isomorphic to H∗G(X) as H∗(BG)-algebra, cf. [GS, Sec. 4.2].

In the general topological situation progress was made by Moore, who estab-
lished for bundles associated with arbitrary principal bundles E → B an isomorph-
ism

H(X ×
G
E) ∼= TorC(G)(C(X), C(E)

)
.(0.3)

The Tor functor on the right is a generalisation of the Tor functor for modules
without differential or grading. This isomorphism would not be very useful if one
could not replace the complexes on right by simpler objects. Fortunately, an import-
ant feature of the Tor functor is that it only “sees” the homology of the complexes
involved in the sense that one may replace all complexes above by others provided
that they are related to the original ones by c-equivalences (i. e., by chain maps
inducing isomorphisms in homology) which are compatible with each other.

Taking G = T a torus for instance, it is not hard to construct a c-equivalence
of algebras H(T )→ C(T ). Replacing C(T ) by the exterior algebra Λ = H(T ) and
then C(ET ) by R via the equivariant projection ET → ∗, one ends up with

TorΛ(C(X), R) = H(C(X)⊗
Λ
K),(0.4)

1



2 INTRODUCTION

where K is the total complex of any projective resolution of the trivial Λ-module R.
For example, one may choose the Koszul complex, which is the tensor product

K = Λ⊗ S(0.5)
of Λ with the symmetric algebra S = S(t) with degrees doubled as above. This
complex carries the differential

d(a⊗ s) =
∑
i

xi ∧ a⊗ s ∩ ξi.

The cap product s∩ ξi means reducing by one the exponent of xi in each monomial
of s (or dropping it if xi does not appear). Substituting (0.5) into (0.4) gives after
dualisation an isomorphism between H∗T (X) and the homology of the complex

tC∗(X) = S∗ ⊗ C∗(X)(0.6)
with differential

d(σ ⊗ α) = −
∑
i

ξiσ ⊗ xi · α+ σ ⊗ dα,

where xi · α denotes the action of the chosen representative in C(T ) of xi ∈ Λ
on α, dual to the “sweep action” on the chains of X. Note that this differential is
“twisted” in a way similar to the one appearing in the Cartan model (0.2).

A few years ago, Goresky, Kottwitz, and MacPherson [GKM] proved (among
other things) that the complex (0.6) gives the equivariant cohomology of a sub-
analytic space X for arbitrary compact Lie groups G and real coefficients. The
algebra S∗ is again the cohomology of BG and Λ the homology of G (which are,
respectively, symmetric and exterior algebras by the choice of real coefficients).
Their result is actually much more general in that it also applies to intersection
cohomology and other cohomology theories defined via “equivariant complexes of
sheaves.” In addition, they showed how to recover the ordinary cohomology from
a suitable model M of the equivariant cochain complex of X. This complex is a
module over S∗, and a twisted differential on the tensor product

hM = Λ∗ ⊗M,(0.7)
similar to (0.6), gives the ordinary cohomology of X. This includes the structure
as module over Λ, as does (0.6) the S∗-module structure.

This passing from Λ-modules to S∗-modules and back is purely algebraic and
known as “Koszul duality.” The essence is that the functors t and h defined above
are inverse to each other in the sense that there are natural c-equivalences

N → htN and thM →M.(0.8)
(Hence, the compositions of these functors are isomorphic to the respective iden-
tities in the derived categories.)

As Allday and Puppe [AP′] have pointed out, the appearance of Koszul du-
ality in equivariant cohomology reflects an underlying topological duality between
G-spaces on the one hand and spaces over BG on the other. The Borel construc-
tion X → XG is a functor from the former category to the latter. In order to
get back one associates to each space Y over BG the total space of the pullback
of the universal G-bundle, which is a G-space. (More precisely, one also has to
switch between left and right G-operations somewhere.) Then the compositions of
both functors are homotopy equivalent to the respective identities in the category
of topological spaces, i. e., when forgetting any additional structure.
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The Moore theorem referred to above also has a companion concerning pull-
backs of bundles: By a theorem of Eilenberg and Moore the cohomology of the
pullback Y ×B E of the bundle E → B along a map Y → B is isomorphic to

TorC∗(B)
(
C∗(E), C∗(Y )

)
.(0.9)

Given a c-equivalence of algebras S∗ = H∗(BG) → C∗(BG), we may conclude as
before that the cohomology of the pullback of the universal G-bundle is isomorphic
to that of the complex

K∗ ⊗
S∗
C∗(Y ) = Λ∗ ⊗ C∗(Y ),(0.10)

because the dual K∗ of K is the total complex of a free resolution of R over the
polynomial algebra S∗. The differential in this case is

d(α⊗ γ) =
∑
i

xi · α⊗ ξiγ + (−1)|α|α⊗ dγ,

and we recover the functor h from (0.7).
Now the problem is that in general such a map S∗ → C∗(BG) does not exist

– at least not for the singular cochain complex, which one is confined to if one
wants to consider arbitrary rings R. The reason is that the cup product of cochains
fails to be (graded) commutative. But some structure remains: The cup product
is commutative up to homotopy (that’s why it becomes commutative after passing
to homology). An explicit chain homotopy is given by the cup1 product introduced
by Steenrod. From this one can develop a theory of strongly homotopy commut-
ative maps to tackle the passage from (0.9) to smaller complexes involving the bar
resolution of S∗, cf. [MC, pp. 292-7]. But it turns out that these complexes are
much too big.

The solution I am going to present can to some extent already be found in
the work of Gugenheim and May [GM] (from which I have also borrowed the
aforementioned generalisations of the original Eilenberg–Moore theorems): One
can keep the complex (0.10), but has to enlarge the differential to accommodate
for multiplications by higher order elements from C∗(BT ) compensating the lack
of commutativity on the cochain level. This is done quite efficiently: If T = S1, no
higher order terms are introduced, corresponding to the existence of a multiplicative
c-equivalence H∗(BS1)→ C∗(BS1) in this case.

Our point of view towards the complexes (0.6) and (0.7) will differ slightly from
that of Eilenberg and Moore: Instead of regarding K and K∗ as (algebraic) resolu-
tions of the ground ring over Λ and S∗, respectively, we consider them as algebraic
models of the chain and cochain complexes of ET . The latter is a contractible free
T -space, hence some sort of topological resolution of the one-point space as T -space
and space over BT . When evaluating the Tor terms in (0.3) and (0.9), one would
therefore have no need for further resolutions because one factor is already free.

The actual approach of the present work does not rely on any of the theories
outlined above. Instead, we will construct equivariant chain maps

S∗ ⊗ C∗(X)← C∗(X ×
T
ET ) and Λ∗ ⊗ C∗(Y )→ C∗(Y

BT
× ET )(0.11)

and show that they induce isomorphisms in homology. The key link between the
topological and algebraic constructions will be the Serre spectral sequence, which
also underpins the Eilenberg–Moore theorems cited above.
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The equivariance of the maps (0.11) (which still has to be made precise for the
first map) immediately gives the dual module structures, which have been lost in
the naive application of the Eilenberg–Moore theorems above. We thus obtain a
new proof of the results of [GKM], valid only for tori and singular cohomology, but
for arbitrary rings R. In addition, we show how to recover the products in H∗(X×T
ET ) and H∗(Y ×BT ET ) from those of C∗(X) and C∗(Y ), respectively. The ring
structure of ordinary and equivariant cohomology is not considered in [GKM], and
much less apparent when using the Eilenberg–Moore theorems.

In a first chapter we will lay the algebraic foundations by an exposition of
Koszul duality between differential graded modules over exterior and symmetric
algebras. This again goes through for arbitrary commutative rings. We do not only
show that the maps (0.8) are c-equivalences, but even homotopy equivalences in
the category of complexes. In contrast to the usual spectral sequence proofs, our
proof works for arbitrary modules, not just bounded ones.

The next section covers the passage from modules over non-commutative algeb-
ras such as C∗(BT ) to “modules” over their homologies. We call these new objects
“weak modules”, because they lack strict structures. As remarked above, a key role
is played by the additional structure given by the cup1 product, notably by the
Hirsch formula. This part is related to the theory of operads, see for example [Lo,
§ 5.1].

Furthermore, we will define explicit products on the complexes (0.6) and (0.7),
compatible with the module structures. This is simple in the first case, but rather
involved in the second.

It turns out that the right setting for the construction of the maps (0.11) is
the category of simplicial sets. We will therefore begin the second chapter by
reviewing their basic theory, in particular the Eilenberg–Zilber maps relating the
chain complex of a product to the tensor product of the respective chain complexes
and the “Steenrod map” underlying the cup1 product. We will study in great detail
how all these maps interact because knowledge only ‘up to homotopy’ on the chain
level is not sufficient for our purposes. It seems that some of our formulas have not
appeared in the literature before.

We then recall the construction of universal bundles and classifying spaces in
the simplicial category and introduce simplicial versions of the functors

X 7→ X ×
G
EG and Y 7→ Y

BG
× EG.

I have decided to call them “simplicial Koszul functors” (as opposed to the “algeb-
raic” ones) in order to stress the close relationship between them. We give proofs
in the simplicial setting of some observations due to [AP′] and explain briefly why
these constructions give the same results as their topological counterparts.

We define equivariant maps

K → C(EG) and Λ∗ ⊗ C∗(BG)→ C∗(EG),

which will easily give us the natural transformations connecting the algebraic and
simplicial Koszul functors. Along the way, we give a new construction of a cer-
tain c-equivalence of algebras C∗(BT ) → H∗(BT ), whose existence is also due to
Gugenheim and May.
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Then we prove the main result of this work, namely that the maps (0.11) are
c-equivalences. Moreover, we show that the product structures introduced on the
complexes (0.6) and (0.7) induce the correct products in homology.

We finally turn to some applications to show how our theory works in practice.
Before touching upon equivariantly formal spaces in the spirit of [GKM], we derive
the Cartan model (0.1) from our results. A longer section shows how to compute
the ordinary and equivariant cohomology of a (sufficiently) smooth toric variety.
This has already been done by Buchstaber and Panov [BP] in the framework of
so-called moment-angle complexes. The advantage of the present approach is that
it includes the Λ-module structure of the ordinary cohomology.

We have already stressed several times that most of our results are based on
explicit constructions. The proofs are usually elementary and consist of verifying
that some claimed identities do hold. As a consequence, they are sometimes quite
lengthy. In order not to annoy the reader by pages of formal manipulations, many
calculations have been banned to an appendix.

A concluding remark about references: I usually cite books and articles which
I consider the most accessible and most useful ones for readers who want more
information on a subject. As a consequence, references to the literature do not
imply claims about originality.





CHAPTER 1

Algebraic Koszul duality

1. Signs and partitions

Throughout this work the letter R denotes a fixed commutative ring with unit
element. Moreover, N, Z, Q, R, and C denote the natural numbers, the integers,
the rationals, the reals and the complex numbers, respectively. We write [r] for the
set {1, . . . , r} ⊂ N. The degree |π| of a finite set π is the number of its elements.

Generally, whenever an object x has a degree |x| ∈ Z, we call

{x} = (−1)|x| ∈ R

its sign. By abuse of language, we say that x is of even degree if {x} = 1 ∈ R, and
of odd degree if {x} = −1 ∈ R. We also define the abbreviation

{x, y} = (−1)|x| |y| ∈ R

for any pair x, y of objects with degree.
We write (µ, ν) ` π to denote a partition of a finite set π = µ ∪̇ ν ⊂ N. If

both subsets are required not to be empty, we write(µ, ν) � π instead. Moreover,
the symbol (µ, ν) ` (p, q) denotes a partition µ ∪̇ ν = {0, . . . , p + q − 1} with
|µ| = p and |ν| = q, i. e., a (p, q)-shuffle.

The sign {(µ, ν)} of a partition (µ, ν) ` π is that of the induced permutation
of π sending its p smallest elements to those of µ and the rest to those of ν, both
in ascending order. One has for any partition (µ, ν) ` π the identity

{(ν, µ)} = {µ, ν}{(µ, ν)}.(1.1)

We will sometimes consider partitions into more than two subsets. Our defini-
tions carry over in the obvious way. Note that, for example, the sign of a parti-
tion (λ, µ, ν) ` π satisfies

{(λ, µ, ν)} = {(λ, µ)}{(λ ∪ µ, ν)} = {(λ, µ ∪ ν)}{(µ, ν)}.(1.2)

2. Complexes

The purpose of this and the following sections is to fix notation and terminology
for complexes, which are mostly as in [D]. A major difference is the pairing (1.5)
between a complex C and its dual C∗, where we write the functional on the right.
This also implies a different definition of the differential on C∗. The reason for this
deviation is that later on we want to end up with left module structures on cochain
complexes.

Following [ML], we define a graded R-module C as a Z-indexed family (Cn)
of R-modules, not as their direct sum. Consequently, any element c ∈ C has a
degree |c| ∈ Z. A complex is a graded R-module C together with a module
homomorphism d of degree −1, called the differential, such that d ◦ d = 0. Any

7



8 1. ALGEBRAIC KOSZUL DUALITY

Z-graded R-module M can be looked at as a complex with trivial differential, and
R as a complex concentrated in degree 0.

A map of complexes is a morphism f (of arbitrary degree) of the underlying
graded R-modules. A map of degree 0 commuting with differentials is called a
chain map. Let f , f ′ : C → B be chain maps. A (chain) homotopy from f to f ′
is a map h : C → B of degree 1 such that f ′ − f = d ◦ h+ h ◦ d.

The dual C∗ of a complex C is defined by setting

(C∗)−n = HomR(Cn, R) and 〈c, dγ〉 = {γ} 〈dc, γ〉 = −{c} 〈dc, γ〉(1.3)

for c ∈ C and γ ∈ C∗. (We set 〈c, γ〉 = 0 if |c|+ |γ| 6= 0.) This is again a complex
because the grading is reversed. In doing so, we have no need to distinguish between
chain and cochain complexes. This will be convenient later on when they appear
together in the formulas. The price we have to pay for this is that homology and
cohomology of a space cannot both live in positive degrees. Since chain complexes
are the primary objects, we have chosen the homological setting. In order not to
confuse the reader too much, we introduce the notation

Cn := (C∗)−n.

This does not affect the grading! An element γ ∈ Cn still has degree −n.
For any map f : C → B of complexes we define the dual map f∗ : B∗ → C∗

by

〈c, f∗(β)〉 = {c, f} 〈f(c), β〉.

This illustrates the general principle to insert, whenever two objects are commuted,
the factor −1 to the product of their degrees. This “sign rule” does not apply to
the differential on the dual of a complex. As a consequence of the above definition,
if h : C → B is a homotopy from f to f ′, then h∗ is one from f∗ to (f ′)∗.

The tensor product B ⊗ C of two complexes B, C is the tensor product
(over R) of the underlying graded R-modules with total grading and differential

d(b⊗ c) = db⊗ c+ {b} b⊗ dc.

The transposition of factors

T = TBC : B ⊗ C → C ⊗B, b⊗ c 7→ {b, c} c⊗ b,(1.4)

the evaluation map

C ⊗ C∗ → R, c⊗ γ 7→ 〈c, γ〉(1.5)

and the map

ι = ιBC : C∗ ⊗B∗ → (B ⊗ C)∗(1.6)

taking γ ⊗ β to the functional defined by

b⊗ c 7→ 〈b, β〉〈c, γ〉

are chain maps.
Given two maps of complexes f : B → B′ and g : C → C ′, we define their

tensor product f ⊗ g : B ⊗ C → B′ ⊗ C ′ by

(f ⊗ g)(b⊗ c) = {g, b} f(b)⊗ g(c).(1.7)
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It is a map of complexes of degree |f |+ |g|. The diagram

(C ′)∗ ⊗ (B′)∗
ιB′C′- (B′ ⊗ C ′)∗

C∗ ⊗B∗

g∗ ⊗ f∗

? ιBC - (B ⊗ C)∗

{f, g} (f ⊗ g)∗

?

commutes. Now suppose that f and g are chain maps. Then so is f ⊗ g. If
h : B → B′ is a homotopy from f to another chain map f ′, then h ⊗ g is one
from f ⊗ g to f ′ ⊗ g. Analogously, f ⊗ k is a homotopy from f ⊗ g to f ⊗ g′ if k is
one from g to another chain map g′.

3. Algebras, coalgebras, and modules

An algebra is a complex A together with a chain map A⊗ A→ A making A
into an R-algebra with unit element. (This is what is usually called a “differential
graded algebra.” We have dropped the adjectives because most of our algebras will
be of this kind, and any algebra without differential or grading can be considered as
one with these structures, cf. the previous section.) A map of algebras is a chain
map commuting with multiplication and taking 1 to 1. We call A commutative
if commutativity holds in the graded sense, i. e., if one has

∀a, b ∈ A ab = {a, b} ba.
A coalgebra is a complex A together with chain maps ∆A : A→ A⊗A (called

comultiplication or diagonal) and εA : A→ R (counit or augmentation) such that
(εA ⊗ 1)∆A : A→ R⊗A = A

is the identity, and likewise (1⊗εA)∆A = 1. A map of coalgebras is a chain map
commuting with the structure maps. A coalgebra A is called coassociative if the
identity (1⊗∆A)∆A = (∆A⊗ 1)∆A holds, and cocommutative if TAA∆A = ∆A,
where TAA is the transposition of factors (1.4).

The dual A∗ of a coalgebra A is canonically an algebra with unit ε∗A(1) and
product

∆∗AιAA : A∗ ⊗A∗ → (A⊗A)∗ → A∗.
It is associative or commutative if A is coassociative or cocommutative, respectively.
Conversely, if an algebra A is a free R-module of finite rank in each degree, then
A∗ is canonically a coalgebra.

A Hopf algebra is a complex A with an algebra and a coalgebra structure
such that the coalgebra structure maps εA and ∆A are maps of algebras. A map
of Hopf algebras is again a structure-preserving chain map.

Note that the tensor product of two algebras (coalgebras, Hopf algebras) is
again an algebra (coalgebra, Hopf algebra). (Use the sign rule when permuting
factors.)

A central role will be played in the sequel by symmetric and exterior algeb-
ras. Let V be a graded R-module with basis (x1, . . . , xr) (of homogeneous ele-
ments). If all basis elements have even degree, then the symmetric algebra S(V ) =
S(x1, . . . , xr) is defined as the associative and commutative algebra of all polyno-
mials in x1, . . . , xr. If all basis elements have odd degree, one defines the exterior
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algebra
∧
V =
∧

(x1, . . . , xr), which is also associative and commutative. We write
the (once a basis of V is chosen) canonical basis elements of S(V ) and

∧
V as

xα = xα1
1 · · ·xαrr ∈ S(V ) and xµ = xi1 ∧ · · · ∧ xiq ∈

∧
V

for α ∈ Nr and µ = {i1 < · · · < iq} ⊂ [r] := {1, . . . , r}. The multiplications are
given in terms of these basis elements by

xαxβ = xα+β and xµ ∧ xν =

{
{(µ, ν)}xµ∪ν if µ ∩ ν = ∅,
0 otherwise.

(All this applies in particular to the case where the characteristic of R equals 2.)
One has isomorphisms of algebras

S(x1)⊗ · · · ⊗ S(xr) ∼= S(V ),
∧

(x1)⊗ · · · ⊗
∧

(xr) ∼=
∧
V,(1.8a)

s1 ⊗ · · · ⊗ sr 7→ s1 · · · sr, a1 ⊗ · · · ⊗ ar 7→ a1 ∧ · · · ∧ ar.(1.8b)

Both S(V ) and
∧
V can also be considered as coalgebras: The augmentations

send all generators to zero, and the diagonals are for r = 1 given by

∆S(x)(xl) =
∑
i+j=l

xi ⊗ xj and ∆V

(x)(x) = x⊗ 1 + 1⊗ x.(1.9)

Interpreting equations (1.8) as the definition of the coalgebras on the left gives the
general case.

With these definitions the exterior algebra
∧
V becomes a (self-dual) Hopf

algebra, but not the symmetric algebra. In this case both structures are dual to
each other in the sense that S(V ∗) = S(V )∗ with multiplication as above is the
algebra dual to the coalgebra S(V ). One can give both S(V ) and S(V ∗) Hopf
algebra structures, but we will not need this.

Let A be an associative algebra. A left A-module is a complex C equipped
with a chain map µC : A⊗ C → C written as a product and satisfying

∀a1, a2 ∈ A, c ∈ C (a1a2)c = a1(a2c) and 1 · c = c.

Note that an R-module is just a complex.
Let f : A→ A′ be a map of associative algebras, and let C and C ′ be an A-mod-

ule and an A′-module, respectively. A map g : C → C ′ is called a (covariant)
f-map (or f-covariant) if it commutes in the graded sense with multiplication,
i. e., if one has

g(ac) = {g, a} f(a)g(c)

for all a ∈ A and c ∈ C. If f is the identity of A, we call g an A-map orA-equivari-
ant. Suppose that we have a map of algebras f ′ : A′ → A instead. Then g is a
contravariant f ′-map or f ′-contravariant if we have

g(f ′(a′)c) = {g, a′} a′g(c)

for all a′ ∈ A′ and c ∈ C. Note that these two flavours of equivariance do not
coincide if the map of algebras in question is not invertible.

Right modules and maps between them are defined analogously; here covariance
and contravariance mean

g(ca) = g(c)f(a) and g(cf ′(a′)) = g(c)a′
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for all a ∈ A, a′ ∈ A′ and c ∈ C, respectively. The notions of chain map and
homotopy generalise from complexes to (left and right) modules.

If not specified further, a module will be a left module from now on. Moreover,
if the type of equivariance of a map is not mentioned, it will always be covariant.

We denote by A-Mod the category of (left) A-modules and A-equivariant homo-
topy classes of maps, and more generally by Mod the category with objects, (left)
modules over associative algebras, and morphisms, pairs (f, h), where f : A→ B is
a map of associative algebras and h the f -covariant homotopy class of an f -chain
map between an A-module and a B-module. The category Mod ∗ has the same
objects as Mod, but its morphisms are homotopy classes of contravariant maps.

If C is a right A-module, then its dual C∗ is a left A-module via

〈c, aγ〉 = 〈ca, γ〉

for a ∈ A, c ∈ C and γ ∈ C∗. Let f be a map of algebras. Then the dual of
an f -equivariant map of right modules is again f -equivariant. If the first map is
covariant then its dual is contravariant and vice versa.

We call a complex C an A-A′-bimodule if it is a left A-module and a right
A′-module such that

(ac)a′ = a(ca′)

holds for all a ∈ A, a′ ∈ A′ and c ∈ C.
The tensor product B ⊗A C of a right A-module B and a left A-module C

is the quotient of the complex B ⊗ C by the subcomplex spanned by the elements

ba⊗ c− b⊗ ac, a ∈ A, b ∈ B, c ∈ C.

It is a complex. A pair of module maps induces as before a map of complexes. If
B is in fact an A′-A-bimodule, then B⊗AC is a left A′-module. Similarly, B⊗AC
is a right A′-module if C is an A-A′-bimodule. Note that taking multiple tensor
products is associative (up to isomorphism), even over different algebras, and that
the evaluation map of a right A-module C factors through C ⊗A C∗.

If B is a, say, left A-module, and C a left A′-module, then their tensor product
B ⊗ C over R is canonically a left A ⊗ A′-module. (Use the sign rule.) If A = A′
is a Hopf algebra, then one can give B ⊗ C again an A-module structure via the
diagonal ∆A.

Let S = S(V ∗) be a symmetric algebra and A an arbitrary algebra which is
also a (left or right) module over S. We call A an S-algebra if the multiplication
of A is S-bilinear.

Let Λ =
∧
V be an exterior algebra and B an algebra or coalgebra which is also

a (left or right) module over Λ. We call B a (left or right) Λ-(co)algebra if the
(co)multiplication and the (co)unit of B are Λ-equivariant. Here R is considered as
trivial module via the augmentation Λ→ R. (The diligent reader will have noticed
that this definition coincides with the previous one if Λ happens to be a symmetric
algebra as well.) The dual of a Λ-coalgebra is a Λ-algebra.

Lemma 1.3.1. Let Λ be an exterior algebra, and B and C right and left Λ-coal-
gebras, respectively. Then B ⊗Λ C is a coalgebra. Moreover, any map of coalgeb-
ras B ⊗ C → C ′ factoring through B ⊗Λ C as a map of complexes induces a map
of coalgebras.

Proof. This simple exercise is done in Appendix 1.
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Later on, we will have to switch between left and right module structures. To do
this in a systematic way, we introduce the notion of an opposition: An opposition
of an associative algebra A is a chain map A→ A, a 7→ ā, such that for all a, b ∈ A
one has

¯̄a = a and ab = {a, b} b̄ ā.(1.10)

Note that an opposition in A induces one in H(A). If A is an exterior algebra
(or, more generally, a commutative algebra with trivial differential), then it has a
canonical opposition (apart from the scalings by ±1), namely the assignment

a 7→ {a} a.(1.11)

With the help of an opposition, one can pass from left A-modules to right ones
and back by setting

a · c := {a, c} c · ā and c · a := {c, a} ā · c.

4. Homology

As usual, the symbols Z(C), B(C), and H(C) denote the cycles, boundaries,
and the homology of a complex C, respectively. We write [c] ∈ H(C) for the
homology class represented by c ∈ Z(C). Since H(C) is a graded R-module (as are
the other two), we may consider it as a complex.

We call complexes C and C ′ cohomologically equivalent (or c-equivalent for
short), in symbols C ∼ C ′, if there is a sequence of chain maps (a “c-equivalence”)

C = C(0) −→ C(1) ←− C(2) −→ · · · ←− C(k−1) −→ C(k) = C ′,

each inducing an isomorphism in homology. C-equivalence is an equivalence rela-
tion weaker than homotopy equivalence. This “poor man’s version” of the derived
category appears in [GHV, Sec. 0.10] and will be sufficient for our purposes.

Analogously, one may talk about c-equivalences of algebras, of modules over
a fixed algebra, or of modules in general. For example, two objects in Mod
are c-equivalent if there is a sequence in Mod as above which becomes a se-
quence of isomorphisms in Mod after passing to homology. This means that all
maps C(i) → C(i±1) are c-equivalences of complexes, equivariant with respect to
c-equivalences A(i) → A(i±1) of the corresponding algebras.

Furthermore, a complex (algebra, A-module) C is called split if it is c-equival-
ent to its own homology. If A = R is a field for instance, then any complex is split.
If C is split, we can and will assume that the sequence of maps above (a “splitting”)
induces the identity in homology.

Finally, we also call a natural transformation Φ between two functors to a
category of modules a c-equivalence if for each object X in the source category the
morphism ΦX is a c-equivalence.

5. Koszul complexes

Let P be a free graded R-module with basis (x1, . . . , xr), and let (ξ1, . . . , ξr)
denote the dual basis. Throughout this chapter, we assume that all basis elements
have odd degree. (Recall that this holds trivially if the characteristic of R is 2.)
We denote by

Λ =
∧
P
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the exterior algebra over P with wedge product ∧, and by

S = S(P [1])

the symmetric (co)algebra over P , shifted in degree by 1. This means xi ∈ Sn+1
for a generator xi ∈ Pn ⊂ Λn. We consider Λ and its dual Λ∗ as Hopf algebras, S
as coalgebra and its dual S∗ as algebra as described in Section 1.3. In addition to
the canonical R-basis elements of Λ and Λ∗,

xµ = xi1 ∧ · · · ∧ xiq and ξµ = ξiq ∧ · · · ∧ ξi1
for any subset µ = {i1 < · · · < iq} ⊂ [r] = {1, . . . , r}, and those of S∗ and S,

ξα = ξαrr · · · ξ
α1
1 and xα = xα1

1 · · ·xαrr
for any multi-index α ∈ Nr, we write ω for the “volume form” ξ[r], which gener-
ates Λ∗ over Λ, cf. formula (1.15a). Note that (xµ) and (ξµ) are dual bases, as are
(xα) and (ξα). The signs of these basis elements are as follows:

{xµ} = {ξµ} = {µ} in Λ and Λ∗;
{xα} = {ξα} = 1 in S and S∗.

We introduce a right S∗-module structure on S (the cap product) such that the
dual operation is the usual multiplication, i. e.,

〈s ∩ σ, τ〉 = 〈s, στ〉(1.12)

for s ∈ S and σ, τ ∈ S∗. Hence, xα∩ξi reduces the exponent αi by 1, or annihilates
the monomial in case αi = 0.

The homological Koszul complex is the complex

K = K(P ) = Λ ⊗̃ S

with differential

d(a⊗ s) =
r∑
i=1
xi ∧ a⊗ s ∩ ξi.

For now, the tilde over the tensor symbol is just a reminder that the differential is
not the ordinary one (which would be zero in this case), but twisted. We will see
in Section 1.7 that this fits into a more general context. Note the isomorphism of
complexes

K = K(x1)⊗ · · · ⊗K(xr),(1.13)

which reduces to the one-dimensional case the proof that the map d is a differential,
where it is readily verified (see also [GS, Sec. 3.1]). An easy corollary of Proposi-
tion 1.6.1 below will be that the differential is actually independent of the chosen
basis of P , but this can also be checked directly without difficulty.

The homological Koszul complex being the tensor product of the Hopf algebra Λ
and the coalgebra S, we may consider it as left Λ-coalgebra and right S∗-module.
The tensor product decomposition above is obviously compatible with these struc-
tures.

The canonical chain map S∗ ⊗ Λ∗ → K∗ from (1.6) is an isomorphism. The
cohomological Koszul complex

K∗ = Λ∗ ⊗ S∗
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is the dual complex K∗ with left Λ-module structure induced by the opposite,
hence right structure on Λ, which we write as a · α. This is up to sign the usual
contraction of forms, i. e.,

〈b, a · α〉 = 〈b · a, α〉 = {α}{a, b} 〈a ∧ b, α〉 = {a} 〈b ∧ a, α〉(1.14)

for a, b ∈ Λ and α ∈ Λ∗. More explicitly, one has the identity

xν · ξµ =

{
{ν}{(µ \ ν, ν)} ξµ\ν if ν ⊂ µ,
0 otherwise,

(1.15a)

in particular

xi · ξi = −1.(1.15b)

Note thatK∗ (likeK∗) is canonically a left S∗-module. Since S∗ is commutative
and concentrated in even degrees, the distinction between left and right module
structures is not important. In what follows we will usually consider K∗ as right
S∗-module.

As an illustration of the conventions stated at the beginning of this chapter,
let us derive the differential on K∗:

〈a⊗ s, d(σ ⊗ α)〉 = −{a}〈d(a⊗ s), σ ⊗ α〉 = −{a}
r∑
i=1
〈xi ∧ a⊗ s ∩ ξi, σ ⊗ α〉

= {xi}{a, xi}
r∑
i=1
〈xi ∧ a, α〉〈s ∩ ξi, σ〉 =

r∑
i=1
〈a · xi, α〉〈s ∩ ξi, σ〉

by (1.14),

=
r∑
i=1
〈a, xi · α〉〈s, ξiσ〉 =

r∑
i=1
〈a⊗ s, xi · α⊗ ξiσ〉.

Hence,

d(α⊗ σ) =
r∑
i=1
xi · α⊗ ξiσ.

The homological Koszul complex is actually the total complex of a free resol-
ution of the trivial Λ-module R, and K∗ (like K∗) that of a free resolution of the
constants over S∗. This implies that the homology of both Koszul complexes is R.
They are actually contractible, i. e., homotopy equivalent to the complex R. In the
case of K∗ this will be a corollary of the results of the following section.

We can now give a first definition of the algebraic Koszul functors: On
objects they are defined by

t = tP : Λ-Mod→ S∗-Mod, N 7→ L⊗
Λ
N,

h = hP : S∗-Mod→ Λ-Mod, M 7→ K∗ ⊗
S∗
M,

where we have used the S∗-Λ-bimodule

L = S∗ ⊗̃Λ, d(σ ⊗ a) = −
r∑
i=1
ξiσ ⊗ xi ∧ a.(1.16)
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More explicitly, we have

tN = S∗ ⊗̃N, d(σ ⊗ n) = −
r∑
i=1
ξiσ ⊗ xin+ σ ⊗ dn,

hM = Λ∗ ⊗̃M, d(α⊗m) =
r∑
i=1
xi · α⊗ ξim+ {α}α⊗ dm.

An Λ-equivariant map f : N → N ′ induces the S∗-equivariant map

1⊗ f : tN → tN ′, σ ⊗ n 7→ σ ⊗ f(n).

If f is a chain map or homotopy, then so is 1 ⊗ f . Similarly, an S∗-equivariant
map g : M →M ′ induces the Λ-equivariant map

1⊗ g : hM → hM ′, α⊗m 7→ {α, g}α⊗ g(m),

which is again a chain map or homotopy in case g is. (The sign is due to defini-
tion (1.7). It does not appear in the previous formula because S∗ is evenly graded.)
In particular, the Koszul functors are well-defined on morphisms. We will study
their behaviour under more general maps in the next section. The proofs given
there will in particular justify the above claims about maps.

The definition of t is motivated by the following observation, which will be used
in Section 2.12:

Lemma 1.5.1. For all right Λ-modules N the map

tN∗ = S∗ ⊗̃N∗ → (N ⊗
Λ
K)∗ = (N ⊗̃ S)∗

sending σ ⊗ ν to the functional

n⊗ s 7→ 〈n, ν〉〈s, σ〉

is an isomorphism of S∗-modules.

Proof. This straightforward calculation can be found in Appendix 2.

Note that the Koszul functors are compatible with direct sums P = P ′⊕P ′′ in
the sense that

tP ′⊕P ′′N ∼= tP ′′tP ′N and hP ′⊕P ′′M ∼= hP ′′hP ′M.

Using the isomorphisms (1.8), one has in particular

tPN ∼= t(xr) · · · t(x1)N and hPN ∼= h(xr) · · ·h(x1)M.(1.17)

This often allows to reduce proofs to the case r = 1.

Let us remark how our construction of the Koszul functors relates to those
of [GKM] and [Fl]: Our definition of tN agrees up to a minus sign in the differential
with that of [GKM, Sec. 8.3], and the map

hM → HomR(Λ,M), α⊗m 7→
(
a 7→ (−1)|α|(|α|+1)/2〈a, α〉m

)
is an isomorphism of Λ-modules, again up to a minus sign in the differential.

If one takes the complex L from (1.16) as the complex T used in [Fl, Ex-
ample 2.1.7], then the definitions of tN agree, and the map

hM → HomS∗(L,M), α⊗m 7→
(
σ ⊗ a 7→ {α}〈a, α〉σm

)
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is an isomorphism of Λ-modules if one generalises definition (1.3) to f ∈ Hom(C,B)
by setting

〈c, df〉 = {c} d〈c, f〉 − {c}〈dc, f〉.

6. First properties of the Koszul functors

Let P ′ be another free graded R-module of finite rank, giving rise to algebras
Λ′ and (S′)∗, and let h : P ′ → P be a linear map of degree 0. We call a map
from a Λ-module to a Λ′-module h-equivariant if it is contravariant with respect
to the induced map h : Λ′ → Λ. Similarly, we call a map from an S∗-module
to an (S′)∗-module h-equivariant if it is covariant with respect to the induced
map h∗ : S∗ → (S′)∗.

Proposition 1.6.1. The algebraic Koszul functors are natural with respect to
maps h : P ′ → P as above. More precisely, an h-equivariant map f : N → N ′
induces the h-equivariant map

tf : tN → tN ′, σ ⊗ n 7→ h∗(σ)⊗ f(n),

and an h-equivariant map g : M →M ′ the h-equivariant map

hg : hM → hM ′, α⊗m 7→ {α, g}h∗(α)⊗ g(m).

These assignments preserve chain maps and homotopies.

Proof. It is fairly clear that the above maps are equivariant because the
maps h∗ : Λ∗ → (Λ′)∗ and h∗ : S∗ → (S′)∗ are so. (Our slightly modified con-
traction (1.14) does not change this.) It is not difficult to check that chain maps
and homotopies go over to the same kind of maps, see Appendix 3.

The maps of complexes

htN → N, α⊗ σ ⊗ n 7→ ε(α)ε(σ)n,(1.18a)

where ε denotes the canonical augmentations sending all generators of Λ∗ and S∗
to zero, and

M → thM, m 7→ 1⊗ 1⊗m,(1.18b)

can be understood as applications of Proposition 1.6.1: The identity mapping of
any Λ-module N is trivially contravariant with respect to the injection h : 0→ P ,
whence a map

tN = tPN → t0N = N.(1.19)

The induced map h∗ : S∗ → R is the standard augmentation, which permits us to
look at t0N = N as trivial S∗-module. The map (1.19) then is S∗-equivariant, we
therefore obtain

htN = hP tPN → hP t0N → h0t0N = N,

which is the map (1.18a).
The projection P → 0 induces the inclusion h∗ : R→ S∗, relative to which the

identity of an S∗-module M is equivariant. We thus have a map

M = h0M → hPM = hM,
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which is equivariant if we consider M as trivial Λ-module via the augmenta-
tion h : Λ → R. The identity of h0M = M being h-equivariant, we end up with
composition (1.18b),

M = t0h0M → tPh0M → tPhPM = thM.
Let N be a Λ-module andM an S∗-module. Generalising the construction S∗⊗̃

N , we define for the sake of the next result the twisted tensor product M ⊗̃N to
be the tensor product M ⊗N with differential

d(m⊗ n) = dm⊗ n− {m}
r∑
i=1
ξim⊗ xin+ {m}m⊗ dn.

All our results about compositions of the algebraic Koszul functors will be
consequences of the following technical lemma:

Lemma 1.6.2. The maps

a : M ⊗̃ htN →M ⊗̃N, m⊗ α⊗ σ ⊗ n 7→ ε(α)σm⊗ n

and

b : M ⊗̃N →M ⊗̃ htN, m⊗ n 7→
∑
π⊂[r]

{π}m⊗ ξπ ⊗ 1⊗ xπn

are homotopy equivalences over S∗ ⊗Λ, inverse to each other. Here the actions of
S∗ and Λ on M ⊗̃ htN and M ⊗̃N come from those on M and N , respectively.

For example, S∗ ⊗Λ acts on M ⊗̃N by

(σ ⊗ a) · (m⊗ n) = {a,m}σm⊗ an.

Proof. Let N(0) = N , and define for i ∈ [r] inductively the Λ-modules

N(i) = h(xi)t(xi)N(i−1) =
∧

(ξi) ⊗̃ S(ξi) ⊗̃N(i−1),

where xi acts on the first factor of the tensor product on the right and all other
generators of Λ on the last. Using the decompositions (1.17) and reordering the
functors, we obtain

htN ∼= h(xr) · · ·h(x1)t(xr) · · · t(x1)N
∼= h(xr)t(xr) · · ·h(x1)t(x1)N = N(r),

hence

M ⊗̃N(0) =M ⊗̃N and M ⊗̃N(r) =M ⊗̃ htN
as complexes. Furthermore, define chain maps a(i) and b(i) similar to a and b above,

a(i) : M ⊗̃N(i) →M ⊗̃N(i−1), m⊗ α⊗ σ ⊗ n′ 7→

{
σm⊗ n′ if α = 1,
0 if α = ξi,

b(i) : M ⊗̃N(i−1) →M ⊗̃N(i), m⊗ n′ 7→ m⊗ 1⊗ 1⊗ n′ −m⊗ ξi ⊗ 1⊗ xin′.

Then

a = a(1) ◦ · · · ◦ a(r) and b = b(r) ◦ · · · ◦ b(1).

This is obvious in the first case, the slightly more difficult verification for b is done
in Appendix 4, as well as the proof that a(i) and b(i) are in fact chain maps. In
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order to show that a and b are homotopy equivalences of complexes and inverse to
each other, it suffices therefore to consider a single pair a(i) and b(i).

We have a(i)b(i) = 1 and

b(i)a(i)(m⊗ α⊗ σ ⊗ n′) =

{
σm⊗ 1⊗ 1⊗ n′ − σm⊗ ξi ⊗ 1⊗ xin′ if α = 1,
0 if α = ξi.

As proven in Appendix 4, a homotopy from the identity of M ⊗̃ N(i) to b(i)a(i) is
given by

H(i)(m⊗ α⊗ ξli ⊗ n′) = {m}
∑

p+q=l−1

ξpim⊗ ξi ∧ α⊗ ξ
q
i ⊗ n

′.(1.20)

Inspection finally shows that the actions of S∗ and Λ onM and N , respectively,
induce module structures on all M ⊗̃ N(i) relative to which all maps a(i) and b(i)
and all homotopies H(i) are equivariant.

Theorem 1.6.3. The compositions ht and th are c-equivalent to the respect-
ive identity functors of Λ-Mod and S∗-Mod. They become isomorphic to them if
composed with the forgetful functors to R-Mod. More precisely:

1. Let N be a Λ-module. Then the map

N → htN = Λ∗ ⊗̃ S∗ ⊗̃N, n 7→
∑
π⊂[r]

{π} ξπ ⊗ 1⊗ xπn

is a Λ-equivariant homotopy equivalence of complexes, natural in N . A strict
left homotopy inverse is given by the canonical map (1.18a).

2. Let M be an S∗-module. Then the map
thM →M, σ ⊗ α⊗m 7→ ε(α)σm

is an S∗-equivariant homotopy equivalence of complexes, natural in M . A
strict right homotopy inverse is given by the canonical map (1.18b).

Proof. Both statements are applications of the preceding lemma: In the first
case simply chooseM = R to see that the map given in the statement is a homotopy
equivalence of complexes with the claimed inverse.

In the second case one takes N = R and reverts the order of the factors in the
tensor product. Since we will make a different choice for N in the next proof, we
nevertheless consider the case of general N . The isomorphism of graded R-modules

M ⊗̃ htN =M ⊗̃Λ∗ ⊗̃ S∗ ⊗̃N → N ⊗ S∗ ⊗Λ∗ ⊗M,
m⊗ α⊗ σ ⊗ n 7→ {m,α⊗ σ ⊗ n}{α, σ ⊗ n}{σ, n}n⊗ σ ⊗ α⊗m

= {m,α}{m,n}{α, n}n⊗ σ ⊗ α⊗m
induces on the image the differential

d(n⊗ σ ⊗ α⊗m) = {α}{n}n⊗ σ ⊗ α⊗ dm

− {n}
∑
i

n⊗ σ ⊗ xi · α⊗ ξim

+ {n}
∑
i

n⊗ ξiσ ⊗ xi · α⊗m(1.21)

−
∑
i

xin⊗ ξiσ ⊗ α⊗m+ dn⊗ σ ⊗ α⊗m.



6. FIRST PROPERTIES OF THE KOSZUL FUNCTORS 19

Denote for a module C by C the same module, but with differential scaled by −1.
Then formula (1.21) shows that the complex on the right hand side above is for N =
R equal to the S∗-module

thM.

Similarly, the transposition of factors in M ⊗̃N gives the complex

N ⊗̃M, d(n⊗m) = dn⊗m−
∑
i

xin⊗ ξim+ {n}n⊗ dm.(1.22)

In particular, transposition of M ⊗̃ R gives M . Therefore, the preceding lemma
yields for any M ∈ S∗-Mod a homotopy equivalence

thM →M.

Since the assignment M → M preserves not only chain maps, but also homotopy
equivalences, this implies that

thM →M

is such a map, too. It is readily verified that the explicit formula given in the
statement is the correct one.

Finally, the equivariance of both maps is checked directly.

We call a module over Λ or S∗ extended if it is obtained by extension of
scalars when forgetting the differential. I. e., as graded module it is of the form
N = Λ⊗ C or M = S∗ ⊗ C for some graded R-module C, respectively. Note that
in first case we may equally assume that N = Λ∗ ⊗ C ′ for some C ′.

Corollary 1.6.4. Any Λ-module or S∗-module is c-equivalent to an extended
module.

Proof. All modules in the image of the Koszul functors are extended.

Corollary 1.6.5. The algebraic Koszul functors form an adjoint pair (t,h).

As remarked in [Fl], this is essentially a ⊗-Hom adjunction.

Proof. We have to show that the following compositions of the equivariant
maps given in the theorem are the respective identities, cf. [W, Ex. A.6.2]:

tN −→ t(htN) = th(tN) −→ tN,
hM −→ ht(hM) = h(thM) −→ hM.

This follows from the explicit description of the maps together with formula (1.15a).

Note that in general there is no equivariant homotopy inverse to the maps given
in the preceding theorem. (Take N = R or M = R.) But one can even choose an
equivariant homotopy if the module one starts with lies in the image of a Koszul
functor:

Theorem 1.6.6. The functors t and tht are isomorphic, as are h and hth.



20 1. ALGEBRAIC KOSZUL DUALITY

Proof. Apply again Lemma 1.6.2: in the first case with M = S∗, in the
second with N = Λ∗ and reversed factors. Equations (1.21) and (1.22) show that
the reordering yields a homotopy equivalence between the complexes

hthM and hM,

hence also between hthM and hM . Note that we end up with the usual Λ-actions
on these modules. Therefore, the homotopy equivalence is one over Λ. We thus
obtain as in the first case a natural transformation between the functors which is
for each object an isomorphism in the right category.

Proposition 1.6.7. For all Λ-modules N the assignment

htN = Λ∗ ⊗̃ S∗ ⊗̃N 3 ω ⊗ σ ⊗ n 7→ (ω ⊗ σ)⊗ n ∈ K∗ ⊗N

extends uniquely to an isomorphism of Λ-modules. The canonical map N → htN
from Theorem 1.6.3 corresponds under this isomorphism to the canonical inclu-
sion N ↪→ K∗ ⊗N .

Since K∗ is contractible, this result may be used to give a different proof of the
homotopy equivalence of complexes N → htN . Note that Λ acts on both factors
of K∗ ⊗N .

Proof. Since any element of htN is a sum of terms xπ · ω ⊗ cπ for uniquely
determined cπ ∈ tN , it is clear that we get a well-defined equivariant map f of
Λ-modules when forgetting the differentials. The action of Λ on K∗ ⊗N is of the
form

xπ ·
(
(ω ⊗ σ)⊗ n

)
= (xπ · ω ⊗ σ)⊗ n

+ terms of lower degree in the Λ∗-component.

(Recall that Λ∗ is negatively graded.) This proves that f is bijective. It remains to
show that it is compatible with the differentials. We have

fd(ω ⊗ σ ⊗ n)

= f
(∑
i

(
xi · ω ⊗ ξiσ ⊗ n− {ω}ω ⊗ ξiσ ⊗ xin

)
+ {ω}ω ⊗ σ ⊗ dn

)
=
∑
i

(
xi · f(ω ⊗ ξiσ ⊗ n)− {ω} f(ω ⊗ ξiσ ⊗ xin)

)
+ {ω} f(ω ⊗ σ ⊗ dn)

By definition of the Λ-action on K∗ ⊗N this simplifies to

=
∑
i

(xi · ω ⊗ ξiσ)⊗ n+ {ω} (ω ⊗ σ)⊗ dn = df(ω ⊗ σ ⊗ n),

as claimed.
It is readily verified that in the case r = 1 the element 1 ⊗ n ∈ K∗ ⊗ N

corresponds to

1⊗ 1⊗ n− ξ1 ⊗ 1⊗ x1n =
∑
π⊂[r]

{π} ξπ ⊗ 1⊗ xπn ∈ htN,

which is the image of n under the canonical inclusion N ↪→ htN . The general case
follows by equations (1.17).
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7. Weak modules

The algebraic Koszul functors as defined in Section 1.5 are not yet suited for
application to the topological situation we have in mind. We will see in the next
chapter that the (co)chain complex of a space with an operation of a torus T can
indeed be endowed with a module structure overH(T ), which is an exterior algebra.
But unless the torus is a circle (or a point), the cochain complex of a space over BT
in general is not a module over the symmetric algebra H∗(BT ). This is due to the
fact that the cup product of cochains fails to be commutative, which reflects the
lack of commutativity of the Alexander–Whitney map used to define it. This is
unfortunate, but it gives rise to a beautiful construction to overcome the difficulty.

The key observation is that the Koszul functor h carries S∗-modules to extended
Λ-modules, i. e., to modules obtained by extension of scalars when forgetting the
differential, cf. Corollary 1.6.4. (The same applies of course to the functor t.) Now
one may ask: Given a graded R-module M , what is the most general Λ-equivari-
ant differential the graded R-module Λ∗ ⊗ M can carry? The differential being
equivariant, it is of course determined by its values on elements from ω⊗M , where
it must be of the form

d(ω ⊗m) =
∑
π⊂[r]

{π, ω}{π}{ω}xπ · ω ⊗ tπ(m)

=
∑

(µ,ν)`[r]

{µ, ν}{ω}xµ · ω ⊗ tµ(m)

for some maps of complexes tπ : M →M of degrees −|xπ| − 1. (The choice of signs
will be convenient later on.) The requirement of d being a differential translates
into the conditions

∀π ⊂ [r]
∑

(µ,ν)`π

{ν}{(µ, ν)} tνtµ = 0,(1.23)

where the sum extends over all partitions µ ∪̇ν = π. For small subsets π this means
(omitting braces)

t∅t∅ = 0,(1.24a)
tit∅ = t∅ti,(1.24b)

tijt∅ + t∅tij = tjti − titj (i < j).(1.24c)

We see that M is canonically a complex with differential d = t∅, that the ti’s
commute with it strictly and with each other up to homotopy, these being supplied
by the tij ’s. The higher order terms can similarly be understood as “higher order
homotopies” between the lower order ones.

Now suppose that M is a module over an associative algebra A. We can fulfil
equations (1.24a) and (1.24b) by keeping the differential and defining ti(m) = −ξ′im
for arbitrarily chosen cycles ξ′i ∈ A of (even) degree |ξ′i| = |ξi|. If we want the higher
order terms tπ also to be left multiplications by algebra elements, say

tπ(m) = {π} ξ′πm,

the equations (1.23) become

∀ ∅ 6= π ⊂ [r] dξ′π = −
∑

(µ,ν)�π
{ν}{(µ, ν)} ξ′νξ′µ,(1.25)
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where the summation extends over all partitions of π with µ 6= ∅ 6= ν. In a fancier
language, the assignment

t : Λ∗ 3 ξπ 7→ t(ξπ) = {π} ξ′π ∈ A for µ 6= ∅, t(1) = 0,

is a twisting cochain for Λ∗ with values in A (see [MC, Def. 6.45] or [M, §30]).
We take the twisting cochain t as a convenient tool to refer to the collection of
the ξ′π’s. For example, note that the Λ-equivariant differential d = dt on Λ∗ ⊗̃M
defined by t has the form

dt = dΛ∗⊗M +Dt = 1⊗ dM +Dt(1.26a)

with

Dt = (1⊗ µM )(1⊗ t⊗ 1)(∆⊗ 1) : Λ∗ ⊗M → Λ∗ ⊗M,(1.26b)

where ∆ is the comultiplication of Λ∗ and µM : A⊗M →M the structure map of the
A-module M . Since dt is Λ-equivariant by construction, so is Dt, or, equivalently,
the map of degree 1

(1⊗ t)∆: Λ∗ → Λ∗ ⊗M.(1.27)

We record the explicit form of the differential for later use:

d(ω ⊗m) =
∑
∅6=µ⊂[r]

{ξ′µ, ω}xµ · ω ⊗ ξ′µm+ {ω}ω ⊗ dm,(1.28a)

d(ξπ ⊗m) = {π}
∑

(µ,ν)`π
µ6=∅

{(µ, ν)} ξν ⊗ ξ′µm+ {π} ξπ ⊗ dm,(1.28b)

where we have used equation (1.15a) to get the last line.
We call the triple (M,A, t) where M is a module over an associative algebra A

and t a twisting cochain as above a weak (left) S∗-module. (This concept is
related to strongly homotopy multiplicative maps, cf. [MC, Sec. 8.1]. Though one
could always take the algebra of all endomorphisms ofM as A, it will be convenient
to allow for other ones as well.) We again write Λ∗ ⊗̃M for the resulting extended
Λ-module with twisted differential dt. As a special case, any S∗-module is also a
weak S∗-module: Simply set ξ′i = ξi ∈ S∗, and all higher order terms to zero.

A map of weak S∗-modules f : (M,A, t) → (M ′, A′, t′) of degree d is a
Λ-equivariant map

f : Λ∗ ⊗M → Λ∗ ⊗M ′, ω ⊗m 7→
∑
π

xπ · ω ⊗ fπ(m),

where fπ : M → M ′ is a map of degree d − |π|. If the components fπ vanish
for all π 6= ∅, we say that f (and, by abuse of language, also f∅) is without
higher order terms. Chain maps and homotopies of weak S∗-modules have the
obvious meanings. This gives us the category S∗-Mod of weak S∗-modules and
homotopy classes of maps. We will usually refer to a weak S∗-module (M,A, t) by
the module M .

The homology of (M,A, t) is by definition that of M . It carries a canonical
(strict) S∗-module structure, given on representative cycles by multiplication by
the ξ′i’s. The equations (1.24) show that this is well-defined. If f : M → M ′
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is a chain map of weak S∗-modules, then this imposes certain conditions on its
components fπ, for example:

f∅(dm)− df∅(m) = 0,
fi(dm) + dfi(m) = {ω}

(
ξ′if∅(m)− f∅(ξ′im)

)
.

Therefore, f∅ : M →M ′ is a chain map of complexes and induces an S∗-equivariant
map in homology. We define H(f) : H(M) → H(M ′) to be this map H(f∅). If
h : M → M ′ is a homotopy between two chain maps f and f ′, then one verifies
similarly that h∅ is a homotopy between f∅ and f ′∅. Hence H(f) = H(f ′) in
this case. Having defined the homology of weak S∗-modules, we may talk about
c-equivalences between them.

We extend the Koszul functor h to this new category S∗-Mod in the obvious
way: We assign to weak S∗-modules and morphisms the corresponding Λ-objects.
This is somehow a “no-operation,” but the essential difference is the homology
associated with M and hM : It is H(M) the former case and H(Λ∗ ⊗̃M) in the
latter.

The relevance of weak S∗-modules for topological applications stems from the
fact that the equations (1.25) are (non-trivially) soluble in the case of cochain
algebras of topological spaces. As explained in the next chapter, any such algebra A
is associative and comes with an additional product ∗ satisfying for all a, b, c ∈ A
the identities

d(a ∗ b) = ab− {a, b} ba− da ∗ b− {a} a ∗ db,(1.29a)
ab ∗ c = {a} a(b ∗ c) + {b, c} (a ∗ c)b.(1.29b)

(The “∗” is supposed to bind weaker than the ordinary product and the differen-
tial.) We call any map of complexes ∗ : A ⊗ A → A of degree 1 satisfying these
two equations a Steenrod–Hirsch product for A. The first line says that the
Steenrod–Hirsch product is a homotopy between the product and the product with
commuted factors. The second line is called the Hirsch formula. Note its asym-
metry: There is no corresponding formula for a∗ bc. We remark in passing that the
signs in the Hirsch formula are as predicted by the sign rule if we write the product
as map a ∗ b = f(a⊗ b).

The following proposition justifies our interest in weak modules. It is of central
importance to the present work in that it lays the ground on which almost all
further developments are built upon.

Proposition 1.7.1. Assume that S∗ is the homology of an associative algebra A
with Steenrod–Hirsch product. Then any choice of representatives ξ′i ∈ A of the ξi,
i ∈ [r], canonically defines a twisting cochain t with t(ξi) = −ξ′i; the higher ξ′π ∈ A
are recursively defined by the formula

ξ′π = −ξ′π′ ∗ ξ′π+ ,(1.30)

where π+ is the maximum of π and π′ 6= ∅ the other elements.
Moreover, this defines a functor from the category A-Mod to S∗-Mod such

that the S∗-module structure on the homology of an A-module, considered as weak
S∗-module, is the original H(A)-module structure.

The resulting differential dt on Λ∗ ⊗̃A appears already in [GM, Example 2.2],
but it seems that its equivariance with respect to Λ has not been used before.
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Proof. The proof that (1.30) defines a twisting cochain is rather straightfor-
ward. It is nevertheless given here due to the importance of the result.

We proceed by induction on |π|. For π = {i} we need that ξ′i be a cycle, which
is true by hypothesis. Using properties (1.29) of the Steenrod–Hirsch product, we
calculate for larger π

−dξ′π = d(ξ′π′ ∗ ξ′π+)
= ξ′π′ξ′π+ − {ξ′π′ , ξ′π+} ξ′π+ξ′π′ − dξ′π′ ∗ ξ′π+ − {ξ′π′} ξ′π′ ∗ dξ′π+

= ξ′π′ξ′π+ − ξ′π+ξ′π′ +
∑

(µ,ν)�π
{ν}{(µ, ν)} ξ′νξ′µ ∗ ξ′π+

= ξ′π′ξ′π+ − ξ′π+ξ′π′

+
∑

(µ,ν)�π′
{ν}{(µ, ν)}

(
{ξ′ν} ξ′ν(ξ′µ ∗ ξ′π+) + {ξ′µ, ξ′π+}(ξ′ν ∗ ξ′π+)ξ′µ

)
and by substituting µ and ν for µ ∪ π+ and ν ∪ π+, respectively,

= {π′}{(π+, π′)} ξ′π′ξ′π+ +
∑

(µ,ν)�π
{π+}(µ

{ν}{(µ, ν)} ξ′νξ′µ

− {(π′, π+)} ξ′π+ξ′π′ +
∑

(µ,ν)�π
{π+}(ν

{ν}{(µ, ν)} ξ′νξ′µ

=
∑

(µ,ν)�π
{ν}{(µ, ν)} ξ′νξ′µ,

as claimed.
The passage from A-modules to weak S∗-modules is functorial: If f : M →M ′

is a chain map of A-modules, then

1⊗ f : Λ∗ ⊗̃M → Λ∗ ⊗̃M ′, α⊗m 7→ {f, α}α⊗ f(m)

is a chain chain, and analogously for homotopies. Finally, the assertion about
homology is clearly true, since this is how multiplication in H(M) by elements
of H(A) = S∗ is defined.

Let A′ be another associative algebra with Steenrod–Hirsch product such that
H(A′) = (S′)∗ is a symmetric algebra corresponding to a graded R-module P ′ with
basis (y1, . . . , ys) and dual basis (χ1, . . . , χs) as in Section 1.6. Furthermore, let
φ : A → A′ be a structure-preserving map such that H(φ) = h∗ : S∗ → (S′)∗ is
monotone in the following sense: Each ξi is mapped either to zero or to one of
the χj ’s such that the relative order of the surviving basis elements is not changed.
In the second case φ(ξ′i) is a representative χ′i of χi = h∗(ξi). Picking representatives
of the other basis elements determines via Proposition 1.7.1 a twisting cochain t′
for A′. By inspection of formula (1.30) one sees that under these assumptions
any φ-equivariant chain map M → M ′ induces a chain map hPM → hP ′M ′,
contravariant with respect to the map h : Λ′ → Λ corresponding to H(φ). The
same applies to φ-equivariant homotopies. Taking A = R, i. e., P ′ = 0, we may in
particular conclude that the assignment (1.18b),

M ↪→ thM, m 7→ 1⊗ 1⊗m(1.31)
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is still a chain map in this new context. We will take a closer look at this map in
Section 1.9.

8. Multiplicativity

In this section we define algebra structures on tN and hM , focusing on the
cases relevant to our topological applications.

Proposition 1.8.1.
1. Let N be a Λ-algebra. Then tN is canonically an S∗-algebra with product

(σ1 ⊗ n1)(σ2 ⊗ n2) = σ1σ2 ⊗ n1n2.(1.32)

This product is associative if that of N is.
2. If N is a right Λ-coalgebra, then the map tN → (N⊗ΛK)∗ given in Lemma

1.5.1 is an isomorphism of S∗-algebras.

Proof. It is obvious that the product (1.32) is S∗-bilinear. That it defines a
chain map tN ⊗ tN → tN hinges on the fact that the generators xi ∈ Λ act as
antiderivations of the algebra N :

d
(
(σ1 ⊗ n1)(σ2 ⊗ n2)

)
= d(σ1σ2 ⊗ n1n2)

= −
∑
i

ξiσ1σ2 ⊗ xi · (n1n2) + σ1σ2 ⊗ d(n1n2)

= −
∑
i

(ξiσ1)σ2 ⊗ (xi · n1)n2 + σ1σ2 ⊗ (dn1)n2

− {n1}
∑
i

σ1(ξiσ2)⊗ n1(xi · n2) + {n1}σ1σ2 ⊗ n1(dn2)

= d(σ1 ⊗ n1)(σ2 ⊗ n2) + {σ1 ⊗ n1}(σ1 ⊗ n1)d(σ2 ⊗ n2).

The complex N ⊗ΛK is a coalgebra by Lemma 1.3.1. Since the product on K∗
is S∗-bilinear, so are those of (N ⊗ K)∗ and (N ⊗Λ K)∗. The multiplicativity of
the isomorphism from Lemma 1.5.1 also follows directly from the definition of the
comultiplication on N ⊗Λ K.

One could give an analogous definition for an algebra M that is an S∗-module
via a map of algebras S∗ → M provided that the image of this map lies in the
centre of M (cf. [GHV, Secs. 2.5 & 3.1]). This will not hold in our applications,
so we proceed differently.

Let A be an associative algebra with Steenrod–Hirsch product. AssumeH(A) =
S∗ and choose a twisting cochain t as in Proposition 1.7.1. Let A → M be a map
of algebras, which we will suppress in our notation. To ensure that it gives M a
left A-module structure, we assume the following partial associativity:

∀a1, a2 ∈ A,m ∈M (a1a2)m = a1(a2m).(1.33)

Assume further that A acts on M via another product ∗ : A⊗M →M compatible
with the map A → M and satisfying the identities (1.29) of a Steenrod–Hirsch
product (which both make sense in this new situation), and in addition

∀a ∈ A a ∗ 1 = 0.(1.34)

(We remark in passing that the identity 1 ∗m = 0 follows from (1.29b).)
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Proposition 1.8.2. Under the above assumptions hM is a Λ-algebra with
product

(∧ ⊗ µM )(1− 1⊗D′t ⊗ 1)(1⊗ TMΛ∗ ⊗ 1) : hM ⊗ hM → hM,(1.35)

where

D′t = (1⊗ ∗)(1⊗ t⊗ 1)(∆⊗ 1) : hM → hM,

and ∧ and µM denote the wedge product on Λ∗ and the product of M , respectively.
Explicitly,

(1.36) (α⊗m)(α′ ⊗m′) =

{m,α′}
(
α ∧ α′ ⊗mm′ −

∑
π 6=∅

{π}{π, α′}α ∧ (xπ · α′)⊗ (ξ′π ∗m)m′
)
.

Note that this product is not associative in general: For r = 1 for instance, we
have

(1⊗m)
(
(ξ ⊗ 1)(ξ ⊗ 1)

)
= 0,

but (
(1⊗m)(ξ ⊗ 1)

)
(ξ ⊗ 1) = {m}(ξ ⊗m+ 1⊗ ξ′ ∗m)(ξ ⊗ 1)

= −1⊗ ξ′ ∗ (ξ′ ∗m)

may not vanish.

Proof. We first note that the product (1.35) is Λ-equivariant because D′t is so
by (1.27) and by the fact that the map 1⊗ ∗ does not affect the module structure.
(But keep the sign convention in mind.)

The term Dt(α′ ⊗ m) vanishes for α′ = 1, because t(1) = 0, and for m = 1
by (1.34). Hence

(α⊗m)(α′ ⊗m′) = {m,α′}α ∧ α′ ⊗mm′ = α ∧ α′ ⊗mm′(1.37)

in these cases, which shows that the new product extends the canonical Λ∗-M -bimod-
ule structure, where both structures come from left and right multiplication by
elements of Λ∗ and M , respectively.

The proof that formula (1.36) agrees with (1.35) can be found in Appendix 5,
as well as the verification that the product is a chain map.

I do not know how this product is related to the one defined in the (Russian)
article [Mi] (for a more general topological application, cf. the remark following
Proposition 2.11.3).

How do these new products fit together? The composition t ◦ h works fine,
but in the other direction we need the additional ingredient ∗ : S∗ ⊗ tN → tN to
repeat the construction. (The algebra S∗ has of course the trivial Steenrod–Hirsch
product.) Since S∗⊗1 lies in the centre of tN , we can simply set all Steenrod–Hirsch
products to zero, as mentioned above. We then have:

Proposition 1.8.3. Notation being as above, the canonical maps

htN → N and M → thM

given by (1.18) and (1.31) are multiplicative.
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9. Further properties of the Koszul functors

In this section we assume that all basis elements of P have positive degree,
so that Λ∗ and S∗ are negatively graded. Furthermore, all Λ-modules and weak
S∗-modules are supposed to be bounded from above. (Recall that this applies to
cochain complexes of topological spaces by the convention stated at the beginning
of this chapter.) Note that the image under a Koszul functor of a complex bounded
above is again of this type (and with the same bound).

We begin with a partial generalisation of Theorem 1.6.3 (2).

Lemma 1.9.1. Let (M,A, t) be a weak S∗-module. Then the map
M ↪→ thM, m 7→ 1⊗ 1⊗m.

is a chain map inducing an isomorphism of S∗-modules in homology.

Proof. We have
thM = S∗ ⊗̃Λ∗ ⊗̃M

with differential

d(σ ⊗ ξπ ⊗m) =

−
r∑
i=1
ξiσ ⊗ xi · ξπ ⊗m+ {π}

∑
(µ,ν)`π
µ 6=∅

{(µ, ν)}σ ⊗ ξν ⊗ ξ′µm+ {π}σ ⊗ ξπ ⊗ dm.

This shows that ι : M ↪→ thM is a chain map. Now filter M by degree, i. e.,
FpM =M≤p, and the other complex by

FpthM = S∗ ⊗Λ∗ ⊗ FpM.

This leads to spectral sequences E(M) and E(thM) with

E0
pq(thM) = (S∗ ⊗̃Λ∗)q ⊗Mp,

hence

E1(thM) = R⊗M
reduces to a single row because the bracketed factor in the preceding line is es-
sentially the cohomological Koszul complex. The filtration-preserving map ι thus
induces an isomorphism of spectral sequences on the E1 level. This implies that
H(ι) is an isomorphism of R-modules.

In order to prove that H(ι) is S∗-equivariant, we have to show that the cycle
ξi ⊗ 1⊗m− 1⊗ 1⊗ ξ′im

is a boundary in thM for any cycle m ∈ M . But this is indeed the case; the
chain 1⊗ ξi ⊗m does the job.

Let N be a Λ-module. We filter tN by
FptN = S∗≤p ⊗N,(1.38)

the first terms of the associated spectral sequence are
E0
pq(tN) = S∗p ⊗Nq,

E1
pq(tN) = E2

pq(tN) = S∗p ⊗Hq(N).(1.39)
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(The identity E1 = E2 follows from the assumption |ξi| ≤ −2 because this im-
plies that the part of the differential coming from the Koszul differential decreases
p-degree at least by 2.)

Similarly, given a weak S∗-module M , we filter hM by

FphM = Λ∗ ⊗M≤p;(1.40)

here we have

E0
pq(hM) = E1

pq(hM) = Λ∗q ⊗Mp,
E2
pq(hM) = Λ∗q ⊗Hp(M).(1.41)

If N is a Λ-algebra or M an algebra with Steenrod–Hirsch product, then the
products defined in the preceding section are compatible with the filtrations, so that
we get spectral sequences of algebras. (Here we use that we assume the Steenrod–
Hirsch product to be of degree 1, and again |ξi| ≤ −2.) Note that both spectral
sequences lie essentially in the third quadrant, hence are bounded.

Proposition 1.9.2. The algebraic Koszul functors preserve c-equivalence.

Proof. We take the proof from [GKM, Sec. 9]: Any chain map of weak
S∗-modules f : M → M ′ induces a map hf : hM → hM ′ compatible with the
filtrations defined above and hence a morphism of spectral sequences. (Recall that
hf “is” by definition the map f .) It becomes an isomorphism from the E2 term on
if H(f) = H(f∅) is an isomorphism. The spectral sequence being bounded, H(hf)
is an isomorphism as well.

The proof for the functor t is similar; here the isomorphism appears already on
the E1 level.

Let C be a left Λ-module or a weak S∗-module. Inspired by [GKM, Sec. 9.2],
we call C split and trivial if it is split and the module structure of H(C) is
trivial, i. e., if Λ resp. S∗ act via the canonical augmentation ε. We call C split
and extended if it is split and H(C) is an extended Λ-module or S∗-module,
respectively.

We continue to generalise results of [GKM, Sec. 9]:

Proposition 1.9.3. The algebraic Koszul functors carry split and trivial mod-
ules to split and extended ones and vice versa.

Proof. If the Λ-module N is split and trivial, then by the preceding proposi-
tion tN ∼ tH(N) = S∗⊗H(N), which is split and extended, because its differential
vanishes.

If N is split and extended, say N ∼ H(N) ∼= Λ∗ ⊗ C = hC for some graded
R-module C, considered as trivial S∗-module, then tN ∼ tH(N) ∼= thC ∼ C by
Theorem 1.6.3 (1), and H(tN) ∼= H(C) = C has trivial module structure.

The proof for weak S∗-modules is identical.

We assume for the rest of this section that R is a principal ideal domain.

Proposition 1.9.4. Let N , N ′ be Λ-modules, free as graded R-modules, and
let f : N → N ′ be a c-equivalence. Then tf is an isomorphism in S∗-Mod.

The analogous statement holds for (strict) S∗-modules.
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Proof. We treat the case of Λ-modules first, where we can imitate the proof
of [D′, Hilfssatz 3.9]: If f : N → N ′ is a map as above, then tf is a c-equivalence
of free S∗-modules by the preceding proposition. We have to show that it is a
homotopy equivalence over S∗. We know that its mapping cone C = C(tf) is free
and acyclic because H(tf) is an isomorphism. Consider the exact sequence

0 −→ Z(C) −→ C −→ B(C) −→ 0

of S∗-modules without differentials. It suffices by a standard argument [D, proof
of Prop. II.3.6] to prove that B(C) = Z(C) is projective as S∗-module. (Note that
the grading is not important because existence of a section to a graded map implies
existence of a graded section.) By Hilbert’s syzygy theorem [W, Thm. 4.3.7], S∗ is
of finite global dimension because so is R. Hence the last term in the exact sequence
of S∗-modules (no grading, no differentials)

0←− B(C)←− C ←− · · · ←− C ←− Z(P )←− 0.

must be projective if we repeat C sufficiently many times. (This actually implies
that Z(P ) is free, but we do not need this.)

Now let f : M →M ′ be a c-equivalence of S∗-modules which are free as graded
R-modules. Then hf is a c-equivalence of Λ-modules, free as graded R-modules.
By what we have just proven, thf is an isomorphism, hence hthf as well. The-
orem 1.6.6 finally shows that hf is an isomorphism, too.

Proposition 1.9.5. Let N be a Λ-module. If H(N) is extended, then N is
split. The analogous statement holds for (strict) S∗-modules.

Proof. Let N be a Λ-module with H(N) ∼= Λ⊗C for an R-module C. Since
R is a principal ideal domain, there exists a graded free bounded above resolution

0←− C ←− P 0 ←− P 1 ←− 0

of C. Tensoring it with Λ gives a graded free resolution of the Λ-module H(N)
and therefore the (not uniquely determined) Λ-equivariant vertical maps in the
following commutative diagram with exact rows:

0 � Λ⊗ C � Λ⊗ P 0 � Λ⊗ P 1 � 0

0 � H(N)

∼=

?
� Z(N)

?
�d N.

?

This implies that the bounded above total complex Λ ⊗ P is c-equivalent to both
H(N) and N .

The proof for S∗-modules is identical.

We remark that the corresponding statement for modules with trivial module
structure in homology is false. We will see an example of this in Section 2.2.

Let N be a Λ-module. Then the assignment

jN : tN → N, σ ⊗ n→ ε(σ)n,(1.42)

is a map of complexes. It is even a map of algebras if N is a Λ-algebra.
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Proposition 1.9.6. The following are equivalent for every Λ-module N :
1. N is split and trivial.
2. There is a section of R-modules to the map H(jN ) : H(tN)→ H(N).
3. The spectral sequence (1.39) degenerates at the E2 level and there is no

composition problem, i. e.,
H(tN) ∼= S∗ ⊗H(N)

as S∗-modules.
If these conditions hold, then

H(N) ∼= R⊗
S∗
H(tN) = H(tN)/S>0H(tN)

as complexes, and as algebras if N is a Λ-algebra.

Proof. 1⇒ 2 is trivial because in this case the map jN induces the map jH(N)
in homology. Since S>0H(tN) is the kernel of H(jN ) = jH(N), the conclusion
follows.

2 ⇒ 3 is an algebraic version of the Leray–Hirsch theorem: If s : H(N) →
H(tN) is such a section, then the S∗-equivariant map

S∗ ⊗H(N)→ H(tN), σ ⊗ [n] 7→ σs([n])
is an isomorphism, cf. [L, VI.8.2].

3⇒ 1 finally is a consequence of Propositions 1.9.5 and 1.9.3.



CHAPTER 2

Simplicial Koszul duality

1. Simplicial sets

In this and the following sections we review some elements of the theory of sim-
plicial sets. We refer to [M], [L] and [ML, Ch. VIII] for comprehensive expositions.

A simplicial set X is a family of sets Xn, indexed by the natural numbers,
together with face maps ∂i : Xn → Xn−1, 0 ≤ i ≤ n, for all positive n, and
degeneracy maps si : Xn → Xn+1, 0 ≤ i ≤ n, for all n, satisfying the relations

∂i∂j = ∂j−1∂i (i < j),
sisj = sj+1si (i ≤ j),
∂isj = sj−1∂i (i < j),(2.1)
∂isi = ∂i+1si = id,
∂isj = sj∂i−1 (i > j + 1).

The elements of Xn are called simplices of degree n or n-simplices, those of X0
also vertices. A simplicial map f : X → Y is a collection of maps fn : Xn → Yn
commuting with the face and degeneracy maps. We postpone the introduction of
simplicial homotopies until we have the notion of simplicial products at our disposal.

Examples of simplicial sets are the simplicial models of standard simplices:
The k-simplices of the simplicial n-model ∆(n) are the weakly increasing func-
tions {0, . . . , k} → {0, . . . , n}. The i-th face operator drops the i-th value, and
the i-th degeneracy operator duplicates it. We write ∗ for the (up to isomorphism
unique) “one-point space” ∆(0) having exactly one simplex in each degree.

A simplicial set X is called connected if for any two vertices x, x′ ∈ X0 there
is a sequence x0, . . . , xk of 1-simplices such that

∂0x
0 = x, ∂1x

i = ∂0x
i+1 (0 ≤ i ≤ k − 1), and ∂1x

k = x′.

To simplify notation later on, we finally introduce the abbreviations

∂ji = ∂i ◦ ∂i+1 ◦ · · · ◦ ∂j , ∂i−1
i = id, and sµ = siq ◦ · · · ◦ si1 , s∅ = id

for i ≤ j and any set µ = {i1 < i2 < · · · < iq} ⊂ N.

The chain functor C from simplicial sets to complexes is defined as follows:
For a simplicial set X the n-th degree Cn(X) of C(X) is the free R-module with
basis Xn, and the differential of an n-simplex x is

dx =
n∑
i=0

(−1)i∂ix.

With a simplicial map f : X → Y one associates its extensions f∗ = C(f) to
Cn(X)→ Cn(Y ) for all n ∈ N. The cochain functor C∗ is the composition of C

31



32 2. SIMPLICIAL KOSZUL DUALITY

with the functor taking a complex to its dual. Here we write f∗ for C∗(f). The
elements of C(X) are called chains, those of C∗(X) cochains. We abbreviate the
homology H(C(X)) and the cohomology H(C∗(X)) of X by H(X) and H∗(X),
respectively. A c-equivalence of simplicial sets is a sequence

X = X(0) −→ X(1) ←− X(2) −→ · · · ←− X(k−1) −→ X(k) = Y,

of simplicial maps, each inducing a c-equivalence of cochain complexes, i. e., an
isomorphism in cohomology.

Starting from a topological space X, one obtains a simplicial set SX by letting
SnX be the set of all singular n-simplices in that space. For a singular n-sim-
plex x : ∆n → X we define ∂ix = x ◦ s∗i , where s∗i : ∆n−1 → ∆n is the affine map
sending the vertices of ∆n−1 in ascending order to those of ∆n, omitting the i-th
one. Similarly, we set six = x ◦ ∂∗i , where ∂∗i : ∆n+1 → ∆n is the affine projec-
tion mapping vertices to vertices, maintaining their order and identifying the i-th
one with its successor. Associating in the obvious way a simplicial map with any
continuous map of topological spaces, one arrives thus at a functor S from the cat-
egory of topological spaces to that of simplicial sets. Composed with the functor C
described above, this yields nothing but the chain complex of a topological space
with coefficients in R.

A simplex x in a simplicial set X is called degenerate if it is of the form six′
for some simplex x′ and some i. More precisely, it is called q-fold degenerate
if it is of the form sµx′ with |µ| = q. It follows from the commutation rela-
tions (2.1) that the degenerate simplices span a subcomplex CD(X) of C(X). The
quotient CN (X) = C(X)/CD(X) is called the normalised chain complex of X,
its elements normalised chains. Note that CN (X) is again a free R-module in each
degree. Intuitively, degenerate simplices should not contribute to the homology
of X because they factor through lower-dimensional ones. This is indeed the case:
The projection C(X)→ CN (X) is a homotopy equivalence commuting with maps of
complexes induced by simplicial maps [ML, Sec. VIII.6]. Note that the normalised
chain complex of a one-point space is canonically isomorphic to R.

Since we will not leave the simplicial setting any more (apart from Section 2.9)
and hardly use non-normalised chains, we streamline our notation and also our
terminology:

From now up to the end, the term space means simplicial set,
and a map of spaces a simplicial one.

Moreover, the letter C denotes the normalised chain functor,
and C∗ the normalised cochain functor. Similarly, all chains and

cochains will be normalised ones, unless stated otherwise.

2. Products

The product X × Y of two spaces X and Y is the space with Xn × Yn as the
set of n-simplices, and componentwise face and degeneracy maps, i. e.,

∂i(x, y) = (∂ix, ∂iy) and si(x, y) = (six, siy).

This again mimics the topological situation, so that the simplicial set associated
with a product of topological spaces is the product of the simplicial sets corres-
ponding to the factors.
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The following so-called Eilenberg–Zilber maps relate the chain complex of a
product of spaces to the tensor product of the chain complexes of the factors:

The Mac Lane or shuffle map ∇ = ∇XY : C(X)⊗ C(Y )→ C(X × Y ) carries
the non-normalised chain x⊗ y, x ∈ Xm, y ∈ Yn, to

∇(x⊗ y) =
∑

(µ,ν)`(m,n)

{(µ, ν)}(sνx, sµy),

where the sum is meant to extend over all (m,n)-shuffles of the set {0, . . . ,m+n−1},
i. e., all partitions µ∪̇ν of this set with |µ| = m and |ν| = n. (Note that sνx and sµy
are always well-defined.)

The Alexander–Whitney map AW = AWXY : C(X × Y )→ C(X)⊗ C(Y )
is defined on the non-normalised complexes by

AW (x, y) =
n∑
i=0
∂ni+1x⊗ ∂i−1

0 y

for (x, y) ∈ (X × Y )n.
The shuffle map as well as the Alexander–Whitney map are chain maps and

pass to the normalised complexes, where they are homotopy inverse to each other
according to the Eilenberg–Zilber theorem. More precisely, there is a chain homo-
topy H = HXY : C(X × Y )→ C(X × Y ) such that

AW∇ = 1,(2.2a)
∇AW − 1 = d ◦H +H ◦ d,(2.2b)
AWH = 0,(2.2c)
H∇ = 0,(2.2d)
HH = 0,(2.2e)

see [EML, Thm. 2.1a]. An explicit non-recursive formula for H has been given
by Rubio and Morace, cf. [GDR, Sec. 2]. All three maps are natural with respect
to pairs of simplicial maps, simply because they are defined in terms of face and
degeneracy maps.

We can now return to simplicial homotopies: It is obvious from the definition
that the “simplicial interval” ∆(1) has exactly two vertices (0) and (1) and exactly
one non-degenerate 1-simplex (01), which satisfies d(01) = (1) − (0). Now a sim-
plicial homotopy from one simplicial map f : X → Y to another map f ′ is a
simplicial map h : ∆(1) ×X → Y that restricts on the subspace (0)×X ≈ X to f
and on (1)×X ≈ X to f ′.

To see the relation with topology, note that ∆(1) is isomorphic to a subspace
of the space (i. e., simplicial set) S∆1 associated with the topological 1-simplex,
namely the one generated by the identity mapping of ∆1. By ‘subspace’ we mean the
smallest subset of S∆1 containing this simplex and closed under face and degeneracy
maps. Given a homotopy h : ∆1 × X → Y from a map f of topological spaces
to another map f ′, one restricts the induced simplicial map from S(∆1 × X) =
S∆1 × SX to SY to the subspace ∆(1) × SX and arrives thus at a simplicial
homotopy.

As in topology, a simplicial homotopy h : ∆(1) × X → Y induces the chain
homotopy h� : C(X)→ C(Y ), c 7→ h�(c) = h∗∇

(
(01)⊗ c

)
.
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The shuffle and the Alexander–Whitney map are associative, i. e., the diagrams

C(X)⊗ C(Y )⊗ C(Z)
∇XY ⊗ 1- C(X × Y )⊗ C(Z)

C(X)⊗ C(Y × Z)

1⊗∇Y Z
?

∇X,Y×Z
- C(X × Y × Z)

∇X×Y,Z
?

and

C(X)⊗ C(Y )⊗ C(Z) �AWXY ⊗ 1
C(X × Y )⊗ C(Z)

C(X)⊗ C(Y × Z)

1⊗AWY Z
6

�
AWX,Y×Z

C(X × Y × Z)

AWX×Y,Z

6

commute for all spaces X, Y , and Z; the shuffle map is also commutative in the
sense that

C(X)⊗ C(Y )
∇XY- C(X × Y )

C(Y )⊗ C(X)

T

? ∇Y X- C(Y ×X)

τ∗

?

commutes, where T denotes the transposition of factors (1.4) and
τ(x, y) = τXY (x, y) = (y, x).

The Alexander–Whitney map is not commutative in general. This will be the
subject of the following section.

For each space X there are canonical maps X → X ×X (called the diagonal
of X) and X → ∗. Applying to them the chain functor, we get a comultiplica-
tion AW∆∗ : C(X) → C(X) ⊗ C(X) and an augmentation C(X) → C(∗) = R
turning the chain complex of a space into a coassociative coalgebra.

Proposition 2.2.1. For all spaces X, Y , Z, and W the following diagram
commutes:

C(X × Y )⊗ C(Z ×W )
∇X×Y,Z×W - C(X × Y × Z ×W )

C(X)⊗ C(Y )⊗ C(Z)⊗ C(W )

AWX×Y ⊗AWZ×W

?
C(X × Z × Y ×W )

(id, τ, id)∗

?

C(X)⊗ C(Z)⊗ C(Y )⊗ C(W )

1⊗ T ⊗ 1

? ∇XZ ⊗∇YW- C(X × Z)⊗ C(Y ×W ).

AWX×Z,Y×W

?
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Proof. This is done by direct computation, as shown in Appendix 7.

Corollary 2.2.2. The shuffle map is a map of coalgebras.

Proof. Precede the diagram from Proposition 2.2.1 by

C(X)⊗ C(Y )
∇ - C(X × Y )

C(X ×X)⊗ C(Y × Y )

∆∗ ⊗∆∗
? ∇- C(X ×X × Y × Y ).

(∆,∆)∗
?

Alternatively, one can derive Proposition 2.2.1 from this result: Set X = X ×
Y and Y = Z ×W and map everything to C(X × Z) ⊗ C(Y ×W ). The original
proof of Corollary 2.2.2 in [EM, §17] is essentially identical to the one we have
given for Proposition 2.2.1. A very elegant one appears in [P′].

Corollary 2.2.3. For all spaces X, Y , and Z the diagrams

C(X × Y )⊗ C(Z)
∇X×Y,Z- C(X × Y × Z)

C(X)⊗ C(Y )⊗ C(Z)

AWXY ⊗ 1

?

1⊗∇Y Z
- C(X)⊗ C(Y × Z)

AWX,Y×Z

?

and

C(X)⊗ C(Y × Z)
∇X,Y×Z- C(X × Y × Z)

C(X)⊗ C(Y )⊗ C(Z)

1⊗AWY Z

?

∇XY ⊗ 1
- C(X × Y )⊗ C(Z)

AWX×Y,Z

?

commute.

The first diagram can be found in [Sh, § II.4].

Proof. Set Z = ∗ and Y = ∗ in Proposition 2.2.1, respectively.

Note that by choosing Y = ∗ in Corollary 2.2.3 we get equation (2.2a). Of
course, this is not the simplest proof of that identity. A very short one is due
to [P].

With the help of the Eilenberg–Zilber maps one can introduce a whole lot of
products, cf. [D, Ch. VII]: The homological cross product

× : C(X)⊗ C(Y )→ C(X × Y )

is just the shuffle map. The cohomological cross product

× : C∗(Y )⊗ C∗(X)→ C∗(X × Y )
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is the composition of the canonical map C∗(Y )⊗C∗(X)→ (C(X)⊗C(Y ))∗ defined
by equation (1.6) with the dual of the Alexander–Whitney map. The cup product

∪ : C∗(X)⊗ C∗(X)→ C∗(X)
is the cross product, followed by the chain map ∆∗ : C∗(X × X) → C∗(X). This
endows C∗(X) with the canonical algebra structure dual to the coalgebra structure
on C(X). Since the latter is coassociative, C∗(X) is associative. The cap product

∩ : C(X)⊗ C∗(X)→ C(X)
is the composition of the chain map

AW∆∗ ⊗ 1: C(X)⊗ C∗(X)→ C(X)⊗ C(X)⊗ C∗(X)
and the partial evaluation

C(X)⊗ C(X)⊗ C∗(X)→ C(X), b⊗ c⊗ γ 7→ 〈c, γ〉b.
The various products are related by the formulas

c ∩ (γ1 ∪ γ2) = (c ∩ γ1) ∩ γ2,(2.3a)
〈c, γ1 ∪ γ2〉 = 〈c ∩ γ1, γ2〉,(2.3b)

(a× b) ∩ (β × α) = {b ∩ β, α} (a ∩ α)× (b ∩ β),(2.3c)
〈a× b, β × α〉 = 〈a, α〉〈b, β〉.(2.3d)

The first two identities exhibit C(X) as right C∗(X)-module with dual operation
the cup product.

3. More products

We now come back to the lack of commutativity of the Alexander–Whitney
map and study what structure remains. To do so, we have to introduce yet another
pair of products, which are defined with the help of what I call the Steenrod
map ST = STXY : C(X × Y ) → C(X) ⊗ C(Y ). It is not as fundamental as
the previous maps, but defined as the composition of the “commuted Alexander–
Whitney map”

ÃWXY = TC(Y ),C(X)AWY XτXY ∗ : C(X × Y )→ C(X)⊗ C(Y )
and the chain homotopy H from the Eilenberg–Zilber theorem:

STXY = ÃWXYHXY .
Using the explicit description for H alluded to above, one can verify that the
Steenrod map carries the (non-normalised) simplex (x, y) ∈ (X × Y )n to

ST (x, y) = −
∑

0≤i<j≤n

(−1)(i+1)(j+1) ∂i−1
0 ∂

n
j+1x⊗ ∂

j−1
i+1 y(2.4)

of degree n + 1, see [GDR, Thm. 3.1]. (And this formula is all we need.) The
Steenrod map is of course natural with respect to pairs of maps of spaces.

Lemma 2.3.1. Let X, Y , and Z be spaces.
1. The Steenrod map is a chain homotopy from the commuted to the ordinary

Alexander–Whitney map, i. e.,

d ◦ STXY + STXY ◦ d = AWXY − ÃWXY .
2. The composition STXY∇XY vanishes.
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3. The following identity holds:
(1⊗AWY Z)STX,Y×Z = (STXY ⊗ 1)AWX×Y,Z

+ (TC(Y ),C(X) ⊗ 1)(1⊗ STXZ)AWY,X×Z(τXY , idZ)∗.
4. The following diagram commutes:

C(X)⊗ C(Y × Z)
∇X,Y×Z- C(X × Y × Z)

C(X)⊗ C(Y )⊗ C(Z)

1⊗ STY Z

?

∇XY ⊗ 1
- C(X × Y )⊗ C(Z).

STX×Y,Z

?

5. For all c ∈ C(X × Y ) and z ∈ C(Z) with |z| ≤ 1 one has
STX,Y×Z∇X×Y,Z(c⊗ z) = (1⊗∇Y Z)(STXY ⊗ 1)(c⊗ z).

Parts 4 and 5 are analogues of Corollary 2.2.3 for the Steenrod map. But this
correspondence is only partial because part 5 above is false for general z.

Proof. We will use both descriptions of the Steenrod map, although we have
not proven their equivalence. Alternatively, one could stick to the explicit for-
mula (2.4), but this would increase further the number of long calculations in the
appendix.

1. Multiplying equation (2.2b) from the left by ÃW and using equation (2.2a)
and the shuffle map’s commutativity, one gets

d ◦ STXY + STXY ◦ d = TAWτ∗∇AW − ÃW = TAW∇TAW − ÃW

= TTAW − ÃW = AW − ÃW.

2. This follows from equation (2.2d).
The remaining claims are verified by direct calculations, see Appendix 8.

The cross1 product
×1 : C∗(Y )⊗ C∗(X)→ C∗(X × Y )

and cup1 product
∪1 : C∗(X)⊗ C∗(X)→ C∗(X)

are derived from the Steenrod map like cross and cup product from the Alexander–
Whitney map, i. e.,

α×1 β = ST ∗ι(α⊗ β) and α ∪1 β = ∆∗(α×1 β).

Lemma 2.3.2.
1. A cross1 product or cup1 product vanishes if one factor is of degree zero.
2. The cup1 product is a Steenrod–Hirsch product in the sense of Section 1.7.
3. The cross1 product vanishes on the image of the shuffle map for all pairs of

spaces.

The cup1 product has been introduced by Steenrod, as well as further products
of higher degree. The important formula (1.29b) for the cup1 product is due to
G. Hirsch.
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Proof. The first assertion follows directly from the explicit formula (2.4), and
the others from the previous lemma by dualisation (when checking this, one has to
be careful about signs).

4. Groups and group actions

A simplicial group G is a group object in the category of simplicial sets, i. e.,
a space G together with maps ∗ = 1 → G, G × G → G and G → G satisfying
the usual identities between unit, multiplication and inversion. This means that
all sets Gn are groups and all face and degeneracy maps group homomorphisms.
When we are careful about notation, we write 1n for the unit element of Gn. For
simplicity we only consider connected simplicial groups, to which we refer by the
term “group” from now on. A map of groups is a simplicial map between two
groups that is a group homomorphism in each degree.

A left (resp. right) G-action on a space X is a simplicial map α : G×X → X
(resp. X × G → X) enjoying the usual properties. We call X a (left or right)
G-space and will often use it to refer to the group operation. If f : G → H is
a map of groups and X → X ′ a map from the G-space X to an H-space X ′
commuting with the operations, we call the latter map f -equivariant, or simply
G-equivariant if f is the identity.

The quotient X/G of X by the action of G is the space with Xn/Gn as set of
n-simplices and the induced face and degeneracy operators.

For any group G we denote the category of right G-actions and equivariant
homotopy classes of maps by Op-G. The category with objects, all right group
actions, and morphisms, pairs (h, f) with h the f -equivariant homotopy class of a
map between spaces with right actions, is denoted by Op.

Note that all these definitions are compatible with the functor S from topolo-
gical spaces to simplicial sets in that it carries the analogous topological objects to
the simplicial ones.

The Pontryagin product C(G) ⊗ C(G) → C(G) of a group G is the com-
position of shuffle map and the chain map C(G × G) → C(G) induced by the
group multiplication. It turns C(G) into an associative algebra. The associativity
of C(G) follows directly from those of G and of the shuffle map and the shuffle
map’s naturality. By Corollary 2.2.2 and naturality the Pontryagin product is a
map of coalgebras. This means that C(G) is in fact an associative and coassociative
Hopf algebra. By commutativity of the shuffle map C(G) is commutative if G is.

The chain map ι∗ : C(G)→ C(G) induced by the group inversion ι = ιG is an
opposition in the sense of Section 1.3. The defining properties (1.10) follow from
the identities

(g−1)−1 = g and (gh)−1 = h−1g−1

for all g, h ∈ G, and commutativity of the shuffle map. Note that for G = T a torus
the map H(ιT ) is the canonical opposition (1.11) of the exterior algebra H(T ).

If X is a, say, right G-space, then C(X) is canonically a right C(G)-module,
again by naturality and associativity. If the action of G on X is trivial, then so
is that of C(G) on C(X), because it factors through the augmentation C(G) →
C(1) = R. (This is another advantage of normalised complexes.)
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Note that we now have two ways of considering C(X) as left C(G)-module: We
can first give X the canonical left G-space structure,

g · x = x · g−1,

and then pass to algebra, or we can give the right C(G)-module C(X) a left module
structure by using the opposition ι∗, as explained in Section 1.3. A look at the
definitions shows that both structures coincide.

Lemma 2.4.1. Let G be a group and X and Y both left or both right G-spaces.
1. The Alexander–Whitney map AWXY is C(G)-equivariant.
2. The shuffle map ∇XY is C(G)-equivariant if G operates trivially on either

space.
3. The Steenrod map STXY is C(G)-equivariant if G operates trivially on Y .
4. It is also equivariant with respect to an a ∈ C(G) if |a| ≤ 1 and G operates

trivially on X.
5. The diagonal and the augmentation of the coalgebra C(X) are C(G)-equivari-

ant.

(Recall that C(X) ⊗ C(Y ) has a canonical C(G)-module structure because
C(G) is a Hopf algebra.)

Proof. Notice first that it is not important whether G acts from the left or
from the right because we may always pass from one to the other by redefining the
action and then back to the original one on the chain level with the help of the
canonical opposition.

The non-trivial part of the last assertion follows from the first, which is once
again a consequence of Proposition 2.2.1. By the same token Lemma 2.3.1 (4) & (5)
prove the third and fourth claim. The second assertion is a consequence of associ-
ativity, commutativity, and naturality of the shuffle map.

Proposition 2.4.2. The cochain functor is a well-defined contravariant func-
tor

C∗ : Op→Mod ∗

which restricts for any group G to a functor

C∗ : Op-G→ C(G)-Mod.

Recall that Mod ∗ is the category of modules with contravariant homotopy
classes of chain maps.

Proof. We actually prove that the chain functor is well-defined as functor
Op → Mod and Op-G → C(G)-Mod. The above claims then follow by applying
the dualising functor.

We have already explained how the chain complex of a right G-space acquires
a canonical right C(G)-module structure. Using again the naturality of the shuffle
map, one easily shows that f -equivariant maps are carried to f∗-equivariant chain
maps for any map f : G→ H of groups.



40 2. SIMPLICIAL KOSZUL DUALITY

By associativity and naturality of the shuffle map the diagram

C(∆(1))⊗ C(X)⊗ C(G)
1⊗∇- C(∆(1))⊗ C(X ×G)

1⊗ α∗- C(∆(1))⊗ C(X)

C(∆(1) ×X)⊗ C(G)

∇⊗ 1
? ∇ - C(∆(1) ×X ×G)

∇
? (id, α)∗- C(∆(1) ×X)

∇
?

C(X ′)⊗ C(H)

h∗ ⊗ f∗
? ∇ - C(X ′ ×H)

(h, f)∗
? α′∗ - C(X ′),

h∗

?

commutes for any f -equivariant homotopy h : ∆(1) ×X → X ′, where α and α′ de-
note the respective actions. Hence the chain homotopy induced by h is f∗-equivari-
ant.

A c-equivalence in Op or Op-G is a map or morphism inducing via the
cochain functor a c-equivalence in Mod ∗ or C(G)-Mod, respectively.

5. Spaces over a base space

Let B be a space. A space over B is simply a map of spaces p : Y → B. We
will usually refer to p by Y , the map p being understood. A map f : p → p′ of
spaces over B is a map f : Y → Y ′ such that p′ ◦ f = p. Similarly, homotopies
between spaces over B are homotopies ∆(1) × Y → Y ′ commuting with the
projections to B. This generalises to maps over maps B → B′. In this case we
always assume that homotopies are compatible with a map B → B′, not with a
homotopy ∆(1) ×B → B′.

We denote the category of spaces over B and homotopy classes over B of maps
by Map-B, and by Map the category of all spaces over base spaces (i. e., of all
simplicial maps) and homotopy classes of maps over maps.

For any space p : Y → B over B the algebra C∗(Y ) acts on C(Y ) from the right
by the cap product, hence also C∗(B) via the map of algebras p∗ : C∗(B)→ C∗(Y ).
We will occasionally need the canonical map of spaces Y → Y ×B, which we denote
by ∆̃ = ∆̃Y .

Proposition 2.5.1. The cochain functor is a well-defined contravariant func-
tor

C∗ : Map→Mod

which restricts for any space B to a functor

C∗ : Map-B → C∗(B)-Mod.
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Proof. The naturality of the Alexander–Whitney map implies for any space Y
over B the commutativity of the diagram

C(Y )
∆∗- C(Y × Y )

AW- C(Y )⊗ C(Y )

@
@

@
@

∆̃∗ R
C(Y ×B)

(id, pY )∗
?

AW
- C(Y )⊗ C(B);

1⊗ pY ∗
?

together with what we already know about cup and cap products this proves all
claims about spaces over base spaces except for the one regarding homotopies. Now
for any homotopy h : ∆(1) × Y → Y ′ over f : B → B′ the diagram

C(∆(1))⊗ C(Y )
1⊗ ∆̃∗- C(∆(1))⊗ C(Y ×B)

1⊗AW- C(∆(1))⊗ C(Y )⊗ C(B)

C(∆(1) × Y )

∇
? (id, ∆̃)∗- C(∆(1) × Y ×B)

∇
?

AW - C(∆(1) × Y )⊗ C(B)

∇⊗ 1
?

C(Y ′)

h∗

? ∆̃′∗ - C(Y ′ ×B′)

(h, f)∗
? AW - C(Y ′)⊗ C(B′)

h∗ ⊗ f∗
?

commutes by naturality and Corollary 2.2.3. (Note that this would not be the case
without normalisation!) For the chain homotopy h� induced by h we therefore find

h�(c) · β′ = h∗((01)× c) ∩ p∗Y ′β′ = h∗
(
(01)× (c ∩ p∗Y (f∗β′))

)
= h�(c · f∗β′)

for c ∈ C(Y ) and β′ ∈ C∗(B′), as was to be shown.

A c-equivalence in Map or Map-B is a map or morphism inducing via the
cochain functor a c-equivalence in Mod or C(B)-Mod, respectively.

6. Fibre bundles

A simplicial fibre bundle is a generalisation of the notion of a product. We
will only consider principal and associated bundles. Given a space B and a map
of graded sets τ : B>0 → G of degree −1 to a group G, one defines for every right
G-space F the space F ×τ B almost like the ordinary product F × B, only the
zeroth face map is twisted by τ , so that one has

∂0(f, b) =
(
(∂0f)τ(b), ∂0b

)
,

∂i(f, b) = (∂if, ∂ib) (i > 0),
si(f, b) = (sif, sib) (i ≥ 0).
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That this be a space imposes some conditions on τ , cf. [M, §18], namely

∂0τ(b) = τ(∂1b)
(
τ(∂0b)

)−1
,(2.5a)

∂iτ(b) = τ(∂i+1b) (i > 0),(2.5b)
siτ(b) = τ(si+1b) (i ≥ 0),(2.5c)

1n = τ(s0b)(2.5d)

for all b ∈ Bn. (Note that in [M] the fibre F is assumed to be a left G-space.) If
these identities hold, one calls τ a twisting function and the map F ×τ B → B a
fibre bundle with base B, structure group G, fibre F , and total space F×τB.
It is called principal if F = G. Since there is no difference to the usual product in
the second factor of a fibre bundle, the projection F ×τ B → B is a map of spaces,
i. e., F ×τ B is canonically a space over B. By abuse of language, we often do not
distinguish between a fibre bundle and its total space, the projection onto the base
being understood.

The key ingredient (in a way, the only one) to prove the main theorems of
this chapter is the simplicial version of the Leray–Serre spectral sequence of a fibre
bundle. We will describe it in the context of Brown’s (or “twisted Eilenberg–Zilber”)
theorem, because this fits nicely into the general theme of the present work.

The classical Eilenberg–Zilber theorem compares the complex C(F ×B) to the
tensor product C(F )⊗C(B). This is done via the shuffle map and the Alexander–
Whitney map, as described in Section 2.2. Since a fibre bundle E = F ×τ B
is a somehow “twisted” Cartesian product, the idea is to “twist” the differential
on C(F ) ⊗ C(B) as well, such that both complexes are still homotopy equivalent
one to another. Brown’s theorem states that this is possible.

We follow the treatment in [Sh, Ch. 2], but see also [MC, p. 223], [M, Ch. IV],
and [Sz]: Starting from the twisting function τ one can define a twisting co-
chain C(B)→ C(G) giving rise to a differential on C(F )⊗C(B) very much like in
definition (1.26b). There is one difference once we apply the algebraic apparatus
developed in the previous chapter to topology: The complex M from Section 1.7
will then be the cochain complex of the base space of a fibre bundle and Λ∗ the
cohomology of the fibre. So while in equation (1.26b) the twisting goes from the
fibre to the base, it now goes the other way round because we deal with chain
complexes. With this twisting cochain at hand, one introduces twisted versions of
the Eilenberg–Zilber maps (shuffle map, Alexander–Whitney map, and the homo-
topy H) such that the identities (2.2) hold for these new maps. In particular, the
complexes C(F ×τ B) and C(F ) ⊗̃ C(B) are homotopy equivalent.

We now define filtrations on both complexes such that the twisted Eilenberg–
Zilber maps are filtration-preserving. We filter A = C(F ) ⊗̃C(B) by the degree of
the base component,

Fp(A) = C(F )⊗ C≤p(B)(2.6)

(which is to be compared with equations (1.38) and (1.40)). The complex C(E)
is filtered by the p-skeletons of the base B. More precisely, a (non-degenerate)
simplex (f, b) ∈ En belongs to FpC(E) for p ∈ Z if b is (n − p)-fold degenerate.
(Hence FpC(E) = 0 for p < 0.) The term E0

pq of the resulting spectral sequence
is just the free R-module generated by the non-degenerate (p + q)-simplices (f, b)
with exactly q-fold degenerate b. The E0 term of the filtration (2.6) looks like the
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original complex, but with differential reduced to the one on C(F ). Consequently,
we have an isomorphism of bigraded R-modules

E1(A) = H(F )⊗ C(B).

On the E0 level, the maps induced by the twisted Eilenberg–Zilber maps still enjoy
properties (2.2), hence induce isomorphisms on the E1 level. (This is somewhat
implicit in [Sh, § II.2], but stated more clearly in [Sz, §5]. The maps on the E0 level
are actually equal to those induced by the non-twisted counterparts.)

One knows that the differential d1 on E1(A) is of the form

d1([f ]⊗ b) = [f ]⊗ db± [f · (τ(b′)−1 − 1)]⊗ b′′

for b ∈ B and [f ] ∈ H(F ), where b′⊗b′′ is the component of AW (b) with first factor
of degree 1, see [M, eq. (T.1) on p. 143] or [Sz, Thm. 2.2]. Since we assume G to
be connected, τ(b′)−1− 1 is always homologous to zero, hence E1(A) is isomorphic
to the chain complex of B with coefficients in H(F ). Therefore,

E2(E) := E2(C(E)) ∼= E2(A) ∼= H(B,H(F )).(2.7a)

The filtrations on C(E) and A canonically induce filtrations on the dual complexes,
and one finds similarly

E2(E) := E2(C∗(E)) ∼= E2(A∗) ∼= H∗(B,H∗(F )).(2.7b)

We will repeatedly use the isomorphism

H∗(B,H∗(F )) = H∗(F )⊗H∗(B),

which holds if the cohomology of either space is free of finite rank in each degree.
The identities (2.7a) and (2.7b) are referred to as the Leray–Serre theorem,

because they are simplicial analogues of results due to Leray and Serre. (See [MC,
Chs. 5 & 6] for a comprehensive exposition of the Leray–Serre theorem in singular
homology.) We remark that one can extend the Leray–Serre theorem to non-con-
nected groups by introducing local coefficient systems.

The question of multiplicativity in the cohomological Leray–Serre spectral se-
quence is a delicate one. It is not difficult to see that the Alexander–Whitney map
on C(E) is filtration-preserving, so that the associated cohomological spectral se-
quence is one of algebras. But one has to work hard to relate this to a product
structure on the spectral sequence E(A). Luckily, we will only need the module
structure of C(E) over C∗(B), where things are much easier – at least conceptually:
The coalgebra structure on C(B) induces a chain map

C(F ) ⊗̃ C(B)
1⊗∆∗- C(F ) ⊗̃ C(B ×B)

1⊗AW- C(F ) ⊗̃ C(B)⊗ C(B)

compatible with the twisted shuffle map. Similarly, if F = G, then the differential
on A and the twisted shuffle map are compatible with group multiplication. (See
[Sh, § II.3, Prop. 1, and § II.4, Props. 1 & 2] for proofs.) Hence the isomorphisms
(2.7a) and (2.7b) are H∗(B)-equivariant and, for F = G, also H(G)-equivariant.

Moreover, they are natural with respect to (appropriately defined) bundle
maps [M, Def. 20.1]. In particular, the following is a commutative diagram of
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H∗(B)-modules for any inclusion i : ∗ ↪→ B:
E2(F, ∗) � E2(F,B) � E2(∗, B)

H∗(F )

=

?
�H
∗(i)
H∗(B,H∗(F ))

∼=

?
� H∗(B).

=

?

The outer vertical maps are the respective identity mappings because these filtra-
tions are trivial.

7. Universal bundles and classifying spaces

In order to define Koszul functors in the simplicial setting, we need a simplicial
construction of universal bundles and classifying spaces [M, §21]. We begin with
the latter.

For any group G the classifying space BG is the space with set of n-simplices
BGn = Gn−1 × · · · ×G0

for n ∈ N. We write the simplices of BG in the form
[gn−1, . . . , g0] ∈ BGn, also b0 := [] ∈ BG0

for the unique vertex of BG. The face and degeneracy maps are given by
∂i[gn−1, . . . , g0] = [∂i−1gn−1, . . . , ∂1gn−i+1, (∂0gn−i)gn−i−1, gn−i−2, . . . , g0],
si[gn−1, . . . , g0] = [si−1gn−1, . . . , s1gn−i+1, s0gn−i, 1n−i, gn−i−1, . . . , g0].

(Undefined components, such as ∂−1gn−1, are supposed to be omitted when apply-
ing these formulas for given values of i and n.) The map of graded sets

τG : BG>0 → G, [gn−1, . . . , g0] 7→ gn−1

is a twisting function for BG.
We call the principal bundle EG = G×τGBG→ BG the universal G-bundle.

G acts freely on its total space EG, which has the canonical base point e0 = (10, []).
Both BG and EG are connected: This is trivial for BG; for EG it suffices to observe
the identities

∂0(s0g, [g−1h]) = (h, []) and ∂1(s0g, [g−1h]) = (g, [])
for g, h ∈ G0 ≈ EG0.

Note that the construction of classifying spaces and universal bundles is func-
torial. Moreover, it is compatible with products, i. e.,

B(G×H) = BG×BH and E(G×H) = EG× EH(2.8)
for any pair G, H of groups.

An important role is played by the following map of degree 1
S = SG : EG→ EG, (gn, [gn−1, . . . , g0]) 7→ (1n+1, [gn, gn−1, . . . , g0]),(2.9)

which satisfies for all e ∈ EGn and 0 ≤ i ≤ n the identities

∂0Se = e, ∂i+1Se =

{
S∂ie if n > 0,
e0 if n = 0,

(2.10a)

s0Se = SSe, si+1Se = Ssie.(2.10b)
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In particular, S passes to a map C(EG) → C(EG) on the normalised complex,
which we continue to denote by the same letter. There the composition S ◦ S
vanishes, and Se0 = s0e0 = 0. Note that S is compatible with products, i. e.,
SG×H = SG × SH .

A more detailed study of this map than done in [M] yields the following result:

Proposition 2.7.1. The space EG is contractible. The map S is the chain
homotopy induced from some contraction to e0, i. e.,

Sde+ dSe =

{
e if |e| > 0,
e− e0 if |e| = 0

(2.11)

for all (non-degenerate) e ∈ EG. Moreover, the following identities hold for all
groups G and H:

AWEG,EHSG×H = e0 ⊗ SHp2 + (SG ⊗ 1)AWEG,EH ,(2.12a)

where e0 ⊗ SHp2 is the map (e, e′) 7→ e0 ⊗ SHe′,

STEG,EHSG×H = −(SG ⊗ SH)AWEG,EH − (1⊗ SH)STEG,EH ,(2.12b)
∇EG,EH(SG ⊗ SH) = SG×H∇EG,EH(1⊗ SH − SG ⊗ 1).(2.12c)

Proof. Define a map h : ∆(1) × EG→ EG by
h(x, e) = Sk(∂0)ke.

where k is the number of zeros in the sequence x ∈ ∆(1), cf. the definition of ∆(1) in
Section 2.1. Note that ∂0e is not defined for |e| = 0, but we agree to interpret S∂0e
as e0 in this case. Then h(x, e) = e if x if x contains only ones, i. e., if (x, e) ∈
(1)×EG, and h(x, e) = (s0)|e|e0 if x contains only zeros, i. e., if (x, e) ∈ (0)×EG.
The relations (2.10) imply that h is simplicial, hence a homotopy from the identity
to the constant map EG→ e0. We do not check all details here because a similar,
but more general calculation will appear in the proof of Theorem 2.8.2.

The induced chain homotopy H : C(EG)→ C(EG) maps e ∈ EGn to

H(e) =
n∑
k=0

(−1)kh
(
(0k+11n−k), ske

)
,

where (0k+11n−k) ∈ ∆(1) is the sequence with k + 1 zeros followed by n − k ones.
But the relation S ◦ S = 0 implies that

h
(
(0k+11n−k), ske

)
= Sk+1(∂0)k+1ske

is degenerate for k > 0, whence H = S. This gives (2.11).
The proofs of the identities given for the shuffle, the Alexander–Whitney, and

the Steenrod map are simple calculations, see Appendix 9.

8. Simplicial Koszul functors

We are now in the position to introduce the simplicial Koszul functors
between the category Op and the subcategory MapCl of Map with objects, spaces
over classifying spaces, and morphisms, homotopy classes of maps over maps Bf
induced by maps f : G→ H of groups.

Let G be a group and X a right G-space. The Borel construction
pXG : XG = X ×τG BG→ BG
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is a space over BG. The equivariant cohomology H∗G(X) of X is by definition
the cohomology of XG. It is a module over H∗(BG) = H∗G(∗) via H∗(pXG).

The map of spaces

qX : X × EG→ XG,
(
x, (g, b)

)
7→ (xg, b),

is the quotient of X × EG by the G-action (x, e)g = (xg, g−1e). This justifies the
notation XG = X ×G EG. We record the following observation, which will be used
in Section 2.12:

Lemma 2.8.1. The composition

qX∗ ◦ ∇ : C(X)⊗ C(EG)→ C(X × EG)→ C(X ×
G
EG)

is a chain map of right C∗(BG)-modules.

Here C∗(B) operates trivially on C(X) and by taking cap products on all other
chain complexes.

Proof. This follows from the commutative diagram

C(X)⊗ C(EG)
1⊗ ∆̃∗- C(X)⊗ C(EG×BG)

1⊗AW- C(X)⊗ C(EG)⊗ C(BG)

C(X × EG)

∇

? (id, ∆̃)∗- C(X × EG×BG)

∇

? AW - C(X × EG)⊗ C(BG)

∇⊗ 1

?

C(X ×
G
EG)

qX∗

? ∆̃∗ - C(X ×
G
EG×BG)

(qX , id)∗
? AW - C(X ×

G
EG)⊗ C(BG),

qX∗ ⊗ 1

?

which is essentially a special case of the large diagram appearing in the proof of
Proposition 2.5.1.

The Koszul functor t : Op → MapCl assigns to each right G-space X the
space XG (more precisely, the map pXG), and to each morphism X → X ′ the
induced morphism XG → X ′H .

For any space Y over BG, i. e., any map pY : Y → BG, we can form the fibre
product

Y
BG
× EG = { (y, e) : pY (y) = pEG(e) },

which is readily seen to be a principal G-bundle with base Y and twisting func-
tion τG ◦ pY . The group G operates on it from the left.

The Koszul functor h : MapCl → Op assigns to each space Y over BG the
space Y ×BG EG with the opposite, hence right G-action, and to each morph-
ism Y → Y ′ the induced morphism Y ×BG EG → Y ′ ×BH EH. (Note that Bf
determines f : G→ H uniquely.)

If we want to indicate the group, we write the functors as tG and hG, respect-
ively.
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The naturality of the Koszul functors with respect to the group gives us in
analogy with Section 1.6 canonical maps of spaces

X = h1t1X → hGt1X → hGtGX = htX,(2.13a)
thY = tGhGY → tGh1Y → t1h1Y = Y.(2.13b)

The following result is a (partial) analogue of [AP′, Remark 1.7] in the simplicial
setting. As remarked there, it parallels the duality between the algebraic Koszul
functors. The reader may want to compare the present results with those obtained
in Section 1.6.

Theorem 2.8.2. The compositions ht and th are c-equivalent to the identity
functors of Op and MapCl. They become isomorphic to them if composed with the
forgetful functors to the homotopy category of spaces. More precisely:

1. Let X ∈ Op-G. Then htX is (up to isomorphism) a bundle with base EG
and fibre X and admits a G-equivariant trivialising map

htX → X × EG.

The canonical map (2.13a) corresponds under this isomorphism to the in-
clusion of X over e0 ∈ EG. In particular, it is a homotopy equivalence with
strict left G-equivariant inverse, and both maps are natural in G and X.

2. Let (pY : Y → BG) ∈Map-BG. Then the map (2.13b) is (up to isomorph-
ism) a bundle with fibre EG. It is also a homotopy equivalence possessing as
strict right inverse a map over BG. Both maps are natural in BG and Y .

Proof. The space

htX = (X ×
G
EG)

BG
× EG

is by definition a bundle with fibre G and base, a bundle over BG with fibre X. It
is therefore isomorphic as graded set to the Cartesian product G ×X × BG. The
only difference lies in the face map ∂0, which is now

∂0(g, x, b) =
(
(∂0g)τG(b), (∂0x)τG(b), ∂0b

)
.(2.14)

This exhibits htX as a bundle with base EG, fibreX and twisting function τG◦pEG.
Inspection of the definitions shows that the composition (2.13a) is just the inclusion
of the fibre X over e0 ∈ EG. The maps

X × EG↔ htX(2.15)
(x, g, b) 7→ (g, xg, b)

(xg−1, g, b)←7 (g, x, b)

are isomorphisms of right G-spaces, inverse to each other. Here the G-action onX×
EG is the diagonal of the action on X and the opposite action on EG. (See
Appendix 10 for a proof that they are both maps of spaces.) Under this isomorphism
the map (2.13a) still corresponds to the inclusion of X over e0 in X × EG. This
is by Proposition 2.7.1 a homotopy equivalence with the canonical G-equivariant
projection onto X as inverse.
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We now consider the map (2.13b). The space

thY = (Y
BG
× EG)×

G
EG

is isomorphic to G× Y ×B as graded set, only the zeroth face map is different,

∂0(g, y, b) =
(
τG(b)−1(∂0g)τY (y), ∂0y, ∂0b

)
with τY = τG ◦ pY . It will be convenient to apply the group inversion to G and
reorder the factors in the Cartesian product, so that one has

∂0(g, b, y) =
(
τY (y)−1(∂0g)τG(b), ∂0b, ∂0y

)
.

This shows that the canonical map thY → Y is (essentially) a bundle with fibre EG,
base Y and twisting function τY . Note that for Y = ∗ the total space is just EG.
We will therefore keep the promise made in the proof of Proposition 2.7.1 and show
now in detail that EG is contractible.

We claim that the projection to the base Y is a homotopy equivalence with
inverse

qY : Y → thY, y 7→ (1, pY (y), y),

which is a map over BG. (Recall that thY is a space over BG via projection onto
the second coordinate in our representation.)

The fact that qY is simplicial is readily verified. The composition pY ◦ qY is
the identity of Y , and

qY (pY (g, b, y)) = (1, pY (y), y).

We define a homotopy h : ∆(1)×thY → thY from qY ◦pY to the identity recursively
by

h(x, g, b, y) =


(1, b0, y) if x = (0),(
S(τY (y)g′, b′), y

)
if x0 = 0, but x 6= (0),

(g, b, y) if x0 = 1,

where S is the map introduced in (2.9) and g′ and b′ are determined by

(g′, b′, ∂0y) = h(∂0(x, g, b, y)).

Moreover, x0 denotes the leading element of the sequence x ∈ ∆(1). (Recall that
the simplices in ∆(1) are the weakly increasing sequences composed of zeros and
ones.) See Appendix 10 for the verification that h is a homotopy as claimed.

Corollary 2.8.3. Any G-space is c-equivalent to a free one, and any space
over BG to a fibre bundle with base BG.

Corollary 2.8.4. The simplicial Koszul functors form an adjoint pair (h, t).

Proof. Using the explicit formulas for the canonical equivariant maps given
in the proof of the theorem, it is easily verified that the following compositions are
the respective identities:

hY −→ h(thY ) = ht(hY ) −→ hY,
tX −→ th(tX) = t(htX) −→ tX.
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Proposition 2.8.5. The simplicial Koszul functors preserve c-equivalence.

Proof. We have to show the following for any map f : G→ H of (connected)
groups:

1. Let g : X → X ′ be f -equivariant. If f and g are c-equivalences, then so are
tg : XG → X ′H and Bf .

2. Let g : Y → Y ′ be a map over Bf . If Bf and g are c-equivalences, then so
are hg : Y ×BG EG→ Y ′ ×BH EH and f .

To begin with, f is a c-equivalence if and only if Bf is. This follows from
Zeeman’s comparison theorem applied to the f -equivariant map Ef : EG → EH
over Bf : The E2 term of the associated Leray–Serre spectral sequence for G is

Epq2 = Hq(G)⊗Hp(BG),

and similar for H. The total spaces EG and EH being contractible, the map Ef
is trivially a c-equivalence. Now Zeeman’s comparison theorem states that E0∗

2 =
H∗(f) is an isomorphism if and only if E∗02 (f) = H∗(Bf) is.

The above claims follow immediately from a further application of the Leray–
Serre theorem and the usual comparison of spectral sequences.

9. Relation to topology

The simplicial Koszul functors t and h have well-known topological analogues,
which we call t and h in this section. As remarked in the previous section, they enjoy
properties analogous to those stated in Theorem 2.8.2. We now choose a definite
topological model for EG, namely the Milnor construction [tD, Abschnitt IX.4],
i. e., the infinite join G ∗G ∗ · · · . The (topological) principal bundle EG→ BG =
EG/G has a natural countable trivialising cover U . For any map p : Y → BG we
denote by S ′Y the space of all singular simplices in Y compatible with U , i. e., each
contained in p−1(U) for some U ∈ U . We will repeatedly use the fact that the
inclusion C(S ′Y ) ↪→ C(SY ) is a chain homotopy equivalence, cf. [BT, p. 186].

Lemma 2.9.1. Let G be a connected topological group. Then there is a unique
SG-equivariant homotopy class S ′EG → ESG. Given a map of connected topolo-
gical groups G→ H, one can choose representatives of these homotopy classes such
that the diagram

S ′EG - ESG

S ′EH

S ′Ef

?
- ESH

ESf

?

commutes. Moreover, the induced morphism S ′BG→ BSG is a c-equivalence.

Proof. This draws very much upon the results of [M], to which all citations
in this proof refer.

The projection q : S ′EG → S ′BG is a principal G-fibration in the sense of
Definition 18.1. By Proposition 18.7 and Theorem 21.13 q is (up to isomorphism)
induced from a map FG : S ′BG → BSG, unique up to homotopy. Any such FG
equips S ′EG → S ′BG with the structure of a principal SG-bundle with twisting
function τ = τG ◦F , hence gives rise to a pseudo-cross section σG : S ′BG→ S ′EG.
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Conversely, any pseudo-cross section determines such a map FG by the construction
of Theorem 21.7.

To see that FG is a c-equivalence, consider the map of principal bundles S ′EG→
ESG: It trivially induces an isomorphism in cohomology because both spaces are
contractible. Since S ′BG and BSG are connected, the induced map between the
E2 terms of the associated Leray–Serre spectral sequences is an isomorphism on
the vertical axis. This implies by Zeeman’s comparison theorem that we also have
an isomorphism on the horizontal axis. But this map is just H∗(FG).

It remains to show the claimed naturality. Let f : G → H be a map of to-
pological groups and denote kernel and image of Sf : SG → SH by K and H ′,
respectively. Then Sf : SG→ H ′ is a principal K-fibration.

The map f induces an f -equivariant map Ef : EG→ EH, hence maps of spaces
S ′Ef : S ′EG→ S ′EH and S ′Bf : S ′BG→ S ′BH. (Here we use the naturality of
the cover U .) The above diagram commutes with FG and FH as horizontal maps if
(and only if)

S ′BG
σG- S ′EG

S ′BH

S ′Bf

?

σH
- S ′EH

S ′Ef

?

(2.16)

does, where σG and σH are the pseudo-cross sections corresponding to FG and FH ,
respectively.

Let E′ and B′ be the images of S ′Ef and S ′Bf , respectively. It is readily seen
that E′ → B′ is a principal H ′-fibration. Choose a pseudo-cross section σ′ for this
fibration and extend it to S ′EH → S ′BH by Lemma 18.6. This gives σH .

Let E′′ → S ′BG be the pull back of E′ → B′ along S ′Bf with induced
pseudo-cross section σ′′. Then S ′EG → E′′ is a principal K-fibration. The com-
position of any pseudo-cross section for it with σ′′ is a pseudo-cross section σG
making (2.16) commutative.

As a consequence, if Y → BG is a continuous map then we may consider S ′Y
as a space over BSG. The resulting module structure of H∗(SY ) over H∗(BSG) is
that over H∗(SBG). Note that, by the preceding lemma, H∗(BSG) and H∗(SBG)
are naturally isomorphic. We write H∗(BG) for both of them. Furthermore, the
pull back hSGSY does (up to isomorphism) not depend on the chosen map S ′Y →
BSG.

Proposition 2.9.2. Let G be a connected topological group.
1. Let X be a (topological) G-space. Then there is an isomorphism

H∗(StGX) = H∗(tSGSX)

of H∗(BG)-modules, natural in G and X.
2. Let Y be a (topological) space over BG. Then there is an isomorphism

H∗(ShGY ) = H∗(hSGSY )

of H(G)-modules, natural in G and Y .
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Proof. Let X be a G-space. By the preceding lemma there is a commutative
diagram

S ′(X ×
G
BG) - SX ×

SG
ESG

S ′BG
?

- BSG.
?

The top row induces an isomorphism in cohomology by the Leray–Serre theorem,
because the bottom row does and the fibres of both bundles are identical. The nat-
urality of this isomorphism follows from that of the map S ′EG→ ESG established
in the lemma.

Since S ′EG → S ′BG is induced from S ′BG → BSG and we use this c-equi-
valence to consider a continuous map Y → BG as a space over BSG, the second
assertion is clear.

10. Tori

We focus on tori for the rest of this work. Let us begin with the definition
of a “simplicial circle,” which may replace a topological one, very much like the
“simplicial interval” ∆(1), which we often use instead of the topological one ∆1 ≈
[0, 1]. In contrast to ∆(1), we do not give a combinatorial description, but start from
the topological circle S1. A simplicial circle is a group isomorphic to the subgroup
(i. e., subsimplical group) of the group SS1 generated by a simplex x′ ∈ (S1)1
representing a generator x of the abelian group H1(S1; Z). (This simplicial circle
is essentially the simplicial construction of the Eilenberg–Mac Lane space K(Z, 1),
cf. [M, §23].) We define a circle as a group containing a simplicial circle as a
subgroup such that the inclusion is a c-equivalence. A torus of rank r is a group
isomorphic to an r-fold product of circles. Examples of tori are the compact tori ∼=
(S1)r, the algebraic tori ∼= (C∗)r, and the simplicial tori isomorphic to products
of simplicial circles. There exists by definition a c-equivalence from a simplicial
torus to any other torus of the same rank. By Proposition 2.8.5 this restriction
does not affect cohomology.

We call a torus of rank r together with a fixed decomposition into circles a
standard torus and denote it by T r, and we write xi if we consider the homology
class x as an element of the i-th factor of H(S1) ⊗ · · · ⊗ H(S1) and also for the
corresponding element in H(T ). The same applies to x′. Moreover, we now take
H1(T ) as the free R-module P (concentrated in degree 1) that was the starting
point for the constructions of the previous chapter. Note that, according to our
choice of P , we have a canonical isomorphism of Hopf algebras H(T ) = Λ. One
can even improve on this result:

Lemma 2.10.1. The assignment
Λ→ C(T ), xi1 ∧ · · · ∧ xiq 7→ x′i1 · · ·x

′
iq

is a c-equivalence of Hopf algebras.

Proof. We may assume R = Z. Since C(T ) is free over Z, the above map is
well-defined if for all i, j ∈ [r] we have

x′j · x′i = −x′i · x′j .
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This equation follows from the commutativity of the shuffle map and that of the
group multiplication µ (expressed by the identity µ ◦ τTT = µ):

x′j · x′i = µ∗∇(x′j ⊗ x′i) = −µ∗τ∗∇(x′i ⊗ x′j) = −µ∗∇(x′i ⊗ x′j) = −x′i · x′j .
The shuffle map being a map of coalgebras by Corollary 2.2.2, it suffices to verify
this property for the above map in the case r = 1. Since x′ is a simplex, we find

AW∆∗x′ = x′ ⊗ 1 + 1⊗ x′,
which matches (1.9). The augmentations are compatible, too, because x′ is of
positive degree. It is clear that the induced map in homology is an isomorphism
because we map generators to generators.

A map of groups T r → T r′ is called componentwise if it deletes some of the
components and permutes the others, with the possible insertion of 1′s. It is called
monotone if it is componentwise and keeps the order of the remaining components.
For example, the map

T 4 → T 3, (g1, g2, g3, g4) 7→ (1, g4, g1)
is componentwise, but not monotone. Moreover, a map over a map Bf : BT r →
BT r

′ is monotone if f : T r → T r′ is.

11. Three important maps

In this section we are going to introduce certain maps
f : K → C(ET ) and φ : Λ∗ ⊗̃ C∗(BT )→ C∗(ET )

which will enable us to compare the algebraic and simplicial Koszul functors in the
next section. To be definite, we fix once and for all a decomposition T ∼= (S1)r,
which determines a basis (x1, . . . , xr) of P = H1(T ) with representatives x′1, . . . , x′r.
We also need suitable representatives of the classes generating the algebra H∗(BT ),
which we will show to be isomorphic to S∗. By the Eilenberg–Zilber and Künneth
theorems it suffices to treat the case of a circle, which we denote by S1. (Recall
our definition of a circle from the preceding section.)

Consider the Leray–Serre spectral sequence for the universal principal S1-bundle
p : ES1 → BS1. Its E2 term is

E2 = E2(ES1) = Λ∗ ⊗H∗(BS1),
where Λq is isomorphic to R for q = 0 or 1 and zero otherwise. This implies that
the spectral sequences collapses on the E3 level. Since ES1 is contractible, the
E3 = E∞ term vanishes outside the origin. The differential

d2 : Ep,12 → Ep+2,0
2

must therefore be an isomorphism for all p ∈ N.
By definition the loop x′ represents a homology class x generating H1(S1).

Now also choose a cocycle χ ∈ C1(ES1) pulling back under the canonical inclu-
sion iS1 : S1 → ES1 to a representative of the class in H1(S1) dual to −x. We then
have in particular

〈x′, i∗S1χ〉 = −1.(2.17)

This [χ] is a generator of E2
0,−1(ES1), and

ξ = d2[χ]
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generates E20
2 = H2(BS1). By changing χ by an element from F−1C

1(ES1), which
lies in the kernel of i∗S1 , we may therefore assume

dχ = p∗ξ′(2.18)

for a representative ξ′ of ξ. In short, i∗S1χ corresponds to ξ′ under transgression.
As mentioned in Section 2.6, the differentials in the Leray–Serre spectral se-

quence commute with cup products with cochains pulled back from the base. Mul-
tiplying repeatedly by ξ, it follows inductively that Hp(BS1) = Ep,02

∼= R with
generator ξp. This gives a (after choosing ξ) canonical isomorphism of algebras

H∗(BT ) = S∗

for T = S1, consequently for all tori T by the Künneth theorem.
We again write ξi if we consider ξ as an element of the i-th factor of the tensor

product H∗(BS1) ⊗ · · · ⊗ H∗(BS1) or as the corresponding element in H∗(BT ),
and similar for ξ′ and χ.

Our choice of the x′i determines by Lemma 2.10.1 functors from the categories
of left and right C(G)-modules to those over Λ. These functor are natural with
respect to componentwise maps T r → T r′ by the shuffle map’s commutativity.
In [GKM] the resulting Λ-module structure on chain and cochain complexes of
spaces is called the “sweep action.” Analogously, Proposition 1.7.1 gives us a functor
from left C∗(BT )-modules to weak S∗-modules by our choice of ξ′1, . . . , ξ′r. Here
naturality does only hold for monotone maps over classifying spaces of standard
tori. In order to avoid a too clumsy notation, we incorporate these functors into
the cochain functor. Hence, C∗(X) ∈ Λ-Mod for X ∈ Op-T and C∗(Y ) ∈ S∗-Mod
for Y ∈Map-BT . Note that C∗(X) is in fact a Λ-algebra by Lemma 2.4.1 (5), and
C∗(Y ) fulfils all assumptions made in Section 1.8 to define a product on hC∗(Y ).

We now construct the map f : K → C(ET ), where K = K(P ) is the homolo-
gical Koszul complex defined in Section 1.5. For r = 1 we recursively set

f(1⊗ 1) = e0,

f(x⊗ xl) = xf(1⊗ xl) = x′f(1⊗ xl),

f(1⊗ xl+1) = Sf(x⊗ xl),

where l ∈ N and x′ is the chosen representative simplex of x. For arbitrary r we
compose this construction with the cross product,

f : K = K(x1)⊗ · · · ⊗K(xr)
→ C(ES1)⊗ · · · ⊗ C(ES1)
→ C(ES1 × · · · × ES1) = C(ET ),

using (2.8). In particular, f is the identity of R for r = 0.

Proposition 2.11.1. The map f is a map of Λ-coalgebras, and its dual is a
chain map of weak S∗-modules without higher order terms.

Recall that the second assertions means that

1⊗ f∗ : Λ∗ ⊗̃ C∗(ET )→ Λ∗ ⊗̃K∗, α⊗ γ 7→ α⊗ f∗γ,

is a Λ-equivariant chain map. Here Λ acts of course only on the first factor of both
tensor products.



54 2. SIMPLICIAL KOSZUL DUALITY

Proof. We may assume r = 1 for the first claim because the shuffle map is
a map of coalgebras and in addition equivariant if all but one space of a product
have trivial group action, see Lemma 2.4.1 (2).

We start by verifying that f is a chain map. By induction and Proposition 2.7.1
we have for all l ∈ N (with the convention x⊗ x−1 := 0)

df(1⊗ xl) = dSf(x⊗ xl−1) = f(x⊗ xl−1)− Sdf(x⊗ xl−1)

= f(x⊗ xl−1)− Sf(d(x⊗ xl−1)) = f(x⊗ xl−1),

df(x⊗ xl) = d(xf(1⊗ xl)) = −xdf(1⊗ xl) = −xf(d(1⊗ xl))

= −xf(x⊗ xl−1) = −(x ∧ x)f(1⊗ xl−1) = 0,
which proves the claim. The Λ-equivariance of f follows directly from the definition.
(Note that C(ET ) is a Λ-coalgebra by Lemma 2.4.1 (5).) To show that f commutes
with comultiplication, we have to establish the identities

AW∆∗f(1⊗ xl) =
∑
m+n=l

f(1⊗ xm)⊗ f(1⊗ xn),(2.19a)

AW∆∗f(x⊗ xl) =
∑
m+n=l

f(x⊗ xm)⊗ f(1⊗ xn)(2.19b)

+
∑
m+n=l

f(1⊗ xm)⊗ f(x⊗ xn).

They follow again by induction, Proposition 2.7.1 and the fact that the Alexander–
Whitney map is Λ-equivariant. Hence f is a map of left Λ-coalgebras.

That f∗ be a map of weak S∗-modules without higher order terms translates
into the conditions

f(k) ∩ p∗ξ′µ =

{
f(k ∩ ξi) if µ = {i},
0 otherwise

for all k ∈ K and ∅ 6= µ ⊂ [r]. Since we already know f to be a map of coalgebras,
the first alternative simplifies for r = 1 to

〈f(1⊗ x), p∗ξ′〉 = 1.
This holds by our choice of ξ′ and χ, because

〈f(1⊗ x), p∗ξ′〉 = 〈S(x′e0), dχ〉 = −〈dS(x′e0), χ〉
= 〈Sd(x′e0)− x′e0, χ〉 = −〈x′e0, χ〉 = 1.

The general case now follows by equation (2.3c).
As for the second alternative, note that the cup1 products determining in equa-

tion (1.30) the higher order elements ξ′µ, |µ| > 1, are here cross1 products of co-
chains coming from different factors of the induced decomposition of the classifying
space BT . Hence Lemma 2.3.2 (3) gives the desired result.

The composition p ◦ f : K → C(BT ) factors through S = R⊗ΛK because the
action of T on BT , hence also that of Λ, is trivial. Call this new map

f̄ : S→ C(BT ).

Proposition 2.11.2. The map f̄∗ : C∗(BT ) → S∗ is a multiplicative c-equi-
valence of weak S∗-modules without higher order terms. Moreover, it annihilates
all cup1 products and is natural with respect to componentwise maps.
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The existence of such a map is due to Gugenheim and May [GM, Thm. 4.1].
Though somewhat technical in nature, this result is of great importance, for instance
to the study of the cohomology of homogeneous spaces of Lie groups, cf. op. cit.
or [MC, §8.1]. Our derivation of the cohomology of toric varieties in Section 3.3
also depends crucially on it. The present construction of such a map is considerably
simpler than the original one given in the appendix to [GM], but see also [M′,
Remarks 13.7]. Before trying to prove this result, I have checked some examples
with the help of the “Kenzo” program [DS].

Proof. Since f is a map of coalgebras by the preceding proposition, so is f̄ .
Hence f̄∗ is a map of algebras. Using again the previous result and the commut-
ativity of the diagram

C∗(ET )
f∗ - K∗

C∗(BT )

p∗
6

f̄∗
- S∗,

6

we see that f̄∗ is also a map of weak S∗-modules without higher order terms because
S∗ injects into K∗. Having chosen the ξ′i as representatives of the ξi ∈ S∗ =
H∗(BT ), we conclude that H∗(f) is an isomorphism. The naturality of f̄∗ with
respect to componentwise maps of standard tori is clear.

That f̄∗ annihilates all cup1 products is equivalent to the vanishing of

STBT,BT∆BT ∗f̄ : S→ C(BT )⊗ C(BT )

and to that of

(p∗ ⊗ p∗)STET,ET∆ET ∗f : K → C(BT )⊗ C(BT ).

We actually prove the stronger statement that

STBT,ET ∆̂∗f = (p∗ ⊗ 1)STET,ET∆ET ∗f : K → C(BT )⊗ C(ET )

vanishes, where ∆̂ is the canonical map ET → BT × ET . We proceed by double
induction on the rank r of T and the degree of c = xπ⊗xα ∈ K, the case r = 0 being
trivial. If r > 0 and π non-empty, then xπ = xi · a for some a ∈ Λ and some i.
By Lemma 2.4.1 (4), the Steenrod map STBT,ET is equivariant with respect to
multiplication by xi because the latter is of degree 1. Hence

ST ∆̂∗f(c) = ST ∆̂∗
(
xi · f(a⊗ xα)

)
= ST

(
xi · ∆̂∗f(a⊗ xα)

)
= −xi · ST ∆̂∗f(a⊗ xα) = 0

by induction.
It remains the case π = ∅, i. e., c = 1 ⊗ xα. We may assume all αi > 0.

(Otherwise use the result for smaller r). Formula (2.12c) shows that the cross
product of two chains lying in the image of the respective cone operators does so
itself. This generalises readily to several factors. Since SS = 0 and f(1 ⊗ xαii ) =
Sf(xi ⊗ xαi−1

i ) by definition, we conclude that

f(c) = Sdf(c) + dSf(c) = Sf(dc)
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by Proposition 2.7.1. Applying equation (2.12b) yields
ST∆∗f(c) = ST∆∗Sf(dc) = −(S ⊗ S)AW∆∗f(dc)− (1⊗ S)ST∆∗f(dc).

The first summand vanishes because f is map of coalgebras and SS = 0, cf. the
explicit form (2.19b) of AW∆∗f . We project the remaining term to C(BT ) ⊗
C(ET ):

ST ∆̂∗f(c) = −(p∗ ⊗ 1)ST∆∗f(c)
= −(1⊗ S)(p∗ ⊗ 1)ST∆∗f(dc)

= −(1⊗ S)ST ∆̂∗f(dc) = 0,
again by induction. This finishes the proof.

We now construct the map φ : Λ∗ ⊗̃ C∗(BT ) → C∗(ET ). This is considerably
more involved. For a subset π ⊂ [r] with at least two elements, we set

χπ = −p∗ξ′π′ ∪1 χπ+ ,(2.20)

where π+ again denotes the maximum of π and π′ its complement in π, and finally

ζ∅ = 1, ζπ = −
∑

(µ,ν)`π
π+∈µ

{(µ, ν)} ζν ∪ χµ(2.21)

for non-empty π. Note that we have {χπ} = {ζπ} = {π}.

Proposition 2.11.3. The assignment
φ : Λ∗ ⊗̃ C∗(BT )→ C∗(ET )

ξπ ⊗ β 7→ ζπ ∪ p∗β

is a chain map of Λ-C∗(BT )-bimodules.

Recall that the left Λ-module structure of C∗(ET ) is defined via the canon-
ical opposition of C(T ) on the chain complex of the left T -space ET . Moreover,
Λ∗⊗̃C∗(BT ) is a Λ-C∗(BT )-bimodule, because the right C∗(BT )-module structure
of C∗(BT ) carries over, cf. formulas (1.26a) and (1.28).

Proof. The map φ is a chain map if (and only if) the relations

{π} dζπ =
∑

(µ,ν)`π
µ6=∅

{(µ, ν)} ζν ∪ p∗ξ′µ(2.22)

hold for all π ⊂ [r]. These can be verified inductively using the formula

{π} dχπ = −p∗ξ′π −
∑

(µ,ν)�π
π+∈µ

{µ}{(µ, ν)} p∗ξ′ν ∪ χµ +
∑

(µ,ν)�π
π+∈ν

{(µ, ν)}χν ∪ p∗ξ′µ(2.23)

for non-empty π, which is a consequence of equation (1.25) and the definition of χπ.
Details for this and the following calculations appear in Appendix 11.

It is obvious that φ is a map of right C∗(BT )-modules. By formula (1.15a),
the Λ-equivariance of φ is equivalent to the identities

xi · ζπ =

{
−{(π \ i, i)} ζπ\i if i ∈ π,
0 otherwise

(2.24)
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for all i ∈ [r] and all π ⊂ [r]. They follow by induction from

xi · χπ =

{
1 if π = {i},
0 otherwise.

(2.25)

Let us prove the preceding line: We clearly have xi · χj = 0 for i 6= j because in
this case the χj comes from a factor of ET on which xi acts trivially. Similarly,
xi · χπ vanishes for |π| ≥ 2: The cup1 product in (2.20) is in fact a cross1 product
with the first factor coming from a trivial T -space, namely a factor of BT . Hence

xi · χπ = −{π} p∗ξ′π′ ∪1 xi · χπ+ = 0
by Lemmas 2.4.1 (3) and 2.3.2 (1). It remains to show xi ·χi = x ·χ = 1. Note that
x · χ is a cocycle because

d(x · χ) = −x · dχ = −x · p∗ξ′ = −p∗(x · ξ′) = 0.
Since ET is connected it suffices therefore to evaluate x · χ on a single vertex. By
our choice of χ and the fact that the “inverted simplex” ι∗x′ is homologous to −x′,
we obtain

〈e0, x · χ〉 = 〈e0 · x, χ〉 = 〈1 · x, i∗S1χ〉 = 〈ι∗x′, i∗S1χ〉 = −〈x′, i∗S1χ〉 = 1,(2.26)

which finally proves (2.25).

We remark that φ (as well as the maps ΦY to be defined below) fall into a class
of maps U : H∗(F )⊗C∗(B)→ C∗(F×τB) considered in [Hi] for (almost) arbitrary
fibres. This is also the setting for the article [Mi] referred to in the previous chapter.

12. Comparing the Koszul functors

With the help of the maps f and φ introduced in the last section we can now
compare the simplicial Koszul functors with their algebraic counterparts.

We define the natural transformation
Ψ: C∗ ◦ t→ t ◦ C∗

by letting ΨX be the dual of the bottom row of the following commutative diagram:

C(X)⊗K
1⊗ f- C(X)⊗ C(ET )

∇- C(X × ET )

C(X)⊗
Λ
K

?
- C(X)⊗

C(T )
C(ET )
?

- C(X ×
T
ET ).

qX∗

?

(2.27)

(Recall from Lemma 1.5.1 that tC∗(X) is the dual of C(X) ⊗Λ K.) Note that
ΨX is the map f∗ for X = T and f̄∗ for X = ∗. We conclude from Lemma 2.8.1
and Proposition 2.11.1 that ΨX is a morphism of weak S∗-modules without higher
order terms.

Lemma 2.12.1. The map ΨX is a map of algebras for all right T -spaces X.

Proof. The top row of diagram (2.27) is a map of coalgebras by Proposi-
tion 2.11.1 and Corollary 2.2.2. The projection to the coalgebra C(X×TET ) factors
through C(X)⊗ΛK by Lemma 1.3.1. Proposition 1.8.1 finally asserts that the al-
gebra structure on tC∗(X) is dual to the coalgebra structure on C(X)⊗Λ K.
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For the natural transformation

Φ: h ◦ C∗ → C∗ ◦ h,

the Λ-equivariant morphism ΦY is defined as the composition along the (by Pro-
position 2.11.3 well-defined) bottom row of the commutative diagram

Λ∗ ⊗̃ C∗(BT )⊗ C∗(Y )
φ⊗ 1- C∗(ET )⊗ C∗(Y )

×- C∗(Y × ET )

hC∗(Y ) === Λ∗ ⊗̃ C∗(BT ) ⊗
C∗(BT )
C∗(Y )

?
- C∗(ET ) ⊗

C∗(BT )
C∗(Y )

?
- C∗(Y

BT
× ET ).

?

Note that Ψ is natural with respect to componentwise maps and Φ natural with
respect to monotone maps.

We can now state the main results of the present work. Recall that we have
defined a c-equivalence of functors as a natural transformation all of whose morph-
isms are c-equivalences.

Theorem 2.12.2. The natural transformations Ψ and Φ are c-equivalences.

Proof. Let X be a T -space. We want to use the Leray–Serre theorem to show
that ΨX is a c-equivalence of S∗-modules. This map respects the filtrations because
it is the dual of the composition

F : C(X) ⊗̃ S→ C(X)⊗
C(T )
C(ET )→ C(X ×

T
ET ),

which is filtration-preserving: For c ∈ Cq(X) and l ∈ N the “base component” of

F (c⊗ xl) = qX∗∇
(
c⊗ f(1⊗ xl)

)
is q-fold degenerate by the definition of the shuffle map. Hence ΨX induces a map
of spectral sequences. We know from equation (1.39) and the Leray–Serre theorem
that both E2 terms are (abstractly) isomorphic, but we need that the map

E2(ΨX) : S∗ ⊗̃H∗(X) ∼= E2(X,B)→ E2(tC∗(X)) = S∗ ⊗̃H∗(X)(2.28)

is such an isomorphism. The componentwise map 1 → T induces the canonical
inclusion of the fibre X ↪→ XT , and the corresponding inclusion 0 ↪→ H1(T ) = P
induces the augmentation S∗ → R. Since all the constructions involved are natural
with respect to these maps, we may conclude from the commutative diagram

H∗(X) � E2(X,B)

H∗(X)

=

?
� E2(tC∗(X))

E2(ΨX)

?

that ΨX is an isomorphism on the column p = 0. (Here we use S0 = R.) By the
preceding lemma and the Leray–Serre theorem the map (2.28) is S∗-equivariant.
The p = 0 columns generating both E2 terms over S∗, the connecting map must
be an isomorphism for all p and q. Hence H(ΨX) is an isomorphism, too.
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Though one could give a similar proof for Φ, we prefer to deduce the dual
result in Corollary 2.12.4 (2) from our analysis of how both natural transformations
relate.

Theorem 2.12.3.
1. For all right T -spaces X the left diagram below is a commutative diagram

of chain maps of complexes which induce isomorphisms of Λ-algebras in
homology.

2. For all spaces Y over BT the right diagram below is a commutative diagram
of chain maps of complexes which induce isomorphisms of S∗-algebras in
homology.

C∗(htX) C∗(thY )

@
@

@
@

@R �
�

�
�

��

hC∗(tX)

ΦtX

6

C∗(X) C∗(Y ) tC∗(hY )

ΨhY

?

�
�

�
�

�� @
@

@
@

@R
htC∗(X)

hΨX

?
thC∗(Y )

tΦY

6

Proof. We write tT for tH1(T ) and similarly for h. The left diagram above is
a condensed version of the diagram of chain maps

C∗(hT tTX) - C∗(h1tTX) - C∗(h1t1X)

hTC∗(tTX)

ΦT,tTX
6

- h1C
∗(tTX)

Φ1,tTX

6

- h1C
∗(t1X)

Φ1,t1X

6

hT tTC∗(X)

hTΨT,X
?

- h1tTC∗(X)

h1ΨT,X
?

- h1t1C
∗(X),

h1Ψ1,X

?

which commutes by naturality of the Koszul functors with respect to the monotone
homomorphism 1→ T . (More precisely, the homomorphism 1→ T r to our chosen
(in fact, to any) decomposition of T is monotone.) Note that on the right hand side
all complexes are equal to C∗(X) and all maps to the identity. The compositions
along the top and bottom row are just the canonical maps

C∗(htX)→ C∗(X) and htC∗(X)→ C∗(X),

from (2.13a) and (1.18a), which induce isomorphisms of Λ-algebras in homology by
Theorem 2.8.2 (1), Theorem 1.6.3 (1), and Proposition 1.8.3.

The middle row is multiplicative as well: Denoting the canonical inclusionX ↪→
XT by iX , one finds for the former map the formula

Λ∗ ⊗̃ C∗(tX)→ C∗(X), α⊗ γ 7→ ε(α) i∗Xγ.
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Thus, the multiplicativity follows from the explicit formula (1.36) and the fact that
i∗Xξ

′
π = 0 for all π 6= ∅.
Taking homology therefore transforms the big outer square into the commut-

ative diagram
H∗(htX)

@
@

@
@R

H(hC∗(tX))

H(ΦtX)
6

- H∗(X).

�
�

�
��

H(htC∗(X))

H(hΨX)

?

Now ΨX is a map of weak S∗-modules (without higher order terms), hence hΨX
is Λ-equivariant. By Theorem 2.12.2 and Proposition 1.9.2 the map H(hΨX) is an
isomorphism of Λ-modules, hence so are H(ΦtX) and the middle row.

The horizontal and diagonal maps being multiplicative, the vertical maps on
the left must finally be maps of algebras, too.

The second part follows analogously from naturality with respect to the pro-
jection T → 1. The proof uses Lemma 1.9.1 and the yet unproven part of The-
orem 2.12.2, but is itself not needed for the following corollary.

Corollary 2.12.4.
1. The map H(ΨX) is an isomorphism of S∗-algebras for all right T -spaces X.
2. The map H(ΦY ) is an isomorphism of Λ-algebras for all spaces Y over BT .

Proof. The first assertion is a weakening of Lemma 2.12.1 and Theorem 2.12.2.
By Theorem 2.12.3 the second claim is true for all Y in the image of the functor t.
For arbitrary Y there is a c-equivalence Y → thY over BT , hence a commutative
diagram

hC∗(Y ) � hC∗(thY )

C∗(hY )

ΦY
?

� C∗(hthY ),

ΦthY

?

the rows of which are multiplicative c-equivalences by Propositions 1.9.2 and 2.8.5,
whence the assertion.

One cannot expect the map ΦY itself to be multiplicative, as the example Y = ∗
shows: Here ΦY : Λ∗ → C∗(T ) maps from a commutative to a non-commutative
algebra.



CHAPTER 3

Applications

1. The Cartan model

In the introduction we have mentioned the Cartan model expressing the equivari-
ant cohomology of a G-manifold X in terms of the de Rham complex. Now we want
to show how to recover this result from our theory in the case of torus actions.

Recall that the exterior derivative of differential forms, the contraction of forms
by vector fields, and the Lie derivative are related by the formulas

iY iZ γ + iZ iY γ = 0,(3.1a)
LY iZ γ − iZ LY γ = iLY Z γ,(3.1b)
d iY γ + iY dγ = LY γ,(3.1c)
dLY γ − LY dγ = 0.(3.1d)

(See for example [AMR, §6.4], or [GS, Sec. 2.2] for a nice interpretation in terms
of superalgebras.)

Let X be a manifold with a smooth left action of a compact torus T of rank r.
Then T acts by diffeomorphisms on X, hence on vector fields and differential
forms. In Section 2.11 we have chosen representative loops x′i ∈ C1(T ) of a basis
of H1(T ). We now assume that they are actually one-parameter subgroups, i. e., of
the form t 7→ λi(t) = eyit for some yi in the Lie algebra of T . A differential form γ
on X is T -invariant if and only if its Lie derivative LYiγ vanishes for all generating
vector fields

Yi(x) = d
dt
xeyit
∣∣∣∣
t=0

(3.2)

on X. It follows from equation (3.1d) that the T -invariant differential forms are a
subcomplex ΩT (X) of the de Rham complex Ω(X). One has LYiYj = 0 by [AMR,
Prop. 4.2.27] because T is commutative. Hence equation (3.1b) implies that ΩT (X)
is stable under contraction by the vector fields Yi. Unfortunately, the exterior
differential turns out not to be compatible with our definition (1.3) of the differential
on C∗(X). We therefore introduce the new differential

Dγ = {γ} dγ

on Ω(X) and ΩT (X). Equations (3.1a) and (3.1c) show that ΩT (X) (with new
differential) becomes a Λ-module if we define

xi · γ = {γ} iYi γ.

Proposition 3.1.1. The Λ-module ΩT (X) is c-equivalent to the singular co-
chain complex of X with real coefficients. Here C∗(X) is a Λ-module by the sweep
action induced from the opposite, hence right T -action on X.

61
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Corollary 3.1.2. The Cartan model

S∗ ⊗̃ ΩT (X), d(σ ⊗ γ) = −
r∑
i=1
ξiσ ⊗ iYi γ + σ ⊗ dγ,

computes the real equivariant cohomology of the T -manifold X as S∗-module.

Note that this is the complex (0.1) since T operates trivially on S∗ = H∗(BT ).

Proof (of the corollary). The above complex is just tΩT (X) with dif-
ferential scaled by {γ} = {σ ⊗ γ}. Hence the assertion follows immediately from
Theorem 2.12.2 and the fact that the Koszul functors preserve c-equivalence, see
Proposition 1.9.2.

The multiplicative structure is the right one, too, but the comparison of the
wedge product of differential forms and the cup product of cochains is more involved.

Proof (of the proposition). The restriction
C∗(X)→ C∗∞(X)(3.3)

of singular cochains to smooth simplices is a c-equivalence of complexes, as are the
inclusion

ΩT (X) ↪→ Ω(X)
and the integration map

Ω(X)→ C∗∞(X), γ 7→
(
c 7→
∫
c

γ
)
,

see for example [Bre, Secs. V.9 & V.12]. (The last map would not be a chain map if
we had not scaled the exterior differential appropriately, cf. [Bre, Sec. V.5].) Note
that we use a negative grading on the de Rham complex.

The subcomplex of smooth simplices in X is Λ-stable because T acts smoothly.
Hence C∗∞(X) is a Λ-module, and the map (3.3) equivariant. It remains to show
the Λ-equivariance of the composition

I : ΩT (X) ↪→ Ω(X)→ C∗∞(X).
(This is a special case of [GKM, Prop. 18.4].) Let γ be a T -invariant differential
form on X and c : ∆n → X a smooth simplex of degree n = −|γ| − 1, and denote
by α : X × T → X the T -action on X. The left and right Λ-action on simplices
are related by the opposition ι∗ induced from the group inversion, cf. Section 2.4.
Hence

〈c, xi · I(γ)〉 = 〈c · xi, I(γ)〉 = {c}
〈
ι∗x
′
i · c, I(γ)

〉
where ι∗x′i is the “inverted” representative t 7→ λ−1

i (t) = e−2πit,

= {c}
∫
ι∗x′i·c

γ = {c}
∫

λ−1×c

α∗γ = {c}
∫

∆1×∆n

(λ−1, c)∗α∗γ.

More precisely, one has to integrate over the simplicial subdivision of ∆1 × ∆n
determined by the shuffle map. Since the sign of the permutation in the formula
for the shuffle map compensates for the different orientations of the simplices, this
is the same as integrating over the product ∆1 × ∆n. Now β = (λ−1, c)∗α∗γ
is constant with respect to the first coordinate because α is T -invariant. This
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means β = dy ∧ β′ for a form β′ on ∆n and the canonical volume form dy on the
interval ∆1. Let Y be the unit vector field on ∆1 × ∆n along the y coordinate.
Then iY β = (iY dy) ∧ β′ = β′ and (λ∗Y )(1) = yi. We may therefore continue

〈c, xi · I(γ)〉 = {c}
∫

∆1×∆n

dy ∧ β′ = {c}
∫

∆1

dy

∫
∆n

β′ = {c}
∫

∆n

iY β

= {c}
∫

∆n

iY (λ−1, c)∗α∗γ = −{c}
∫

∆n

c∗(iYi γ)

by the definition of the generating vector field Yi,

= {γ}
∫
c

iYi γ = 〈c, I(xi · γ)〉,

which was to be shown.

2. Equivariantly formal spaces

We have seen in the previous chapter that the equivariant cohomology of a
space X with an action of a torus T can be computed from the ordinary cochain
complex C∗(X) together with the action of H(T ) = Λ on it. We now turn to a class
of spaces where one cohomology already determines the other, at least at modules.
We assume as in the second part of Section 1.9 that R is a principal ideal domain.

A T -space X is called equivariantly formal if its cochain complex is a split
and trivial Λ-module, i. e., if C∗(X) ∼ H∗(X) and the Λ-action on the latter is
trivial.

Recall that there is a canonical inclusion iX : X ↪→ XT over the unique ver-
tex b0 ∈ BT inducing a map of algebras H∗(iX) : H∗T (X)→ H∗(X).

Proposition 3.2.1. The following are equivalent for every T -space X:
1. X is equivariantly formal.
2. H∗T (X) is an extended S∗-module.
3. There exists to H∗(iX) a section of graded R-modules.
4. The Leray–Serre spectral sequence for XT degenerates on the E2 level, and

there is no composition problem, i. e., H∗T (X) ∼= S∗⊗H∗(X) as S∗-modules.
Under these conditions there is an isomorphism of algebras

H∗(X) ∼= R⊗
S∗
H∗T (X) = H∗T (X)/S>0H∗T (X).(3.4)

Proof. These are essentially reformulations of Propositions 1.9.5 and 1.9.6 be-
cause ΨX : C∗(XT )→ tC∗(X) is a c-equivalence of Λ-modules by Theorem 2.12.2.

To see that condition (3) is equivalent to Proposition 1.9.6 (2) note that the
inclusion iX∗ : C(X) ↪→ C(XT ) factors through C(X)⊗ΛK, hence i∗X = jC∗(X)ΨX .
This gives in particular (3.4).

Since we know from the proof of Theorem 2.12.2 that the Leray–Serre spectral
sequence for XT is isomorphic to the spectral sequence (1.39) from the E2-term on,
the last condition above is the same as Proposition 1.9.6 (3).

In the literature there seems to be no universal definition of equivariant form-
ality of a space with respect to a coefficient ring that is not a field. Some authors
only assume that the Leray-Serre spectral sequence degenerates on the E2 level.
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The list of T -spaces known to be equivariantly formal over the reals includes:
• spaces with vanishing cohomology in odd degrees,
• smooth complete complex algebraic varieties with algebraic torus actions,
• compact symplectic manifolds with Hamiltonian torus actions,

cf. [GKM, Thm. 14.1] and [We].

Suppose that the T -space X satisfies the assumptions of the localisation the-
orem for singular cohomology [AP, Sec. 3.1]. For instance, X might be a finite-
dimensional T -CW-complex. Suppose further that R is a field and that the Betti
sum dimH∗(X) is finite. Then the Betti sum of the fixed point setXT ofX satisfies

dimH∗(XT ) ≤ dimH∗(X);

equality holds if and only if X is equivariantly formal [AP, Cor. 3.1.15]. Since
the Euler characteristics of X and XT coincide [AP, Cor. 3.1.13], one may replace
H∗ by Heven or Hodd in this assertion. These conditions for equivariant formality
carry over to R = Z if in addition H∗(X) is free. (Here the Betti sum of XT is the
dimension of H∗(XT )⊗Q.)

For rational (or real) coefficients, the localisation theorem implies a nice de-
scription of the equivariant cohomology for equivariantly formal spaces. To wit, by
a result of Chang and Skjelbred (cf. [Hs, §VI.2], or [GKM, Sec. 6.3]) the sequence

0 −→ H∗T (X) −→ H∗T (XT ) −→ H∗T (X1, X
T )

is exact, where X1 denotes the equivariant 1-skeleton of X, i. e., the union of all
orbits of dimension not greater than 1. The last map above is the boundary operator
of the long exact cohomology sequence of the pair (X1, X

T ).

We finally give an example, due to [GKM, Secs. 1.5 & 11.3], that a T -space X
may not be equivariantly formal, although H∗(X) is trivial as Λ-module. This
shows in particular that a Λ-module N is not necessarily split if the module struc-
ture on H(N) is trivial: For T = S1 the Λ-module structure on H∗(S2k+1), k ≥ 2,
is trivial for all actions, in particular for the free “Hopf action” with quotient CP k.
But in this case H∗S1(S2k+1) = H∗(CP k) is not a free S∗-module (unless R = 0).

3. Toric varieties

In this section we apply our general theory to toric varieties, on which we assume
a basic knowledge, see for example [Fu], [Ew], or [K]. We will need the Mayer–
Vietoris double complex for the cover of a space by finitely many subspaces [BT,
§15]. This is a generalisation of the well-known Mayer–Vietoris exact sequence.

Let U = (Ui)i∈I be a cover of the space (i. e., simplicial set) X by finitely many
subspaces. This means that each simplex of X lies in some Ui. We assume the index
set I to be totally ordered. Let Ui0,...,ip denote the intersection Ui1 ∩ · · · ∩Uip , and

φi : Ui ↪→ X and φi0,...,ip;ik : Ui0,...,ip ↪→ Ui0,...,bik,...,ip

the canonical inclusions for i1 < · · · < ip, p > 0. Define complexes

Ep(U) =
⊕

i0<···<ip

C(Ui0,...,ip)
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with differential D, the direct sum of the differentials of the respective chain com-
plexes, and maps between them,

δ : Ep+1(U)→ Ep(U), C(Ui0,...,ip+1) 3 c 7→
p+1⊕
k=0

(−1)k(φi0,...,ip;ik)∗(c),

ε =
⊕
i

(φi)∗ : E0 → C(X).

Then the sequence of complexes

0 � C(X) � ε E0(U) �δ E1(U) �δ · · ·

is exact. In particular, ε : E(U)→ C(X) is a c-equivalence, where E(U) is the total
complex associated to the sequence (Ep(U)) above. This is a double complex with
horizontal differential δ, vertical differential D and total differential

dpq = D + (−1)qδ.

Consequently, ε∗ : C∗(X) → E∗(U) is a c-equivalence as well. (Since we will only
need E∗(U) in the sequel, we will be somewhat sloppy as far as the sign con-
vention (1.3) is concerned.) We call E∗(U) the (cohomological) Mayer–Vietoris
complex associated to the cover U .

The complex E∗(U) is actually a bigraded algebra such that ε∗ is a map of
algebras: The product of α ∈ Cq(Ui0,...,ip) and β ∈ Cq′(Uj0,...,jp′ ) is defined to be 0
if ip 6= j0, and (−1)pq′α ∪ β otherwise. Here the product is taken after restriction
of both cochains to Ui0,...,ip=j0,j1,...,jp′ . (Note that this is the Alexander–Whitney
map in a different guise.)

Filtering E∗(U) by p-degree, we get the (cohomological) Mayer–Vietoris spec-
tral sequence with E1 term

Epq1 (U) =
⊕

i0<···<ip

Hq(Ui0,...,ip)

and differential

dpq1 ([α]) =
p∑
k=0

(−1)kH∗(φi0,...,ip;ik)([α]).

The inclusion ε∗ induces a map of algebras

E1(ε) : H∗(X)→ E1(U).(3.5)

This establishes a link between the cohomology of a space and that of its subspaces.
Hence if the latter is known, one might deduce results about the former.

If U = (Ui) is a finite cover of a topological space, then the space SX is not
the union of the subspaces SUi in general, because a singular simplex in X may
not lie entirely in one Ui. But if all Ui are open in X then the inclusion

SUX :=
∪
i

SUi ↪→ SX(3.6)

induces a chain homotopy equivalence. (We have already used this in Section 2.9.)
Hence the Mayer–Vietoris sequence applies to finite open covers of topological
spaces. (One can generalise everything done so far to countable covers, but we
will not need that.)
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Now let X = XΣ be the toric variety associated to a fan Σ ⊂ N ∼= Zr. The
algebraic torus TN ∼= (C∗)r acts on X. We want to determine the TN -equivariant
cohomology of X.

Cover Σ by (the fans generated by the elements of) some subset U ⊂ Σ, for
example by the set of maximal cones in Σ. (And any other cover is a superset
of this.) This induces an open cover of X by the toric subvarieties Xσ, σ ∈ U ,
which we continue to call U . The inclusion (3.6) is equivariant, hence we may
substitute SUX for SX in what follows by Proposition 2.9.2 (1). We also drop the
functor S from our notation.

The spaces tXσ form a cover, again called U , of the Borel construction tSUX.
The motivation for this procedure is that the equivariant cohomology of an affine
toric variety Xσ is simple to describe: Choose a lattice complement to Nσ = σ− σ
in N . This corresponds to a decomposition of Xσ into a non-degenerate toric
variety Yσ and a torus T ′, compatible with the decomposition of T into T ′ and the
torus Tσ associated to the lattice Nσ. The torus Tσ acts on Yσ, and the canonical
inclusion Yσ ↪→ Xσ induces an isomorphism in equivariant cohomology because

(Xσ × ET )/T = (Yσ × T ′ × ETσ × ET ′)/(Tσ × T ′) ∼= (Yσ × ETσ)/Tσ × ET ′,

and the latter factor is contractible. The fact that any non-degenerate affine toric
variety is equivariantly contractible to its unique fixed point [Fu, Sec. 2.3] implies
that (Yσ × ETσ)/Tσ is homotopy equivalent to BTσ over BTσ. Summarising, the
sequence of equivariant maps

Xσ ←− Yσ −→ ∗

induces the c-equivalence

tTNXσ ←− tTσYσ −→ tTσ∗ = BTσ(3.7)

in MapCl. As a consequence we deduce an isomorphism of algebras

H∗T (Xσ) ∼= R[σ] := S(N∗σ ⊗R)(3.8)

between the T -equivariant cohomology of Xσ and the symmetric algebra R[σ] of
the tensor product N∗σ ⊗ R (over Z). This isomorphism is natural with respect
to morphisms between such toric varieties. In particular, the module structure
of H∗T (Xσ) over S∗ = H∗T (X0) corresponds to the obvious multiplication in R[σ] by
polynomials defined on all of N .

All this shows that the term E1(U) of the Mayer–Vietoris spectral sequence
associated to the cover U of tSUX is very simple: It consists of a bunch of poly-
nomial algebras on certain subspaces of N with differential induced by the various
inclusions. But there is another way to think about E1(U): Assume R = Q for the
moment. Then a polynomial on Nσ ⊗ R is essentially the same as its restriction
to (the rational points in) σ. Consider the vector space of piecewise polynomial
functions on the support

|Σ| =
∪
σ∈Σ

σ

of Σ, i. e., all functions on |Σ| that are polynomial on each cone σ. The com-
plex E1(U) looks like the Mayer–Vietoris double complex of this vector space asso-
ciated to the cover U of |Σ|. If one wants to formalise this idea, it is more convenient
to take a purely algebraic approach:
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Assume that the fan Σ is R-regular. This means that for each cone σ ∈ Σ the
images inNσ⊗R of the generators of the rays of σ form a basis. For R = Z this is the
usual notion of a regular fan, made up of regular cones, and a Q-regular fan contains
only simplicial cones. The Stanley–Reisner ring R[Σ] of Σ is the quotient of the
evenly graded polynomial algebra R[{ρ : ρ ray in Σ}] by all monomials ρ1 · · · ρs
such that the rays appearing in this product do not all belong to a single cone
in Σ. We call the minimal cone containing all rays of a remaining monomial the
“cone referred to by this monomial.” The ring R[Σ] is an S∗-module via the map
of algebras

S∗ → R[Σ], S2 3 ξ 7→
∑
ρ

〈ρ, ξ〉ρ,

where 〈ρ, ξ〉 denotes the value of ξ on the minimal generator of ρ. Note that
the Stanley–Reisner ring of an R-regular cone σ is isomorphic to R[σ] as defined
above. Moreover, the Stanley–Reisner ring of a, say, Q-regular fan can be identified
with the piecewise polynomial functions on |Σ|. Any inclusion j : Σ′ ↪→ Σ of a
subfan induces a projection of algebras j∗ : R[Σ]→ R[Σ′] annihilating all monomials
referring to cones in Σ \Σ′. Choosing as Σ′ a cone in U , this leads in analogy with
equation (3.5) to a map of S∗-algebras

ε̃ : R[Σ]→ E1(U).

Lemma 3.3.1. If Σ is R-regular, then ε̃ is a c-equivalence of S∗-algebras.

Proof. We adapt the standard proof of the exactness of the Mayer–Vietoris
double complex for singular (co)homology [BT, §15] and proceed by induction on
the number of cones in the covering U . For |U| = 1 there is nothing to prove.

Consider a covering U of a fan Σ by more than one cone. Removing the accord-
ing to the chosen total ordering greatest cone σ′, we arrive at a covering U ′ = U \σ′
of some subfan Σ′ ⊂ Σ by |U| − 1 cones. The inclusion j : Σ′ ↪→ Σ induces the
commutative diagram

0 - ker j∗ - R[σ′] -
⊕
σ∈U ′
R[σ ∩ σ′] - · · ·

0 - R[Σ]
?

-
⊕
σ∈U

R[σ]
?

-
⊕
σ,τ∈U

R[σ ∩ τ ]
?

- · · ·

0 - R[Σ′]

j∗

?
-
⊕
σ∈U ′
R[σ]
?

-
⊕
σ,τ∈U ′

R[σ ∩ τ ]
?

- · · · .

Here the middle terms in all but the first column are the direct sums of the top
and bottom terms, and the maps are the corresponding inclusions and projections,
respectively. In particular, these columns are exact, as is the leftmost one. The
bottom row is exact by induction hypothesis. If the top row is exact as well, then
so is the middle one by the associated long exact homology sequence.
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Note that the top row is, up to the first two terms, just the double complex
associated to the cover of the fan {σ ∈ Σ′ : σ ⊂ σ′} induced by U ′, hence by induc-
tion exact from the third term on. The kernel of j∗ is generated by all monomials
referring to faces of σ′ not in Σ′. This shows ker j∗ ⊂ R[σ′] and gives exactness of
the top row at the remaining positions.

Theorem 3.3.2. Let Σ be an R-regular fan. Then the equivariant cochain com-
plex of XΣ is c-equivalent to the Stanley–Reisner ring of Σ, including all multiplicat-
ive structure. In particular, there are isomorphisms of S∗-algebras and Λ-algebras,
respectively,

H∗T (XΣ) = R[Σ] and H∗(XΣ) = H(hR[Σ]) = H(Λ∗ ⊗̃R[Σ]).

The ordinary cohomology of smooth projective toric varieties has been determ-
ined by Jurkiewicz. Danilov has extended this result to the compact case, cf. [Fu,
Sec. 5.2]. The identification of the Stanley–Reisner ring as the equivariant cohomo-
logy is due to Davis–Januszkiewicz [DJ] and Brion [Bri]. Since smooth compact
toric varieties are equivariantly formal, this implies the Jurkiewicz–Danilov res-
ult by Proposition 3.2.1. Buchstaber and Panov have shown (using a different
method) that the equivariant cochain complex of a smooth toric variety is c-equi-
valent to the Stanley–Reisner ring [BP, Prop. 3.4.3]. This gives the ordinary co-
homology by the Eilenberg–Moore theorem mentioned in the introduction, cf. [BP,
Thms. 4.2.1 & 4.4.11]. Since this “simplified version” of Koszul duality does not
account for the dual module structure, one only gets the cohomology as algebra.
The description of the Λ-module structure seems to be new.

Proof. We construct the claimed c-equivalence in several steps. For the mo-
ment being, we will neglect all additional structure and take C∗(tXΣ) as a complex.

Let Q : (N ′,Σ′)→ (N,Σ) be the Cox construction. More precisely: Let N ′ be
the free Z-module over the rays in Σ. For each cone in Σ define a cone in N ′ spanned
by the same extremal rays, now considered as elements of N ′. The collection of all
these cones forms a fan Σ′, isomorphic to Σ as partially ordered set because Σ is
simplicial. The map Q sending each ρ ∈ N ′ to its generator in N is a morphism of
fans, hence induces a morphism q : XΣ′ → XΣ of toric varieties.

1. We cover Σ by some subset U and replace C∗(tXΣ) by the c-equivalent
Mayer–Vietoris double complex E∗(U). This has been discussed above.

2. Cover Σ′ by the corresponding collection U ′. This covering being com-
patible with U by construction, the map tq : tXΣ′ → tXΣ passes to a
map E∗(tq) : E∗(U) → E∗(U ′) between their Mayer–Vietoris double com-
plexes. The mapQ induces an isomorphismNσ′⊗R→ Nσ⊗R for each σ ∈ Σ
with preimage σ′ because it maps the canonical basis of Nσ′ ⊗ R by hypo-
thesis to a basis of Nσ ⊗R. This gives by equation (3.8) a c-equivalence

tN ′Xσ′ → tNXσ.
Since the E1 terms of the Mayer–Vietoris spectral sequences are made up of
these terms, we conclude that E∗(tq) is a c-equivalence.

3. Using the c-equivalence (3.7), we now replace each space tN ′Xσ′ appearing
in E∗(U ′) by BTσ′ , and the inclusions between them by those induced by
the inclusions between the Tσ′ . This gives a new complex E′′ because the
composition of maps is functorial, i. e., the composition

BTρ′ −→ BTσ′ −→ BTτ ′
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does only depend on ρ′ ⊂ τ ′ ∈ Σ′. Since all c-equivalences in (3.7) are
natural in σ, the complex E′′ is c-equivalent to E∗(U ′).

4. Replace each cochain complex C∗(BTσ′) in E′′ by its homology with the
help of the maps f̄∗ constructed in Section 2.11. This is compatible with
the inclusions between them because the latter maps are componentwise
with respect to the canonical decomposition of BTN ′ given by the distin-
guished basis of N ′. (This was the reason to pass to N ′.) This thus yields
a c-equivalence between E′′ and the complex E1(U ′) ∼= E1(U).

5. The complex E1(U) finally is c-equivalent to R[Σ] by Lemma 3.3.1.
Now choose representatives for some basis of S∗ = H∗(BTN ). This gives rise to a
twisting cochain, hence to a differential and a product on hC∗(tXΣ). Due to the
commutative diagram

BTN ′ � tTN′XΣ′ � SUtTN′XΣ′ � tTN′Xσ′

BTN
?

� tTNXΣ

?
� SUtTNXΣ

?
� tTNXσ

?

all replacements made in the first two steps are compatible with these structures.
The third step is structure-preserving because of the commutative diagram

BTσ′ � tTσ′Yσ′

BTN ′
?

� tTN′Xσ′ .
?

The c-equivalence in the last step is one of S∗-algebras. Here all Steenrod–Hirsch
products are zero. So we only have to examine the fourth step in more detail:
Since the maps C∗(BTσ′)→ H∗(BTσ′) are c-equivalences of algebras, natural with
respect to the maps Tσ′ ↪→ TN ′ , we conclude that multiplication by ξ′i in C∗(BTσ′)
corresponds to multiplication by ξi inH∗(BTσ′). We also need that all cup products
by the ξπ, |π| ≥ 2, and the cup1 products by all ξπ are mapped to zero. But this is
guaranteed by Proposition 2.11.2.

Hence the weak S∗-module structure and the product on R[Σ] are the right
ones. By Koszul duality the formula for H∗(XΣ) follows.

We finally exhibit a class of equivariantly formal toric varieties. Call a se-
quence (σ1, . . . , σk) of full-dimensional simplicial cones generating a fan Σ a shelling
of Σ if, for each i, the intersection of σi with σ1 ∪ · · · ∪ σi−1 is a union of facets
of σi. A fan possessing a shelling is called shellable. (See for instance [Z, §8.1] for
more about shellings. Our definition is there Remark 8.3 (ii).)

Proposition 3.3.3. Let R be a principal ideal domain and Σ a shellable R-reg-
ular fan. Then XΣ is equivariantly formal.

Proof. By Proposition 3.2.1 we have to show that H∗T (XΣ) = R[Σ] is a
free S∗-module. Let (σ1, . . . , σk) be a shelling of Σ. We proceed by induction
on k. For k = 1 we have R[Σ] = S∗ because σ1 is R-regular and full-dimensional.
For k > 1 denote by Σ′ the (shellable) fan generated by (σ1, . . . , σk−1). Then the
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inclusion Σ′ ↪→ Σ induces the projection p : R[Σ]→ R[Σ′] annihilating all monomi-
als referring to cones not in Σ′. By [Z, Exercise 8.2] or [K, Lemma 18.2 (1)], the set
of these cones is just the star of some face τ ⊂ σk, i. e., all faces of σk containing τ .
Since σk is R-regular, we may assume that the rays of σk, considered as elements
of R[Σ], are the images of the generators (ξ1, . . . , ξr) of S∗. If ξ1, . . . , ξs are the
rays of τ , then the kernel of p is generated by the monomial ξ1 · · · ξs. Therefore the
kernel of p is free, as is by induction the image. Hence so is R[Σ].

This observation is well-known. Since the fans associated to projective toric
varieties are shellable [Z, Thm. 8.11], this proves in particular Jurkiewicz’s theorem.
An exhaustive study of free Stanley–Reisner rings appears in [BR].



APPENDIX

The gory details

This appendix contains the simple, but lengthy verification of quite a few claims
made in the main text. For those who think that mathematics is the formal ma-
nipulation of collections of symbols according to some list of transformation laws
the following sections will be heaven.

1. Proof of Lemma 1.3.1

Let p : B ⊗ C → B ⊗Λ C be the projection. We have to verify that the com-
position

(p⊗ p)∆B⊗C : B ⊗ C → (B ⊗ C)⊗ (B ⊗ C)→ (B ⊗
Λ
C)⊗ (B ⊗

Λ
C)

factors through B ⊗Λ C, and likewise for the augmentation εB⊗C = εB ⊗ εC . Let
b ∈ B and c ∈ C have the images

∆Bb =
∑
i

b′i ⊗ b′′i and ∆Cc =
∑
j

c′j ⊗ c′′j

under the diagonals. Then for a generator x ∈ Λ

∆B(bx) =
∑
i

(
b′i ⊗ b′′i x+ {b′′i } b′ix⊗ b′′i

)
,

∆C(xc) =
∑
j

(
xc′j ⊗ c′′j + {c′j} c′j ⊗ xc′′j

)
,

hence

∆B⊗C(bx⊗ c)

=
∑
i,j

{b′′i x, c′j} (b′i ⊗ c′j)⊗ (b′′i x⊗ c′′j ) + {b′′i }{b′′i , c′j} (b′ix⊗ c′j)⊗ (b′′i ⊗ c′′j )

and

∆B⊗C(b⊗ xc)

=
∑
i,j

{c′j}{b′′i , c′j} (b′i ⊗ c′j)⊗ (b′′i ⊗ xc′′j ) + {b′′i , xc′j} (b′i ⊗ xc′j)⊗ (b′′i ⊗ c′′j )

are equal in B ⊗Λ C.
Since ε(bx ⊗ c) = ε(b ⊗ xc) = 0 by the Λ-equivariance of the augmentations,

we also get an induced augmentation εB⊗ΛC .

71
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2. Proof of Lemma 1.5.1

It is clear that the map f : S∗ ⊗̃N∗ → (N ⊗̃S)∗ given in the lemma is bijective
and S∗-equivariant, so we just have to show that it commutes with differentials.
We have

d(σ ⊗ ν) = −
r∑
i=1
ξiσ ⊗ xiν + σ ⊗ dν,

in S∗ ⊗̃N∗ and

d(n⊗ s) = dn⊗ s+ {n}
r∑
i=1
nxi ⊗ s ∩ ξi

in N ⊗̃ S, hence〈
n⊗ s, f(d(σ ⊗ ν))

〉
= −
∑
i

〈n, xiν〉〈s, ξiσ〉+ 〈n, dν〉〈s, σ〉

= −
∑
i

〈nxi, ν〉〈s ∩ ξi, σ〉 − {n}〈dn, ν〉〈s, σ〉

= −{n}
〈
d(n⊗ s), f(σ ⊗ ν)

〉
=
〈
n⊗ s, d(f(σ ⊗ ν))

〉
,

which was to be shown.

3. Proof of Proposition 1.6.1

Let h : P ′ → P be given by the matrix Aij relative to the chosen bases of
P ′ and P , respectively, i. e.,

h(x′j) =
∑
i

Aijxi and h∗(ξi) =
∑
j

Aijξ
′
j .

Denote the map associated with f : N → N ′ as in the lemma by tf . If f is a chain
map, then

tfd(σ ⊗ n) = tf
(
−
∑
i

ξiσ ⊗ xin+ σ ⊗ dn
)

= −
∑
i

h∗(ξiσ)⊗ f(xin) + σ ⊗ f(dn)

= −
∑
i

h∗(ξi)h∗(σ)⊗ f(xin) + σ ⊗ f(dn)

= −
∑
i,j

Aijξ
′
jh
∗(σ)⊗ f(xin) + σ ⊗ f(dn)

= −
∑
j

ξ′jh
∗(σ)⊗ f(h(x′j)n) + σ ⊗ df(n)

= −
∑
j

ξ′jh
∗(σ)⊗ x′jf(n) + σ ⊗ df(n)

= dtf(σ ⊗ n),
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hence tf is a chain map, too. If f is a chain homotopy instead, say from f ′ to f ′′,
we may continue from the middle line above

tfd(σ ⊗ n) = −
∑
i,j

Aijξ
′
jh
∗(σ)⊗ f(xin) + σ ⊗ f(dn)

=
∑
j

ξ′jh
∗(σ)⊗ f(h(x′j)n)− σ ⊗ df(n) + σ ⊗ f ′′(n)− σ ⊗ f ′(n)

= −
∑
j

ξ′jh
∗(σ)⊗ x′jf(n)− σ ⊗ df(n) + σ ⊗ f ′′(n)− σ ⊗ f ′(n)

= −dtf(σ ⊗ n) + tf ′′(σ ⊗ n)− tf ′(σ ⊗ n),

as it should be. The proof for the functor h is analogous.

4. Proof of Lemma 1.6.2

We first show that the composition b(r) ◦ · · · ◦ b(1) equals the map b from the
statement of the lemma. Assume that we have already done that for i− 1. Then,
taking into account the way xi acts and the signs due to the reordering

ht ∼= h(xi) ◦ · · · ◦ h(x1) ◦ t(xi) ◦ · · · ◦ t(x1) ∼= h(xi) ◦ t(xi) ◦ · · · ◦ h(x1) ◦ t(x1),

we find

(b(i) ◦ · · · ◦ b(1))(m⊗ n)
= b(i)

(
(b(i−1) ◦ · · · ◦ b(1))(m⊗ n)

)
=
∑
π⊂[i−1]

{π}m⊗ ξπ ⊗ 1⊗ xπn−
∑
π⊂[i−1]

{π}{π}m⊗ ξi ∧ ξπ ⊗ 1⊗ (xi ∧ xπ)n

=
∑
π⊂[i−1]

{π}m⊗ ξπ ⊗ 1⊗ xπn−
∑
π⊂[i−1]

{π}m⊗ ξi ∧ ξπ ⊗ 1⊗ (xπ ∧ xi)n

=
∑
π⊂[i]

{π}m⊗ ξπ ⊗ 1⊗ xπn,

which was to be shown.

We now consider a single pair a(i) and b(i), which we write from now on as
a and b for simplicity. Moreover, we write x and ξ for xi and ξi, respectively.
Recall from equation (1.15b) the identity x · ξ = −1.

The map a is a chain map: The differential onM ⊗̃N(i) =M ⊗̃h(xi)t(xi)N(i−1)
is determined by

d(m⊗ 1⊗ ξl ⊗ n′) = dm⊗ 1⊗ ξl ⊗ n′ − {m}
∑
k 6=i

ξkm⊗ 1⊗ ξl ⊗ xkn′

− {m}m⊗ 1⊗ ξl+1 ⊗ xn′ + {m}m⊗ 1⊗ ξl ⊗ dn′,

d(m⊗ ξ ⊗ ξl ⊗ n′) = dm⊗ ξ ⊗ ξl ⊗ n′

+ {m} ξm⊗ 1⊗ ξl ⊗ n′ + {m}
∑
k 6=i

ξkm⊗ ξ ⊗ ξl ⊗ xkn′

− {m}m⊗ 1⊗ ξl+1 ⊗ n′ + {m}m⊗ ξ ⊗ ξl+1 ⊗ xn′

− {m}m⊗ ξ ⊗ ξl ⊗ dn′.
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Comparison with the differential on M ⊗̃ N(i−1) shows that the additional terms
cancel out after applying a, or are mapped to zero. The fact that b is a chain
map can be checked directly, too, but it is also a consequence of the following
calculations: We show that H = H(i) is a homotopy from the identity to ba. This
implies that ba is a chain map, hence also b because a is surjective.

The map H assumes the values

H(m⊗ 1⊗ ξl ⊗ n′) = {m}
∑

p+q=l−1

ξpm⊗ ξ ⊗ ξq ⊗ n′,

H(m⊗ ξ ⊗ ξl ⊗ n′) = 0.

Therefore,

dH(m⊗ 1⊗ ξl ⊗ n′) =
∑

p+q=l−1

(
{m} ξpdm⊗ ξ ⊗ ξq ⊗ n′ + ξp+1m⊗ 1⊗ ξq ⊗ n′

+
∑
k 6=i

ξkξ
pm⊗ ξ ⊗ ξq ⊗ xkn′

− ξpm⊗ 1⊗ ξq+1 ⊗ n′ + ξpm⊗ ξ ⊗ ξq+1 ⊗ xn′

− ξpm⊗ ξ ⊗ ξq ⊗ dn′
)
,

Hd(m⊗ 1⊗ ξl ⊗ n′) =
∑

p+q=l−1

(
−{m} ξpdm⊗ ξ ⊗ ξq ⊗ n′ + ξpm⊗ ξ ⊗ ξq ⊗ dn′

−
∑
k 6=i

ξpξkm⊗ ξ ⊗ ξq ⊗ xkn′
)

−
∑
p+q=l

ξpm⊗ ξ ⊗ ξq ⊗ xn′,

whose sum is

ξlm⊗ 1⊗ 1⊗ n′ − ξl ⊗ ξ ⊗ 1⊗ xn′ −m⊗ 1⊗ ξl ⊗ n′

= ba(m⊗ 1⊗ ξl ⊗ n′)−m⊗ 1⊗ ξl ⊗ n′,

as it should be. Since

dH(m⊗ ξ ⊗ ξl ⊗ n′) = 0

and

Hd(m⊗ ξ ⊗ ξl ⊗ n′) =
∑

p+q=l−1

ξp+1m⊗ ξ ⊗ ξq ⊗ n′ −
∑
p+q=l

ξpm⊗ ξ ⊗ ξq ⊗ n′

= −m⊗ ξ ⊗ ξl ⊗ n′,

we see that H is a homotopy from the identity to ba, as claimed.
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5. Proof of Proposition 1.8.2

We first check formula (1.36). We may assume α = 1 andm′ = 1, and even α =
ω, because this product is Λ-equivariant as well: We have (trivially for µ ∩ π 6= ∅)

xµ ·
(
{π}{π, ω}xπ · ω ⊗ ξ′π ∗m

)
= {π}{π, ω}{π, µ}(xπ ∧ xµ) · ω ⊗ ξ′π ∗m
= {π}{π, xµ · ω}xπ · (xµ · ω)⊗ ξ′π ∗m,

whence

xµ ·
(
(1⊗m)(ω ⊗ 1)

)
= {µ,m}(1⊗m)(xµ · ω ⊗ 1).

Here we have used that the first term on the right hand side of (1.36) is obviously
equivariant.

This first summand is furthermore just the first term of (1.35), so to check the
explicit form we just have to determine Dt(ω ⊗m) for m ∈ M . A careful reading
of formula (1.28a) reveals

(1⊗ t)∆(ω) =
∑
π 6=∅

{ξ′π, ω}xπ · ω ⊗ ξ′π =
∑
π 6=∅

{π, ω}{ω}xπ · ω ⊗ ξ′π,

hence

D′t(ω ⊗m) =
∑
π 6=∅

{π}{π, ω}xπ · ω ⊗ ξ′π ∗m,

and

(1⊗m)(ω ⊗ 1) = {m,ω}
(
ω ⊗m−D′t(ω ⊗m)

)
(A.1)

has the correct form.

We finally show that the new product is a chain map. By what we already
know it suffices to test this on a product of the form (A.1). (Use the bimodule
structure.)

{m,ω} d
(
(1⊗m)(ω ⊗ 1)

)
=
∑
π 6=∅

{ξ′π, ω}xπ · ω ⊗ ξ′πm+ {ω}ω ⊗ dm

−
∑
µ∩ν=∅
µ6=∅, µ6=∅

{µ}{µ, ω}{ξ′ν , ω}{µ} (xµ ∧ xν) · ω ⊗ ξ′ν(ξ′µ ∗m)

−
∑
π 6=∅

{π}{π, ω}{xπ · ω}xπ · ω ⊗ d(ξ′π ∗m)

= {ω}
∑
π 6=∅

{π, ω}xπ · ω ⊗ ξ′πm+ {ω}ω ⊗ dm

− {ω}
∑
π 6=∅

{π, ω}xπ · ω ⊗
∑

(µ,ν)�π
{(µ, ν)} ξ′ν(ξ′µ ∗m)

− {ω}
∑
π 6=∅

{π, ω}xπ · ω ⊗ d(ξ′π ∗m).
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The properties (1.29) of the Steenrod–Hirsch product together with the known
expression (1.25) of the differential of ξ′π give

d(ξ′π ∗m) = ξ′πm− {ξ′π,m}mξ′π − dξ′π ∗m− {ξ′π} ξ′π ∗ dm

= ξ′πm− {π,m}{m}mξ′π +
∑

(µ,ν)�π
{ν}{(µ, ν)} ξ′νξ′µ ∗m+ {π} ξ′π ∗ dm

= ξ′πm− {π,m}{m}mξ′π −
∑

(µ,ν)�π
{(µ, ν)} ξ′ν(ξ′µ ∗m)

+
∑

(µ,ν)�π
{ν}{(µ, ν)}{µ,m}{m} (ξ′ν ∗m)ξ′µ + {π} ξ′π ∗ dm

The first term on the right hand side, if substituted into the preceding expression,
cancels against the first term of that sum. The same is true for the respective third
terms. Reordering the remaining summands yields

{m,ω} d
(
(1⊗m)(ω ⊗ 1)

)
= {ω}ω ⊗ dm− {ω}

∑
π 6=∅

{π}{π, ω}xπ · ω ⊗ ξ′π ∗ dm

+
∑
π 6=∅

{ξ′π, ω}{π,m}{m}xπ · ω ⊗mξ′π

− {ω}
∑
µ∩ν=∅
µ6=∅, µ 6=∅

{µ ∪ ν, ω}{ν}{ν, µ}{µ,m}{m}(xν ∧ xµ) · ω ⊗ (ξ′ν ∗m)ξ′µ.

Therefore,

d
(
(1⊗m)(ω ⊗ 1)

)
= {dm,ω}ω ⊗ dm− {dm,ω}

∑
π 6=∅

{π}{π, ω}xπ · ω ⊗ ξ′π ∗ dm

+ {m}
∑
π 6=∅

{ξ′π, ω}{m,xπ · ω}xπ · ω ⊗mξ′π

− {m}
∑
µ∩ν=∅
µ6=∅, µ 6=∅

{ξ′µ, ω}{m,xµ · ω}{ν}{ν, xµ · ω}xν · (xµ · ω)⊗ (ξ′ν ∗m)ξ′µ

= (1⊗ dm)(1⊗ ω) + {m} (1⊗m)
∑
µ 6=∅

{ξ′µ, ω}xµ · ω ⊗ ξ′µ

= d(1⊗m)(1⊗ ω) + {m} (1⊗m)d(ω ⊗ 1),

which was to be shown.

6. Some identities between face and degeneracy maps

We introduce for a set µ ⊂ N and i, j ∈ N the abbreviations

µi = µ<i = {k : k ∈ µ, k < i}, µ+ i = {k + i : k ∈ µ},
µj = µ≥j − j, µ≥j = {k : k ∈ µ, j ≤ k},

µji = µ<j≥i − i, µ<j≥i = µ<j ∩ µ≥i.
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Lemma A.6.1. Let x be an n-simplex, µ ⊂ N with µ ⊂ {0, . . . , n + |µ| − 1},
0 ≤ i < j ≤ n, and 0 ≤ k ≤ n− j + i+ 1. Then:

∂n−j+i+1
k+1 ∂j−1

i+1 x =

{
∂nk+1x if k ≤ i,
∂j−1
i+1 ∂

n
k+j−ix if i ≤ k,

∂k−1
0 ∂j−1

i+1 x =

{
∂j−k−1
i−k+1 ∂

k−1
0 x if k ≤ i+ 1,

∂k+j−i−2
0 x if i+ 1 ≤ k,

∂
n+|µ|
i+1 sµx = sµi∂ni+1−|µi|x,

∂j−1
0 sµx = sµj∂

j−1−|µj |
0 x,

∂j−1
i+1 sµx =

{
sµj+i+1sµi+1x if {i, . . . , j − 1} ⊂ µ,
sµj+i+1sµi∂

j−1−|µj |
i+1−|µi| x otherwise,

∂i−1
0 ∂

n+|µ|
j+1 sµx = sµji∂

i−1−|µi|
0 ∂nj+1−|µj |x.

Proof. This is a repeated application of the commutation relations (2.1):

∂n−j+i+1
k+1 ∂j−1

i+1 x =

{
∂ik+1∂

n−j+i+1
i+1 ∂j−1

i+1 x = ∂ik+1∂
n
i+1 = ∂nk+1x if k ≤ i,

∂j−1
i+1 ∂

n
k+j−ix if i ≤ k,

∂k−1
0 ∂j−1

i+1 x =

{
∂j−k−1
i−k+1 ∂

k−1
0 x if k − 1 ≤ i,

∂i0∂
k−1
i+1 ∂

j−1
i+1 x = ∂i0∂

k+j−i−2
i+1 x = ∂k+j−i−2

0 x if i+ 1 ≤ k.

To proceed, we need the formula

∂ji+1skx =


sk∂
j−1
i x if k < i or i = j,

∂j−1
i+1 x if i ≤ k ≤ j and i 6= j,
sk−j+i∂

j
i+1x if j < k or i = j.

Here the middle alternative is for i ≤ k < j due to the identity

∂ji+1skx = ∂ki+1∂
j
k+1skx = ∂ki+1∂k+1sk∂

j−1
k+1x = ∂j−1

i+1 x.

This gives

∂
n+|µ|
i+1 sµx = ∂n+|µ|

i+1 sµ≥isµ<ix = ∂n+|µ|−|µ≥i|
i+1 sµ<ix = sµi∂ni+1−|µi|x,

∂j−1
0 sµx = ∂j−1

0 sµ≥jsµ<jx = sµj∂
j−1
0 sµ<jx = sµj∂

j−1−|µj |
0 x,

∂j−1
i+1 sµx = ∂j−1

i+1 sµ≥jsµ<j≥i
sµ<ix = sµj+i+1∂

j−1
i+1 sµ<j≥i

sµ<ix

=

sµj+i+1sisµ<ix = sµj+i+1sµi+1x if |µji | = j − i,

sµj+i+1∂
j−1−|µ<j≥i |
i+1 sµ<ix = sµj+i+1sµi∂

j−1−|µj |
i+1−|µi| x otherwise.

Combining the first two of the last identities, we finally get

∂i−1
0 ∂

n+|µ|
j+1 sµx = ∂i−1

0 sµj∂
n
j+1−|µj |x = sµji∂

i−1−|µi|
0 ∂nj+1−|µj |x.

This concludes the proof.
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7. Proof of Proposition 2.2.1

For any (x, y) ∈ (X × Y )p and (z, w) ∈ (Z ×W )q we have by Lemma A.6.1

AW (id, τ, id)∗∇
(
(x, y)⊗ (z, w)

)
=
∑

0≤i≤p+q
(µ,ν)`(p,q)

{(µ, ν)} ∂p+qi+1 (sνx, sµz)⊗ ∂i−1
0 (sνy, sµw)

=
∑

0≤i≤p+q
(µ,ν)`(p,q)

{(µ, ν)} (sνi∂pi+1−|νi|x, sµi∂
q
i+1−|µi|z)⊗ (sνi∂

i−1−|νi|
0 y, sµi∂

i−1−|µi|
0 w).

Now introduce α = µi, β = νi, κ = µi, and λ = νi and note that by equations
(1.1) and (1.2)

{(µ, ν)} = {(µ<i ∪ µ≥i, ν<i ∪ ν≥i)} = {(µ<i, µ≥i, ν<i, ν≥i)}
= {µ≥i, ν<i}{(µ<i, ν<i, µ≥i, ν≥i)} = {µ≥i, ν<i}{(µ<i, ν<i)}{(µ≥i, ν≥i)}
= {µi, νi}{(µi, νi)}{(µi, νi)} = {κ, β}{(α, β)}{(κ, λ)}.

Replacing i by |α|+ |β| and introducing new i = |α| and j = |β|, we may proceed
writing

AW (id, τ, id)∗∇
(
(x, y)⊗ (z, w)

)
=
∑

0≤i≤p, 0≤j≤q
(α,β)`(i,j)

(κ,λ)`(p−i,p−j)

{κ, β}{(α, β)}{(κ, λ)}(sβ∂pi+1x, sα∂
q
j+1z)⊗ (sλ∂i−1

0 y, sκ∂
j−1
0 w)

= (∇⊗∇)
p∑
i=0

q∑
j=0

(−1)(p−i)j∂pi+1x⊗ ∂
q
j+1z ⊗ ∂

i−1
0 y ⊗ ∂

j−1
0 w

= (∇⊗∇)(1⊗ T ⊗ 1)(AW ⊗AW )
(
(x, y)⊗ (z, w)

)
.

Hence the diagram commutes already before normalisation.

8. Proof of Lemma 2.3.1

We start by verifying formula 2.3.1 (3). Lemma A.6.1 yields for all simplices
(x, y, z) ∈ (X × Y × Z)n

AW∂j−1
i+1 (y, z) =

n−j+i+1∑
k=0

∂nk+1∂
j−1
i+1 y ⊗ ∂

k−1
0 ∂j−1

i+1 z

=
i∑
k=0

∂nk+1y ⊗ ∂
j−k−1
i−k+1 ∂

k−1
0 z +

n−j+i+1∑
k=i+1

∂j−1
i+1 ∂

n
k+j−iy ⊗ ∂

k+j−i−2
0 z

and

∂i−1
0 ∂

n
j+1x =

{
∂i−k−1

0 ∂k−1
0 ∂nj+1x = ∂i−k−1

0 ∂n−kj−k+1∂
k−1
0 x if k ≤ i,

∂i−1
0 ∂

j+k−i−1
j+1 ∂nj+k−ix if i < k.
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Hence

(1⊗AW )ST
(
x, (y, x)

)
= −

∑
0≤i<j≤n

(−1)(i+1)(j+1)∂i−1
0 ∂

n
j+1x⊗AW∂

j−1
i+1 (y, z)

= −
∑

0≤k≤i<j≤n

(−1)(i+1)(j+1)∂i−k−1
0 ∂n−kj−k+1∂

k−1
0 x⊗ ∂nk+1y ⊗ ∂

j−k−1
i−k+1 ∂

k−1
0 z

−
∑

0≤i<j≤n
i<k≤n−j+i+1

(−1)(i+1)(j+1)∂i−1
0 ∂

j+k−i−1
j+1 ∂nk+j−ix⊗ ∂

j−1
i+1 ∂

n
k+j−iy ⊗ ∂

k+j−i−2
0 z

Now replace i and j in the first sum by i+ k and j + k, respectively, and k by k −
j + i+ 1 in the second. This gives

= −
∑

0≤k≤n
0≤i<j≤n−k

(−1)(i+k+1)(j+k+1)∂i−1
0 ∂

n−k
j+1 ∂

k−1
0 x⊗ ∂nk+1y ⊗ ∂

j−1
i+1 ∂

k−1
0 z

−
∑

0≤k≤n
0≤i<j≤k

(−1)(i+1)(j+1)∂i−1
0 ∂

k
j+1∂

n
k+1x⊗ ∂

j−1
i+1 ∂

n
k+1y ⊗ ∂k−1

0 z

Now the second term on the right hand side is equal to (ST ⊗ 1)AW
(
(x, y), z

)
. As

to the first, note that modulo 2

(i+ k + 1)(j + k + 1) ≡ (i+ 1)(j + 1) + k(i+ j + 2) + k2(A.2)
≡ (i+ 1)(j + 1) + k(1 + j − i),

whence

(1⊗AW )ST
(
x, (y, x)

)
= −

∑
0≤k≤n

0≤i<j≤k

(−1)(i+1)(j+1)+k(1+j−i)∂i−1
0 ∂

n−k
j+1 ∂

k−1
0 x⊗ ∂nk+1y ⊗ ∂

j−1
i+1 ∂

k−1
0 z

= −(T ⊗ 1)
n∑
k=0

(−1)k
∑

0≤i<j≤k

(−1)(i+1)(j+1)∂nk+1y ⊗ ∂i−1
0 ∂

n−k
j+1 ∂

k−1
0 x⊗ ∂j−1

i+1 ∂
k−1
0 z

because the degrees of the transposed factors are k and j − i, respectively,

= (T ⊗ 1)(1⊗ ST )
n∑
k=0

∂nk+1y ⊗ ∂k−1
0 (x, z)

by definition (1.7) of 1⊗ ST ,

= (T ⊗ 1)(1⊗ ST )AW
(
y, (x, z)

)
= (T ⊗ 1)(1⊗ ST )AW (τ, id)∗(x, y, z).

We now prove the commutativity of diagram 2.3.1 (4). Let x ∈ Xp and (y, z) ∈
(Y × Z)q. Then

ST∇
(
x⊗ (y, z)

)
= ST

∑
(µ,ν)`(p,q)

{(µ, ν)} (sνx, sµy, sµz)

= −
∑

(µ,ν)`(p,q)
0≤i<j≤p+q

(−1)(i+1)(j+1){(µ, ν)} ∂i−1
0 ∂

p+q
j+1 (sνx, sµy)⊗ ∂j−1

i+1 sµz
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For the last component not to be degenerate, it is necessary by Lemma A.6.1 that
µi = µj = ∅ and {i, . . . , j− 1} 6⊂ µ, i. e., that µ be a proper subset of {i, . . . , j− 1}.
This implies in particular i < j−p. Then |νi| = i, |νj | = j−p, and |νj | = p+ q− j.
We may therefore continue

= −
∑

(µ,ν)`(p,q)
0≤i<j−p≤q
µi=µj=∅

(−1)(i+1)(j+1){(µ, ν)}
(
sνji
x, sµ−i∂

i−1
0 ∂

q
j+1−py

)
⊗ ∂j−1−p
i+1 z

Now define κ and λ by µ = κ+ i and ν = {0, . . . , i− 1} ∪̇ (λ+ i) ∪̇ {j, . . . , p+ q− 1}
and replace j by j + p. Then the above is equal to

= −
∑

(κ,λ)`(p,j−i)
0≤i<j≤q

(−1)(i+1)(j+p+1)+ip{(κ, λ)}
(
sλx, sκ∂

i−1
0 ∂

q
j+1y
)
⊗ ∂j−1
i+1 z

= −(−1)p(∇⊗ 1)
∑

0≤i<j≤q

(−1)(i+1)(j+1)x⊗ ∂i−1
0 ∂

q
j+1y ⊗ ∂

j−1
i+1 z

= (∇⊗ 1)(1⊗ ST )
(
x⊗ (y, z)

)
,

where the factor (−1)p has disappeared due to definition (1.7).

We finally check identity 2.3.1 (5), which is trivial if z is a vertex. So let (x, y)
be a p-simplex in X × Y and z ∈ Z1. We have

STX,Y×Z∇X×Y,Z
(
(x, y)⊗ z

)
=
p∑
k=0

(−1)p−kST (skx, sky, sp\kz)

with the abbreviation p \ k = {0, . . . , p} \ k. By Lemma A.6.1 we must have
k < i or k ≥ j in order for the first component in formula (2.4) not to be degenerate.
Then in particular {i, . . . , j − 1} ⊂ p \ k, and

= −
∑

0≤k<i<j≤p+1

(−1)p−k+(i+1)(j+1)∂i−2
0 ∂

p
j x⊗ (sk∂j−2

i y, s(p−j+i+1)\kz)

−
∑

0≤i<j≤k≤p

(−1)p−k+(i+1)(j+1)∂i−1
0 ∂

p
j+1x⊗ (sk−j+i+1∂

j−1
i+1 y, s(p−j+i+1)\(k−j+i+1)z)

Now substitute in the first sum i+1 and j+1 for i and j, respectively, and k+j−i−1
for k in the second. This gives

= −
∑

0≤i<j≤p
0≤k≤p−j+i+1

(−1)p−(k+j−i−1)+(i+1)(j+1)∂i−1
0 ∂

p
j+1x⊗ (sk∂j−1

i+1 y, s(p−j+i+1)\kz)

= (1⊗∇Y Z)(STXY ⊗ 1)
(
(x, y)⊗ z

)
,

as claimed.
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9. Proof of Proposition 2.7.1

Using formulas (2.10) one finds for e ∈ EGn and 0 ≤ i ≤ j ≤ n

∂i−1
0 Se =

{
Se if i = 0,
∂i−2

0 e otherwise,

∂n+1
j+1 Se =

{
e0 if j = 0,
S∂nj e otherwise,

and for i < j also

∂i−1
0 ∂

n+1
j+1 Se = ∂i−1

0 S∂
n
j e =

{
S∂nj e if i = 0,
∂i−2

0 ∂
n
j e otherwise,

∂j−1
i+1 Se = S∂j−2

i e.

Hence for (e, e′) ∈ (EG× EH)n,

AWS(e, e′) =
n+1∑
i=0
∂n+1
i+1 Se⊗ ∂

i−1
0 Se

′ = e0 ⊗ Se′ +
n+1∑
i=1
S∂ni e⊗ ∂i−2

0 e
′

= e0 ⊗ Se′ +
n∑
i=0
S∂ni+1e⊗ ∂i−1

0 e
′ = e0 ⊗ Se′ + (S ⊗ 1)AW (e, e′);

STS(e, e′) = −
∑

0≤i<j≤n+1

(−1)(i+1)(j+1) ∂i−1
0 ∂

n+1
j+1 Se⊗ ∂

j−1
i+1 Se

′

= −
∑

0<j≤n+1

(−1)j+1S∂nj e⊗ S∂
j−2
0 e′

−
∑

0<i<j≤n+1

(−1)(i+1)(j+1) ∂i−2
0 ∂

n
j e⊗ S∂

j−2
i e

′

= −
∑

0≤j≤n

(−1)jS∂nj+1e⊗ S∂
j−1
0 e′

−
∑

0≤i<j≤n

(−1)j−i+1+(i+1)(j+1) ∂i−1
0 ∂

n
j+1e⊗ S∂

j−1
i+1 e

′,

where we have used equation (A.2), and by definition (1.7) finally

= −(S ⊗ S)AW (e, e′)− (1⊗ S)ST (e, e′).

For the remaining identity let e be in EGp and e′ ∈ EHq. We split the sum

∇(S ⊗ S)(e⊗ e′) = (−1)p
∑

(µ,ν)`(p+1,q+1)

{(µ, ν)}(sνSe, sµSe′)



82 THE GORY DETAILS

into the shuffles with 0 ∈ µ and those with 0 ∈ ν and apply equations (2.10):
If 0 ∈ µ, then sµSe′ = sµ\0s0Se′ = sµ\0SSe′ = Ss(µ\0)−1Se

′, hence we may
continue

= (−1)p
∑
0∈µ
{(µ, ν)}(Ssν−1e, Ss(µ\0)−1Se

′)

+ (−1)p
∑
0∈ν
{(µ, ν)}(Ss(ν\0)−1Se, Ssµ−1e

′)

= (−1)p
∑

(µ,ν)`(p,q+1)

{(µ, ν)}S(sνe, sµSe′)−
∑

(µ,ν)`(p+1,q)

{(µ, ν)}S(sνSe, sµe′)

= (−1)pS∇(e⊗ Se′)− S∇(Se⊗ e′)
= S∇(1⊗ S − S ⊗ 1)(e⊗ e′).

The proposition is proven.

10. Proof of Theorem 2.8.2

We first verify that (2.15) defines simplicial maps. Since the maps are obviously
inverse to each other, it suffices to examine one of them. Furthermore, we just
have to check that it commutes with ∂0 because the other face maps as well as
the degeneracy maps on a fibre bundle do not differ from those on an ordinary
Cartesian product. Now for (g, xg, b) ∈ htX,

∂0(g, xg, b) = (∂0gτG(b), ∂0x∂0gτG(b), ∂0b),

which is the image of

∂0(x, g, b) = (∂0x, ∂0gτG(b), ∂0b)

in X × EG, as claimed.
We now consider the map h from the second part of the proof. The restriction

of h to (1) × thY is obviously the identity. Let us show by induction that the
restriction to (0) × thY equals qY ◦ pY : This is trivially true in degree 0 because
BG has only one vertex. Assume therefore that (x, g, b, y) is of degree greater than
zero and that x consists only of zeros. Then the first component of ∂0(x, g, b, y) is
still a sequence of zeros, and the last component is ∂0y. This gives

h(∂0(x, g, b, y)) = (1, pY (∂0y), ∂0y)
= (1, ∂0pY (y), ∂0y)

by induction, hence

h(x, g, b, y) = (S(τY (y), ∂0pY (y)), y)
= (1, pY (y), y)

because the zeroth face map on BG just drops the leading component of pY (y),
which is τG(pY (y)) = τY (y).

We finally show that h is a simplicial map. Since the restrictions of h to
(0)×thY and (1)×thY are trivially simplicial, we may assume |x| > 0 and x0 = 0.
Then the leading component of ∂ix is still zero for i > 0. In what follows, we will
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make free use of the identities (2.5) and (2.10).

∂0h(x, g, b, y) = ∂0
(
S(τY (y)g′, b′), y

)
=
(
τY (y)−1∂0S(τY (y)g′, b′), ∂0y

)
= (g′, b′, ∂0y)
= h(∂0(x, g, b, y)),

∂1h(x, g, b, y) =
(
∂1S(τY (y)g′, b′), ∂1y

)
=
(
S∂0(τY (y)g′, b′), ∂1y

)
=
(
S(∂0τY (y)∂0g

′τG(b′), ∂0b
′), ∂1y

)
=
(
S(τY (∂1y)τY (∂0y)−1∂0g

′τG(b′), ∂0b
′), ∂1y

)
= h(∂1(x, g, b, y))

because by induction and by the choice of g′ and b′

h(∂0∂1(x, g, b, y)) = h(∂0∂0(x, g, b, y))
= ∂0h(∂0(x, g, b, y))
= ∂0(g′, b′, ∂0y)
= (τY (∂0y)−1∂0g

′τG(b′), ∂0b
′, ∂0∂0y)

= (τY (∂0y)−1∂0g
′τG(b′), ∂0b

′, ∂0∂1y).

For i > 0 one finds

∂i+1h(x, g, b, y) =
(
∂i+1S(τY (y)g′, b′), ∂i+1y

)
=
(
S(∂iτY (y)∂ig′, ∂ib′), ∂i+1y

)
=
(
S(τY (∂i+1y)∂ig′, ∂ib′), ∂i+1y

)
= h(∂i+1(x, g, b, y))

since

(∂ig′, ∂ib′, ∂0∂i+1y) = ∂i(g′, b′, ∂0y)
= ∂ih(∂0(x, g, b, y))
= h(∂0∂i+1(x, g, b, y)).

This shows that h commutes with face maps. We now turn to the degeneracy maps.
Here the leading element of six is always zero in case x0 = 0. Since

h(∂0s0(x, b, g, y)) = h(x, b, g, y)
= (S(τY (y)g′, b′), y)

and τY (s0y) = 1, one has

s0h(x, g, b, y) = (SS(τY (y)g′, b′), s0y)
= h(s0(x, g, b, y)).
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For i ≥ 0,

si+1h(x, g, b, y) = (Ssi(τY (y)g′, b′), si+1y)
= (S(τY (si+1y)sig′, sib′), si+1y)
= h(si+1(x, g, b, y))

because by induction

(sig′, sib′, ∂0si+1y) = si(g′, b′, ∂0y)
= sih(∂0(g, b, y))
= h(si∂0(g, b, y))
= h(∂0si+1(g, b, y)).

This completes the proof.

11. Proof of Proposition 2.11.3

We start by deducing (2.24) from (2.25). The case π = ∅ is trivial. Suppose
that we have already shown (2.24) for all proper subsets of ∅ 6= π ⊂ [r]. Using
definition (2.21) of ζπ, one finds

xi · ζπ = −
∑

(µ,ν)`π
π+∈µ

(
{(µ, ν)}xi · ζν ∪ χ′µ + {ν} ζν ∪ xi · χ′µ

)
.

For i = π+, this gives

xi · ζπ = −{(i, π \ i)}{π \ i} ζπ\i = −{(π \ i, i)} ζπ\i.

If i 6= π+, we continue instead by induction hypothesis

xi · ζπ =
∑

(µ,ν)`π
π+∈µ, i∈ν

{(µ, ν)}{(ν \ i, i)} ζν\i ∪ χ′µ

=
∑

(µ,ν)`π\i
π+∈µ

{(µ, ν ∪ i)}{(ν, i)} ζν ∪ χ′µ

= {(π \ i, i)}
∑

(µ,ν)`π\i
π+∈µ

{(µ, ν)} ζν ∪ χ′µ = −{(π \ i, i)} ζπ\i,

where we have used in the penultimate step the identity (1.2).

It remains to show that φ is a chain map. By what we have just done it suffices
to test this on ω ⊗ 1. Using the explicit description (1.28b) of the differential
on Λ∗ ⊗̃ C∗(BT ), we see that this means verifying equation (2.22) for π = [r]. We
do so again by induction on π, noting that there is nothing to prove for π = ∅.
Assuming equation (2.23) for the moment, we obtain for non-empty π from the
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recursive definition of ζπ

dζπ = −
∑

(µ,ν)`π
π+∈µ

{(µ, ν)}
(
dζν ∪ χ′µ + {ν} ζν ∪ dχ′µ

)

= −
∑

(µ,ν)`π
π+∈µ

{(µ, ν)}{ν}
∑

(κ,λ)`ν
κ6=∅

{(κ, λ)} ζλ ∪ p∗ξ′κ ∪ χ′µ

−
∑

(µ,ν)`π
π+∈µ

{(µ, ν)}{ν}{µ}
(
−ζν ∪ p∗ξ′µ −

∑
(κ,λ)�µ
π+∈κ

{κ}{(κ, λ)} ζν ∪ p∗ξ′λ ∪ χ′κ

+
∑

(κ,λ)�µ
π+∈λ

{(κ, λ)} ζν ∪ χ′λ ∪ p∗ξ′κ
)

= −
∑

(µ,κ,λ)`π
π+∈µ, κ 6=∅

{κ}{λ}
(
{(µ, κ ∪ λ)}{(κ, λ)} − {(µ, κ)}{(µ ∪ κ, λ)}

)
ζλ ∪ p∗ξ′κ ∪ χ′µ

+ {π}
∑

(µ,ν)`π
π+∈µ

{(µ, ν)} ζν ∪ p∗ξ′µ

− {π}
∑

(κ,λ,ν)`π
π+∈λ, κ 6=∅

{(κ, λ)}{(κ ∪ λ, ν)} ζν ∪ χ′λ ∪ p∗ξ′κ

The big bracket above yields zero because both terms in it are equal to {(µ, κ, λ)}
by equation (1.2). We may therefore continue

= {π}
∑

(µ,ν)`π
π+∈µ

{(µ, ν)} ζν ∪ p∗ξ′µ

− {π}
∑

(κ,ρ)`π
π+∈ρ, κ 6=∅

∑
(λ,ν)`ρ
π+∈λ

{(κ, ρ)}{(λ, ν)} ζν ∪ χ′λ ∪ p∗ξ′κ

= {π}
∑

(µ,ν)`π
π+∈µ

{(µ, ν)} ζν ∪ p∗ξ′µ + {π}
∑

(κ,ρ)`π
π+∈ρ, κ 6=∅

{(κ, ρ)} ζρ ∪ p∗ξ′κ

by the definition of ζρ, hence

= {π}
∑

(µ,ν)`π
µ6=∅

{(µ, ν)} ζν ∪ p∗ξ′µ.

We finally prove equation (2.23), this time without induction. For π = {i}
this is just equation (2.18). Differentiating the recursive definition (2.20) gives
by (1.29a) and (2.18) (note that {ξ′π′} = −{π′} = {π})

{π} dχ′π = −{π} p∗ξ′π′ ∪ χ′π+ + χ′π+ ∪ p∗ξ′π′ + {π} p∗dξ′π′ ∪1 χ
′
π+ + p∗ξ′π′ ∪1 p

∗ξ′π+

= −{π} p∗ξ′π′ ∪ χ′π+ + χ′π+ ∪ p∗ξ′π′ + {π} p∗dξ′π′ ∪1 χ
′
π+ − p∗ξ′π
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by definition (1.30) of ξ′π. Using expression (1.25) for the differential of dξ′π′ , we
obtain for the penultimate term above

{π} p∗dξ′π′ ∪1 χ
′
π+ =

∑
(µ,ν)�π′

{µ}{(µ, ν)} p∗(ξ′ν ∪ ξ′µ) ∪1 χ
′
π+ ,

and by the Hirsch formula (1.29b) and the definition of χ′π

=
∑

(µ,ν)�π′
{µ}{(µ, ν)}

(
−{ν} p∗ξ′ν ∪ (p∗ξ′µ ∪1 χ

′
π+)− {µ} (p∗ξ′ν ∪1 χ

′
π+) ∪ p∗ξ′µ

)
=
∑

(µ,ν)�π′

(
{µ}{(µ ∪ π+, ν)} p∗ξ′ν ∪ χ′µ∪π+ + {(µ, ν ∪ π+)}χ′ν∪π+ ∪ p∗ξ′µ

)
= −

∑
(µ,ν)�π
{π+}(µ

{µ}{(µ, ν)} p∗ξ′ν ∪ χ′µ +
∑

(µ,ν)�π
{π+}(ν

{(µ, ν)}χ′ν ∪ p∗ξ′µ.

Substituting this into the result of the preceding calculation gives (2.23). This
finishes the proof.
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Leray–Hirsch theorem, 30
Leray–Serre spectral sequence, 42, 63
Leray–Serre theorem, 43
localisation theorem, 64

map
monotone, 52
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of complexes, 8
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of Hopf algebras, 9
of modules, 10
h-equivariant, 16

of spaces, 32
over base spaces, 40

of tori, componentwise, 52
of weak modules, 22

without higher order terms, 22
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Mayer–Vietoris double complex, 64
Milnor construction, 49
module, 10, 11

extended, 19
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split and trivial, 28
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opposition, 12

Pontryagin product, 38
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twisted, see fibre bundle

quotient by group action, 38
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graded, 7

rank of a torus, 51

shelling, 69
shuffle, 7
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Steenrod map, 36
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structure group, 42
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symmetric algebra, 9
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total space, 42
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twisting cochain, 22
twisting function, 42

universal bundle, 44

vertex, 31
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