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Abstract. We give a short proof for Cai’s description of the cohomology ring
of a real moment-angle complex with coefficients in Z2. We use it to confirm
the counterexample to de Longueville’s claim found by Gitler and López de
Medrano.

1. Introduction

Let Σ be a simplicial complex on [m] = { 1, . . . ,m } and let

(1.1) RZΣ = (D1, S0)Σ

be the associated real moment-angle complex. In this note we give a short proof
of Cai’s description [3, Thm. 5.1] of the cohomology ring H∗(RZΣ;k) for k = Z2,
noting that Cai’s methods actually work for arbitrary coefficients. Our approach is
modelled on that in [4, Thm. 1.2], where the integer cohomology ring of a (complex)
moment-angle complex was computed for the first time. The categorical viewpoint
used in the proof below has been advocated in [7].

LetR be the differential graded k-algebra generated by indeterminates t1, . . . , tm
of degree 0 and u1, . . . , um of degree 1 subject to the relations

uiuj = ujui, uσ = 0 if σ /∈ Σ, dui = 0,(1.2)
titj = tjti, t2i = ti, tiuj = ujti, tiui = uiti + ui, dti = ui.(1.3)

for i, j ∈ [m], i ̸= j. Here we have written uσ =
∏

i∈σ ui for σ ⊂ [m], and we define
tσ similarly.

Theorem 1.1. There is an isomorphism of graded algebras

H∗(RZΣ) ∼= H∗(R).

In particular, there is an isomorphism of graded vector spaces

H∗(RZΣ) ∼= TorS∗
(k[Σ],k)

where k[Σ] is the Stanley–Reisner algebra, S∗ = k[u1, . . . , um] and the torsion prod-
uct is considered with the total grading.

Consider the subspace M ⊂ R spanned by the monomials tσuτ for all disjoint
subsets σ, τ ⊂ [m]. Then M is a subcomplex of R since

(1.4) d(tσuτ ) =
∑
i∈σ

tσ\i uτ∪i.
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We equip M with the product

(1.5) tσuτ ∗ tσ′uτ ′ =

{
tσ∪(σ′\τ) uτ∪τ ′ if (σ ∪ τ) ∩ τ ′ = ∅,
0 otherwise,

cf. [3, eq. (25)]. Note that σ and σ′ \ τ need not be disjoint, but their union is
disjoint from τ ∪ τ ′ under the condition stated above.

Theorem 1.2. The complex M together with the product ∗ and the unit 1 is a
differential graded algebra. Moreover, there is an isomorphism of graded algebras

H∗(M) ∼= H∗(RZΣ).

We finally note that analogously to the moment-angle complex ZΣ = (D2, S1)Σ

one has a Hochster decomposition of H∗(RZΣ) into the reduced cohomology of full
subcomplexes,

(1.6) Hi(RZΣ) =
⊕
ω∈Σ

H̃i−1(Σω),

cf. [2, Thms. 3.2.4, 4.5.7]. This follows from (1.4) because the subcomplex spanned
by the monomials tσuτ with σ ∪ τ = ω is isomorphic to the reduced simplicial
cochain complex of Σω. Notice that this in particular shows that RZΣ and ZΣ
have the same mod 2 Betti sum.

2. Preliminaries

All vector spaces are over k = Z2, and all (co)homology is taken with coefficients
in k. Moreover, all complexes are assumed to be cohomological and bounded below.
All differential graded algebras (dgas) will be associative with unit. Graded algebras
are considered as dgas with trivial differential.

We think of Σ as a category with inclusions of faces as morphisms. We also write
σ̂ = [m] \ σ for σ ∈ Σ.

Let G = {±1}m. We point out that unlike in the case of tori, the homology
and the cohomology of G (not of BG!) are not isomorphic as algebras: Since
we work in characteristic 2, any element squares to either 0 or 1 in the group
algebra H∗(G), while in H∗(G), which is the algebra of functions G → k with
pointwise multiplication, every element is idempotent. It will be essential for us
that H∗(G) is an exterior algebra on generators ci = 1 + gi, where gi for the
canonical i-th generator of G for i ∈ [m].

For σ ⊂ [m], we write Gσ for the subgroup {±1}σ ⊂ G and A∗
σ = H∗(Gσ).

Let A∗ = A∗
[m], and let ti ∈ A∗ be the function G = {±1}m → {±1} ∼= k such

that ti(g) = 1 if and only if the i-th coordinate of g equals −1. The products tσ
with σ ⊂ [m] form a basis for A∗, and

(2.1) ci · tσ =

{
tσ\{i} if i ∈ σ,
0 otherwise.

Moreover, we write S∗
σ for the polynomial algebra generated by indeterminates ui,

i ∈ σ, of degree 1, and S∗ = S∗
[m].

A G-algebra is a dga on which G acts by dga automorphisms. The G-action on
such a dga extends to one of H∗(G) (which is not by dga maps anymore). Note
that if both B and C are G-algebras, then so is B ⊗C with the diagonal G-action.
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Example 2.1. The singular cochain complex of a G-space is canonically a G-
algebra, and any morphism of G-spaces X → Y induces a morphism of G-algebras
C∗(Y )→ C∗(X).

By looking at Gσ̂ = G/Gσ, we in particular get a contravariant functor σ 7→ A∗
σ̂

from Σ to the category of G-algebras. The map A∗
σ → A∗

∅ = k is called the
augmentation and denoted by ε.

Example 2.2. The assignment σ 7→ S∗
σ is a contravariant functor from Σ to the

category of dgas. Through the canonical projection π : S∗ → S∗
σ, each S∗

σ becomes
additionally an S∗-module. We again call the map S∗

σ → S∗
∅ = k the augmentation

and denote it by ε.

Example 2.3. The relations (1.2) define the Stanley–Reisner algebra k[Σ] associ-
ated to Σ. It is a quotient of S∗.

Let R be a quotient of S∗ and let B be a G-algebra. The twisted tensor prod-
uct R ⊗̃B is the tensor product of graded vector spaces R⊗B with operations

d(v ⊗ b) = v ⊗ db+
m∑

i=1
uiv ⊗ ci · b, g · (v ⊗ b) = v ⊗ g · b, buj = uj(gj · b)

for all v ∈ R, b ∈ B, g ∈ G and j ∈ [m].

Lemma 2.4. With these definitions, R ⊗̃B becomes a G-algebra.

Proof. This is a direct computation. □

Lemma 2.5. Let R be a quotient of S∗ and let B → C be a quasi-isomorphism
of G-algebras. Then the induced morphism R ⊗̃B → R ⊗̃C is a quasi-isomorphism
of G-algebras.

Proof. It is clear that we get a morphism of G-algebras. That it induces an iso-
morphism in cohomology is a standard spectral sequence argument. □

Note that for any differential graded (dg) S∗-module M we can similarly form
the complex

(2.2) M ⊗̃A∗, d(v ⊗ a) = dv ⊗ a+
m∑

i=1
uiv ⊗ ci · a.

Lemma 2.6. Let M → N be a quasi-isomorphism of dg S∗-modules. Then the
induced morphism M ⊗̃A∗ → N ⊗̃A∗ is again a quasi-isomorphism.

Proof. The algebra A∗ has an additional grading with tσ having degree |σ|, and
this induces a grading on M ⊗̃ A∗. The part dv ⊗ a of d(v ⊗ a) preserves this
grading while the part

∑
i uiv ⊗ ci · a decreases it by 1. Filtering M ⊗̃ A∗ and

N ⊗̃A∗ accordingly leads to a map of spectral sequences which by assumption is
an isomorphism between the E1 pages. The claim follows. □

Lemma 2.7. For any G-algebra B, the map

φ : S∗ ⊗̃ (A∗ ⊗B)→ B, v ⊗ a⊗ b 7→ ε(v) ε(a) b

is a quasi-isomorphism of dgas.

The augmentations have been defined in Examples 2.1 and 2.2.
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Proof. The map ψ clearly is a morphism of dgas, and it is also a homotopy equiv-
alence. We prove the latter claim by induction on m and can therefore assume
m = 1. In this case an (even multiplicative) strict right homotopy inverse to φ is
given by

(2.3) ψ : B → S∗ ⊗̃ (A∗ ⊗B), b 7→ 1⊗ 1⊗ b+ 1⊗ t⊗ c · b,

where we have written u = u1, c = c1 and t = t1. A homotopy between ψφ and
the identity of S∗ ⊗̃B ⊗A∗ is given by

□(2.4) h(uk ⊗ a⊗ b) =

{
0 if k = 0 or a = t,
uk−1 ⊗ t⊗ (c+ 1) · b if k > 0 and a = 1.

3. Proof of Theorem 1.1

Morally, we are going to show that the G-equivariant cohomology of RZΣ is given
by the Stanley–Reisner algebra k[Σ] and that the non-equivariant cohomology can
be recovered from it as the cohomology of the complex R = k[Σ] ⊗̃A∗.

We write X = RZΣ; it comes with an obvious G-action. For σ ∈ Σ we define

(3.1) Xσ = (D1)σ × (S0)σ̂ = (D1)σ ×Gσ̂;

it is a G-equivariant neighbourhood deformation retract in X.
Let U = {σ1, . . . , σl } be the set of maximal simplices in Σ. For any contravariant

functor Φ from Σ to the category of dgas we can consider the Mayer–Vietoris double
complex E(Φ) associated to Φ and the covering U , cf. [1, §15]. It is a dga, and
any natural transformation F : Φ → Ψ induces a dga morphism E(Φ) → E(Ψ). If
Φ(σ) → Ψ(σ) is a quasi-isomorphism for each σ ∈ Σ, then so is E(Φ) → E(Ψ) by
a standard spectral sequence argument.

For the Mayer–Vietoris double complex E(C∗(Xσ)) defined by the contravariant
functor σ 7→ C∗(Xσ) we have a quasi-isomorphism of G-algebras

(3.2) C∗(X)→ E(C∗(Xσ))

given by the restriction of any γ ∈ C∗(X) to the C∗(Xσ) for σ ∈ U .
The natural transformation A∗

σ̂ → C∗(Xσ) induced by the canonical projec-
tion Xσ → Gσ̂ is a quasi-isomorphism for each σ ∈ Σ. We thus get a quasi-isomor-
phism of G-algebras

(3.3) E(A∗
σ̂)→ E(C∗(Xσ)).

Tensoring with A∗ gives a quasi-isomorphism of G-algebras

(3.4) E(A∗
σ̂ ⊗A∗) = E(A∗

σ̂)⊗A∗ → E(C∗(Xσ))⊗A∗ = E(C∗(Xσ)⊗A∗).

Passing to twisted tensor products, we get a zigzag of dga morphisms

(3.5) S∗ ⊗̃ (C∗(X)⊗A∗)→ E(S∗ ⊗̃ (C∗(Xσ)⊗A∗))← E(S∗ ⊗̃ (A∗
σ̂ ⊗A∗))

which are quasi-isomorphisms by Lemma 2.5. Moreover, the dga on the left-hand
side is quasi-isomorphic to C∗(X) by Lemma 2.7.

Lemma 3.1. For σ ⊂ [m], we have a natural quasi-isomorphism of dgas

S∗ ⊗̃ (A∗
σ̂ ⊗A∗)→ S∗

σ ⊗̃A∗, v ⊗ b⊗ a 7→ ε(b)π(v)⊗ a.

The projection π has been defined in Example 2.2.
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Proof. Let B = S∗
σ ⊗̃A∗. Since gi acts trivially on A∗

σ̂ for i ∈ σ, we have

(3.6) S∗ ⊗̃ (A∗
σ̂ ⊗A∗) = S∗

σ̂ ⊗̃ (A∗
σ̂ ⊗B)

as dgas, and applying the augmentations of S∗
σ̂ and A∗

σ̂ takes the right-hand side
to B. By Lemma 2.7, this map is a quasi-isomorphism of dgas. □

As a consequence, we have a quasi-isomorphism of dgas

(3.7) E(S∗ ⊗̃ (A∗
σ̂ ⊗A∗))→ E(S∗

σ ⊗̃A∗)

Lemma 3.2. The map that sends v ∈ k[Σ] to its restrictions to all S∗
σ with σ ∈ U

is a quasi-isomorphism k[Σ]→ E(S∗
σ) of dgas and of dg S∗-modules.

Proof. The map is a morphism of dgas and of dg S∗-modules. It is a quasi-
isomorphism because the sheaf σ 7→ S∗

σ on Σ is flabby, cf. [2, Thm. 3.5.6, Prop. 8.1.1].
□

Observing that E(S∗
σ ⊗̃A∗) = E(S∗

σ) ⊗̃A∗ as complexes, we get from the above
result and Lemma 2.6 a quasi-isomorphism of S∗-algebras

(3.8) R = k[Σ] ⊗̃A∗ → E(S∗
σ ⊗̃A∗).

This concludes the proof of the first part of Theorem 1.1. For the second part,
we note that S∗ ⊗̃ A∗ is the total complex of the Koszul resolution of k over S∗

by (2.1) and (2.2).

4. Proof of Theorem 1.2

The inclusion ι : M ↪→ R is a quasi-isomorphism [4, Lemma 6.1], [2, proof of
Thm. 3.2.9]. Being a chain map, the projection

(4.1) π : R→M, tσu
α =

{
tσu

α if uα = uτ for some τ disjoint from σ,
0 otherwise

is a quasi-inverse. Note that the condition uα = uτ simply means that no compo-
nent αi of the multi-index α ∈ Nm is larger than 1, and then τ is the set of indices
where it equals 1.

We can use the maps ι and π to transfer the product from R to M,

(4.2) M⊗M ι⊗ι−→ R⊗R −→ R π−→M.

We obviously get a chain map this way, and it is easy to check that it acts as given
in (1.5).

To see that the product is associative, we observe that (tσuτ ∗ tσ′uτ ′) ∗ tσ′′uτ ′′

and tσuτ ∗ (tσ′uτ ′ ∗ tσ′′uτ ′′) both equal

(4.3) tσ∪(σ′\τ)∪(σ′′\(τ∪τ ′)) uτ∪τ ′∪τ ′′

if

(4.4) τ ∩ τ ′ = τ ∩ τ ′′ = τ ′ ∩ τ ′′ = σ ∩ (τ ′ ∪ τ ′′) = σ′ ∩ τ ′′ = ∅

and 0 otherwise.
The projection π is multiplicative, hence a quasi-isomorphism of dgas. It induces

the isomorphism of graded algebras claimed in Theorem 1.2.
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5. The truncated cube

We consider the truncated cube discussed in [5, Sec. 3], see also [3, Ex. 5.4]. This
example shows that de Longueville’s description [6, Thm. 1.1] of the integral co-
homology of a complement of a real coordinate subspace arrangement is incorrect:
According to de Longueville, H∗(ZΣ;Z) and H∗(RZΣ;Z) are isomorphic as un-
graded rings modulo 2 for any Σ. In the case at hand, both spaces have torsion-free
integral cohomology, so that the tensor product with Z2 gives the mod 2 cohomology
rings. Let us determine these rings.

6
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3
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The truncated cube is shown on the left, and its dual together with the vertex
labelling we are going to use on the right. By Hochster’s formula, a “common”
basis for H∗(ZΣ) and H∗(RZΣ) as well as representatives are given by

1 = [1],(5.1)
x17 = [t1u7], x27 = [t2u7], x37 = [t3u7],(5.2)
x14 = [t1u4], x25 = [t2u5], x36 = [t3u6],(5.3)
x127 = [t1t2u7], x137 = [t1t3u7], x237 = [t2t3u7],(5.4)
x147 = [t4t7u1], x257 = [t5t7u2], x367 = [t6t7u3],(5.5)

x456 = [t4u5u6],(5.6)
x1237 = [t1t2t3u7],(5.7)

x1245 = [t4t5u1u2], x1346 = [t4t6u1u3], x2356 = [t5t6u2u3],(5.8)
x1456 = [t1t6u4u5], x2456 = [t2t4u5u6], x3456 = [t3t5u4u6],(5.9)
x12456 = [t1t2t6u4u5], x13456 = [t1t3t5u4u6], x23456 = [t2t3t4u5u6],(5.10)
x12457 = [t4t5t7u1u2], x13467 = [t4t6t7u1u3], x23567 = [t5t6t7u2u3],(5.11)

x1234567 = [t4t5t6t7u1u2u3].(5.12)

Note that the degrees are different in the two cases. For example, the fundamental
class x1234567 has degree 10 in H∗(ZΣ) and degree 3 in H∗(RZΣ).

In H∗(ZΣ), the non-zero products of basis elements different from 1 whose de-
grees add up to less than 10 are given by

x14 · x25 = x1245, x14 · x36 = x1346, x25 · x36 = x2356,(5.13)
x14 · x257 = x12457, x14 · x367 = x13467, x25 · x147 = x12457,(5.14)
x25 · x367 = x23567, x36 · x147 = x13467, x36 · x257 = x23567.(5.15)
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This agrees with the products given in [5, p. 1524] if one sets

a1 = x14, a2 = x25, a3 = x36,(5.16)
a′

1 = x147, a′
2 = x257, a′

3 = x367,(5.17)
b12 = x1245, b13 = x1346, b23 = x2356,(5.18)
b′

12 = x12457, b′
13 = x13467, b′

23 = x23567.(5.19)

In H∗(RZΣ) we have identical multiplication rules for basis elements in degree 1
except for the additional non-zero products

x147 ∗ x257 = x12457, x147 ∗ x367 = x13467, x257 ∗ x367 = x23567.(5.20)

Hence, if we set

a′′
1 = x14 + x147, a′′

2 = x25 + x257, a′′
3 = x36 + x367,(5.21)

b′′
12 = x1245 + x12457, b′′

13 = x1346 + x13467, b′′
23 = x2356 + x23567,(5.22)

then all products ai ∗a′′
j vanish, and a′′

i ∗a′′
j = b′′

ij for i ̸= j. These are the products
of degree-1 elements in the connected sum (S1 × S1 × S1)#(S1 × S1 × S1), as
predicted by [5].

The analysis in [5] shows that H∗(ZΣ) and H∗(RZΣ) are not isomorphic as
ungraded rings. A minor variation of their argument is the following: Let m be the
unique maximal ideal of H∗(ZΣ) or H∗(RZΣ) and set Vk = mk/mk+1. Then V3 is
spanned by x1234567 = x14 · x25 · x367 in both cases.

Consider the multiplication

(5.23) f : V1 × V1 → V2,

which is a symmetric bilinear map. Let W ⊂ V1 be the kernel of f and let f̄ be the
induced map

(5.24) f̄ : V1/W × V1/W → V2.

It follows from the multiplication tables that in both cases the quotient V1/W is
6-dimensional and spanned by (the images of) the ai and the a′

i. Now in the case
of ZΣ the elements a′

i have pairwise vanishing products whereas in the case of RZΣ
no three linearly independent elements with this property exist. Hence H∗(ZΣ)
and H∗(RZΣ) are not isomorphic as ungraded rings.
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