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Polynomially convex embeddings of
odd-dimensional closed manifolds
By Purvi Gupta at Bangalore and Rasul Shafikov at London, ON

Abstract. It is shown that any smooth closed orientable manifold of dimension 2k C 1,
k � 2, admits a smooth polynomially convex embedding into C3k . This improves by 1 the
previously known lower bound of 3k C 1 on the possible ambient complex dimension for such
embeddings (which is sharp when k D 1). It is further shown that the embeddings produced
have the property that all continuous functions on the image can be uniformly approximated
by holomorphic polynomials. Lastly, the same technique is modified to construct embeddings
whose images have nontrivial hulls containing no nontrivial analytic disks. The distinguishing
feature of this dimensional setting is the appearance of nonisolated CR-singularities, which
cannot be tackled using only local analytic methods (as done in earlier results of this kind), and
a topological approach is required.

1. Introduction

The problem of finding the least Euclidean dimension into which all abstract manifolds
of a fixed dimension admit embeddings with certain prescribed properties appears in many dif-
ferent contexts in geometry, as exemplified by the classical results of Nash, Grauert–Morrey,
Remmert–Bishop–Narasimhan, etc. In a similar spirit, the topological consequences of impos-
ing certain convexity-type conditions on manifolds in Cn has been a recurrent topic of interest
in complex analysis; for instance, see [2,8,14,27]. Along these lines, we study the polynomially
convex embedding problem: what is the least n such that all closed smooth real m-manifolds
admit polynomially convex smooth embeddings into Cn?

Main result. We prove the following result in this paper.

Theorem 1.1. LetM be a closed orientable smooth manifold of real dimension 2k C 1,
where k � 2. Then there is a smooth embedding � WM ,! C3k such that

(1) M 0 D �.M/ is totally real except along a finite union of simple closed real curves inM 0,
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(2) M 0 is a polynomially convex subset of C3k , and

(3) any continuous function on M 0 can be uniformly approximated by holomorphic polyno-
mials on M 0.

A compact set K � Cn is polynomially convex if its polynomially convex hull, defined
as bK D °z 2 Cn

W jP.z/j � sup
K

jP j for all holomorphic polynomials P on Cn
±
;

coincides with K. Embeddability of manifolds as polynomially convex compacts in Cn is
important in view of the Oka–Weil theorem: if K D bK, then any function holomorphic on
some neighborhood of K can be uniformly approximated on K by holomorphic polynomials.
A partial converse also holds: if all continuous functions on K can be uniformly approxi-
mated on K by holomorphic polynomials, then K D bK. Thus, (3) implies (2) in Theorem 1.1.
However, the polynomial embeddability of M is the crux of the matter, and poses the main
technical challenge.

Until recently, the best known bound on the optimal embedding dimension for poly-
nomially convex embeddings was the same as that for totally real embeddings, i.e., where
the image admits no complex lines in any of its tangent planes. These two types of embed-
dings are related by the result that any m-dimensional totally real submanifold in Cn, m < n,
can be made polynomially convex after a small perturbation; see [15], [13] and [25]. It is
known that if n � b3m

2
c, then any closed m-dimensional manifold can be embedded into Cn

as a totally real submanifold. This bound is sharp for totally real embeddability (see [21]),
that is, if n < b3m

2
c then one cannot always avoid CR-singularities, i.e., points where the tan-

gent plane contains nontrivial complex subspaces. When m � 3, this bound is also sharp for
polynomially-convex embeddability as no real n-dimensional submanifold in Cn can be poly-
nomially convex, see [30, Section 2.3]. However, when m � 4, the extent to which the bound
for polynomially convex embeddability can be improved is not known.

In our earlier paper [18], this bound was improved by one for even-dimensional mani-
folds. That is, for every k � 2, .2k/-dimensional manifolds admit polynomially convex smooth
embeddings into C3k�1. Here, generic CR-singularities are isolated points. As in the case of
totally real embeddings, the method of small perturbations works in this setting, with some
additional local analysis required near the singularities. Theorem 1.1 extends this improvement
of bound to all odd-dimensional manifolds of dimension at least 5, under the assumption of
orientability. In this setting, CR-singularities generically form closed real curves on the mani-
fold. While isolated CR-singularities are well-studied in all relevant dimensions, starting from
the seminal work [7], the literature on the global properties of CR-singular sets of positive
dimension is rather sparse; see [11] and [32] for some global results. Such sets carry nontriv-
ial topology whose properties are not very well understood. Thus, to obtain embeddings with
prescribed convexity properties, one can no longer rely on local analysis alone and must use
topological methods.

Idea of the proof. We briefly describe the construction that yields part (2) of Theo-
rem 1.1. First, by a standard argument, we observe that a generic embedding of M is totally
real except along a finite union of disjoint simple closed curves of CR-singularities. A tubular
neighborhood in the embedded manifold of such a curve is an instance of a tube enclosing
a CR-singular curve in C3k (see Definition 4.1). We call two such disjoint tubes totally real
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cylindrically (TRC) cobordant if their boundaries can be joined by a totally real cylindrical
manifold within C3k . Using a relative h-principle, we show that the TRC cobordism class of
a (parametrized) tube is determined by the homotopy class of its frame map – a map from
S1 � S2k�1 into the complex Stiefel manifold W2kC1;3k induced by a field of frames on the
given tube, see (4.1). From this, we deduce that the possible homotopy classes of all such
maps can be enumerated by Z when k is even, and by Z˚ Z2 when k is odd. We then con-
struct models of tubes (enclosing CR-singular curves) that realize all the possible enumerations,
and satisfy the crucial property that they are polynomially convex. When k is even, the con-
struction is a straightforward modification of the Beloshapka–Coffman normal form discussed
in Section 2.2. However, when k is odd, this construction has to be adjusted using a Hopf
fibration to account for the torsion that appears in this setting. To summarize, a small neighbor-
hood of any CR-singular curve of a generic embedding of M is TRC cobordant to one of the
constructed polynomially convex models. Effectively, this gives the following procedure: for
each CR-singular curve in the (embedded) manifold, we cut out such a tubular neighborhood,
and glue instead a TRC cobordant polynomially convex tube using a cylindrical manifold that
joins their boundaries. Finally, using the fact that the CR-singular set of the new embedding
admits a polynomially convex neighborhood in the manifold, we perform a small perturbation
(using [5]) to make the manifold globally polynomially convex.

Part (3) of Theorem 1.1 now follows from a combination of three classical approximation
results, including the aforementioned result due to Oka–Weil. This part of the theorem can be
paraphrased as follows: for any closed .2k C 1/-manifold M as in Theorem 1.1, there exist
3k smooth functions on M that generate C.M/, the algebra of continuous complex-valued
functions on M .

Scope for further improvements. There are several questions that remain open in the
context of Theorem 1.1. First, the assumption of orientability may simply be an artefact of our
proof. In the absence of orientability, one will have to account for “nonorientable tubes" enclos-
ing CR-singular curves, but the broader technique still holds promise. Second, while there are
examples of closed m-dimensional real manifolds, m � 2, that cannot be embedded into Cn

when n D b3m
2
c � 1, see [21], all the known examples are nonorientable when m D 2k C 1

and k is odd, and it is not clear whether n D b3m
2
c is sharp for orientable manifolds in this case.

We note that totally real embeddability would give an easier proof of (2) and a stronger ver-
sion of (3) in Theorem 1.1. Finally, in the case of isolated CR-singularities, any embedding of
a compact manifold with boundary can be perturbed to be totally real and polynomially convex
(see [18]). It is not clear whether our proof can be modified to obtain totally real polynomially
convex embeddings of .2k C 1/-dimensional manifolds with boundary in C3k .

Whether the polynomially convex embedding dimension can be improved further than
b
3m
2
c � 1, for m � 6, remains an open problem. If one only seeks topological embeddings,

the sharp bound is known from [31], wherein polynomially convex topological embeddings of
all m-dimensional smooth manifolds (in fact, even simplicial polytopes) into CmC1 have been
constructed. However, these embeddings are highly nonsmooth. For smooth embeddings, the
next possible dimensional improvement already poses several technical difficulties. One has
to reckon with surfaces of CR-singularities. This causes some difficulty in both enumerating
all the topological possibilities (in the TRC cobordism sense) and constructing polynomially
convex models. Further, while the Beloshapka–Coffman normal form is still available, the
nondegeneracy required to invoke this form cannot be guaranteed everywhere as degenerate
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CR-singular points generically form a set of codimension two in the manifold, and can no
longer be separated from the CR-singular set by a simple transversality argument.

Embeddings with no analytic disks in their hulls. The technology developed to prove
Theorem 1.1 can be used to lower the bound for another embedding problem (raised in [23]):
what is the least n0 such that every compact m-dimensional smooth manifold can be smoothly
embedded into Cn0 as some † with b† n† nonempty but containing no analytic disk, i.e., there
is no nonconstant holomorphic map from the unit disk into b† n†? This can also be asked for
rational hulls where, if K � Cn is a compact set, its rational hull is

hr.K/ D ¹z 2 Cn
W p.z/ 2 p.K/ for all holomorphic polynomials P on Cn

º:

Part of the motivation for this problem comes from the fact that all the classical constructions of
nontrivial hulls with no analytic disks involve highly nonsmooth sets. For smooth embeddings,
the best known bound for surfaces is n0 � 3, obtained in [23] via explicit embeddings. For
higher dimensions, n0 � b3m

2
c � 1 when m is even, as seen in [18], and n0 � b3m

2
c when m is

odd, as proved in [5]. For orientable manifolds, we improve the latter as follows.

Theorem 1.2. Given any closed orientable smooth manifoldM of real dimension 2kC1,
k � 2, there is a smooth embedding of M into C3k with image † so that b† n† is nonempty
but contains no analytic disk, and b† D hr.†/.

Structure of the paper. In Section 2, we collect some basic facts about CR-singularities
that allow us to make certain simplifying assumptions in our proofs. The Beloshapka–Coffman
normal form, in particular, is discussed in Section 2.2. In Section 3, we lay the groundwork
for the topological aspects of the proofs. After establishing some essential notation in Sec-
tion 3.1, we explicitly compute generators of certain homotopy groups associated with the
Stiefel manifold W2kC1;3k in Sections 3.2 and 3.3. Section 4 is devoted to the study of tubu-
lar neighborhoods of certain curves in .2k C 1/-dimensional submanifolds of C3k . For such
neighborhoods, we introduce a topological invariant (index) in Section 4.1, and an equivalence
relation (totally real cylindrical cobordism) in Section 4.2. We construct polynomially convex
representatives of all possible equivalence classes in Section 4.3. Finally, the proofs of the main
results are carried out in Section 5.

2. CR-geometric preliminaries

We recall some facts about CR-singularities of real m-dimensional submanifolds in Cn.
Putting together these facts, we obtain part (1) of Theorem 1.1.

2.1. CR-singularities. The CR-dimension of a real submanifold M � Cn at a point
p 2M is the (complex) dimension of the maximal complex linear subspace T cpM of TpM ,
the tangent plane of M at p (considered as a subset of Cn). If dimM � n and M is in general
position, then it will be generically totally real, i.e., the CR-dimension of M will be 0 almost
everywhere. In this case, a point p 2M is called CR-singular if dimC T

c
pM � 1. Furthermore,

we call p 2M a CR-singularity of order � if dimC T
c
pM D �. Given � 2 N0, if S� denotes

the set of CR-singular points of M of order �, then S� is either empty or is a (not necessarily
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closed) submanifold of M of dimension m � .2�2 C 2�.n �m// and

S� D
[
���

S� ;

see [11] for more details. From this it follows that if n � b3m
2
c, then any m-dimensional

manifold admits a totally real embedding into Cn. If m D 2k and n D 3k � 1, then all the
CR-singularities of a generic M are isolated points, while if m D 2k C 1 and n D 3k, then
a generic M has a one-dimensional set of CR-singularities of order 1 and no CR-singularities
of order 2 or higher. Thus, we have

Lemma 2.1. Suppose that � WM ,! C3k is a generic smooth embedding of a smooth
.2k C 1/-dimensional closed manifold. Then the set of CR-singularities of �.M/ is a finite
union of smooth simple closed real curves.

2.2. The Beloshapka–Coffman normal form. Building on Beloshapka’s work [6] for
n D 5, Coffman introduced in [9] a notion of nondegeneracy for a CR-singular point of an
m-dimensional manifoldM in Cn, where 2

3
.nC1/�m<n, n� 5. He showed that near a non-

degenerate CR-singular point, M is locally formally equivalent to the Beloshapka–Coffman
normal form, which is given by

Bm;n
D
®
.z1; : : : ; zn/ 2 Cn

W Im zj D 0; 2 � j � m � 1;(2.1)

zm D z1
2;

zmC1 D jz1j
2
C z1.Re z2 C i Re z3/;

z` D z1.Re z2.`�m/ C i Re z2.`�m/C1/;

mC 2 � ` � n
¯
:

Note that Bm;n is totally real except along a .3m � 2n � 2/-dimensional plane, where it has
CR-singularities of order 1. In [10], Coffman further showed that if M is real-analytic near
a nondegenerate CR-singularity, then there is a normalizing transformation that converges,
i.e., M is locally biholomorphically equivalent to Bm;n near such a point. We note that the
nondegeneracy conditions required for the formal equivalence to hold at a CR-singular point
p 2M are full-rank conditions on matrices involving the second-order derivatives of the local
graphing functions of M at p; see [10, equations (58) and (62) in Section 6]. These conditions
will generically yield a codimension 2 set inM . Whenm D 2k C 1 and n D 3k, k � 2, the set
of CR-singularities is of dimension 1. Thus, by transversality, the CR-singular set of a generic
.2k C 1/-dimensional M � C3k consists only of nondegenerate points. Combining this with
the density of real-analytic functions (in any fixed C`-norm, 0 � ` <1), and Lemma 2.1,
we obtain the following crucial preparatory result.

Lemma 2.2. Any smooth embedding � WM ,! C3k of a smooth .2k C 1/-dimensional
closed manifold admits a small perturbation (in any fixed Cs-norm, 1 � s <1) that gives
a smooth embedding �0 WM ,! C3k such that

(i) the set of CR-singularities of �0.M/ is a finite union of smooth simple closed real curves,

(ii) near any CR-singularity, �0.M/ is locally biholomorphic to the Beloshapka–Coffman
normal form B2kC1;3k .
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We note that B2kC1;3k is locally polynomially convex at the origin (see Lemma 4.8),
which is a property that is invariant under local biholomorphisms. Thus, since a submanifold
in Cn is always locally polynomially convex at its totally real points, �0.M/ in Lemma 2.2 is
locally polynomially convex everywhere.

3. Topological preliminaries

We collect some algebro-topological results that will play a crucial role in our arguments.
Note that the homotopy groups computed in this section are known in the literature, and will be
familiar to topologists. However, since our interest lies in finding explicit generators of these
groups, we carry out certain computations from scratch.

3.1. Notation. We fix some notation for the rest of this paper. Slightly different coordi-
nates are used for points in even and odd-dimensional spheres, as follows:

(a) For k � 2,

S2k D ¹.z; w; �; s/ 2 C �C �Ck�2
�R W jzj2 C jwj2 C k�k2 C s2 D 1º;

S2k�1 D ¹.z; t; �; s/ 2 C �R �Ck�2
�R W jzj2 C t2 C k�k2 C s2 D 1º;

D2k D ¹.z; t; �; s/ 2 C �R �Ck�2
�R W jzj2 C t2 C k�k2 C s2 � 1º:

(b) In (a) above, when needed, we write z D x C iy and � D .u1C iv1; : : : ; uk�2C ivk�2/.

(c) When convenient, we denote ei� 2 S1 � C by � , where � 2 .��; ��.

We denote the set of all orthonormal k-frames in Cn by Wk;n. An element

A D Œa1; : : : ; ak� 2 Wk;n

will be represented as an n � k matrix with orthonormal columns aj D .a1j ; : : : ; anj /T 2 Cn,
j D 1; : : : ; k. When k D 1, W1;n D S2n�1, and we switch between the two conventions, with
the understanding that

S2n�1 3 .z; t; �; s/$

0B@ z

t C is

�T

1CA 2 W1;n:
Let ir W Wk;n 7! WkCr;nCr be the map given by

A D

0BB@
a11 � � � a1k
:::

: : :
:::

an1 � � � ank

1CCA 7!
 

A 0n;r
0r;k Ir;r

!
:

Note that ir1 ı ir2 D ir1Cr2 . We also need to consider Vk;n, the (noncompact) Stiefel manifold
of C-linearly independent k-frames in Cn. The compact space Wk;n is a strong deformation
retract of Vk;n via Gram–Schmidt orthogonalization. Lastly, ej denotes the vector

.0; : : : ; 1„ƒ‚…
zj

; : : : ; 0/ 2 Cn:
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3.2. Higher homotopy groups of complex Stiefel manifolds. To make the exposi-
tion as self-contained as possible, we first collect some basic definitions and results. For more
details, the reader may consult classical references such as [20] and [1].

A continuous map p W E ! B between topological spaces is said to be a Hurewicz fibra-
tion if it has the homotopy lifting property with respect to all topological spaces, i.e., for any
space Z, map g W Z ! E and homotopy H W Z � Œ0; 1�! B such that the following diagram
commutes, there is a G W Z � Œ0; 1�! E that extends g and lifts H :

Z � ¹0º E

Z � Œ0; 1� B .

g

p

H

G

In this case, the fibers or inverse images of points in B are homotopy equivalent (to F , say),
and the fibration is denoted by

F ,! E
p
�! B:

Fixing some b 2 B , e 2 p�1.b/ and f D e, the fibration induces the following long exact
sequence of homotopy groups:

� � � ���! �`C1.B; b/
ı`
���! �`.F; f /

��

���! �`.E; e/

p�

���! �`.B; b/
ı`�1
���! �`�1.F; f / ���! � � � :

Here, if H W .D`C1; àD`C1/! .B; b/ represents an element in �`C1.B; b/, then for any
G W D`C1 ! E such that the diagram

(3.1)

D` � ¹0º E

D` � Œ0; 1� Š D`C1 B

g � e

� p

H

G

commutes, GjàD`C1 induces a well-defined element in �`.F; f /. This is because

G.à.D` � Œ0; 1�// � p�1.b/ Š F

and G W D` � ¹0º 7! e .D f in F ). The map ı` maps H to this element in �`.F; f /.
Next, we recall the Freudenthal suspension theorem which, in particular, implies the sta-

bility of the homotopy groups �mC1.Sm/,m � 3. Given a topological space X , its suspension
is the space

†X D ¹.x; �/ 2 X � Œ0; 1� W .x1; �/ � .x2; �/ when either � D 0 or � D 1º:

Given a map f W X ! Y , its suspension is the map

†f W †X ! †Y; .x; s/ 7! .f .x/; s/:

The Freudenthal suspension theorem says that if X is an n-connected CW complex, then
f 7! †f induces an isomorphism between �i .X/ and �iC1.†X/ when i < 2nC 1, and an
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epimorphism between �2nC1.X/ and �2nC2.†X/. Applying this iteratively to spheres, we
obtain that

�2k.S
2k�1/ Š �4.S

3/ Š Z2; k � 2; Z Š �3.S
2/ � �4.S

3/:

Furthermore, since the Hopf fibration given by h W .z; w/ 7! .2zw; jzj2 � jwj2/ is a generator
of �3.S2/, we obtain the following generator of �2k.S2k�1/ via suspensions:

(3.2) hk W .z; w; �; s/ 7!
�
2zw; jzj2 � jwj2; �

q
1C jzj2 C jwj2; s

q
1C jzj2 C jwj2

�
:

In [17] (results announced in [16]), fibrations and suspensions are used to compute certain
higher homotopy groups of complex Stiefel manifolds. In particular, it is shown that

(3.3) �`.Wk;n/ D

8̂̂̂̂
<̂
ˆ̂̂:
0 if ` � 2.n � k/;

Z if ` D 2.n � k/C 1;

0 if ` D 2.n � k/C 2; n � k is odd;

Z2 if ` D 2.n � k/C 2; n � k is even:

We retrace this technique to compute explicit generators of �2k�1.W2kC1;3k/, �2k.W2kC1;3k/,
k � 2.

Lemma 3.1. For any k � 2, the map

˛ W S2k�1 3 .z; t; �; s/ 7! i2k.z; t; �; s/ D

0BBBB@
z

t C is

�T

0k;2k

02k;1 I2k;2k

1CCCCA
represents a generator of �2k�1.W2kC1;3k/ Š Z.

When k > 2 is odd, the map

ˇ W S2k 3 .z; w; �; s/ 7!

0BBBB@
2zw

1 � 2jwj2 C i2jwjs

2jwj�T

0k;2k

02k;1 I2k;2k

1CCCCA
represents a generator of �2k.W2kC1;3k/ Š Z2.

Proof. To prove the lemma, we show that the generators of �`.W2kC1;3k/ essentially
descend to generators of �`.S2k�1/, ` D 2k � 1; 2k.

We break the proof into three steps ((A), (B) and (C) below). First, for 1 � k � n, we
consider the fibration

(3.4) Wk�1;n�1
i1
�! Wk;n

p
�! S2n�1;

where p W Œv1; : : : ; vk� 7! vk . Ignoring the basepoints, we obtain the following long exact
sequence:

� � � ��! �`C1.S
2n�1/

ı`
��! �`.Wk�1;n�1/

i�1
��! �`.Wk;n/

p�

��! �`.S
2n�1/ ��! � � � ;
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which, applied iteratively, proves that for ` < 2n � 2m, �`.Wk�m;n�m/ Š �`.Wk;n/ via i�m.
In particular,

(A) for k � 1 , �2k.W2kC1;3k/ Š �2k.W2;kC1/ via i�
2k�1

.

and, �2k�1.S2k�1/ Š �2k�1.W2kC1;3k/ via the isomorphism i�
2k

. Note that the latter fact
proves the first half of our claim.

Next, we consider a particular case of (3.4),

S2k�1 Š W1;k
i1
��! W2;kC1

p
��! S2kC1;

to obtain the long exact sequence

� � � ��! �2kC1.S
2kC1/

ı2k
��! �2k.S

2k�1/
i�1
��! �2k.W2;kC1/(3.5)

p�

��! �2k.S
2kC1/„ ƒ‚ …
D0

��! � � � :

In order to understand the map ı2k , we fix b D ekC1 2 CkC1 and e D Œek; ekC1� 2 W2;kC1,
and consider the following specific case of diagram (3.1):

D2k Š D2k � ¹0º W2;kC1

D2kC1 Š D2k � Œ0; 1� S2kC1 � CkC1

g � e

� p

H

G

for anyH D .h1; : : : ; hkC1/ W .D2kC1; àD2kC1/! .S2kC1; b/. When kC1 is even, the above
diagram commutes if G W .D2kC1; àD2kC1/! .W2;kC1; e/ is set as

.D2kC1/ 3 Z 7!

0BBBBBBB@

h2.Z/ h1.Z/

�h1.Z/ h2.Z/
:::

:::

hkC1.Z/ hk.Z/

�hk.Z/ hkC1.Z/

1CCCCCCCA
:

In particular,
GjàD2kC1 � Œek; ekC1� � p

�1.ekC1/ Š S
2k�1;

which induces the trivial element in �2k.S2k�1/. Thus,

(B) when k is odd, ı2k D 0 in (3.5) and, hence, �2k.S2k�1/ Š �2k.W2kC1;3k/ via i�1 .

Combining (A) and (A), we have that �2k.W2kC1;3k/ Š �2k.S2k�1/ Š Z2 via i�
2k

. Moreover,
owing to (3.2), D i2k ı hk is a generator of �2k.W2kC1;3k/. To complete our proof, we show
that

(C)  and ˇ are homotopic as maps from S2k into W2kC1;3k .

Note that we may write ˇ D i2k ı h, where h W S2k ! S2k�1 is given by

h W .z; w; �; s/ 7! .2zw; 1 � 2jwj2; 2jwj�; 2jwjs/:
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Then, the map H W S2k � Œ0; 1�! W2kC1;3k which sends .z; w; �; s; �/ to

i2k

�
2zw; jzj2 � jwj2 C �k�k2 C �s2; .�; s/q

2.1 � �/jzj2 C 2.1C �/jwj2 C .1 � �2/.k�k2 C s2/
�

is a homotopy between  and ˇ. This completes the proof of our lemma.

Remark 3.2. Viewing S2k�1 as a sphere in Ck with complex orientation and coordi-
nates .z; t C is; �/, we fix the convention that Œ˛� D 1 in Z. Now, for any continuous map

f W S2k�1 7! �2k�1.W2kC1;3k/ Š Z;

the homotopy class of f is a well-defined integer, which we denote by deg.f / and call the
degree of f . The proof of Lemma 3.1 shows that if g is a continuous self-map of S2k�1, then

deg.f ı g/ D deg.f / degS2k�1.g/;

where degS2k�1. � / is to be understood as the degree of a continuous self-map of S2k�1.

3.3. Maps from S 1 � S 2k�1 into certain Stiefel manifolds. In this subsection, we
denote by ŒX; Y � the set of homotopy classes of continuous maps fromX to Y , whereX and Y
are topological spaces. As a consequence of the Freudenthal suspension theorem, it is known
that the set ŒX; Y � is canonically an abelian group if Y is n connected andX is a CW complex of
dimension at most 2n; see [24, Corollary 3.2.3]. This is indeed the case whenX D S1 � S2k�1

and Y D W2kC1;3k , k � 2. Thus, ŒS1 � S2k�1; W2kC1;3k� is an abelian group. In fact, we can
be more precise.

Lemma 3.3. Let k � 2. Then

ŒS1 � S2k�1; W2kC1;3k� Š �2k�1.W2kC1;3k/˚ �2k.W2kC1;3k/

Š

´
Z when k is even;

Z˚ Z2 when k is odd:

In the first case, the isomorphism is induced by the map f 7! fslice WD f j¹ � º�S2k�1 . In the
second case, f 7! fslice determines the projection onto the first factor.

Proof. In order to describe the abelian group ŒS1 � S2k�1; W2kC1;3k�, we consider the
following cofiber sequence (see [4, Chapter 3]):

(3.6) S2k�1
�
��! S1 _ S2k�1

�
��! S1 � S2k�1



��! S2k

†�
��! S2 _ S2k

†�
��! � � � ;

where

� � is the attaching map of the top cell of S1 � S2k�1,

� � is the cellular inclusion, and

� 
 is the quotient map S1 � S2k�1 ! S1 � S2k�1=S1 _ S2k�1 Š S2k .
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For any CW complex X , (3.6) induces the following long exact sequence of pointed sets (on
fixing basepoints).

1 ��! ŒS2k; X�

�
��! ŒS1 � S2k�1; X�

i�
��! ŒS1 _ S2k�1; X�

��
��! ŒS2k�1; X�:

Here, we have used the fact that the suspension of an attaching map is nullhomotopic. Fur-
ther, �� W �1.X/ � �2k�1.X/ ! �2k�1.X/ is the Whitehead product, which vanishes if
�1.X/ D 0. Thus, for X D W2kC1;3k , k � 2, we get the following exact sequence of abelian
groups:

0! �2k.W2kC1;3k/! ŒS1 � S2k�1; W2kC1;3k�! �2k�1.W2kC1;3k/! 0:

Based on (3.3), we have the result.

Next, we describe the generators of these groups. In particular, when k is odd, we obtain
two nonhomotopic maps from S1 � S2k�1 into W2kC1;3k that restrict to homotopic maps on
each slice ¹ � º � S2k�1.

Lemma 3.4. Let k � 2. Consider the following maps from S1 � S2k�1 intoW2kC1;3k:

f1 W .�; z; t; �; s/ 7! i2k.z; t; �; s/;

f2 W .�; z; t; �; s/ 7! i2k.ze
i� ; t; �; s/:

Then Œ.f1/slice� D Œ.f2/slice� D C1 which, for even k, implies that Œf1� D Œf2�. However, one
has Œf1� ¤ Œf2�, when k is odd.

Proof. We note that owing to Lemma 3.3 and Lemma 3.1, we only need to show that
Œf1� ¤ Œf2�when k is odd. We fix the basepoint b D .0; 1; 0; : : : ; 0/ 2 S2k�1; let S1 �b S2k�1

denote the pinched torus S1 � S2k�1=S1 � ¹bº, where we use the same coordinates as those on
S1 � S2k�1, but denote the pinched point by Œ�; b�. Since fj .�; b/ D i2k.b/ for all � 2 Œ0; 2��,
j D 1; 2, these maps factor through S1 �b S2k�1 (via f �j , say):

S1 � S2k�1 W2kC1;3k

S1 �b S
2k�1.

fj

f �
j

Furthermore, any homotopyH W S1�S2k�1�Œ0; 1�! W2kC1;3k between f1 and f2 descends
to a homotopy between f �1 and f �2 as long as the 2-sphere given by H.S1 � ¹bº � Œ0; 1�/ in
W2kC1;3k is nullhomotopic. This is always the case since �2.W2kC1;3k/ D 0. Thus, it suffices
to show that f �1 and f �2 are nonhomotopic as maps from S1 �b S

2k�1 into W2kC1;3k .
For this, we consider the maps gj WD f �j ı g, where g W S2k ! S1 �b S

2k�1 is given
by

.z; w; �; s/ 7!

´
.argw; 2zjwj; 1 � 2jwj2; 2jwj�; 2jwjs/; w ¤ 0;

Œ�; b�; w D 0:

Any homotopy between f �1 and f �2 will extend to a homotopy between g1 and g2. Since
g2 D ˇ is a generator of �2k.W2kC1;3k/ D Z2 (as shown in Lemma 3.1), our proof is complete
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Figure 1. Evolution of the homotopy H along any slice argw D c.

if we show that g1 is nullhomotopic. For this, it suffices to show thateg W S2k ! S2k�1 given
by eg W .z; w; �; s/ 7! .2zjwj; 1 � 2jwj2; 2jwj�; 2jwjs/

is nullhomotopic, for g2 D i2k ıeg. The homotopy

H W S2k � Œ0; 1�! S2k�1

given by

H W ..z; w; �; s/; �/ 7! h.�.�; jwj/z; � C .1 � �/jwj; �.�; jwj/�; �.�; jwj/s/;

where

�.�; r/ D

p
1 � .� C .1 � �/r/2
p
1 � r2

;

resolves this matter; see the schematic in Figure 1. The map H is well-defined when jwj D 1
because

lim
r!1�

�.�; r/ D 1 � � for all � 2 Œ0; 1�:

Moreover,
H..z;w; �; s/; 0/ D h.z; jwj; �; s/ D h.z; w; �; s/

and
H..z;w; �; s/; 1/ � .0;�1; 0; 0/:

This concludes our proof.

4. Tubular neighborhoods of curves of CR-singularities

We now focus on neighborhoods of certain simple closed curves in .2k C 1/-dimensional
submanifolds of C3k . We introduce a specialized notion of cobordism between the boundaries
of these neighborhoods, and produce polynomially convex models to represent all the possible
classes of this topological equivalence. This section encapsulates the main technical part of
our construction.
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4.1. The index of a parametrized tube enclosing curve. The precise class of neigh-
borhoods under consideration is as follows.

Definition 4.1. Suppose N � C3k is a compact submanifold with boundary that admits
a smooth parametrization F W S1 �D2k ! N such that

(a) F is totally real on .S1 �D2k/ n .S1 � ¹0º/,

(b) dimC T
c
pN is constant over all p 2 F.S1 � ¹0º/.

Then we call N a tube enclosing a curve in C3k , or a tube enclosing a curve, since the ambi-
ent dimension is fixed. We call F an admissible parametrization of N . We single out two
special cases.

(i) If N is totally real everywhere, we call it a fully-TR tube.

(ii) If the CR dimension of N is positive on 
 WD F.S1 � ¹0º/, then 
 is independent of F .
In this case, we say that N is a tube enclosing the CR-singular curve 
 , or simply a tube
enclosing a CR-singular curve.

In all the cases above, the word parametrized is appended to the terminology when discussing
the pair .N ; F /.

As before, we use .�; z D x C iy; t; �; s/ for points in S1 �D2k . Further, we fix the
frames

# D
à
à�

and � D .#; � 0/

for the tangent bundles T .S1 � ¹0º/ and T .S1 �D2k/, respectively, and

� 0 D

�
à
àx
;
à
ày
;
à
àt
;
à
às
;
à
àu1

;
à
àv1

; : : : ;
à
àuk�2

;
à
àvk�2

�
for the normal bundle N.S1 � ¹0º/ of S1 � ¹0º in S1 �D2k . Given a diffeomorphism

F W S1 �D2k ! C3k

that is totally real away from the curve F.S1 � ¹0º/, and p 2 S1, we define the maps

(4.1) bF W S1 � S2k�1 ! W2kC1;3k; � 7! Œ.F��/.F.�//�
GS
D ŒDF.�/�GS;

and bFp-slice W S
2k�1

! W2kC1;3k; � 7! Œ.F��/.F.p; �//�
GS
D ŒDF.p; �/�GS;

where Œ.F��/.F. � //�GS is the Gram–Schmidt orthogonalization of the frame .F��/.F. � //,
viewed as a full-rank .3k/ � .2k C 1/ complex matrix. The map bF will be referred to as the
frame map of the parametrized tube .N D F.S1 �D2k/; F /.

Note that bF , bFp-slice induce elements in ŒS1�S2k�1; W2kC1;3k� and �2k�1.W2kC1;3k/,
respectively. Since W2kC1;3k is a strong deformation retract of V2kC1;3k , we will often abuse
notation and drop the notation Œ � �GS to view bF and bFp-slice as maps into V2kC1;3k .

In this subsection, we focus on the homotopy class induced by bFp-slice. It is clear that this
class is independent of p. Thus, when discussing the homotopy class of bFp-slice, we assume that
p D 1 and denote bFp-slice simply by bF slice. Furthermore, in view of Remark 3.2, the following
definition is well-defined.
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Definition 4.2. The index of a parametrized tube .N ; F / enclosing a curve is defined
as

indF .N / D deg.bFp-slice/ for any p 2 S1:

To understand the dependence of this index on F , we note that � 0 assigns an orientation,
say o, on the normal bundle of S1 � ¹0º in S1 �D2k . Given a self-diffeomorphism, ', of
S1 �D2k that maps S1 � ¹0º to itself, if '�� 0 induces the same orientation o onN.S1 � ¹0º/,
we say that ' is fiberwise orientation preserving. Otherwise, ' is called fiberwise orientation
reversing. We now show that, modulo its sign, indF .N / is independent of F .

Lemma 4.3. Let F and G be admissible parametrizations of N , a tube enclosing
a curve in C3k . Then

indG.N / D

´
indF .N / if F�1 ıG is fiberwise orientation-preserving;

� indF .N / if F�1 ıG is fiberwise orientation-reversing:

Moreover, if U is a neighborhood of F.A � S2k/, where A � S1 is an arc containing p D 1,
and H W U ! C3k is a biholomorphism, then

indF .N / D deg.3.H ı F /slice/:

Proof. Let ' WD F�1 ıG. Since � is the coordinate frame on S1 �D2k , we may write

bGslice.�/ D .G��/.G.1; �// D DG.1; �/ D DF.'.1; �// �D'.1; �/; � 2 S2k�1:

Since detD' ¤ 0 on S1 �D2k , it follows that the mapD'.1; � /jS2k�1 , extends to a map from
D2k into GLC.2k C 1/, and is, thus, homotopic to the constant identity map in GLC.2k C 1/.
As V2kC1;3k is closed under the action of GLC.2k C 1/ via multiplication from the right, bGslice

is homotopic to the map

� 7! DF.'.1; �//; � 2 S2k�1:

Next, letting �� D .z; t; �; s/, for � D .z; t; �; s/ 2 D2k , we observe that 'j¹1º�S2k�1 is
homotopic to the identity map i on S2k�1 when ' is fiberwise orientation-preserving, and to
i� W � 7! ��, � 2 S2k�1, when ' is fiberwise orientation-reversing. Thus, bGslice is homotopic
in V2kC1;3k to´

DF.i.1; � // if F�1 ıG is fiberwise orientation-preserving;

DF.i�.1; � // if F�1 ıG is fiberwise orientation-reversing:

Since degS2k�1.i/ D C1 and degS2k�1.i
�/ D �1, the first part of our claim now follows from

Remark 3.2.
For the second part of our claim, note that

3.H ı F /slice.�/ D DCH.F.1; �// �DF.1; �/; � 2 S2k�1:

But, ..DCH/ ı F /.1; � /jS2k�1 extends to a map from D2k into GLC.3k/. Thus, it is homo-
topic to the constant identity map in GLC.3k/. Now, since, V2kC1;3k is closed under the action
of GLC.3k/ via multiplication from the left, we are done.
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Remark 4.4. From the lemma above, it is clear that

indF ı'.N / D � indF .N /;

where ' W S1 �D2k ! S1 �D2k is given by .�; �/ 7! .g.�/; ��/, for some diffeomorphism
g W S1 ! S1.

4.2. Totally real cylindrical cobordisms between tubes enclosing curves. We now
discuss a notion of equivalence between parametrized tubes enclosing curves, under which one
tube can be essentially replaced by another without any addition of CR-singularities. We first
fix some additional notation.

(a) Let T D Œ0; 1� � S1 � S2k�1.

(b) For ı 2 .0; 1
2
/, let Tı D Œ0; ı� � S1 � S2k�1 and T1�ı D Œ1 � ı; 1� � S1 � S2k�1.

(c) Let Lc W Œc; c C 1/ � S1 � S2k�1 ! S1 � .D2k n ¹0º/ be the map given by

.�; �; �/ 7! .�; .c C 1 � �/�/:

Definition 4.5. Suppose .N1; F1/ and .N2; F2/ are parametrized tubes enclosing curves
in C3k . If they are disjoint, they are said to be totally real cylindrically cobordant or TRC
cobordant if there exists a totally real embedding F W T! C3k such that, for some sufficiently
small ı,

(4.2) F.�; �; �/ D

´
.F1 ı L0/.�; �; �/ on Tı ;
.F2 ı L1�ı/.�; �; �/ on T1�ı ;

for .�; �; �/ 2 T (see Figure 2). If they are not disjoint, they are said to be totally real cylindri-
cally cobordant if there is some translation � of C3k such that �.N2/ \N1 D ; and .N1; F2/

and .�.N2/; F2 ı �/ are totally real cylindrically cobordant in the sense discussed above.

Before we give a characterization of TRC cobordant pairs, we state a geometric con-
sequence of (4.2). This result will be referred to as the neighborhood replacement result in
this paper.

Proposition 4.6. Suppose .N1; F1/ and .N2; F2/ are disjoint totally-real cobordant
parametrized tubes enclosing curves in C3k . Then, for a sufficiently small " > 0, there is
a smooth embedding ‰N1;N2 W S

1 � 2D2k ! C3k such that

(1) ‰N1;N2 is totally real on .S1 � 2D2k/ n .S1 � ¹0º/,

(2) ‰N1;N2.�; r�/ D F1.�; .r � 1/�/ for r 2 Œ2 � "; 2� and .�; �/ 2 S1 � S2k�1,

(3) ‰N1;N2 coincides with F2 on S1 �D2k .

Proof. Let F W T! C3k be an embedding satisfying (4.2) and � W Œ1�ı; 2�ı�! Œ0; 1�

a smooth bijective map such that

�.r/ D

´
2 � ı � r when r 2 Œ1 � ı; 1�;

2 � r when r 2 Œ2 � ı; 2�:
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Figure 2. N1 [ F.T/ [N2.

Figure 3. „.S1 � 2D2k/ D F.T/ [N2.

Then the map „ W S1 � 2D2k given by

„.�; r�/ D

8̂̂̂̂
<̂
ˆ̂̂:
F2.�; r�/ when r 2 Œ0; 1 � ı�;

F2.�; r�/ D F.2 � ı � r; �; �/ when r 2 Œ1 � ı; 1�;

F .�.r/; �; �/ when r 2 Œ1; 2 � ı�;

F1.�; .r � 1/�/ D F.2 � r; �; �/ when r 2 Œ2 � ı; 2�;

is smooth (see Figure 3). Furthermore, „ is a local embedding everywhere in the interior of its
domain, and is an embedding in an open neighborhood of K D .S1 �D2k/ [ à.S1 � 2D2k/.
Thus, by the relative version of the weak Whitney embedding theorem, there is an embedding
‰N1;N2 with the desired properties.

We now state the aforementioned algebro-topological characterization of pairs of TRC
cobordant parametrized tubes enclosing curves. In particular, we see that the index is only
a partial invariant in this respect.

Lemma 4.7. Suppose .N1; F1/ and .N2; F2/ are disjoint parametrized tubes enclosing
curves in C3k . Then they are TRC cobordant if and only if their frame maps, bF 1 and bF 2,
induce the same element in ŒS1 � S2k�1; W2kC1;3k�.

Proof. First, we fix a smooth translation-invariant (in � ) field of frames on T as follows:

�T.�; �; �/ D .L
�
� �/.�; �; �/:

For any parametrization g W S1 �D2k ! C3k , let gc D g ı Lc . Because of the translation-
invariance,

.gc��T/.g
c.c; � // D .g��/.g. � //jS1�S2k�1 ;
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and, if � > c, then .gc��T/.gc.�; � // is homotopic to .g��/.g. � //jS1�S2k�1 . In short, setting

bg c� W � 7! Œ.gc��T/.g
c.�; �//�GS; � 2 S1 � S2k�1;

we have that for any c 2 R and � 2 Œc; c C 1/,

bg c� andbg induce the same element in ŒS1 � S2k�1; W2kC1;3k�.(�)

Now, if .N1; F1/ and .N2; F2/ are TRC cobordant, then F exists so that (4.2) holds
on T. Then, .�; �; �/ 7! .F��T/.F.�; �; �//, 0 � � � 1 � ı is a homotopy between cF1 and cF2
in W2kC1;3k .

To prove the converse, we rely on the relative h-principle for ample differential relations
([12, Theorem 18.4.1]). For this, we first gather some important observations about the relevant
spaces. Wherever possible, we follow the notation employed in [12].

(1) Let J 1.T;C3k/ denote the space of 1-jets of smooth maps from T into C3k Š R6k .
Since T is parallelizable, we may write J 1.T;R6k/ Š T �C3k �M2kC1;3k , where
M2kC1;3k is the space of complex .2k C 1/ � .3k/ matrices. We use the field of frames
�T to make this identification. This way, if G W T! C3k is a smooth map, then we
have DG. � / � .G��T/.G. � // (as matrices). Thus, Z 7! .Z;G.Z/; .G��T/.G.Z/// is
a holonomic section of J 1.T;C3k/.

(2) We recall that W2kC1;3k � V2kC1;3k �M2kC1;3k , and if A;B 2 V2kC1;3k , then any
homotopy between ŒA�GS and ŒB�GS in W2kC1;3k lifts to a homotopy in V2kC1;3k .

(3) We let RTR denote the differential relation in J 1.T;C3k/ corresponding to totally real
immersions f W T! C3k . Then RTR is an open ample differential relation (see for
instance [12, Theorem 19.3.1]).

The relative h-principle states that if H W T! RTR � J
1.T;C3k/ is a formal solution

of RTR that is a genuine solution near àT, then there is a homotopy of formal solutions
H� W T! RTR, � 2 Œ0; 1�, joining H0 D H with a genuine solution H1 of RTR such that for
all � , H� D H near àT.

To complete the proof of our claim, we note that if .N1; F1/ and .N2; F2/ are disjoint
parametrized tubes enclosing curves in C3k , then there exists a smooth map G W T! C3k

such that

(4.3) G D

´
.F1 ı L0/ on Tı ;
.F2 ı L1�ı/ on T1�ı ;

for ı 2 .0; 1
2
/ small enough. For this, we fix a ı � 1

2
and apply the isotopy version of the

Weak Whitney Embedding Theorem to produce an isotopy between .F1 ı L0/.T \ ¹� D ıº/
and .F2 ı L1�ı/.T \ ¹� D 1 � ıº/. This isotopy continuously connects F1 ı L0 on Tı and
F2 ı L1�ı on T1�ı to give a continuous map eG W T! C3k that satisfies (4.3). Now, by the rel-
ative version of the Whitney Approximation Theorem, eG can be approximated by a smooth G
satisfying (4.3).

Now, suppose cF1 and cF2 induce the same homotopy class in ŒS1 � S2k�1; W2kC1;3k�.
In view of (b) and (�) above, there is a homotopy H W Œı; 1 � ı� � S1 � S2k�1 ! V2kC1;3k
between b.F1/0ı D .G��T/.G.ı; � // and b.F2/1�ı1�ı

D .G��T/.G.1 � ı; � //. SettingeH W T! V2kC1;3k
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as

eH.�; �/ D
8̂<̂
:
.G��T/.G.�; �/ on Tı ;
H.�; �/ when � 2 Œı; 1 � ı�;

.G��T/.G.�; �// on T1�ı :

Then H W .�; Z/ 7! .Z;G.Z/; eH.�;Z// is a formal solution of RTR that is a genuine solution
near àT. Thus, by the h-principle cited above, there is a genuine solution of RTR that coincides
with H near àT, which gives a totally real immersion eF W T! C3k satisfying (4.2). Now, by
another application of the (relative) Whitney Embedding Theorem, eF can be approximated by
a totally real embedding satisfying (4.2).

The above lemma shows that the TRC cobordism class of any parametrized tube .N ; F /

enclosing a curve in C3k contains all tubes of the form .A.N /; F ı A/, whereA W C3k ! C3k

is of the form z 7! rz C b, r > 0 and b 2 C3k .

4.3. Polynomially convex models. So far, we have shown that there is an injective map´
equivalence classes of parametrized tubes

enclosing curves under TRC cobordism

µ
,! ŒS1 � S2k�1; W2kC1;3k�:

In this subsection, we establish the surjectivity of this map. In fact, we construct polynomially
convex representatives of the generators of ŒS1 � S2k�1; W2kC1;3k�, and then indicate how
tubes of other indices can be obtained in a similar way. Our construction is a modification of
the Beloshapka–Coffman normal form (2.1).

Consider the following set in C �R2k�1:

S D

²
.z1; x2; : : : ; x2k/ 2 C �R2k�1 W jz1j

2
C .x3/

2
C � � � C .x2k�1/

2

C

�q
x22 C x

2
2k
� 1

�2
�
1

4

³
:

Note that S is a neighborhood of the unit circle in the x2x2k-plane. Now, consider the following
two graphs over S in C3k:

M1
WD

°
Z 2 C3k

W .z1; x2; : : : ; x2k/ 2 S; yj D 0; 2 � j � 2k;

z2kC1 D z1
2;

z2kC2 D jz1j
2
C z1

�q
x22 C x

2
2k
� 1

�
C iz1x3;

z` D z1.x2.`�2k�1/ C ix2.`�2k�1/C1/; 2kC3� `� 3k
±

and

M2
WD

°
Z 2 C3k

W .z1; x2; : : : ; x2k/ 2 S; yj D 0; 2 � j � 2k;

z2kC1 D z1
2.x2 C ix2k/;

z2kC2 D jz1j
2
C z1

�q
x22 C x

2
2k
� 1

�
C iz1x3;

z` D z1.x2.`�2k�1/ C ix2.`�2k�1/C1/; 2kC3� `� 3k
±
:
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Since M1 and M2 are totally real except along the circle


 D ¹.0; x2; 0; : : : ; 0; x2k; 0; : : : ; 0/ 2 C3k
W x2; x2k 2 R; x22 C x

2
2k D 1º;

where they have CR dimension 1, they are tubes enclosing the CR-singular curve 
 . We now
prove the crucial fact the M1 and M2 are polynomially convex subsets of C3k . As a side note,
we also observe, that they are biholomorphically equivalent.

Lemma 4.8. There is a biholomorphism ‚ defined in a neighborhood of M1 in C3k

such that M2 D ‚.M1/. Moreover, 
 , M1 and M2 are polynomially convex.

Proof. For the first part of the claim, consider the map

‚ W .z1; : : : ; z2k; z2kC1; z2kC2; : : : ; z3k/

7! .z1; : : : ; z2k; z2kC1.z2 C iz2k/; z2kC2; : : : ; z3k/;

which is a biholomorphism from C3k n ¹z2 C iz2k D 0º onto itself. Clearly, ‚.M1/ DM2.
Since M1 is a compact subset of C3k n ¹z2 C iz2k D 0º, ‚ is defined in a (sufficiently small)
neighborhood of M1 in C3k .

Now, for the second claim, we first note that the polynomial convexity of 
 follows from
that fact that it is a compact subset of a totally real plane (the x2x2k-plane). Next, we recall the
following criterion (an iterated version of Theorem 1.2.16 from [30]). If X � Cn is a compact
subset and if F W X ! Rm is a map whose components are in P .X/, then X is polynomi-
ally convex if and only if F�1.t/ is polynomially convex for each t 2 Rm. Now, choosing the
restriction to M j of the map F W C3k ! C2k�1 given by Z 7! .z2; : : : ; z2k/, and noting that
the subalgebra generated by z and cz2, c ¤ 0, in C

�
1
2
D
�

coincides with C
�
1
2
D
�

(see [26]), we
have that every fibre of F in either M 1 or M 2 is polynomially convex. Hence, the claim.

We now fix parametrizations of M1 and M2. Let � W S1 �D2k ! S be the map given
by

� W .�; z; t; �; s/ 7!

�
1

2
x;�

1

2
y;

�
1C

1

2
t

�
cos �;

1

2
s;
1

2
u1;

1

2
v1; : : : ;

1

2
uk�2;

1

2
vk�2;

�
1C

1

2
t

�
sin �

�
:

As eachM j is a graph over S , the parametrization of S can be pushed forward via the graphing
map to obtain a parametrizing map of M j , which we denote by H j , j D 1; 2.

Theorem 4.9. Let k � 2. Then, indH1.M1/ D indH2.M2/ D 1. Moreover:

(i) when k is even, ŒbH 1� D ŒbH 2� in ŒS1 � S2k�1; W2kC1;3k�, but

(ii) when k is odd, ŒbH 1� ¤ ŒbH 2� in ŒS1 � S2k�1; W2kC1;3k�.

Proof. As before, since W2kC1;3k is a deformation retract of V2kC1;3k , we ignore the
effect of Œ � �GS in the definitions of bH j and bH j

slice, j D 1; 2. Now, due to Lemmas 3.3 and 3.4,
it suffices to show that ŒbH 1� D Œf2� and ŒbH 2� D Œf2� in ŒS1 � S2k�1; W2kC1;3k�, where f1
and f2 are the maps defined in Lemma 3.4. We describe a homotopy between bH 1 and f1 in
some detail, and note that an almost identical procedure gives a homotopy between bH 2 and f2.
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Recall that we use the coordinates

� D .�; z D x C iy; t; �1 D u1 C iv1; : : : ; �k�2 D uk�2 C ivk�2; s/

on S1 � S2k�1. Up to a cyclical permutation of the columns (which preserves the homotopy
classes of V2kC1;3k), we may write bH 1.�/ D DH 1.�/ explicitly as follows:

�
E3k�2 F3k�2k�1

�
D

 
A2k�2

Ck�2

B2k�2k�1

Dk�2k�1

!

D
1

4

0BBBBBBBBBBBBBBBBBBBBBBBBB@

2 �2i

0 0

0 0

0 0
:::

:::

0 0

0 0

2z i2z

2x C t C is 2y C i.t C is/

�1 i�1
:::

:::

�k�2 i�k�2

0 0 0 � � � 0 0

2 cos � 0 0 � � � 0 �.4C 2t/ sin �

0 2 0 � � � 0 0

0 0 2 � � � 0 0
:::

:::
:::
: : :

:::
:::

0 0 0 � � � 2 0

2 sin � 0 0 � � � 0 .4C 2t/ cos �

0 0 0 � � � 0 0

z iz 0 � � � 0 0

0 0 z 0 0 0
:::

:::
:::
: : :

:::
:::

0 0 0 � � � iz 0

1CCCCCCCCCCCCCCCCCCCCCCCCCA

:

For any matrix Mp�q above, spanCŒM � will denote the complex span of its q columns in Cp.
Note that if Ft is a homotopy of F through .3k/ � .2k � 1/ matrices of full rank such that
spanCŒFt �˚ spanCŒE� D C3k , then .EjFt / is a homotopy of .EjF / in V2kC1;3k . With this
principle in mind, we will perform the homotopy in multiple steps. First, we get rid of the
factor 1

4
via an elementary homotopy.

(a) We note that the matrix D has no impact on the rank of .EjF /. Thus, the following
homotopy takes place within V2kC1;3k:

.�; �/ 7!

 
A

C

B

.1 � �/D

!
; � 2 Œ0; 1�:

Thus, we assume here onwards that D D 0.

(b) With D D 0, spanŒF � D span¹z2; : : : ; z2kº Š C2k�1 is orthogonal to spanŒE�. Thus, if
B 0 2 GLC.2k � 1/ denotes the matrix obtained by deleting the first row of B , any homo-
topy B 0t of B 0 in GLC.2k � 1/ induces a homotopy of .EjF / in V2kC1;3k . Note that B 0

only depends on .t; �/ 2 Œ�1; 1��S1, and 2�2k

4C2t
B 0.�/ is an element in SU.2k�1/. Thus,

we have that � 7! 2�2k

4C2t
B 0.�/ induces an element in �1.SU.2k � 1// Š 0. So, there is

a homotopy between � 7! B 0.�/ and � 7! I in GLC.2k � 1/. We may now assume that

B D

 
01;2k�1

I2k�1;2k�1

!
:
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(c) Since spanŒE� D span¹z1; z2kC1; : : : ; z3kº Š Ck is orthogonal to spanŒF �, it suffices to
produce an appropriate homotopy in V2;kC1 of

E 0 D

0BBBBBBBBB@

2 �2i

2z i2z

2x C t C is 2y C i.t C is/

�1 i�1
:::

:::

�k�2 i�k�2

1CCCCCCCCCA
;

which, after an elementary homotopy in V2;kC1, becomes0BBBBBBBBB@

0 �i

z iz

t C is i.t C is/

�1 i�1
:::

:::

�k�2 i�k�2

1CCCCCCCCCA
DW .E1jE2/:

Now, the homotopy

E 0� D .E1je
i� �
2E2 C i�E1/; � 2 Œ0; 1�;

gives that bH 1 is homotopic to

� 7!ei2k.z; t; �; s/ D
0BBBB@

02k;1 I2k;2k
z

t C is

�T

0k;2k

1CCCCA :
(d) Recall that f1.�/ D i2k.z; y; �; s/, where i2k � E �ei2k and E is an elementary matrix

in GLC.3k/ whose action on V2kC1;3k is to swap the lower block of k rows with the
upper block of 2k rows. As GLC.3k/ is connected, we may homotopeei2k D E�1 � i2k
to i2k D I � i2k . Hence, our claim.

As noted earlier, a similar homotopy can be produced between bH 2 and f2.

Corollary 4.10. Suppose N is a tube enclosing a CR-singular curve 
 in C3k such
that for some p 2 
 , N at p is locally biholomorphic to the Beloshapka–Coffman normal form
B2kC1;3k at 0 (see (2.1)). Then there exists an admissible parametrization F of N such that
indF N D 1.

Proof. By the local biholomorphic invariance of the index (see Lemma 4.3), it suf-
fices to show that the index of B2kC1;3k at 0 is ˙1 in the following sense. For " < 2� , if
H W ¹ei� W j� j < "º �D2k ! C3k is a parametrization of some neighborhood U � B2kC1;3k

of 0, which maps .1; 0/ to 0 and the curve ¹ei� W j� j < "º � ¹0º onto U \ .x2k-axis/, then
deg.bH 1-slice/ D ˙1. Since the induced degree of any two such parametrizations will only differ
by a sign (again, see Lemma 4.3), it suffices to produce some H for which deg.bH 1-slice/ D 1.
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This is essentially done in Theorem 4.9, since, up to translation,

M1 \ ¹x2k D 0º D B2kC1;3k
\

²
x2k D 0; k.z1; x2; : : : ; x2k�1/k <

1

2

³
:

To be more precise, we note that the map h D .h1; : : : ; h3k/ given by

hj .z1; : : : ; z3k/ D

8̂̂<̂
:̂
zj if j ¤ 2; 2k;q
z22 C z

2
2k
� 1 if j D 2;

arctan
�
x2k
x2

�
if j D 2k;

is a local biholomorphism near p D .0; 1; 0; : : : ; 0/ 2M1 which maps a neighborhood of p
in M1 to a neighborhood of 0 in B2kC1;2k . The local biholomorphic invariance of the index
implies that H D h ıH 1, where H 1 is as in Theorem 4.9, is the desired parametrization of
B2kC1;3k near 0.

We now indicate how M1 and M2 can be modified to produce polynomially convex mod-
els of all indices. For any nonnegative index n, one can set z2kC1 as znC11 and znC11 .x2 C ix2k/

in the definitions of M1 and M2, respectively, and modify H 1 and H 2 in the obvious way. As
in Theorem 4.9, these two models will represent the same and only TRC cobordism class of
index n when k is even, and the only two distinct TRC cobordism classes of index n when k
is odd. For tubes of negative indices, we note that if .N ; F / is a parametrized tube of index
n, n 2 N, then .N ; F �/ is a parametrized tube of index �n, where F � W .�; �/ 7! .�; ��/,
.�; �/ 2 S1 �D2k (see Remark 4.4).

4.4. A fully-TR tube containing an Alexander set. At the end of Section 4.3, we
construct polynomially convex parametrized tubes of index zero. These are in fact fully-TR
tubes. In the proof of Theorem 1.2, we will use a fully-TR tube with an extremely different
complex-analytic behavior from the ones mentioned above. This construction is based on the
following result due to Alexander ([3]) which has been heavily used in the context of hulls
without analytic structure (see [23] and [5]). The standard torus T2 D ¹.ei� ; ei / W �;  2 Rº
in C2 contains a compact subset E such that bE nE is nonempty but contains no analytic disk.
Such a set can be chosen in any neighborhood of the diagonal of T2.

Now, for some "� 1, let F D .f1; : : : ; f3k/ W S1 � "D2k ! C3k be the smooth map
given by

.f1; : : : ; f2kC1/ W .�; x; y; t; u1; v1; : : : ; u2k; v2k; s/

7!
�
ei� ; ei.�Cs/; x; y; t; u1; v1; : : : ; u2k; v2k

�
;

fj � 0; 2k C 2 � j � 3k:

Lemma 4.11. Let A WD F.S1�"D2k/ andG W .�; �/ 7! F.�; "�/, .�; �/ 2 S1 �D2k .
Then A is a fully-TR tube in C3k and ŒbG� is trivial in ŒS1 � S2k�1; W2kC1;3k�. Moreover,
A contains a compact set E such that such that bE nE is nonempty but contains no analytic
disk.

Proof. The first part of the claim follows from computing DG and observing that it
depends only on .�; s/ 2 S1 � Œ�1; 1�. Since �1.W2kC1;3k/ is trivial, so is ŒbG�.
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For the second part of the claim, note that A contains a neighborhood V of the diagonal
of the standard torus in the z1-z2 plane. In fact, V D F.¹x D y D t D uj D vj D 0º/. Note
that if E � V is the set granted by Alexander’s theorem above, then E � ¹0º3k�2 is a compact
set in A with same hulls as E. Thus, in an abuse of notation, denoting E � ¹0º3k�2 by E
completes the proof.

5. Proofs of the main results

We first isolate a lemma that is used in both the proofs in this section. The proof uses
standard arguments; see [18, Lemma 2.1] for a version of this lemma. Here, for p 2 Cn and
r > 0, Bp.r/ D ¹z 2 Cn W kz � pk < rº and Bp.r/ denotes its closure in Cn

Lemma 5.1. Suppose that X � Cn is a polynomially convex compact set and suppose
p1; : : : ; p` 2 Cn nX . Then there exist r1; : : : ; r` > 0, so that X [

S`
jD1Qj is polynomially

convex, for any choice of polynomially convex compact sets Qj � NBpj .rj /, j D 1; : : : ; `.

5.1. Proof of Theorem 1.1. Let M be as given. In view of Lemma 2.2 and Corol-
lary 4.10, we may assume that M is embedded in C3k , its set of CR-singularities is a union
of disjoint simple closed curves, C1; : : : ; C`, and each Cj is enclosed in a parametrized tube
.Nj ; Fj /, where Nj �M and indFj .Nj / D 1. Using the results of Section 4, we now proceed
to “replace" the Nj ’s with polynomially convex tubes enclosing CR-singular curves.

Lemma 5.2. There exist ` disjoint tubes, K1; : : : ;K`, enclosing CR-singular curves

1; : : : ; 
` such that

(i) each Kj is disjoint from M ,

(ii) for some parametrization Gj , .Kj ; Gj / is TRC cobordant to .Nj ; Fj /, j D 1; : : : ; `,

(iii) � D 
1 [ � � � [ 
` is polynomially convex in C3k , and

(iv) K DK1 [ � � � [K` is polynomially convex in C3k .

Proof. First, since indFj .Nj / D 1, .Nj ; Fj / is TRC cobordant to either .M1;H 1/ or
.M2;H 2/ (which are TRC cobordant to each other when k is even). This follows from the
characterization of TRC cobordism classes obtained in Lemma 4.7. Without loss of general-
ity, we assume that there is some `0 2 ¹1; : : : ; `º such that .N1; F1/; : : : ; .N`0 ; F`0/ are TRC
cobordant to .M1;H 1/, and .N`0C1; F`0C1/; : : : ; .N`; F`/ are TRC cobordant to .M2;H 2/.

Next, let p1; : : : ; p` 2 C3k nM be distinct points. Let r1; : : : ; r` > 0 be as granted by
Lemma 5.1 (for X D ;). By shrinking the radii rj further, we may assume that each Bpj .rj /
is disjoint from M . Now observe that the CR structure, polynomial convexity (both of the
tubes and the enclosed CR-singular curves) and the TRC cobordism class of .M1;H 1/ and
.M2;H 2/ remain unchanged under transformations of the form A W z 7! rz � p, where r > 0
and p 2 C3k . For such a map A, we call .A.Mj /;H j ı A/ a copy of .Mj ;H j /, and it is
a parametrized tube in Bp.r/ enclosing the CR-singular curve A.
/.

Let .K1; G1/; : : : ; .K`0 ; G`0/ be copies of .M1;H
1/ in Bp1.r1/; : : : ; Bp`0 .r`0/, respec-

tively, and .K`0C1; G`0C1/; : : : ; .K`; G`/ copies of .M2;H
2/ inBp`0C1.r`0C1/; : : : ; Bp`.r`/,

respectively. Denote by 
j the CR-singular curve enclosed by Kj , j D 1; : : : ; `.
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Finally, note that (i) and (ii) hold by construction. Since K1; : : : ; K` and 
1; : : : ; 
` are
polynomially convex subsets of C3k contained in the balls Bp1.r1/; : : : ; Bp`.r`/, respectively,
Lemma 5.1 gives (iii) and (iv). This concludes the proof of Lemma 5.2.

Fix a j 2 ¹1; : : : ; `º. By the neighborhood replacement result, i.e., Proposition 4.6, there
is a smooth embedding

‰Nj ;Kj W S
1
� 2D2k ! C3k

such that if we set
Tj WD ‰Nj ;Kj .S

1
� 2D2k/;

then

(a) àTj D àNj ,

(b) a collar of àTj in Tj , say coll.àTj /, coincides with a collar of àNj in Nj ,

(c) Kj � Tj , and Tj is totally real everywhere except along 
j � Kj .

Let N 0j � Nj be a slightly thinner tubular neighborhood of Cj chosen so that àN 0j � coll.àTj /.
Now, letting M � DM n .N 01 [ � � � [N 0

`
/, we set

M1 DM
�
[

 [̀
jD1

Tj

!
:

We note the inclusion map � WM1 ! C3k is an immersion of M whose image is totally real
except along � D 
1 [ � � � [ 
`, which admits a polynomially convex neighborhood K in M1.
Moreover, � is a smooth embedding when restricted to a sufficiently small open neighborhood
of K in M1. Thus, by the relative version of the weak Whitney embedding theorem, we may
perturb �, keeping it fixed over K, to obtain a smooth embedding j WM ! C3k such that
K � j.M/, and j.M/ n � is totally real.

Note that j.M/ nKı is a compact totally real smooth submanifold of C3k with bound-
ary, and K is polynomially convex. Thus, we can apply the following result due to Arosio and
Wold (see [5, Theorem 1.4]).

Theorem. Let N be a compact smooth manifold (possibly with boundary) of dimen-
sion d < n and let f W N ! Cn be a totally real C1-embedding. Let X � Cn be a compact
polynomially convex set. Then, for all s � 1 and for all " > 0, there exists a totally real
C1-embedding f" W N ! Cn such that

(a) kf � f"kCs.N/ < ",

(b) f" D f on f �1.X/, and

(c) 4X [ f".N / D X [ f".N /.

We set N DM n j�1.Kı/, X D K and f D j jN , and let " > 0 be arbitrary but fixed.
Then M 0 D f".N n j�1.K// [K is an embedded submanifold of C3k that is diffeomorphic
to M , polynomially convex, and totally real away from � �M 0, which is a union of finitely
many disjoint simple closed curves. This gives items (1) and (2) of the theorem.

It remains to show that C.M 0/ D P .M 0/. For this, we use the following result due to
O’Farrel–Preskenis–Walsch; see [28] or [30, Section 6.3].
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Theorem. LetX be a compact holomorphically convex set in Cn, and letX0 be a closed
subset of X for which X nX0 is a totally real subset of the manifold Cn nX0. A function
f 2 C.X/ can be approximated uniformly on X by functions holomorphic on a neighborhood
ofX if and only if f jX0 can be approximated uniformly onX0 by functions holomorphic onX .

First, we apply the above result (or an earlier version by Harvey–Wells; see [19]) to
X D � and X0 D ; to obtain that any f 2 C.�/ can be approximated uniformly on � by
functions holomorphic on a neighborhood of � . Since � is polynomially convex, the Oka–Weil
theorem allows us to conclude that C.�/ D P .�/. Thus, X WDM 0 and X0 D � satisfy the
hypothesis of the O’Farrel–Preskenis–Walsch result, and any f 2 C.M 0/ can be approximated
uniformly on M 0 by functions holomorphic on a neighborhood of M 0. Once again, applying
the Oka–Weil theorem to the polynomially convex set M 0, we obtain that C.M 0/ D P .M 0/.

5.2. Proof of Theorem 1.2. We let � WM ! C3k be the embedding granted by Theo-
rem 1.1. Recall from the proof of the theorem that the CR-singular set � of �.M/ is contained
in a polynomially convex compact set K � �.M/. Now, by Lemma 5.1, we can find a small
closed ball Y � C3k that is disjoint from �.M/ and is such thatK [Q is polynomially convex
for any polynomially convex subset Q � Y . We now find a copy of A – the tube constructed
in Section 4.4 – in the ball Y , by using an appropriate map of the form z 7! rz � p, r > 0,
p 2 C3k . We abuse notation and call this copy and the Alexander set contained in it A and E,
respectively. Since bE � Y , K [ bE is polynomially convex.

Now, let N be a fully-TR tube in some small totally real ball B � �.M/. Then, by tak-
ing any parametrization of B by D2kC1 and restricting it to a copy of S1 �D2k in D2kC1,
we obtain an admissible parametrization N whose frame map induces the trivial element
in ŒS1 � S2k�1; W2kC1;3k�. Using the neighborhood replacement result and Lemma 4.11,
we replace N by A. Combined with the relative version of the weak Whitney Embedding
Theorem, this gives an embedding j WM ! C3k such that
� j coincides with � on ��1.K/,
� j.M/ n � is totally real, and
� there is a totally real ball B 0 � j.M/ that contains A.

We now apply the Aroiso–Wold perturbation result stated in Section 5.1 toN DM n j�1.K/,
X D bE [K and j jN . We obtain a smooth embedding of M into C3k�1 whose image †
contains E [K, is totally real away from � , and

2
† [ bE D † [ bE:

Thus, b† D2† [E D † [ bE. Now, if bE was contained in †, then † would be a polynomially
convex manifold that is totally real except along the polynomially convex set � . This is pre-
cisely the situation handled in the proof of Theorem 1.1 using the O’Farrel–Preskenis–Walsch
result cited above. Using the same technique, we see that any subset T of such a manifold has
the property that C.T / D P .T /, and thus is polynomially convex. This contradicts the fact that
E � † is not polynomially convex. Thus, b† n† is nonempty but contains no analytic disk.

To show that b† D hr.†/, we use an argument due to Izzo, who showed in [22, Section 3]
that E satisfies the generalized argument principle, i.e., if p is a polynomial that has a contin-
uous logarithm on E, then 0 … p.E/. We now apply the following result due to Stolzenberg
([29]) to X D E and Y D B 0.
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Theorem. IfX � Y � Cn are compact sets such thatX satisfies the generalized argu-
ment principle and the first Čech cohomology group LH1.Y;Z/ vanishes, then bX � hr.Y /.

Thus, b† D † [ bE � hr.†/, and the two hulls coincide.
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