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1. INTRODUCTION

Denote by Jst the standard complex structure of C
n; the value of n will be clear from the

context. Let D = {ζ ∈ C : |ζ| < 1} be the unit disc in C equipped with Jst and (M,J) be an
(almost) complex manifold with an (almost) complex structure J . A J-complex (or J-holomorphic)
disc in M is a map f : D → M holomorphic with respect to Jst and J ; following tradition, we often
identify f with its image. When the complex structure J is fixed, we simply say that f is a complex
(or holomorphic) disc.

If a disc f is continuous on D, the restriction f |∂D is called the boundary of f . We say that the
boundary of f is attached or glued to a subset K ⊂ M if f(∂D) ⊂ K. Construction of complex
discs with boundaries on a prescribed (compact) subset of M is an old and fundamental problem
in complex geometry. It plays a major role in the theory of polynomially, holomorphically, or
plurisubharmonically (psh) convex hulls (see [9, 22]).

The seminal paper [10] by Gromov reveals a profound connection between the hull problems in
complex geometry and symplectic and contact geometry. One of his most striking results states that
a smooth compact Lagrangian submanifold E of Cn contains the boundary of a nonconstant complex
disc. In [11] Gromov suggested that his proof must also work for the case of arbitrary Lagrangian
immersions to C

n. This could be a very natural extension of this result, since the existence of a La-
grangian immersion is a topologically much less restrictive condition on E than that of a Lagrangian
embedding (see [3, 9]). Nevertheless, later on it became clear that some technical difficulties occur.
A complex disc with the boundary glued to E essentially arises in Gromov’s method as a disc-bubble
which is smooth on D \ {1}. When E is smooth, Gromov’s removable boundary singularity theorem
allows one to extend the map to the whole boundary ∂D, since in the Lagrangian case the area of a
bubble is bounded. The difficulty is to prove an analogous removable singularity theorem for discs
attached to immersed manifolds. In the present study we propose an approach inspired by the work
of Alexander [1], who adapted Gromov’s method to the case of totally real manifolds.

A nearly smooth complex disc of class Cm is a bounded complex disc f : D → M which extends
Cm-smoothly to ∂D \ {1}. We say that a nearly smooth complex disc f is attached to a compact
subset K ⊂ M if f(∂D \ {1}) ⊂ K. If additionally f is nonconstant, we call it an A-disc of
class Cm, after Herbert Alexander, who proved the existence of such discs for totally real (not
necessarily Lagrangian) manifolds in C

n (see [1]). We simply call it A-disc if it is of class C∞.
Alexander’s proof combines Gromov’s general method with the standard complex analytic tools
avoiding application of Gromov’s compactness theorem. For this reason his approach relies heavily
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on the affine structure of C
n. In [20] we extended this result to the case of certain totally real

immersions to C
n. The goal of the present paper is to extend Alexander’s result and the results

in [20] to the case of totally real immersions to some Stein manifolds (in fact, integrability of
the complex structure is not needed for some of our results). Here we use the general approach
of Gromov. It turns out that Alexander’s version of Gromov’s result can indeed be generalized to
immersions by almost literally following Gromov’s method (Theorem 2.4). As a consequence we find
that a totally real immersion of dimension n to a complex n-dimensional manifold of type C ×X,
where X is Stein, is not psh convex (Corollary 2.5).

In Section 3 we consider hulls of Lagrangian immersions into Stein manifolds. Our main observa-
tion is that removal of the boundary singularity is connected with the “complex” convexity properties
of the singular set of the immersed manifold. In [20] we used the polynomial convexity working
in C

n; the notion of plurisubharmonic convexity is suitable in the Stein case. We prove the remov-
able boundary singularity property (and hence the existence of a nonconstant complex disc with
boundary glued to E) for a Lagrangian immersion E with isolated locally psh convex singularities
(Theorem 3.4). This condition always holds for transverse double intersections (Proposition 3.2).

2. GLUING DISCS TO TOTALLY REAL EMBEDDINGS AND IMMERSIONS

The study of symplectic properties of Stein manifolds started in the foundational work of Eliash-
berg and Gromov [8] and was continued by many authors. Recall that an (almost) complex manifold
is called a Stein manifold if it admits a smooth strictly plurisubharmonic exhaustion function. Let
(X,JX ) be a Stein manifold of complex dimension n − 1 with a complex structure JX . Fix a
symplectic form ωX taming JX on X, i.e., ω(v, JXv) > 0 for every nonzero tangent vector v
(see [3, 16, 21]). We use the notation (X,ωX , JX) for a complex manifold equipped with a taming
symplectic form and a complex structure. Denote by ωst = (i/2)

∑n
j=1 dzj ∧ dzj the standard

symplectic form on C
n; the value of n will be clear from the context. The product M = C × X

is also a Stein manifold with the complex structure J = Jst ⊗ JX and the taming symplectic form
ω = ωst ⊕ ωX . We call such an M a reducible Stein manifold. This class of Stein manifolds is our
main object of study.

According to the classical theory of Stein manifolds, a complex manifold M is a Stein manifold
if and only if it admits a smooth strictly plurisubharmonic exhaustion function ρ. In the almost
complex case the existence of such a function is required by the definition of an almost complex
Stein structure (see [7, 8]). For every positive integer k the sublevel set Mk = {p ∈ M : ρ(p) < k}
is a relatively compact domain in M , and the increasing sequence (Mk) is an exhaustion sequence
for M . Consider a J-complex disc f : D → M continuous on D and such that f(∂D) ⊂ ∂Mk.
Applying the maximum principle to the subharmonic function ρ ◦ f on the unit disc, we conclude
that f(D) is contained in Mk. This means that every Stein manifold is convex at infinity in the
sense of [10] and Gromov’s compactness theorem can be applied on this class of manifolds. We will
use this fact in the present paper.

Recall that ω and J canonically define the metric h by h(u, v) = (ω(u, Jv) + ω(v, Ju))/2. In
what follows we use the norms and distances on M induced by h.

For a J-complex disc f : D → (M,ω, J), D 	 ζ = ξ + iη 
→ f(ζ), its (symplectic) area is
defined by

area(f) =

∫

D

f∗ω. (2.1)

The quantity

E(f) :=
1

2

∫

D

(∥
∥
∥
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∥
∥
∥
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h
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∥
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∥
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∥
∥
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2

h

)

dξ ∧ dη, (2.2)
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where the norm ‖·‖h is taken with respect to h, is called the energy of f . It coincides with the area
defined by the metric h:

E(f) = area(f). (2.3)

This fundamental equality is called the energy identity (see, for instance, [16]). Similar notions still
make sense for holomorphic maps f : (Ω, Jst) → (M,ω, J), where Ω is a domain in C. Of course, in
this case the unit disc D must be replaced with Ω in (2.1)–(2.3).

Recall that a submanifold E in (M,ω, J) is called totally real if TpE ∩ JTpE = {0} for every
point p ∈ E, and is called Lagrangian if ω|E = 0 and dimE = n. It is well known that every
Lagrangian manifold is totally real if J is tamed by ω; the converse is in general not true. In
the present paper we consider only totally real submanifolds of maximal possible dimension n in a
manifold (M,ω, J) of complex dimension n.

We begin with the embedded case. Our first result is the following theorem.
Theorem 2.1. Let E be a compact totally real C∞-smooth submanifold of real dimension n in

a reducible Stein manifold M of complex dimension n. Then there exists an A-disc attached to E.
As mentioned in the Introduction, Alexander proved this result for M = C

n. We present a proof
which does not use the integrability of the complex structure J . In fact, even if J is integrable,
Gromov’s method requires the use of almost complex structures.

Proof of Theorem 2.1. First we define suitable manifolds of discs.
Fix a point p ∈ E and fix also a non-integer r > 1. Consider the set of maps

F =
{
f ∈ Cr+1(D,M) : f(∂D) ⊂ E, f(1) = p

}
. (2.4)

Note that f is defined on the boundary of D, because it satisfies the Hölder condition in the disc.
Denote by F an open subset of F which consists of f homotopic to a constant map f0 ≡ p. It

is well known that F is a C∞-smooth complex Banach manifold. A disc f is holomorphic if and
only if it satisfies the Cauchy–Riemann equation

J ◦ df = df ◦ Jst. (2.5)

Let z = (z1, . . . , zn) ∈ C
n be local coordinates on M (not necessarily holomorphic with respect to J)

in a neighbourhood U of a point p ∈ M . That is, z : U → C
n is a smooth local diffeomorphism

and z(p) = 0. The direct image z∗(J) = dz ◦ J ◦ dz−1 of J can be viewed as a complex structure
in a neighbourhood of the origin. One can always choose z such that the structure z∗(J) coincides
with Jst at the origin.

In these coordinates a disc f can in turn be viewed as a map z : D → C
n, ζ 
→ z(ζ), and the

Cauchy–Riemann equations can be written in the form convenient for the usual analytic tools:

zζ −A(z)zζ = 0, (2.6)

where the complex n × n matrix function A = A(z) satisfies the condition ‖A‖ < 1; we use the
matrix norm induced by the Euclidean inner product. More precisely, A is uniquely determined
by J as the matrix representation of the operator (Jst + z∗(J))−1(Jst − z∗(J)), which is complex
antilinear with respect to Jst. In particular, A(0) = 0, since z∗(J) coincides with Jst at the origin.
The integrability of J means that the local coordinates can be chosen to be holomorphic, which is
equivalent to A vanishing identically in a neighbourhood of the origin (see more details in [17]).

Denote by V the bundle D × TM over D × M . For every disc f , consider Vf = f∗TM , the
pull-back by f of the tangent bundle TM . It can be viewed as the restriction of V to the graph
of f in D × M . Denote by Ω0,1

D the bundle of (0, 1)-forms on D. Extend this bundle to D × M
keeping the same notation Ω0,1

D. Then we obtain the bundle Ω0,1
D⊗ V over D×M .
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We introduce the operator ∂J by setting

∂Jf =
1

2
(df + J ◦ df ◦ Jst). (2.7)

This is just the complex antilinear part of df with respect to J . This operator takes its values in the
bundle Ω0,1

D⊗ V . More precisely, for every ζ ∈ D the expression ∂Jf(ζ) belongs to Ω0,1
ζ D⊗ V(ζ,f(ζ)),

the fibre of Ω0,1
D ⊗ V over (ζ, f(ζ)). Conversely, for every continuous section g = g(ζ, z) ∈

Γ(D×M,Ω0,1
D⊗ V ) we can consider the nonhomogeneous Cauchy–Riemann equation

∂Jf(ζ) = g(ζ, f(ζ)). (2.8)

A more detailed discussion can be found in [10, 12, 16, 17].
An observation of Gromov [10] allows us to interpret the nonhomogeneous equation (2.8) as

the usual Cauchy–Riemann equation (2.5) for a suitable almost complex structure determined by J
and g.

Consider the product D×M and define there an almost complex structure Jg by

Jg =

(
Jst 0
g J

)

. (2.9)

Note that Jg|TM = J .

Lemma 2.2 (see [10]). A disc f : D → M satisfies (2.8) if and only if the map f̂ : ζ 
→ (ζ, f(ζ))
is Jg-complex, i.e., satisfies equation (2.5) with J = Jg. Furthermore, there exists a constant
C0 = C0(M,ω, J) such that for every g ∈ C0(D ×M,Ω0,1

D ⊗ V ) with ‖g‖L∞(D×M) ≤ C1 < ∞ the
structure Jg is tamed by the symplectic form ω̂ = C0C1ωst ⊕ ω.

This construction can easily be viewed in local coordinates quite similarly to the equivalence
between the coordinate-free version of the homogeneous Cauchy–Riemann equations (2.5) and their
coordinate representation (2.6). Indeed, consider the lift f̂ : ζ 
→ (ζ, f(ζ)) of f to C

n+1 = Cw × C
n
z .

In coordinates on C
n a section g can be viewed as a “vector-valued” form, i.e., a (0, 1)-form on D

with values in C
n. Hence, it can be identified with a map g : D → C

n (we denote it again by g).
Then in coordinates the nonhomogeneous ∂J -equation (2.8) can be written in the form

zζ(ζ)−A(z(ζ))z(ζ)ζ = g(ζ), (2.10)

which is equivalent to the following PDE system for the lift f̂ :
{
wζ = 0,

zζ − g(w)wζ −A(z)zζ = 0.
(2.11)

This is precisely the (homogeneous) Cauchy–Riemann equations (2.6) for the almost complex struc-
ture Jg on D× C

n.
Denote by G the complex Banach space of all sections g ∈ Cr(D ×M,Ω0,1

D⊗ V ). Set

H =
{
(f, g) ∈ F ×G : ∂Jf = g

}
. (2.12)

Then H is a connected submanifold of F ×G.
We need the following
Lemma 2.3. Suppose that a sequence (fk) in F converges to a continuous mapping f :

(D, ∂D) → (M,E) uniformly on D and the sequence (gk), gk := ∂Jfk, converges in G to g ∈ G.
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Assume also that the energies E(fk) are uniformly bounded. Then f ∈ Cr+1(D) and (fk) converges
to f in F after possibly passing to a subsequence.

This is quite a special case of Gromov’s compactness theorem [10] (see details in [21, Proposi-
tion 5.1.2]). Indeed, the lifts f̂k are attached to the manifold Ê := ∂D × E, which is totally real
with respect to the almost complex structure Jgk . By the hypothesis of the lemma, the areas of f̂k
are uniformly bounded. Since the sequence (f̂k) converges uniformly, bubbles cannot occur and the
lemma follows by Gromov’s compactness. Note that the simplest version of Gromov’s compactness
theorem is used here. The proof is based on standard elliptic estimates in the interior of the disc and
near the boundary, where the reflection principle can be used (for the refection principle and elliptic
estimates for J-complex curves with totally real boundary data, see, for example, [13]). Technically
all elliptic estimates follow from the classical regularity properties of the integral transform

Tjf(ζ) =
1

2πi

∫

D

f(τ) dτ ∧ dτ

(τ − ζ)j
, j = 1, 2.

For j = 1 this is the ordinary Cauchy transform; for j = 2 this is its formal derivative (the Beurling
transform), which is defined as a singular integral operator (i.e., in the sense of the Cauchy principal
value). In the case of (Cn, Jst) considered by Alexander, we have A = 0 in equations (2.6) and the
proof becomes particularly transparent (in particular, the Beurling transform is not needed). We
point out that all estimates are purely local and can be obtained near each interior point in D or a
point in ∂D, and then globalized using finite open coverings.

Recall that a linear bounded map u : L → L′ between two Banach spaces is called a Fredholm
operator if ker u and coker u have finite dimension; the Fredholm index dimker u − dimcoker u is
homotopy invariant. A C1-map φ : M1 → M2 between two Banach manifolds is called a Fredholm
map if for every point q ∈ M1 the tangent map dφq : TqM1 → Tφ(q)M2 is a Fredholm operator; the
index of the tangent map is independent of q and is called the index of φ. A point q ∈ M1 is called
a regular point if dφq is surjective. A point p ∈ M2 is called a regular value if φ−1(p) does not
contain nonregular points (in particular, φ−1(p) can be empty).

Consider the canonical projection π : H → G given by π(f, g) = g. The following properties
of π are well known [1, 10, 12]:

(i) π is a map of class C1 between two Banach manifolds;
(ii) π is a Fredholm map of index 0;
(iii) the constant map f0 is a regular point for π.

The crucial property of π is that the map π : H → G is not surjective [1, 10, 12]. More
precisely, in our case it follows from the argument of [12, p. 104]. Note that this argument requires
that M = C × X; this is why we consider reducible Stein manifolds rather than arbitrary Stein
manifolds.

Arguing by contradiction, suppose that an A-disc of class Cr+1(D) for E does not exist. In
particular, π−1(0) = {f0}. Then 0 ∈ G is a regular value of π. If π is proper, then Gromov’s
argument based on the Sard–Smale theorem implies the surjectivity of π (see [1, 10, 12]), which is
a contradiction. Thus, it remains to show that π : H → G is proper.

All we need is a well-known description of bubbling; we follow [21]. Arguing by contradiction,
suppose that π is not proper. Then there exists a sequence {(fk, gk)} ⊂ H such that gk → g in G

but fk diverge in F . Consider the lifts f̂k(ζ) = (ζ, fk(ζ)) and f̂ : D → C × M as in Lemma 2.2.
Every f̂k is holomorphic with respect to the almost complex structure Jgk tamed by the symplectic
form ω̂ as in Lemma 2.2. We measure norms and distances using the metric hk defined by ω̂ and Jgk .
Set Mk = sup

D
‖df̂k(ζ)‖. There exists λk ∈ D such that Mk = ‖df̂k(λk)‖.
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If the sequence (Mk) is bounded, then by Lemma 2.3 the sequence (fk) converges, so we can
assume that Mk → +∞.

Case 1: the sequence (λk) converges to a point in D. Without loss of generality assume that it
converges to 0. Consider the renormalized sequence Fk(ζ) := f̂k(λk + ζ/Mk). Then the gradients of
the maps in this sequence are uniformly bounded on every compact subset of C and we can assume
that it converges uniformly to some Jg-holomorphic map f̂ : C → D×M . This map is bounded since
the sequence (f̂k) is. Furthermore, f̂ = (0, f) and the map f is holomorphic with respect to JX (see
equations (2.11)). Since (X,JX ) is a Stein manifold, it admits a strictly plurisubharmonic function
u. Then the composition u ◦ f is a subharmonic function bounded on C \ {0}. Therefore, it extends
as a bounded subharmonic function on C. Hence u ◦ f is constant and f is constant. However, it
is easy to check that ‖dF̂k(0)‖ = 1 (see [21, p. 184, case (a)]). This is a contradiction.

Case 2: the sequence (λk) converges to a point in ∂D. Let δk = 1 − |λk|. If (Mkδk) is an
unbounded sequence, then, arguing as in [21, p. 184, case (b)], we reduce the situation to case 1.
Hence, the only possibility is that the sequence (Mkδk) is bounded. Then the standard renormal-
ization argument [21, p. 184, case (c)] produces a noncompact sequence (φk) of automorphisms of D
such that (φk) converges uniformly on compact subsets of D \ {1} to a constant map and such that
the maps f̂k ◦ φk have uniformly bounded gradients on every compact subset of D \ {1}. One can
assume that the sequence (f̂k ◦ φk) converges uniformly on every compact subset of D \ {1}. By
Lemma 2.3 the convergence will be in the Cm-norm on every compact subset of D \ {1} for every m
to a Jg-complex disc. The limit map is nonconstant, as shown in [21, p. 184, case (c)]. Hence, the
limit is an A-disc for Ê of the form (const, f). Then f is an A-disc for E. This is a contradiction,
which proves that π is proper and completes the proof of Theorem 2.1. �

Note that in the above argument the discs in renormalized sequences have uniformly bounded
gradients (hence uniformly bounded areas) only on compact subsets of D \ {1}. Therefore, in general
the whole area of a constructed A-disc can be infinite. If E is a Lagrangian manifold, then the areas
of compact sets in D are uniformly bounded and the constructed A-disc f has a bounded area, so
it is just the usual bubble. By Gromov’s removable singularity theorem, f extends to the point 1
as a map of class C∞(D), and we obtain Gromov’s theorem on the existence of a nonconstant
holomorphic disc attached to a Lagrangian submanifold in C

n.
Consider now the case of totally real immersions. Only minor modifications of the above ar-

gument are needed. Let E = (Ẽ, ι) be a pair which consists of a compact smooth manifold Ẽ of
dimension n and a C∞-smooth totally real immersion ι : Ẽ → M . We will identify it with the
image ι(Ẽ) and simply say that E is an immersed totally real manifold in M . We say that an
A-disc f is adapted for the immersion E if for every point ζ ∈ ∂D \ {1} there exists an open arc
γ ⊂ ∂D containing ζ and a smooth map fb : γ → Ẽ satisfying ι ◦ fb = f |γ . In other words, in a
neighbourhood of every self-intersection point p of E, the values of f belong to a smooth component
of E through p. By the cluster set C(f, ∂D) of a complex disc we mean the set of partial limits of
the sequences f(ζk) for all sequences (ζk) in D converging to ∂D, i.e., such that dist(ζk, ∂D) → 0.

Theorem 2.4. Let E = (Ẽ, ι) be an immersed totally real manifold in a reducible Stein man-
ifold M . Then

(i) there exists an adapted A-disc f ∈ C(D \ {1}) for E;

(ii) if in addition E is Lagrangian, then f is of bounded area with the cluster set C(f, ∂D)
contained in E; its image Σ = f(D) is a holomorphic curve of bounded area with the boundary
∂Σ := Σ \Σ contained in E.

Proof. We begin with assertion (i). Fix a point p = ι(p̃) ∈ E which is not a self-intersection
point and also fix a non-integer r > 1. Consider the set of pairs

F =
{
(f, fb) ∈ Cr+1(D,M)× Cr+1(∂D, Ẽ) : f(∂D) ⊂ E, f(1) = p, ι ◦ fb = f |∂D

}
. (2.13)
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In other words, together with a (not necessarily complex) disc f we specify a lift of its boundary to
the manifold Ẽ. For brevity we write f instead of (f, fb).

Denote by F an open subset of F which consists of f homotopic to a constant map f0 ≡ p
in F . It is well known that F is a C∞-smooth complex Banach manifold. Now we define G and H
as above. Note that H is a connected submanifold of F ×G.

An immediate but crucial observation is that the proof of Lemma 2.3 is purely local, i.e., all
estimates and the convergence are established in a neighbourhood of a given boundary point of a
disc. This local character of Lemma 2.3 allows us to pass automatically from an embedded E to a
globally immersed E = (Ẽ, ι) in Lemma 2.3. Indeed, suppose that q is a self-intersection point of E
and f(ζ0) = q for some ζ0 ∈ ∂D. It follows from the uniform convergence of the sequence (fk) and
the definition of the set F that there exists a neighbourhood U of ζ0 such that f(U ∩ ∂D) and, after
passing to a subsequence, all fk(U ∩ ∂D) belong to the same smooth component through p of the
immersed manifold E. This reduces the situation to the embedded case of Gromov’s compactness
theorem.

The canonical projection π : H → G has the same properties as in the embedded case (see [1, 12]).
Arguing again by contradiction, assume that an adapted A-disc of class Cr+1(D) for E does not
exist. As above, in order to get a contradiction, we show that π : H → G is proper.

Suppose on the contrary that π is not proper and consider a sequence {(fk, gk)} ⊂ H as above
and the corresponding Mk and λk. If the sequence (Mk) is bounded, then by Lemma 2.3 the
sequence (fk) converges, so we may assume that Mk → +∞.

Case 1: the sequence (λk) converges to a point of D. In this case we obtain a contradiction as
in the previous theorem.

Case 2: the sequence (λk) converges to a point of ∂D. Again, as in the previous proof, this case
can be handled using a normalization. It provides a noncompact sequence (φk) of automorphisms
of D such that (φk) converges uniformly on compact subsets of D \ {1} to a constant map and
such that f̂k ◦ φk have uniformly bounded gradients on every compact subset of D \ {1}. Hence
we assume that the sequence (f̂k ◦ φk) converges uniformly there. Recall that we are dealing with
adapted discs; locally their boundaries are attached (along every sufficiently small open arc) to a
single regular branch of E, which is an embedded manifold. Since Lemma 2.3 is local, it applies
in our situation, which gives the convergence also in the Cr+1-norm on every compact subset in
D \ {1} (the intersection K ∩ ∂D can be covered by a finite number of open arcs such that every
arc is taken by the maps to a single regular branch of E). This is the key observation that makes
Alexander’s construction valid in the immersed case. Since locally E is an embedding and the limit
disc is adapted, it is C∞-smooth on D \ {1} by the boundary regularity theorem for complex discs
with (embedded) totally real boundary value conditions (see, for example, [13, 21]). Therefore, the
limit disc is an adapted A-disc of the form (const, f) for Ê. Then f is an adapted A-disc for E.
This contradiction proves that π is proper and completes the proof of assertion (i).

To prove assertion (ii), note that the A-disc f constructed in assertion (i) is of bounded area.
It follows from [14, Lemma A.4.1] that the cluster set C(f, ∂D) is contained in E. This completes
the proof. �

Let K be a compact subset in a complex manifold M . Its psh convex hull is defined by

K̂psh
M =

{

p ∈ M
∣
∣ u(p) ≤ sup

K
u for all continuous plurisubharmonic functions u : M → R

}

.

Such a K is called psh convex in M if K̂psh
M = K (see, for example, [3, 22]).

Corollary 2.5. Let E be a compact totally real immersion of dimension n in a reducible Stein
manifold M of complex dimension n. Then E is not psh convex.
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This follows from Theorem 2.4(i), because by the maximum principle for subharmonic functions
an A-disc is contained in the psh convex hull of E (of course, E does not contain nonconstant
holomorphic curves since it is totally real).

Remarks and comments. 1. Theorems 2.1 and 2.4 remain true for an almost complex Stein
manifold (M,ω, J) = C × X with a symplectic form ω taming J . Indeed, all proofs go through
without modifications. The existence of a strictly plurisubharmonic function implies that a bounded
holomorphic map from C \ {0} to X is constant; we used this in case 1 of the above proof.

2. Corollary 2.5 is well known in the case when M = C
n and E is a smooth (or even topological)

submanifold (see [3, 22]); for totally real immersions in C
n it is obtained in [20]. Note that the

topological methods used in [3, 22] can be adapted to the situation considered in Corollary 2.5.
This was pointed out to us by S. Nemirovski. We also point out that, as is well known, there exist
compact totally real manifolds (for example, some n-tori in C

n) which do not contain the whole
boundary of a nonconstant complex disc (see [2, 5]). An A-disc for such a manifold necessarily has
infinite area.

3. Ivashkovich and Shevchishin [12] proved the existence of a complex disc f attached to an
immersed Lagrangian manifold E under the assumption of weak transversality of E; in particular,
this assumption holds for transverse double intersections. Their approach follows the original work
of Gromov. They proved a general version of the compactness theorem (including the reflection prin-
ciple and the removal of singularities) for J-complex curves with boundaries glued to a Lagrangian
immersion with weakly transverse self-intersections. Their method also works for some symplectic
manifolds of the form C ×X with tamed almost complex structures satisfying the assumptions of
Gromov’s compactness theorem.

4. It seems quite possible that our results can be extended to a wider class of Stein manifolds
than the one of reducible Stein manifolds. On the other hand, it is clear that some restrictions on
a class of Stein manifolds are necessary. Indeed, let E = {z = (z1, z2) ∈ C

2 | |zj | = 1, j = 1, 2} be
the standard torus in C

2. The function ρ(z) = dist(z,E)2 (the usual Euclidean distance) is strictly
plurisubharmonic in a neighbourhood of E and M = {z : ρ(z) < ε} is a Stein manifold for ε > 0
small enough. It follows by the maximum principle that every nearly smooth complex disc in M
with boundary attached to E is constant.

5. Since the complex curve Σ constructed in Theorem 2.4(ii) has finite area, it defines the
current of integration [Σ], which acts on a (1, 1) test form φ by

〈[Σ], φ〉 =
∫

Σ

φ.

This is a positive current of finite mass and of bidimension (1, 1) such that its support is contained
in the hull of a Lagrangian immersion E and the support of the boundary current d[Σ] is contained
in E. If E is only totally real, an A-disc can have an infinite area and the current [Σ] is not defined.
Nevertheless, Duval and Sibony [6] showed how to use an A-disc in order to construct a positive
current of bidimension (1, 1) and of finite mass with the support contained in the polynomially
convex hull of a totally real submanifold of C

n and with the boundary contained in E; their result
also holds for totally real immersions [20] in C

n (of course, in general such a current is not a
current of integration over a complex curve). Using Theorems 2.1 and 2.4, one can easily extend
these results to the case of Stein manifolds. Applying methods of symplectic topology, Viterbo [23]
proved that a totally real submanifold in an n-dimensional Stein manifold admitting an exhaustion
strictly plurisubharmonic function with critical points of Morse index <n contains the boundary of
a complex curve.
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6. Let E be a compact subset of C
n and p be a point in the polynomially convex hull of E.

A number of papers are devoted to the construction of a holomorphic disc f centred at p with
(a part of) the boundary contained in a prescribed neighbourhood of E. The first result of this
type is due to Poletsky [18]. It was extended in several directions by Lárusson and Sigurdsson [15],
Rosay [19], Drinovec Drnovšek and Forstnerič [4], and other authors.

7. If E is a smooth Lagrangian embedding in C
n, the existence of a non-constant complex

disc glued to E implies that E cannot be exact. This follows by a simple application of the
Stokes formula: the symplectic area of such a disc is strictly positive and this immediately gives
a contradiction to the exactness. However, this argument uses the high boundary regularity of a
complex disc. In the case of Lagrangian immersion, the attached complex discs are just continuous
up to the boundary. In general, they do not form an obstacle to the exactness. For example,
Alexander [2] studied the hull of an exact Lagrangian immersion of the sphere S2 to C

2. The
hull is filled with a one-parameter family of complex discs whose boundaries contain the only self-
intersection point of the sphere. These discs are not regular enough, and the immersion is exact.

3. LAGRANGIAN IMMERSIONS TO STEIN MANIFOLDS

We begin with
Definition 3.1. A closed subset S of a complex manifold M is called locally psh convex near

a point p ∈ X if there exists a Stein neighbourhood U of p such that for every sufficiently small
ε > 0 the intersection S ∩ B(p, ε) is psh convex in U .

Our next result establishes the local plurisubharmonic convexity near transverse self-intersection
of Lagrangian immersions.

Theorem 3.2. Let (M,ω, J) be a Stein manifold of complex dimension n. Assume that L1

and L2 are smooth totally real submanifolds such that their tangent spaces TpL1 and TpL2 are
Lagrangian and intersect transversely at a point p. Then the union L1 ∪ L2 is locally psh convex
near p.

Proof. The proof can be reduced to the case of C
n considered in [20]. In local holomorphic

coordinates, we can identify p with the origin and view M as an open ball B(0, ε) equipped with
the standard complex structure Jst, where ε > 0 is small enough. Consider the tangent spaces
Ej = T0Lj , j = 1, 2.

Lemma 3.3. The union E1 ∪ E2 is polynomially convex in C
n.

This result was proved in [20] for the case when Ej are Lagrangian spaces with respect to the
standard symplectic structure ωst. The same argument holds in our case of general ω taming Jst.

Proof of Lemma 3.3. If the union E1 ∪ E2 is not polynomially convex in C
n, there exists a

nonconstant holomorphic annulus f with the boundary attached to E1 ∪ E2 (see [20] for details).
This is just a nonconstant map f : Ω → C

n holomorphic on the closed annulus Ω = {ζ ∈ C |
r1 ≤ |ζ| ≤ r2} and such that f(rj∂D) ⊂ Ej, j = 1, 2; here 0 < r1 < r2. For every δ > 0, the
annulus δf also is glued to E1 ∪E2. Choosing δ small enough, we can assume that δf is contained
in B(0, ε). Since Jst is tamed by ω, the symplectic area of δf defined by (2.1) (with Ω instead of D)
is strictly positive. Let a 1-form λ be a primitive of ω in B(0, ε). Since Ej are Lagrangian spaces,
the restrictions λ|Ej , j = 1, 2, are exact. Then by Stokes’ formula the area of δf is independent of δ
and therefore is equal to zero. This is a contradiction. �

Then, by [20], for every ε > 0 small enough the set (L1 ∪ L2) ∩ B(0, ε) is polynomially convex
in C

n. Hence, there exists a smooth nonnegative plurisubharmonic function ρ on C
n which is strictly

plurisubharmonic on C
n \ (L1 ∪ L2 ∩ B(0, ε)) and is such that (L1 ∪ L2) ∩ B(0, ε) = ρ−1(0) (see [22,

Theorem 1.3.8]). Transporting this function to a neighbourhood of p in M by a local holomorphic
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chart, we obtain a function with similar properties near p on M . This is equivalent to the local
plurisubharmonic convexity of L1 ∪ L2 (see [3, Proposition 5.13]). �

Remark. In [7] Eliashberg obtained the following relevant result. Let L1 and L2 be two totally
real submanifolds in C

n intersecting transversely at the origin. Suppose that the union of tangent
spaces T0L1 ∪ T0L2 is invariant with respect to Jst. Then L1 ∪ L2 is locally polynomially convex
near the origin. This result is a special case of Theorem 3.2. Indeed, after a C-linear change of
coordinates we have T0L1 = R

n; therefore T0L2 = iRn. These spaces are Lagrangian with respect
to the standard symplectic form ωst, and the result follows from Theorem 3.2.

Now, arguing literally as in [20], we obtain the following result.

Theorem 3.4. Suppose that a smooth compact Lagrangian immersion L to a reducible Stein
manifold M has a finite number of self-intersection points and is locally psh convex near every self-
intersection point. Then there exists a nonconstant complex disc continuous on D with boundary
attached to L.

Indeed, by [3, Proposition 5.13], for every self-intersection point there exists a neighbourhood U
and a smooth positive plurisubharmonic function ρ on U which is strictly plurisubharmonic on
U \ L and is such that L ∩ U = ρ−1(0). Then similarly to [20, Sect. 5], these functions can be glued
to a global plurisubharmonic function in a neighbourhood of L. Together with Theorem 2.4(ii) this
implies the continuity of a complex disc up to the boundary. In the case of Lagrangian embeddings
we again recover the result of Gromov [10]. In view of Theorem 3.2 we have the following

Corollary 3.5. Let L be a smooth compact Lagrangian immersion to a reducible Stein man-
ifold M with a finite number of double transverse self-intersection points. Then there exists a
nonconstant complex disc continuous on D with the boundary attached to L.

Note that this result is also a consequence of Ivashkovich and Shevchishin’s results [12]. In gen-
eral Theorem 3.4 works in some cases when the Ivashkovich–Shevchishin result cannot be applied.
Indeed, a Lagrangian immersion can be locally psh convex but not weakly transversal in the sense
of [12] (see examples in [20]). It remains an open question whether Corollary 3.5 holds without any
assumption on the set of self-intersection points (as Gromov suggested in [11]). Nevertheless, The-
orem 2.4(ii) gives the existence of a non-constant Riemann surface Σ with the boundary contained
in L without any assumptions on the set of self-intersection points.
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