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Polynomially convex embeddings of even-dimensional
compact manifolds

PURVI GUPTA AND RASUL SHAFIKOV

Abstract. The totally-real embeddability of any m-dimensional compact smooth
manifold M into Cn , n � b3m/2c, has several consequences: the genericity of
polynomially convex embeddings of M into Cn , the existence of n smooth gen-
erators for the Banach algebra C(M), the existence of nonpolynomially convex
embeddings with no analytic disks in their hulls, and the existence of special
plurisubharmonic defining functions. We show that these results can be recov-
ered even when m is even and n = b3m/2c � 1, m > 2, despite the presence of
complex tangencies, thus lowering the known bound for the optimal n in these
(related but inequivalent) questions.

Mathematics Subject Classification (2010): 32E20 (primary); 32V40 (sec-
ondary).

1. Introduction and main results

Polynomial convexity is an important notion largely owing to the Oka-Weil theorem
which states that holomorphic functions in a neighbourhood of a polynomially con-
vex set M (see Section 2 for relevant definitions) can be approximated uniformly
on M by holomorphic polynomials. It is known that if M is a nonmaximally to-
tally real submanifold of Cn , it can be deformed via a small perturbation into a
polynomially convex one, as proved by Forstnerič-Rosay [12], Forstnerič [10], and
Løw-Wold [21]. The condition that any abstract m-dimensional compact real man-
ifold admits a totally real embedding into Cn is well understood: one must have
b3m2 c  n. Thus, any m-dimensional compact manifold can be embedded as a
totally real polynomially convex submanifold of Cn provided that n � b3m2 c and
(m, n) 6= (1, 1).

The bound discussed above is sharp for manifolds without boundary, see [16].
That is, if n < b3m2 c, then certain m-dimensional compact manifolds necessarily
acquire complex tangent directions when embedded into Cn . The points where
the tangent space of M ⇢ Cn contains complex directions are called the CR-
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singularities of M . CR-singularities encode topological information about M when
its codimension in Cn is sufficiently low, such as its Euler characteristic and Pon-
tryagin numbers; see Lai [20], Webster [31], and Domrin [8]. The simplest non-
trivial case of CR-singularities is that of complex points of a real surface in C2,
first studied in the seminal work of Bishop [5]. Different types of complex points
can endow the surface with different local convexity properties (see Section 2 for
derails). Regardless of this, a compact surface in C2 can never be globally polyno-
mially convex.

In this paper we consider the only other case when CR-singularities are gener-
ically isolated and m < n, namely when m = 2k and n = 3k� 1, k > 1, (if m � n,
a smooth M ⇢ Cn can never be polynomially convex; see Stout [29, Section 2.3]).
Beloshapka [4] for k = 2, and Coffman [6] for all k � 2, constructed the normal
form (2.1) for generic CR-singularities of this kind. Our principal result is to show
that, unlike the case of complex points of real surfaces, M is locally polynomially
convex near any such CR-singularity, and as a result, there exists a polynomially
convex embedding of M in C3k�1. More precisely the following holds:

Theorem 1.1. Suppose M is a 2k-dimensional (k > 1) smooth compact connected
submanifold (closed or with boundary) of C3k�1. Then, given any s � 0, there ex-
ists a Cs-small perturbation M 0 of M that is polynomially convex. The submanifold
M 0 is totally real with finitely many generic CR-singularities. If M has non-empty
boundary, then M 0 can be further perturbed to be totally real and polynomially
convex.

The question of the optimal n that allows polynomially convex smooth embed-
dability of all m-dimensional manifolds into Cn was raised in [18, Question 4.].
Theorem 1.1 improves previously known bounds. We note that if the embedding is
merely required to be topological, then Vodovoz and Zaidenberg have shown that
the optimal value of n is m + 1 for all m � 1 (see [30]). Our proof is based on the
idea of perturbation of M away from the set of CR-singularities where M is already
locally polynomially convex; a general result of this type is contained in Arosio-
Wold [2]. For the last part of the theorem, we outline a procedure to remove the
CR-singularities of M 0 by bringing the its boundary closer to the CR-singularities.

We now use Theorem 1.1 to produce generators of the Banach algebra of con-
tinuous complex-valued functions over a smooth compact real manifold. First con-
sider an elementary example. Any continuous function on the circle S1 ⇢ Cz can
be uniformly approximated on S1 by a sequence of polynomial combinations of z
and 1/z. This follows from the Stone-Weierstrass approximation theorem. Gen-
erally, given a real manifold M we say that C`(M), the space of `-times contin-
uously differentiable functions on M , has n-polynomial density if there is a tuple
F = ( f1, ..., fn) of n functions in C1(M) such that the set

{P � F : P is a holomorphic polynomial on Cn}

is dense in C`(M). If F exists, we call { f1, ..., fn} a PD-basis of C`(M). The no-
tions of rational density and an RD-basis can be defined analogously. The existence
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of 2-RD bases for surfaces is discussed in Shafikov-Sukhov [26]. The combined use
of the Oka-Weil theorem and an approximation result by Nirenberg-Wells [23, The-
orem 1] shows that the components of a totally real and polynomially convex em-
bedding F : M ,! Cn give a PD-basis of C`(M) (see [15] for more details).
Thus, any compact real m-manifold has n = b3m2 c-polynomial density. For ` � 1,
this is the optimal value of n for which C`(M) has n-polynomial density for all m-
dimensional manifolds, but for ` = 0 the optimal n appears to be somewhere in the
rangem < n < b3m2 c (see [30] for the case of continuous generators). While it is an
open problem to find this optimal n, Theorem 1.1 gives the following improvement
for even-dimensional manifolds.

Corollary 1.2. Let M be a 2k-dimensional (k > 1) compact manifold. Then, C(M)
has (3k�1)-polynomial density. Further, if M has nonempty boundary, then C`(M)
has (3k � 1)-polynomial density for all ` � 0.

Our techniques also allow us to improve another dimensional bound of interest in
the study of polynomial hulls. In [18], Izzo and Stout show that any surface can
be embedded in C3 so as to have nonpolynomially convex image with no analytic
disk in its hull. They then pose the following question. For a fixed m � 3, what
is the smallest n such that every compact m-dimensional smooth manifold can be
smoothly embedded into Cn as some 6 with b6 \ 6 nonempty but containing no
analytic disk, i.e., there is no nonconstant holomorphic map from the unit disk into
b6 \ 6? In [2], it is shown that if the embedding is also required to be totally real,
then the optimal value of n is b3m/2c, for any m � 2. In [17], it is shown that
the constructions in [18] and [2] can be done so that the rational and polynomial
hulls of the embeddings coincide. In our next result, we show that the answer to the
original question is strictly less than b3m/2c for even-dimensional manifolds.

Proposition 1.3. For any 2k-dimensional (k > 1) compact manifold M , there is a
smooth embedding of M into C3k�1 with image 6 so that b6 \ 6 is nonempty but
contains no analytic disk, and b6 = hr (6), the rationally convex hull of 6.

Our results show that, in spite of the presence of CR-singularities, 2k-submanifolds
in C3k�1 behave like totally real submanifolds of Cn when it comes to polyno-
mial convexity and hulls. A finer analysis of the Beloshapka-Coffman normal form
allows us to recover, albeit with slight modifications, some more properties satis-
fied by totally real submanifolds of Cn . For instance, every polynomially convex
compact set K ⇢ Cn is the zero locus of a smooth nonnegative plurisubharmonic
(p.s.h.) function on Cn that is strictly p.s.h. outside of K (see [29, Theorem 1.3.8]).
If we additionally assume that K is a totally real submanifold, then the function
can be chosen to be strictly p.s.h. everywhere. This follows from the fact that for
any totally real submanifold M ⇢ Cn , the square-distance function, dist2(·,M),
gives a locally defined strictly p.s.h. defining function for M . This local defining
function also grants a symplectic property to rationally convex totally real subman-
ifolds: any such Mm ⇢ Cn is Lagrangian (or isotropic if m < n) with respect to
some Kähler form ! on Cn , i.e., ◆⇤! = 0, where ◆ : M ,! Cn is the inclusion
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map (see Duval-Sibony [9]). We obtain analogous results for 2k-manifolds with
generic CR-singularities. We note that the construction of p.s.h. defining functions
with additional properties is of independent interest in the literature ( [27]), and is
related to the existence of regular Stein neighbourhood bases.

Theorem 1.4. Let M ⇢ C3k�1 be a 2k-dimensional (k > 1) smooth compact
connected submanifold that is totally real except on a finite set of generic CR-
singularities, say S. Then:

(1) M = ⇢�1(0) where ⇢ is a smooth nonnegative function on some neighbour-
hood U of M and is strictly p.s.h. on U \ S;

(2) If M is rationally convex, then M is isotropic with respect to ddc', for some
p.s.h. function ' on C3k�1 that is strictly p.s.h. on C3k�1 \ S;

(3) If M is polynomially convex, then M = ⇢�1(0) where ⇢ is a smooth nonneg-
ative function on C3k�1 and is strictly p.s.h. on C3k�1 \ S.

Statement (2) above yields a variation of the Gromov-Lees theorem [3], which in
turn is an application of Gromov’s h-principle. The Gromov-Lees theorem says
that a compact n-dimensional manifold M admits a Lagrangian immersion into
(Cn,!st) if and only if its complexified tangent bundle is trivializable. This is
the same topological condition that completely characterizes the totally real imm-
ersability of a manifold M in Cn (see [11, Proposition 9.1.4]). Subcritical versions
of these results imply that any compactm-dimensional manifold admits an isotropic
embedding into (Cn,!st) for n � b3m2 c. Furthermore, there exist m-dimensional
manifolds that do not admit such embeddings when n < b3m2 c; see [15] for details.
Despite this fact, our result shows that if m is even, any m-dimensional M can be
embedded as an isotropic submanifold in Cb 3m2 �1c with respect to some degenerate
Kähler form. The proof does not however rely on the h-principle. Instead, we use a
characterization of rational convexity established in Duval-Sibony [9].

ACKNOWLEDGEMENTS. We would like to thank Alexander Izzo for his helpful
comments on an earlier version of this paper. In particular, he observed the rela-
vance of our approach to the question of hulls with no analytic disks, which is now
addressed in Proposition 1.3.

2. Background material

The reader can refer to this section for the notation, terminology and definitions
used in this paper. We begin with some notation:

• Dz(r) and D̄z(r) denote the open and closed disks, respectively, of radius r
centred at z in C;
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• Bp(r) and B̄p(r) denote the open and closed Euclidean balls, respectively, of
radius r centred at p in Cn , n > 1;

• O denotes the origin in Cn (the ‘n’ will be clear from the context);
• Z = (z, w1, ..., w2k�2, ⇣1, ..., ⇣k) denotes the complex coordinates in C3k�1,
where

z = x + iy,
w⌧ = u⌧ + iv⌧ , 1  ⌧  2k � 2,
⇣� = ⇠� + i⌘� , 1  �  k,

is the decomposition of the coordinates into their real and imaginary parts;
• Z 0 = (z, w1, ..., w2k�2, w) denotes the complex coordinates in C2k ;
• ⇠⇤ is the conjugate transpose of the vector ⇠ 2 Cn (viewed as a matrix);
• JC f (Z) denotes the complex Jacobian at Z of the map f : C3k�1 ! Cm ;
• HessC f (Z) denotes the complex Hessian of f : C3k�1 ! R at Z ;
• For any compact set X ⇢ Cn , C(X) is the algebra of complex-valued continuous
functions on X , and P(X) is the closure in C(X) of the subalgebra generated by
all the holomorphic polynomials restricted to X .

A necessary condition for a set X ⇢ Cn to satisfy P(X) = C(X) is that it must
coincide with its polynomially convex hull

bX :=

⇢
x 2 Cn : |P(x)|  sup

z2X
|P(z)|, for all polynomials P in Cn

�
.

If X = bX , we say that X is polynomially convex. If we replace polynomials in the
above definition by rational functions in Cn with no poles on X , then we obtain
the related notions of rationally convex hulls and rational convexity. A sufficient
condition for a polynomially convex submanifold M ⇢ Cn to satisfy C(M) =
P(M) is that M be totally real, i.e., TpM \ iTp(M) = {0} for all p 2 M , where
TpM denotes the real tangent space of M at p. Thus, C(M) = P(M) if M is a
totally real and polynomially convex submanifold of Cn .

As discussed earlier, it is not always possible to arrange M ⇢ Cn to be
totally real everywhere. Given a point p 2 M , let HpM denote the maximal
complex-linear subspace of TpM . A point p 2 M is called a CR-singularity of
M if dimC(HpM) � 1. As a consequence of Thom’s transversality theorem (see,
e.g., [14]), the set S of CR-singularities of a generically embedded M ⇢ Cn is
either empty or is a smooth submanifold of codimension 2(n � m) + 2 in M , see
Domrin [8] for more details. Since M is always locally polynomially convex near
its totally real points, we must study the convexity properties of M near S. The sit-
uation is nontrivial even when S is a discrete set, i.e., when m = 2k and n = 3k�1.

When k = 1 (or m = n = 2), the only possible CR-singularities are com-
plex points. These were classified by Bishop in [5] as follows. Given an isolated
nondegenerate complex point p of a surface M , one can find local holomorphic
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coordinates in which M can be written as

w =

(
↵
2 zz + 1

4 (z
2 + z2) + o(|z|2) if 0  ↵ < 1

zz + o(|z|2), if ↵ = 1.

Depending on whether ↵ 2 [0, 1), ↵ = 1 or ↵ 2 [1,1], p is said to be a hyperbolic,
parabolic or elliptic complex point, respectively. Parabolic points are not generic,
and have varying local convexity properties (see [32] and [19]). Although, elliptic
and hyperbolic points are both stable under small C2-deformations, a surface is lo-
cally polynomially convex only near its hyperbolic complex points. In [27], Slapar
proves a (possibly stronger) result for flat hyperbolic points [13], i.e., when local
holomorphic coordinates can be chosen so that Im o(|z|2) ⌘ 0, i.e., M is locally
contained in C ⇥ R. It is shown that, near a flat hyperbolic p, M is the zero set of
a nonnegative function that is strictly p.s.h. in its domain except at p.

The case k > 1 (i.e., m = 2k and n = 3k�1) is qualitatively different because
of higher codimension (m < n). Here, stable CR-singularities do not show diverse
behaviour in this regard. In fact, it suffices to understand one special model to
answer this question. We call this model the Beloshapka-Coffman normal form and
it is given by the manifold

Mk :=

8
>>>><

>>>>:

Z 2 C3k�1 :

v⌧ = 0, 1  ⌧  2k � 2,
⇣1 = |z|2 + z(u1 + iu2),
⇣� = z(u2��1 + iu2� ), 2  �  k � 1,
⇣k = z2

9
>>>>=

>>>>;

. (2.1)

Note that dimMk = 2k and it has an isolated CR-singularity at the origin. In [4]
and [6], Beloshapka (k = 2) and Coffman (k � 2) showed that a nondegenerate
CR-singularity p of a 2k-dimensional submanifold M of C3k�1 is locally formally
equivalent toMk at the origin. The nondegeneracy conditions appearing in their
work are the full-rank conditions on matrices involving the second-order derivatives
of the graphing functions of M at p. Any isolated CR-singular point can, thus,
be made nondegenerate with the help of a small C`-perturbation, ` � 2. In [7],
Coffman further proved that if M is also real analytic in a neighbourhood of p,
then there is a local normalizing transformation that is given by a convergent power
series. Since any smooth M near a nondegenerate CR-singularity p can be made
real analytic after a small C`-perturbation, we will only concern ourselves with real
analytic nondegenerate CR-singularities. These will be referred to as generic CR-
singularities in this paper. We rely on the fact that any M at a generic CR-singularity
p is locally biholomorphic toMk at O . In Section 5, we show more: near O ,Mk
is the zero set of a nonnegative function that is strictly p.s.h. everywhere except at
O . This shows that generic CR-singularities of 2k-manifolds in C3k�1 behave like
flat hyperbolic complex points.

We now note (and prove) a well-known fact that will be used multiple times in
this paper.
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Lemma 2.1. Let K ⇢ Cn be a polynomially convex compact set and p1, ..., p` 2
Cn \ K . Then, there exist r1, ..., r` > 0, so that

K [
[̀

j=1
B̄p j (r

0
j )

is polynomially convex for all r 0
j  r j , j = 1, ..., `.

Proof. We prove the claim by induction on `. Suppose ` = 1. Since K is polyno-
mially convex and p1 /2 K , there is a polynomial Q : Cn ! C so that |Q(p1)| >
supK |Q|. Thus, we may choose s > supK |Q| and t > 0 such that D̄0(s) and
D̄Q(p1)(t) are disjoint in C. Let r1 > 0 be small enough so that B̄p1(r1) ⇢
Q�1(DQ(p)(t)). Then, since Q(K ) and Q

�
B̄p1(r 0

1)
�
lie in disjoint disks inC for all

r 0
1  r1, by Kallin’s lemma (see [29]), K [ B̄p1(r 0

1) is polynomially convex for all
r 0
1  r1. Now, suppose the claim holds for ` = m � 1, and let p1, ..., pm /2 K . The
induction hypothesis gives r1, ..., rm�1 > 0 so that for any r 0

j  r j , j = 1, ...,m�1,
K 0 = K [ B̄p1(r 0

1) [ · · · [ B̄pm�1(r 0
m�1) is polynomially convex. We may shrink

the r j ’s to ensure that pm /2 K 0. Now, repeating the proof for the case ` = 1 with
K = K 0 and p1 = p`, we obtain the claim for ` = m, and hence for all ` 2 N.

Remark 2.2. The above proof actually gives a stronger conclusion: there exist
r1, ..., r` > 0, so that K [ M1 [ · · · [ M` is polynomially convex, for any polyno-
mially convex compacts Mj ⇢ B̄p j (r j ), j = 1, ..., `.

3. Proof of Theorem 1.1 and Corollary 1.2

We first begin with a result on the local polynomial convexity of the Beloshapka-
Coffmam normal form, which is of independent interest.

Lemma 3.1. The manifoldMk 2 C3k�1 in (2.1) is locally polynomially convex
at O .

Proof. We recall the following criterion (an iterated version of Theorem 1.2.16
from [29]). If X ⇢ Cn is a compact subset and if G : X ! Rm is a map whose
components are in P(X), then X is polynomially convex if and only if G�1(t) is
polynomially convex for each t 2 Rm . Now, choose the restriction to Mk of
G : C3k�1 ! C2k�2 that maps Z 7! (w1, .., w2k�2). Then, since the subalge-
bra generated by z and z2 in C(D") coincides with C(D") (see [22]), we have that
every fibre of G is polynomially convex. Hence, by the criterion stated above,Mk
is locally polynomially convex at O .

Proof of Theorem 1.1. Let ◆ : M ,! C3k�1 be the inclusion map of a smooth 2k-
dimensional submanifold M ⇢ C3k�1. Fix s � 0. By Thom’s Transversality
Theorem, there exists a Cs-small perturbation j of ◆ such that j (M) is smooth and
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totally real except at a finite number of CR-singular points (see [8, Section 1] for de-
tails). Without loss of generality, we may further assume that j (M) has generic CR-
singular points (see end of Section 2). Let p1, ..., p` denote the CR-singularities
of j (M). Since, for each j , (M, p j ) and (Mk, O) are locally biholomorphic,
Lemma 3.1 shows that small enough neighbourhoods of p j in M are polynomi-
ally convex. Applying Lemma 2.1 and the subsequent remark to p1, ..., p` (and
K = ;), we obtain opens sets W1, ...,W` ⇢ M containing p1, ..., p`, respectively,
so that the closure of W = W1 [ · · · [ W` is polynomially convex and j (M) \ W
is a compact submanifold of C3k�1 with boundary. Since, j (M) \W is totally real,
we can now apply the following result due to Arosio-Wold (see [2, Theorem 1.4]).
Let N be a compact smooth manifold (possibly with boundary) of dimension d < n
and let f : N ! Cn be a totally real C1-embedding. Let K ⇢ Cn be a compact
polynomially convex set. Then for all s � 1 and for all " > 0, there exists a totally
real C1-embedding f" : N ! Cn such that:

(1) || f � f"||Cs(N ) < ";
(2) f" = f near f �1(K );
(3) \K [ f"(N ) = K [ f"(N ).

In our case, N = M \ j�1(W ), f = j |N and K = W . Let " > 0 be arbitrary. Set
M 0 = f"(M \ j�1(W )) [ W to obtain a polynomially convex perturbation of M
that is totally real except at p1, ..., p`.

In the case when M has non-empty boundary, we consider ` mutually non-
intersecting simple curves C j ⇢ M 0, j = 1, ..., `, such that C j connects the point
p j to some point q j 2 @M 0. After removing sufficiently small neighborhoods of
C j and smoothening the resulting manifold, we obtain a smooth totally real com-
pact manifold with boundary that is diffeomorphic to M 0 (or M). Applying the
aforementioned Arosio-Wold result to this manifold, with K = ;, we obtain a per-
turbation of M that is totally real and polynomially convex.

Proof of Corollary 1.2. Let M be a compact 2k-dimensional abstract manifold
without boundary. By Theorem 1.1, there exists a C1-smooth embedding F =
( f1, ..., f3k�1) : M ! C3k�1 such that F(M) is polynomially convex and totally
real outside a finite set S ⇢ F(M). For any compact set X ⇢ Cn , we let

O(X) = { f |X : f is holomorphic in some open neighbourhood of X}.

Note that X := F(M) and X0 := S satisfy the hypothesis of the following result
due to O’Farrel-Preskenis-Walsch ((see [24]; also see [29])). Let X be a compact
holomorphically convex set in Cn , and let X0 be a closed subset of X for which
X \ X0 is a totally real subset of the manifold Cn \ X0. A function f 2 C(X) can be
approximated uniformly on X by functions holomorphic on a neighbourhood of X
if and only if f |X0 can be approximated uniformly on X0 by functions holomorphic
on X .
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Hence, O(F(M)) = C(F(M)). Further, by the Oka-Weil theorem for polyno-
mially convex sets, we have that P(X) = O(F(M)). Thus, {P � F : P is a holo-
morphic polynomial on C3k�1} is dense in C(M). In other words, { f1, ..., f3k�1} is
a PD-basis of C(M).

Now, if M is a manifold with boundary, Theorem 1.1 gives a smooth embed-
ding F : M ! C3k�1 such that F(M) is totally real and polynomially convex.
We complete the argument as done in [15, Section 3], keeping the exposition brief.
By a result due to Range-Siu (see [25, Theorem 1]; although not explicitly stated,
the result therein works for compact manifolds with or without boundary), any C`-
smooth function on F(M) can be C`-approximated by holomorphic functions on
F(M). Further, by the Oka-Weil theorem and Cauchy estimates, holomorphic func-
tions on F(M) can be C`-approximated by polynomials restricted to F(M). This
gives the result.

Remark 3.2. The following statement is implicit in the above proof. If we view a
PD-basis of M as a map from M to C3k�1, then the set of all PD-bases of C(M) is
dense in C(M; C3k�1). This follows from the fact that smooth embeddings of M
into C3k�1 are dense in C(M; C3k�1) for k > 1.

4. Proof of Proposition 1.3

We first state a theorem due to Alexander which is used both by Izzo-Stout (in [18])
and Arosio-Wold (in [2]) in their respective constructions of hulls with no analytic
structure.

Theorem 4.1 (Alexander, [1]). The standard torus T2 = {(ei✓ , ei ) : ✓, 2 R}
in C2 contains a compact subset E such that bE \ E is nonempty but contains no
analytic disk. Such a set can be chosen in any neighbourhood of the diagonal of T2.

Let A be a tubular neighbourhood of the diagonal in T2 and extend it to a smooth
totally real 2k-dimensional submanifold of C3k�1 as follows:

U =

8
><

>:
Z 2 C3k�1 :

(z, w1) 2 A,

|Re(wt )| < ", Im(wt ) = 0, 2  t  2k � 2,
|Re(⇣1)| < ", Im(⇣1) = 0, ⇣2 = · · · = ⇣k = 0

9
>=

>;
.

Let E denote an Alexander set in A. We abuse notation and denote E⇥{0}3k�3 ⇢ U
by E . Since a generic embedding of M into C3k�1 is totally real except for finitely
many generic CR-singularities, we may consider a smooth copy of M in C3k�1
(also denoted by M) that contains U in a small 2k-dimensional ball in its interior
and has generic CR-singularities p1, ..., p` 2 M \U that are disjoint from bE . Since
M is locally polynomially convex at p1, ..., p`, Lemma 2.1 and the subsequent
remark show that there exists a neighbourhood W of the set {p1, ..., p`} in M so
that bE [W is polynomially convex, and M \W is a totally real smooth submanifold
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with boundary. We now apply the Arosio-Wold perturbation result stated in Section
3 to N = M \ W , K = bE [ W and f , the inclusion map of M \ W , to obtain a
smooth embedding of M intoC3k�1 whose image6 contains E[W , and \6 [ bE =
6 [ bE . Thus, b6 = \6 [ E = 6 [ bE . Now, if bE was contained in 6, then 6
would be a polynomially convex manifold that is totally real except at generic CR-
singularities. We have shown in the proof of Corollary 1.2 that any subset T of such
a manifold has the property that P(T ) = C(T ), and thus is polynomially convex.
This contradicts the fact that E ⇢ 6 is not polynomially convex. Thus, b6 \ 6 is
nonempty but contains no analytic disk.

To show that b6 = hr (6), we use Izzo’s argument from [17, Section 3]. He
shows that the set E satisfies the generalized argument principle, i.e., if p is a
polynomial that has a continuous logarithm on E , then 0 /2 p(E). Then, we use the
following result due to Stolzenberg [28]. If X ✓ Y ⇢ Cn are compact sets such
that X satisfies the generalized argument principle and the first Čech cohomology
group Ȟ1(Y, Z) vanishes, then bX ⇢ hr (Y ). Since E is contained in a (contractible)
ball Y in 6, bE ✓ hr (Y ) ⇢ hr (6). So, b6 = 6 [ bE ✓ hr (6). Thus, the two hulls
coincide, as claimed.

5. Proof of Theorem 1.4

The polynomial convexity established in Lemma 3.1 allows us to writeMk near
O as the zero locus of some nonnegative p.s.h. function that is strictly p.s.h. away
fromMk . In order to obtain Theorem 1.4, we need an improved version of this
fact, which we establish in the following technical proposition.

Proposition 5.1. Let k > 1. For a given r > 0 small enough, there exists a smooth
p.s.h. function  : C3k�1 ! R such that:

(a) { = 0} =Mk \ B̄O(r);
(b)  > 0 on C3k�1 \ (Mk \ B̄O(r));
(c)  is strictly p.s.h. on C3k�1 \ {O}.

Proof. We first construct a e that has all the desired properties of  but is only
defined locally near O 2 Mk ⇢ C3k�1. We work with an auxiliary family of
2k-manifolds in C2k . Let ↵ < 1. Set

S↵ =

8
<

:
Z 0 2 C2k :

Im(w1) = · · · = Im(w2k�2) = 0,

w =
↵

2
|z|2 +

1
4
(z2 + z2)

9
=

;
.

Each slice S↵\{Z 0 2 C2k : (w1,...,w2k�2)=(s1,..., s2k�2)}, where (s1, ..., s2k�2)2
R2k�2, is a totally real surface with an isolated flat hyperbolic complex point at the
origin in C2z,w. These have been studied by Slapar in [27]. A slight modification of
his construction yields the following key ingredient of our proof.
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Lemma 5.2. For each ↵ < 0.46, there is a neighbourhood V↵ of the origin in C2k
and a smooth p.s.h. function ⇢↵ : V↵ 7! R such that:

⇤ {⇢↵ = 0} = S↵ \ V↵;
⇤ ⇢↵ > 0 on V↵ \ S↵;
⇤ ⇢↵ is strictly p.s.h. on V↵ \ Y , where

Y := {Z 0 2 C2k : z = Imw1 = · · · = Imw2k�2 = w = 0}. (5.1)

We relegate the proof of this lemma to the appendix (see Section 6). To continue
with the proof of Proposition 5.1, we produce holomorphic maps that send the
Beloshapka-Coffman normal formMk into S↵ . These allow us to pull back ⇢↵
to C3k�1 (locally near O) to give p.s.h. functions that vanish onMk . For this, let
f↵ : C3k�1 ! C2k be the map

Z 7!
⇣
z + ↵w1

↵+1 � i↵w2
1�↵ , w1, ..., w2k�2,

↵
2 ⇣1 + ⇣k

4 + z2
4 + ↵

2 z(w1 � iw2)

+
↵2w21
2↵+2 �

↵2w22
2�2↵

⌘
.

For 1  �  k � 1, let f �↵ : C3k�1 ! C2k be the map given by

f �↵ = f↵ � F� ,

where F� : C3k�1 ! C3k�1 is the automorphism

�
z, w1, · · · , w2k�2, ⇣1, · · · , ⇣k

�

7�!

✓

z,
w1 + w2��1

2
,
w2 + w2�

2
, w3, · · · , w2k�2,

⇣1 + ⇣�

2
, ⇣2, · · · , ⇣k

◆
.

Each f �↵ is holomorphic on C3k�1 and has the following properties.

• ( f �↵ )�1(S↵)=M�
↵ , where

M�
↵ =

8
><

>:
Z 2C3k�1 :

↵
⇥
⇣1 + ⇣� � z(2z + w1 + w2��1 + i(w2 + w2� ))

⇤

+ ⇣k � z2 = 0,
Imw1 = · · · = Imw2k�2 = 0

9
>=

>;
;

• ( f �↵ )�1(Y ) = X�↵ , where

X�↵ =

8
>><

>>:
Z 2 C3k�1 :

z +
↵(w1 + w2��1)

2↵ + 2
�
i↵(w2 + w2� )

2� 2↵
= 0,

↵(⇣1 + ⇣� ) + ⇣k + z2 = 0,
Imw1 = · · · = Imw2k�2 = 0

9
>>=

>>;
;
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• ker JC( f �↵ )(Z)=

8
<

:

0

@0, ..., 0| {z }
2k�1

, ⇣1, ..., ⇣k�1,�↵(⇣1+⇣� )

1

A : (⇣1, ..., ⇣k�1)2Ck�1

9
=

;
.

Next, let  �↵ := ⇢↵ � f �↵ on U�
↵ := ( f �↵ )�1(V↵), where ⇢↵ and V↵ are as

in Lemma 5.2. Then, owing to the properties of ⇢↵ and f �↵ , we have that  �↵
is a p.s.h. function on U�

↵ , satisfying the following properties (compare with the
required properties (a)-(c)):

(a0) { �↵ = 0} = M�
↵ \U�

↵ ;
(b0)  �↵ > 0 on U�

↵ \ M�
↵ ;

(c0) ⇠⇤ ·HessC �↵ (Z) ·⇠ > 0, when Z 2 U�
↵ \ X�↵ and ⇠ 2 C3k�1 \ker JC( f �↵ )(Z).

AsMk ( M�
↵ , we need to ‘correct’  �↵ . For this, let

g(Z) = |⇣k � z2|2 +
k�1X

�=2
|⇣� � z(w2��1 + i w2� )|2.

Since M�
↵ \ g�1(0) = Mk , and ⇠⇤ · HessC g(Z) · ⇠ > 0 for any Z 2 C3k�1 and

any nonzero ⇠ 2 ker JC ( f �↵ )(Z), we have that each g +  �↵ is a p.s.h. function on
U�
↵ satisfying properties (a), (b) and

(c00)  �↵ + g is strictly p.s.h. on U�
↵ \ X�↵ .

Finally, to obtain property (c), we observe that

k�1\

�=1

⇣
X�↵ \ X��

⌘
= {O}

when ↵ 6= �. Thus, choosing ↵ = 1/4 and � = 1/3, we have that

e := g +
k�1X

�=1

⇣
 �1/4 +  �1/3

⌘
(5.2)

is a p.s.h. function on U :=
Tk�1
�=1

⇣
U�
1/4 \U�

1/3

⌘
satisfying the local versions of

properties (a)-(c).
To complete the proof of Proposition 5.1, we extend e to C3k�1. Choose

r > 0 small enough so that B = B̄O(r) ⇢ U . As B is polynomially convex,
there is a smooth nonnegative p.s.h. function � on C3k�1 such that B = ��1(0)
and � is strictly p.s.h. on C3k�1 \ B. Choose closed balls B0 and B00 so that
B ⇢ B0 ⇢ B00 ⇢ U . Let � be a smooth function on C3k�1 that is 1 on an open set
containing B, 0 on an open set containing C3k�1 \U , and always between 0 and 1.
Then, for large enough C > 0,  = �e + C� has the desired properties.
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Remark 5.3. The above result shows that if p is a generic CR-singularity of a 2k-
manifold M ⇢ C3k�1, then any polynomially convex neighbourhood N ⇢ M of p
is stable in the following sense: for small enough perturbations � that are identity
close to p, �(N ) is a polynomially convex neighbourhood of p = �(p).

We now have the main ingredient to prove Theorem 1.4.

Proof of Theorem 1.4. For the proof of part (1), let M be as given, and S =
{p1, ..., pn}. As each p j , j = 1, ..., n, is a generic CR-singularity of M , we can
use the biholomorphic equivalence of (M, p j ) and (Mk, O), together with Propo-
sition 5.1, to conclude that there exist pairwise disjoint open sets Uj 3 p j and
smooth p.s.h. functions  j : C3k�1 ! R, j = 1, ..., n, such that:

(a) { j = 0} = M \Uj ;
(b)  j > 0 on C3k�1 \ (M \Uj );
(c)  j is strictly p.s.h. on C3k�1 \ {p j }.

Let eM := M\
S
1 jn U j . Then, as eM is totally real inC3k�1, 0(z) := dist2(z,M)

is strictly p.s.h. on some neighbourhoodU0 of eM inC3k�1. Now, letU:=[0 jnUj .
The neighbourhoodsUj ’s in the above construction should be chosen small enough
so that ⇡ : U ! M given by z 7! p, where dist(z,M) = dist(p, z), is well-defined
and smooth. Let {� j }0 jn be a partition of unity subordinate to {Uj \ M}0 jn .
Define

⇢(z) :=
nX

j=0
� j (⇡(z)) j (z).

Since M \Uj ✓ { = r j = 0}, we have that

ddc⇢(p) =
nX

0
� j (p)ddc j (p),

when p 2 M . Thus, ddc⇢(p) is strictly positive on any compact subset of M \
{p1, ..., pn}. Moreover, since � j ⌘ 1 near p j , ddc⇢ = ddc j near p j . Thus,
shrinking U if necessary, we have that ⇢ is p.s.h. on U and strictly p.s.h. on U \ S.

To prove (2), we must extend the form ddc⇢ globally to C3k�1 when M is
rationally convex. As a consequence of a characterization of rationally convex hulls
due to Duval-Sibony (see [9, Remark 2.2]), there is a smooth p.s.h. function ✓ :
C3k�1 ! R such that ! = ddc✓ vanishes on M 0 and is strictly positive outside M 0.
Once again, we let � be a nonnegative smooth function on C3k�1 that is compactly
supported in U and identically 1 on some neighbourhood of M in U . For a large
enough C , the well-defined function ' := C✓ + �9 is strictly p.s.h. on C3k�1 \ S.
Since the gradient of  vanishes along M 0, we also have that ◆⇤ddc' = ◆⇤ddc9 =
d(◆⇤dc9) = 0, where ◆ : M ! C3k�1 is the inclusion map. Thus, M is isotropic
with respect to the degenerate Kähler form ddc'.

To prove (3), we must extend ⇢ globally to C3k�1 when M is polynomially
convex. For this, let � be a smooth nonnegative p.s.h. function on C3k�1 so that
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M = ��1(0) and � is strictly p.s.h. on C3k�1 \ M . Then, for some nonnegative
smooth function � : C3k�1 ! R that is compactly supported inU and identically 1
on some neighbourhood of M in U , and for a large enough C , we relabel C� + �⇢
as ⇢ to obtain the desired extension.

6. Appendix: Proof of Lemma 5.2

The main technical ingredient of Section 5 relies on Lemma 5.2. It is a mild gen-
eralization of Lemma 4 in Slapar’s work [27], whose proof has been omitted there
due to its close analogy with the proof of Lemma 3 therein. For the sake of com-
pleteness, we reproduce Slapar’s technique to provide a full proof of Lemma 5.2.

Proof of Lemma 5.2. Recall that

S↵ =

8
<

:
Z 0 = (z, w1, ..., w2k�2, w) 2 C2k :

Im(w1) = · · · = Im(w2k�2) = 0,

w =
↵

2
|z|2 +

1
4
(z2 + z2)

9
=

;
.

We consider new real (nonholomorphic) coordinates in C2k , given by

x = Re z, y = Im z,
u j = Rew j , v j = Imw j , 1  j  2k � 2, (6.1)

u = Rew �
↵

2
|z|2 �

1
4
(z2 + z2), v = Imw.

In these coordinates, S↵ = {v1 = · · · = v2k�2 = u = v = 0}. Now, denoting
@

@a

and
@2

@a@b
by @a and @a,b, respectively, we obtain some of the mixed second-order

complex derivatives in the coordinates (6.1) as follows.

4@z,z = 1x,y � 2
�
(↵ + 1)x@x + (↵ � 1)y@y + ↵

�
@u

+
⇣
(↵ + 1)2x2 + (↵ � 1)2y2

⌘
@u,

4@z,w = @x,u + @y,v + i
�
@x,v � @y,u

�
�
⇣
(↵ + 1)x � i(↵ � 1)y

⌘
@u,u

�
⇣
(↵ � 1)y + i(↵ + 1)x

⌘
@u,v,

4@w,w = 1u,v.

(6.2)

Consider the following homogenous polynomial in R[x2, y2, u] of degree 4.

P↵(x2, y2, u) = u4 +
⇣
(4↵ + c)x2 � cy2

⌘
u3 +

⇣
Ax4 + Bx2y2 + A0y4

⌘
u2.
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Using (6.2), we have that 4
@2P↵
@z@z

=

h ⇣
6(↵ + 1)2 � 3(4↵ + c)(3↵ + 2) + 6A + B

⌘
x2

+
⇣
6(↵ � 1)2 + (9↵ � 6)c + B + 6A0

⌘
y2
i
2u2

+
h
(6(↵ + 1)2(4↵ + c) � 4A(5↵ + 4))x4 + (4A0(4� 5↵) � 6(↵ � 1)2c)y4

i
u

+
h
(24↵((↵ � 1)2 � c) � 20↵B)x2y2

i
u

+
⇣
(↵ + 1)2x2 + (↵ � 1)2y2

⌘ ⇣
Ax4 + Bx2y2 + A0y4

⌘
.

For this expression to be nonnegative, it suffices for the following equalities and
inequalities to hold:

(1) A =
3(↵ + 1)2(4↵ + c)

2(5↵ + 4)
;

(2) A0 =
3(↵ � 1)2

2(4� 5↵)
c;

(3) B =
6
5
((↵ � 1)2 � c);

(4) 6A + B + 6(↵ + 1)2 > 3(4↵ + c)(3↵ + 2);
(5) 6A0 + B + 6(↵ � 1)2 > (6� 9↵)c.

Also, we want that P↵ is strictly positive for u 6= 0 and (x, y) small. We use the
following lemma for this.

Lemma 6.1 ([27, Lemma 2.]). Let p(x, y, u) = u2 + b1(x, y)u+ b0(x, y), where
b0, b1 are continuous functions in a neighbourhood of the origin inR3, both vanish-
ing at (0, 0). Suppose b21 < 4b0 for small (x, y) 6= (0, 0). Then, there exists a small
neighbourhoodU of the origin in R3 such that p is strictly positive onU \ {u = 0}.

The above lemma yields the following constraints on A, A0 and c:

(6) (4↵ + c)2 < 4A;
(7) c2 < 4A0.

To find constants A, B and A0 that are positive and satisfy inequalities (4) � (7), it
suffices to find a c > 0 such that

c < min
⇢
(↵ � 1)2,

16+ 8↵ � 64↵2 � 60↵3

11+ 30↵ + 20↵2
,
4(↵ � 1)2(4� 5↵)

20↵2 � 30↵ + 11
,

6� 4↵ � 14↵2

4+ 5↵

�
.

(6.3)
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The above condition follows from the positivity assumption on B and by writing
inequalities (4) � (7) purely in terms of c and ↵ with the means of (1) � (3). As
long as ↵ < 0.46, the right-hand side of (6.3) is positive. Thus, there exists a
homogeneous polynomial P↵ of degree 4 in R[x2, y2, u] such that:

• P↵ > 0 for u 6= 0 and (x, y) small enough;

•
@2P↵
@z@z

= 0 when (x, y) = (0, 0), but is strictly positive otherwise;

•
@2P↵
@z@z

= q1u2 + q3, where q1, q3 2 R[x2, y2] are polynomials of degree 1 and
3, respectively, with strictly positive coefficients.

Now consider

Q↵(z, w1, ..., w2k�2, w) = P↵(x2, y2, u) + (x2 + y2)u4 +
1
2

 
2k�2X

j=1
v2j + v2

!

,

where the coordinates (z, w1, ...,w2k�2, w) and (x, y, u1, v1, ...,u2k�2, v2k�2, u, v)
are as in (6.1). Note that

@2Q↵
@z@z

= u4 � (40↵)u3 + (q2 + "q1)u2 + (1� ")q1u2 + q3,

where q2 2 R[x2, y2] is of degree 2. By Lemma 6.1, for any " > 0, u4�(40↵)u3+
(q2 + "q1)u2 is strictly positive for u 6= 0 and (x, y) small enough. So, there is a
neighbourhood V↵ of the origin such that

@2Q↵
@z@z

� R3, (6.4)

where R3 =
P
r j,k,l (x2) j (y2)kul is a homogeneous polynomial in R[x2, y2, u] of

degree 3, which is nondegenerate in the sense that all r j,k,l > 0 whenever l is even.
Next, we have that

@2Q↵
@w@w

=
1u,vP↵
4

+ 3(x2 + y2)u2 +
1
4

>
1
8
. (6.5)

Using (6.2), we also note that
�
�
�
�
�
@2Q↵
@z@w

�
�
�
�
�

2

< R5, (6.6)

where R5(x2, y2, u) is some homogeneous polynomial of degree 5. Combining
these estimates, we have that

@2Q↵
@z@z

@2Q↵
@w@w

�

�
�
�
�
�
@2Q↵
@z@w

�
�
�
�
�

2

� R3 � R5,
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which — owing to the nondegeneracy of R3 — is positive on V↵ (shrinking if
necessary) as long as (x, y, u) 6= (0, 0, 0). As the characteristic polynomial of
HessC Q↵ (in the variable �) is

✓
��

1
4

◆2k�2
0

@�2 �

 
@2Q↵
@z@z

+
@2Q↵
@w@w

!

�+
@2Q↵
@z@z

@2Q↵
@w@w

�

�
�
�
�
�
@2Q↵
@z@w

�
�
�
�
�

2
1

A ,

we obtain that Q↵ is a p.s.h. function on V↵ satisfying

• Q�1
↵ (0) \ V↵ = S↵ \ V↵;

• Q↵ > 0 on V↵ \ S↵;
• Q↵ is stirctly p.s.h. on V↵ \ {x = y = u = 0}.

To complete the construction of ⇢↵ , let ⌘(z, w1, ..., w2k�2, w) =
⇣
1
2 + x2 + y2

⌘
·

⇣P2k�2
j=1 v2j + v2

⌘
. In a small enough neighbourhood V of the origin, ⌘ is p.s.h.,

and strictly p.s.h. when (v1, · · · , v2k�2, v) 6= (0, · · · , 0, 0). Finally, to obtain the
desired neighbourhood and function, set Vc↵ := V↵ \ V and ⇢↵ := Q↵ + ⌘. This
completes the proof of Lemma 5.2.
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