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France, e-mail: sukhov@math.univ-lille1.fr. The author is partially supported by Labex CEMPI.
γ: Institut of Mathematics with Computing Centre - Subdivision of the Ufa Research Centre

of Russian Academy of Sciences, 450077, Chernyshevsky Str. 112, Ufa, Russia.

1. Introduction

Real analytic Levi-flat hypersurfaces naturally arise in the theory of holomorphic foliations,
dynamical systems and some branches of complex geometry (such as minimal manifolds). From
this point of view, the most important problems are concerned with global properties of Levi-flat
hypersurfaces. For example, consider the existence problem: it is well-known, see [12], that in
the complex projective space of dimension > 2 there are no closed smooth real analytic Levi-flat
hypersurfaces, but the question remains open in dimension 2. The problem of existence disappears
if one allows the hypersurface to have even mild singularities. In general, real analytic Levi-flat
hypersurfaces with singularities form a much more flexible class that can be constructed on many
complex manifolds. This is one of the main reasons for the local study of singularities of Levi-flat
hypersurfaces, a topic that has been recently developed by many authors. It is also a principal
motivation for our work.

The present paper is devoted to the study of one of the crucial (local) complex analytic prop-
erties of Levi-flat hypersurfaces: polynomial or rational convexity near a singular point. Local
polynomial and rational convexity (or lack of it) is an important property of real submanifolds in
complex Euclidean spaces that has many applications. It is well-known that any totally real sub-
manifold is locally polynomially convex, while most CR submanifolds of positive CR-dimension
are not. In this paper we give a characterization of local polynomial convexity for singular real
analytic Levi-flat hypersurfaces. We refer the reader to the next section for relevant definitions.

In the classical local theory of real hypersurfaces (or, more generally, the Cauchy-Riemann
manifolds) the properties of polynomially convex envelopes usually are determined from the in-
trinsic properties of the CR structure, such as nonvanishing of the Levi from (or its higher order
analogs), or presence/absence of germs of complex analytic hypersurfaces, etc. In the Levi-flat
case these tools are not available: all Levi forms vanish identically, and the real hypersurface is
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foliated by complex hypersurfaces (the Levi foliation). It turns out that local polynomial convex-
ity is related to the geometric properties of the Levi foliation. This completely new phenomenon
is described in Theorem 1, which is our main result.

Theorem 1. Let Γ ⊂ Cn, n > 1, be an irreducible real analytic Levi-flat hypersurface, 0 ∈ Γ.
Then the following holds:

(i) If 0 is a regular point of Γ, or is an unbranched Segre nondegenerate singularity, then Γ
is locally polynomially convex at 0.

(ii) There exists Γ ⊂ C2 with a two-branched Segre nondegenerate singularity at 0 that is not
locally rationally convex at 0. Furthermore, there exists a neighbourhood basis (Uk)k∈N of
0 such that for every k the polynomially convex hull of Γ∩Uk contains a full neighbourhood
of 0 in C2.

(iii) If 0 is a Segre degenerate singularity, then Γ is not locally rationally convex at 0. Further-
more, the rationally convex hull of any compact neighbourhood K ⊂ Γ of 0 in Γ includes
a family of Riemann surfaces with the following property: each surface is not contained
in Γ, but its boundary is contained in K.

While a detailed presentation of the required background material is given in the next section,
we would like to explain briefly the role of Serge (non)degeneracy and branching in the theorem.
A singular point of a real analytic Levi-flat hypersurface Γ is called Segre degenerate, if the Segre
variety of Γ of this point coincides with Cn. This case is settled by (iii). Otherwise the singularity
is called Segre nondegenerate: its Segre variety is a complex hypersurface. It is proved in [14]
that the Levi foliation of Γ extends to a full neighbourhood of a Segre nondegenerate singularity
in Cn as a holomorphic web, which can be understood as a (singular) holomorphic foliation
with branching. It turns out that the local polynomial convexity near a Segre nondegenerate
singularity depends on the degree of branching of this web. Part (i) says that when the web is not
branched (i.e., it is a singular foliation), then we have local polynomial convexity (similarly to the
nonsingular points). On the other hand, in (ii) we present an example of a Segre nondegenerate
singularity with a branched extension of the Levi foliation, which has a nontrivial hull.

In particular, it follows from Theorem 1 that for any point p ∈ Γ, which is an unbranched
Segre nondegenerate singularity, there exists a neighbourhood K of p in Γ such that there are
no Riemann surfaces attached to K. We note that it is not true in general that a Levi-flat
hypersurface (even everywhere smooth) does not admit “large” Riemann surfaces attached to
it, as can be seen in the example of Γ = {(z1, z2) ∈ C2 : |z1| = 1}. The following corollary
characterizes locally polynomially convex points for a special class of Levi-flat hypersurfaces.

Corollary 2. Let Γ ⊂ Cn, n > 1, be a Levi-flat hypersurface such that its Levi foliation extends
as a singular foliation to a neighbourhood of a singular point p ∈ Γ. Then Γ is locally polynomially
convex at p if and only if p is a Segre nondegenerate singularity of Γ.

This corollary can be applied to a wide class of Levi-flat hypersurfaces. For example, it was
proved in [14] that the Levi foliation of any algebraic (i.e. given by a polynomial defining function)
Levi-flat hypersurface admits an extension as a holomorphic algebraic web.

We remark that a singular point of Γ is Segre nondegenerate if and only if infinitely many leaves
of the Levi foliation contain this point in the closure, see [13]. In dimension two such points are
called dicritical, and so the above results can be reformulated using this terminology.

A related problem is local holomorphic extension of CR-functions (see Section 2.5 for the explicit
connection). By definition, CR-functions are those that satisfy the tangential Cauchy-Riemann
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equations. They are important in the context of boundary regularity of holomorphic functions
and maps, and are ultimately related to singularities of holomorphic functions. Properties of
CR-functions on CR-manifolds with singularities recently has attracted some attention, see, e.g.,
[8], [10] and references therein. While sufficient and necessary conditions are known for one-sided
holomorphic extension of all CR-functions from smooth real hypersurfaces, little is known in the
case of hypersurfaces with singularities. In Section 4 we give a general criterion for extendability
of CR functions for a certain class of (singular) hypersurface and give some examples of different
behaviour of CR-functions on singular Levi-flat hypersurfaces.

2. Background

In this section we briefly review some relevant terminology and refer the reader to [5], [7], [14],
and [13] for a detailed discussion of real analytic Levi-flat hypersurfaces.

2.1. Real analytic hypersurfaces. Let Ω ⊂ Cn be a domain. Consider a closed subset Γ ⊂ Ω
such that locally, in a neighbourhood U of any point q ∈ Γ, it is given by

Γ ∩ U = ρ−1(0), (1)

where ρ : U → R is a real analytic function. We call q ∈ Γ a regular point, if Γ is a real analytic
submanifold of dimension 2n−1 in a neighbourhood of q, i.e., a smooth real analytic hypersurface
near q. The union of all regular points forms the regular locus denoted by Γ∗. If Γ∗ is not empty,
then Γ is called a real analytic hypersurface in Ω. The set of regular points is open in Γ; its
complement Γsng := Γ \ Γ∗ is called the singular locus of Γ. The singular locus of Γ may contain
points where Γ is a smooth manifold of dimension less than 2n − 1 (the so-called stick if Γ is
irreducible). We emphasize that in this paper we ignore such points and simply call Γ∗ analytic
hypersurface, even if this set is only semianalytic. In other words, we identify Γ with Γ∗. From
the point of view of foliation theory, this is natural when one considers Levi-flat hypersurfaces,
and this is our main motivation. With this convention, the regular locus Γ∗ is dense in Γ.

We say that Γ is irreducible if it cannot be represented as the union of two real analytic hyper-
surfaces. In fact, our considerations are purely local and we consider hypersurfaces irreducible as
germs. We also assume that at the reference point, the defining function ρ from (1) is minimal in
the ideal of germs of real analytic functions vanishing on Γ, see more details in [13]. For simplicity
we will not use the terminology of germs in this paper.

Subanalytic sets are images of real analytic sets under proper real analytic maps. We refer the
reader to [2] for the theory of subanalytic sets.

2.2. Levi-flat hypersurfaces and the Segre varieties. A hypersurface Γ ⊂ Cnz , z = (z1, . . . , zn),
is called Levi-flat if near every regular point it is locally biholomorphically equivalent to a real
hyperplane

H = {z ∈ Cn : zn + zn = 0}. (2)

This local equivalence induces a foliation on Γ∗ by complex hypersurfaces, called the Levi foliation.
Equivalently, Γ is Levi-flat if the restriction of the complex Hessian of ρ to the holomorphic tangent
bundle of Γ∗ (the Levi form) vanishes identically.

For local analysis we may assume that 0 ∈ Γ and that ε > 0 is so small that the minimal
defining function ρ in (1) admits the Taylor expansion

ρ(z, z) =
∑
IJ

cIJz
IzJ , cIJ ∈ C, I, J ∈ (N ∪ {0})n, (3)
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convergent in the ball B(0, ε). Its complexification is defined by

ρ(z, w) =
∑
IJ

cIJz
IwJ . (4)

If U is a sufficiently small neighbourhood of the origin, the series (4) converges for all z, w ∈ U .
For w ∈ U the complex analytic hypersurface, given by

Qw = {z ∈ U : ρ(z, w) = 0}, (5)

is called the Segre variety (associated with Γ) of the point w. We note that the definition of Segre
varieties in (5) is independent of the choice of the minimal defining function given by a convergent
power series ρ(z) centred at the origin, see [13]. From the reality condition on ρ it follows that

z ∈ Qz if and only if z ∈ Γ,

and

z ∈ Qw if and only if w ∈ Qz. (6)

Let q ∈ Γ∗. Denote by Lq the unique leaf of the Levi foliation through q. Then the leaf Lq is
contained in the unique irreducible component of Qq. In a small neighbourhood of q this is also
a unique complex hypersurface through q which is contained in Γ.

If 0 ∈ Γ is a singular point of Γ, it may happen that in (5), the function ρ(z, 0) vanishes
identically, and so Q0 = Cn. In this case we say that 0 is a Segre degenerate point of Γ. Segre
degenerate points, i.e., those z for which Qz = Cn with respect to a defining function represented
by a power series centred at the origin, form a complex analytic subset of dimension at most
n−2. It follows from this that in C2 all Segre degenerate singularities are isolated. As was proved
in [13], a point p is Segre degenerate, if and only if infinitely many geometrically different leaves
of the Levi foliation have p in their closure. When n = 2 this is equivalent to p being a dicritical
singularity.

2.3. Singular webs and foliations. In this subsection we recall the definition of a singular web,
a detailed presentation is contained in [14].

We denote by PT ∗n := PT ∗Cn the projectivization of the cotangent bundle of Cn with the natural
projection π : PT ∗n → Cn. A local trivialization of PT ∗n is isomorphic to U×G(1, n), where U ⊂ Cn
is an open set and G(1, n) ∼= CPn−1 is the Grassmannian space of linear complex one-dimensional
subspaces in Cn. The space PT ∗n has the canonical structure of a contact manifold, which can
be described (using coordinates) as follows. Let z = (z1, ..., zn) be the coordinates in Cn and
(p̃1, ..., p̃n) be the fibre coordinates corresponding to the basis of differentials dz1, . . . , dzn. We
may view [p̃1, . . . , p̃n] as homogeneous coordinates on G(1, n). Then, in the affine chart {p̃n 6= 0},
with inhomogeneous coordinates pj = p̃j/p̃n, j = 1, . . . , n− 1, the 1-form

η = dzn +

n−1∑
j=1

pjdzj (7)

is a local contact form. Considering all affine charts {p̃j 6= 0} we obtain a global contact structure.
Let U be a domain in Cn. Consider a complex purely n-dimensional analytic subset W in

π−1(U) ⊂ PT ∗n . Suppose that the following conditions hold:

(a) the image under π of every irreducible component of W has dimension n;
(b) a generic fibre of π intersects W in d regular (smooth) points and at every such point q

the differential dπ(q) : TqW → Cn is surjective;
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(c) the restriction of the contact form η on the regular part of W is Frobenius integrable. So
η|W = 0 defines the foliation FW of the regular part of W . (The leaves of the foliation
FW are called Legendrian submanifolds.)

Under these assumptions we define a singular d-web W in U as a triple (W,π,FW ). A leaf of the
web W is a component of the projection of a leaf of FW into U . Note that at a generic point
z ∈ U a d-web (W,π,FW ) defines in U near z exactly d families of smooth foliations.

In dimension 2 there is an immediate connection between singular webs and ODEs, which
allows one to determine the value of the integer d. To describe that let U ⊂ C2 be a domain,
and consider a holomorphic function Φ on U × C. It defines a holomorphic ordinary differential
equation on U × C,

Φ(z1, z2, p) = 0 (8)

with z = (z1, z2) ∈ U and p = dz2
dz1
∈ C. This is an equation for the unknown function z2 = z2(z1).

Any singular holomorphic d-web, d ∈ N, can be defined in U by equation (8), where Φ is of the
form

Φ(z, p) =
d∑
j=0

Φj(z)p
j . (9)

The graphs of solutions of (8) are the leaves of W.

2.4. Extension of the Levi foliation and a meromorphic first integral. Let Γ be a real
analytic Levi-flat hypersurface in a domain Ω ⊂ Cn. We say that a holomorphic d-web W in Ω
is the extension of the Levi foliation of Γ∗ if every leaf of the Levi foliation is locally a leaf of W.
In particular, if d = 1, this defines the extension as a foliation, singular in general. We assume
that at least one leaf of every component of W agrees with a leaf of the Levi foliation; under this
condition the singular web extending the Levi foliation is unique.

The main result of [14] states that if 0 is a Segre nondegenerate singularity of a real analytic
Levi-flat hypersurface Γ, then the Levi foliation of Γ extends as a d-holomorphic web to a full
neighbourhood of 0 in Cn. The same conclusion holds if Γ is real algebraic, i.e., it is the zero-set
of a real polynomial. Thus, every singular point of Γ can be prescribed an integer d: we say that
the origin is a d-branched Segre nondegenerate singularity. Section 3.3 below contains an example
of a Levi-flat hypersurface with a 2-branched singularity. If d = 1 we say that the origin is an
unbranched Segre nondegenerate singularity, in this case the Levi foliation extends as a singular
foliation to a neighbourhood of 0 in the ambient space.

We also need a related notion of a multiple-valued meromorphic first integral. Let X and Y be
two complex manifolds and πX : X × Y → X and πY : X × Y → Y be the natural projections. A
d-valued meromorphic correspondence between X and Y is a complex analytic subset Z ⊂ X ×Y
such that the restriction πX |Z is a proper surjective generically d-to-1 map. Hence, πY ◦ π−1

X is
defined generically on X (i.e., outside a proper complex analytic subset in X), and can be viewed
as a d-valued map. In what follows we denote a meromorphic correspondence by a triple (Z;X,Y )
equipped with the canonical projections πX : Z → X and πY : Z → Y .

A multiple-valued meromorphic first integral of a singular d-web W in U is a d-valued mero-
morphic correspondence (Z;U,CP 1) with the following property: for a generic c ∈ CP 1, the set
Rc = πU ◦π−1

CP 1(c) consists of a finite collection of complex hypersurfaces, and one of the irreducible
components of Rc agrees with some leaf of the Levi foliation. It is proved in [14] that a d-web
extending the Levi foliation near a Segre nondegenerate singularity always admits a meromorphic



6 RASUL SHAFIKOVα AND ALEXANDRE SUKHOVβ,γ

first integral. If the singularity is unbranched, then the extending web is a usual singular foliation
and the first integral is a (single-valued) meromorphic function which is constant on every leaf.

We briefly recall this construction here to explicitly formulate the result needed in this paper.
Let Γ be an irreducible Levi-flat hypersurface with a Segre nondegenerate singular point 0 ∈ Γ
with respect to a minimal defining function of Γ at the origin. Then there exists a complex line
A ⊂ Cn such that Q0 ∩ A = {0}, A 6⊂ Γsng, and A intersects every leaf of the Levi foliation near
0. For the unit disc D ⊂ C, let

D 3 t→ w(t) = (w1(t), . . . , wn(t)) ∈ Cn

be an anti C-linear parametrization of the complex line A. The complexification of the defining
function of Γ as in (4) defines a complex analytic hypersurface near the origin in C2n, and this
defines a complex analytic set

Z = {(z, t) ⊂ U × D : ρ(z, t) = ρ
(
z, w(t)

)
= 0}.

By construction the natural projection π : Z → U is a proper map with discrete fibres. It is proved
in [14] that π : Z → U is the first integral of the singular web that extends the Levi foliation
on Γ. In particular, we obtain the following: If the origin is an unbranched Segre nondegenerate
singularity of an irreducible real analytic Levi-flat hypersurface Γ, then there exists a holomorphic
function f : U → V , V ⊂ C, which is constant along the leaves of the Levi foliation on Γ∗.

2.5. Convexities, hulls and Riemann surfaces. As usual, by a Riemann surface in a domain
Ω ⊂ Cn we mean a complex purely 1-dimensional subset R of Ω; its boundary bR is defined by
bR := R \R. If R is irreducible, it is called a complex curve. Let K be a closed subset in Ω. We
say that a Riemann surface R ⊂ Ω \K is attached to K if bR ⊂ K.

Finally, we quickly recall the notion of polynomial and rational convexity. A compact X ⊂ Cn
is called polynomially convex if the polynomially convex hull

X̂ = {z ∈ Cn : |P (z)| ≤ sup
w∈X
|P (w)|, P is any holomorphic polynomial}

coincides with X. A compact X is called rationally convex if it agrees with its rationally convex hull
defined as the set of all points z ∈ Cn for which one cannot find a complex algebraic hypersurface
that passes through z and avoids X. We say that X is locally polynomially (resp. rationally)
convex at a point p ∈ X, if there exists a neighbourhood basis of p which consists of polynomially
(resp. rationally) convex compacts. It is immediate from the definitions that if a compact X ⊂ Cn
is not rationally convex, then it is not polynomially convex.

It is generally very difficult to determine whether a given compact is polynomially or rationally
convex. One of the convenient tools is Oka’s characterization of polynomial convexity. The
following formulation of Oka’s principle can be found in Stout [15, Cor. 2.1.6]: Let X ⊂ Cn be

a compact set, let Ω be an open set that contains X̂, and let z0 be a point of Ω. The point z0 is

not in X̂ if there exists a continuous family {Vt}t∈[0,1) of principal analytic hypersurfaces in Ω
that diverges to infinity in Ω and that satisfies the conditions that z0 ∈ V0 and Vt ∩X = ∅ for all
t ∈ [0, 1).

Let X ⊂ Cn be compact and denote by O(X) the C-algebra of the (germs of) holomorphic
functions on X. We say that X is holomorphically convex if every nonzero C-algebra homomor-
phism χ : O(X) → C is of the form χ(f) = f(p) for some p ∈ X. Given a compact X we call
the holomorphic hull of X to be the smallest holomorphically convex compact (with respect to
inclusion) that contains X. If M ⊂ Cn is a compact CR manifold, then the restriction to M of any
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holomorphic function on M is CR. Therefore, if every CR function on M extends holomorphically
to a fixed open set, then M cannot be holomorphically convex, and therefore it has a nontrivial
holomorphic hull. Clearly, this hull will be contained in the rationally convex hull of M . We refer
the reader to [15] for further discussion of holomorphically convex compacts.

3. Proof of Theorem 1 and Corollary 2

3.1. Proof of Theorem 1, (i). We first discuss the case of a regular point on Γ. That a C1-
smooth real hypersurface is polynomially convex iff it is Levi-flat follows from Airapetyan [1]. For
a smooth real analytic hypersurface Γ the proof of this is immediate. Indeed, if p is a point on
Γ where the Levi form of Γ does not vanish identically, then there exists a continuous family of
holomorphic discs attached to Γ, but not contained in Γ, that contracts to p, see, e.g., Boggess [6]
for details. This implies that p is not polynomially (or even rationally) convex at p. The set
of points where the Levi form has at least one nonzero eigenvalue is a dense open subset of Γ,
and therefore, any neighbourhood K of any point in Γ has Levi-nonflat points, and so Γ is not
polynomially (and not rationally) convex at any point. The converse can be seen as follows: for
any smooth point p on a real analytic Levi-flat Γ, there exists a neighbourhood of p in Γ which
is locally biholomorphically equivalent to the hyperplane H given by (2). A convex compact in
H is polynomially convex, which can be easily seen from Oka’s characterization of polynomial
convexity, and therefore Γ is locally polynomially convex at p.

If p ∈ Γ is a singular point of Γ and Γ∗ is not Levi flat, then any neighbourhood K of p in Γ
contains points in Γ∗ where the Levi form has at least one nonzero eigenvalue, and therefore K is
not polynomially (or rationally) convex by the argument above.

The remaining case is that p = 0 is an unbranched Segre nondegenerate singularity of a Levi-
flat Γ ⊂ Cn, n > 1. Recall again that in this context we only deal with Γ = Γ∗ and ignore the
points near which dim Γ < 2n− 1. As discussed in the previous section, Γ admits a holomorphic
first integral, i.e., there exist a open neighbourhood U ∈ Cn of 0 and a holomorphic function
f : U → C that is constant on the leaves of the Levi foliation on Γ∗ ∩ U . Let Y = f−1(f(Γ)).
Then f(Γ) is a 1-dimensional subanalytic set and Y is a subanalytic subset of U of dimension
2n − 1 with Γ ⊂ Y . Without loss of generality we may assume that f(0) = 0. Since the set
f(Γ) ⊂ C is subanalytic of dimension 1, there exists a neighbourhood V of the origin in C such
that f(Γ)∩V consists of finitely many analytic arcs passing through the origin. In particular, for
a sufficiently small V , the complement of f(Γ) in V does not contain any connected components
that are relatively compact in V .

Let ε > 0 be so small that B(2ε) ⊂ f−1(V ), and let K = X ∩ B(ε). Clearly, K̂ ⊂ B(2ε). To

prove that K = K̂ we apply Oka’s principle described above. Let q ∈ B(2ε)\Y be arbitrary. The
set f−1(f(q)) is a complex hypersurface in U . By construction, f−1(f(q))∩K = ∅. To construct
the required continuous family of complex hypersurfaces we simply choose a path γ : [0, 1] → C
connecting the point γ(0) = f(q) with a point γ(1) outside f(B(2ε)) such that γ avoids f(Γ). For
each t ∈ [0, 1] the set f−1(γ(t)) is then a complex hypersurface that avoids K and f−1(γ(1)) does

not intersect B(2ε). This shows that q /∈ K̂. If now q ∈ Y \ Γ, then the set f−1(f(q)) contains
several irreducible components at least one of which, say, Sq passes through q. We claim that
Sq∩Γ = ∅. Indeed, if Sq intersects Γ then it intersects one of the leaves of the Levi foliation. From
the positivity of the intersection index of complex varieties it follows that Sq intersects all nearby
leaves of the foliation on Γ, but this is not possible because the leaves correspond to different level
sets of f . As above we may find a path connecting f(q) with a point outside f(B(2ε)) that avoids
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f(Γ), which again gives us the required continuous family of complex hypersurfaces. This shows
that K is polynomially convex, and so Γ is locally polynomially convex at the origin.

3.2. Proof of (iii). Suppose now that 0 ∈ Γ is a Segre degenerate singularity. It suffices to
consider the case n = 2, in which case 0 is an isolated dicritical singularity of Γ. Let U be a
neighbourhood of the origin where all Segre varieties are well-defined with respect to a minimal
defining function at the origin. We claim that there exists a point w0 ∈ U \Γ such that Qw0 ∩Γ =
{0}. Indeed, let

Σ =
⋃

w∈Γ∩U\{0}

Qw.

Let Γc ⊂ C2
z × C2

w be the complexification of the germ of Γ at the origin. A representative of Γc

can be obtained by complexifying the minimal defining function of Γ at the origin in a sufficiently
small neighbourhood of the origin, as discussed in Section 2.2. Let πz : Γc → C2

z and πw : Γc → C2
w

be the coordinate projections . Then

Σ = πz(π
−1
w (Γ)).

Since the generic fibres of πw and πz have (complex) dimension 1, it follows that dimR π
−1
w (Γ) = 5,

and dimR Σ = 3. Thus, there exists a point w0 /∈ Σ. Then Qw0 passes through the origin (since
0 is dicritical) but does not contain any other points in Γ. The latter can be seen as follows: if
w ∈ Qw0 ∩ Γ, w 6= 0, then w0 ∈ Qw by (6), but this contradicts w0 /∈ Σ.

We now translate Qw0 slightly so that the translated hypersurface S intersect smooth points
on Γ. Then the set S ∩ Γ, which is a real analytic set (we may have to add points from the stick
in Γ if it exists), contains a closed real curve. This curve bounds a domain in S because it can be
contracted to a point by shifting S back to Qw0 . This domain is a Riemann surface, not contained
in Γ and with the boundary attached to Γ. This shows that no neighbourhood of the origin in Γ
can be polynomially convex.

Finally, no neighbourhood of the origin can be rationally convex for the following reason: let z
be a point on one of the Riemann surfaces attached to Γ through the above process. If z is not
in the rationally convex hull of a compact neighbourhood K ⊂ Γ of the origin, then there exists
a complex algebraic hypersurface V that passes through z and avoids K. But V intersects the
variety attached to Γ, and by the positivity of the intersection index for varieties it follows that
V either intersects the whole family of the varieties attached to Γ, and hence passes through the
origin, or V intersects the boundary of some variety, i.e., intersects K. This contradiction shows
that K is not rationally convex.

3.3. Proof of (ii). The following example, discovered by M. Brunella [3], see also [14], shows
that, in general, the Levi foliation of a Levi-flat hypersurface admits extension to a neighbourhood
of a singular point only as a web, not as a singular foliation. Consider the Levi-flat hypersurface

Γ = {z ∈ C2 : y2
2 = 4(y2

1 + x2)y2
1}. (10)

The singular locus of Γ is the set {y1 = y2 = 0}. Its subset given by {y1 = y2 = 0, x2 < 0} is
a stick, i.e., it does not belong to the closure of smooth points of Γ. After the complexification
we see that Q0 = {z2

2 + z4
1 − 2z2z

2
1 = 0}, and so the origin is a Segre nondegenerate singularity.

Calculations in [14] show that the singular web of Γ at the origin in the form of representation (8)
can be given as

p2 = 4z2. (11)
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This is precisely the 2-web that extends the Levi foliation of Γ∗. Solving (11) shows that the first
integral of Γ can be taken to be

f(z1, z2) = z1 ±
√
z2.

Further, the closure of the smooth points of Γ can be given by

{z ∈ C2 : Im (z1 ±
√
z2) = 0} = {Im (z1 +

√
z2) = 0} ∪ {Im (z1 −

√
z2) = 0}.

Consider now the holomorphic polynomial map

F : (w1, w2) 7→ (z1, z2) = (w1, w
2
2).

It is easy to see that F−1(Γ) = Π1∪Π2, where Π1 = {Im (w1+w2) = 0} and Π2 = {Im (w1−w2) =
0}. After a complex linear change of coordinates we may assume that the hyperplanes have the
form Πj = {yj = 0} and their intersection is R2.

We employ a classical construction related to convexity in the sense of E. Levi. The domain
C2 \ R2 is the union of 4 wedge type domains {τjyj < 0, j = 1, 2}, where τj ∈ {−1, 1}. Consider,
for example, the wedge W = {yj < 0, j = 1, 2}. It is contained in the strictly pseudoconvex
domain

Ω = {y1 + y2 + y2
1 + y2

2 < 0},
which is biholomorphic to the unit ball. Then there exists a complex curve touching the boundary
bΩ of Ω from outside exactly at the origin. Translating this curve to Ω in the direction of the
inward normal to bΩ and considering the intersections of these complex curves with W , we obtain
a family of Riemann surfaces filling W . This family contracts to the origin. Repeating this for
the other 3 wedges, we obtain the filling of a neighbourhood of 0 in C2 by a family of Riemann
surfaces with boundaries contained in Π1 ∪Π2.

Now as in the proof of part (iii) it follows that Γ is not locally rationally convex at 0.

3.4. Proof of Corollary 2. If p is Segre degenerate, the result is immediate from Theorem 1(iii).
Suppose that p is Segre nondegenerate. It was proved in [7] and [4] that if the Levi foliation admits,
locally near a singular point p, extension as a foliation, then near p there exists a meromorphic
first integral. On the other hand, by [14], there exists a d-valued first integral, which by the
uniqueness theorem (for example, for complex-analytic sets–graphs of the first integrals), must be
single-valued. Then by Theorem 1(i), Γ is locally polynomially convex at p.

4. Extension of CR-functions

4.1. Hans Lewy’s extension principle. The following general principle of holomorphic exten-
sion of CR functions from singular real analytic hypersurfaces is inspired by H. Lewy’s method.
It does not use the holomorphic approximation of CR functions.

Suppose that Γ is a real analytic hypersurface in Cn+1, 0 ∈ Γ. Let Ω be a one-sided neigh-
bourhood of the origin, i.e., a connected component of (Cn+1 \ Γ) ∩ U , for some neighbourhood
U 3 0. Suppose that the coordinates (z, w) ∈ Cnz ×Cw are chosen in such a way that the following
conditions hold:

(i) there exists a domain D ⊂ Cn such that for every z ∈ D the set

γ(z) = {w ∈ C : (z, w) ∈ Γ}

is a connected real analytic curve that bounds a simply connected domain

∆(z) = {w ∈ C : (z, w) ∈ Ω}.
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(ii) the union Ω = ∪z∈D∆(z) is a domain in Cn+1. Note that part of its boundary is contained
in Γ.

Consider a continuous function f : Γ→ C which is a CR function of class C1 on the regular part
of Γ. Denote by E(f) the set of points z ∈ D such that one of the following conditions hold:

(iii) γ(z) is a single point;
(iv) the curve γ(z) is contained in the regular part of Γ, and the function ζ 7→ f(z, ζ) extends

holomorphically from γ(z) to ∆(z).

Proposition 3. If E(f) is the set of uniqueness for functions holomorphic on D and continuous
on D, then f extends holomorphically to Ω.

Our proof is based on the classical method of H. Lewy [11]. It was applied by A. Tumanov [16]
for some classes of piece-wise real analytic Levi-flat hypersurfaces.

Proof. We prove that the function

F (z, w) =
1

2πi

∫
γ(z)

f(z, ζ)dζ

ζ − w
(12)

defines the holomorphic extension of f to Ω. Clearly, F is holomorphic in w. We also consider
the moment functions

µk(z) =

∫
γ(z)

ζkf(z, ζ)dζ, k = 0, 1, 2, . . . . (13)

Lemma 4. The functions F and µk are holomorphic in z on D.

We prove the lemma for F ; the argument for µk is the same. By the Hartogs separate analyticity
theorem it suffices to prove the result on any slice Dj = Lj ∩D, j = 1, . . . , n, where Lj ⊂ Cn is
any complex line parallel to Czj . Fix a simple closed smooth curve τ ⊂ Dj that bounds there a
domain Dτ , and consider in Γ ∩ (Lj × Cw) a 2-torus given by

T = {(z, ζ) ∈ Γ : z ∈ τ, ζ ∈ γ(z)}.

It bounds a solid torus N ⊂ Γ ∩ (Lj × Cw) of the form

N = {(z, ζ) ∈ Γ : z ∈ Dτ , ζ ∈ γ(z)}.

Fix w and set G(z, ζ) = 1
2πi

f(z,ζ)
ζ−w . Using the assumption that f is a CR function, we obtain by

Stokes’ formula∫
τ
F (z, w)dzj =

∫
T
G(z, ζ)dζ ∧ dzj =

∫
N
dG(z, ζ) ∧ dζ ∧ dzj = 0.

By Morera’s theorem we conclude that F is holomorphic in zj . This proves the lemma.

By assumption, for any z ∈ E(f), there are two possiblities. First, the function f extends
holomorphically to ∆(z). This implies that for all k ≥ 0 the moment functions µk(z) vanish for
these z. Another possiblility is that γ(z) degenerates to a single point. Then µk(ζ) tends to 0
as ζ ∈ D tends to z. Since E(f) is the set of uniqueness we conclude µk(z) ≡ 0 for all k, which
implies that f extends holomorphically to ∆(z) for all z ∈ D. This proves that F gives a desired
holomorphic extension of f . �
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4.2. Examples. In this section we give examples of Levi-flat hypersurfaces with different exten-
sion property of CR-functions defined on them.

Example 5. Consider the Levi-flat hypersurface Γ given by

Γ = {(z, w) ∈ C2 : |z|2 − |w|2 = 0}.
This is a real cone which divides the ambient space into two connected components. Note that
the complex lines {z = 0} and {w = 0} intersect Γ at the origin only and belong to two different
components of the complement of Γ (except 0). In the terminology of [8], Γ is said to have two-
sided support. It was proved in [8] that for singular hypersurfaces with two-sided support there
always exist CR-functions that are Cm-smooth (for anym ∈ N) and do not extend holomorphically
to either side of the hypersurface. For example, for the given Γ one can take

f(z, w) =
z3

w
+
w3

z
.

This f is differentiable on Γ, CR on the regular part of Γ and clearly does not extend holomor-
phically to either side of Γ.

Now let
Ω = {(z, w) ∈ C2 : |z| > |w|}

be one component of C2 \ Γ. The z-projection sends Ω to C∗ = Cz \ {0}. In the notation of
Proposition 3, for every z ∈ C∗ we have

∆(z) = {w ∈ C : (z, w) ∈ Ω},
and

γ(z) = {w : |w| = |z|}.
If there exists a set of uniqueness E(f) ⊂ C∗ such that a smooth CR-function f on Γ\{0} extends
holomorphically to ∆(z) for all z ∈ E(f), then by Proposition 3, f extends holomorphically to Ω.
In this example, one may take E(f) to be, for instance, a sequence of points in C∗ that has an
accumulation point (in C∗).

We note that in the case considered by H. Lewy [11], the condition (iii) holds on an open arc on
the boundary of D. This can be seen, for example, in the case of the unit sphere Γ : |z|2+|w|2 = 1,
when the domain D is the unit disc and γ(z) shrink to a single point over its boundary. Therefore,
Proposition 3 gives holomorphic extension of f . In particular, this implies that a posteriori
E(f) = D. However, this fact becomes clear only after application of the proposition, using the
condition (iii) only. By the same argument, in general, if (iii) holds on a set of uniqueness, then
(iv) holds as well. Note that the situation is different in Example 5 above, where D = C∗ and
its boundary {0} is not a uniqueness set. This explains why the assumption (iv) on holomorphic
extension along an infinite family of discs is needed to ensure that the moment functions vanish
identically in D, and cannot be dropped in the general (this assumption fails for the function f in
Example 5). In the next example D = C and the boundary is empty, and so a different approach
is used.

Example 6. In this example we continue the exploration of the Levi-flat hypersurface given in
Section 3.3. Let

Γ = {z ∈ C2 : y2
2 = 4(y2

1 + x2)y2
1}. (14)

We recall that the closure of the regular points of Γ can be given as

Γ∗ = {z ∈ C2 : Im (z1 ±
√
z2) = 0} = {Im (z1 +

√
z2) = 0} ∪ {Im (z1 −

√
z2) = 0}.
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The holomorphic polynomial map

F : (w1, w2) 7→ (z1, z2) = (w1, w
2
2)

satisfies F−1(Γ∗) = Π1 ∪ Π2, where Π1 = {Im (w1 + w2) = 0} and Π2 = {Im (w1 − w2) = 0}.
From the discussion in Section 3.3 we know that a neighbourhood of the origin can be “filled” by
holomorphic discs attached to a neighbourhood of the origin in Π1 ∪Π2.

Given a continuous CR-function f on Γ∗, the function g = f ◦ F is CR on Π1 ∪ Π2. By the
Baoudendi-Trèves approximation theorem (see, e.g., [6]) and the discussion above, the function g
extends holomorphically to some neighbourhood of the origin, call the extension G(w). Then the
composition G ◦ F−1 defines a 1-to-2 holomorphic correspondence that extends the function f .
But in fact, G ◦ F−1 is single-valued, which can be seen as follows. The set {z2 = 0} is the
ramification locus of the correspondence F−1. For a small r > 0 the curve

[0, 2π] 3 θ 7→ (−
√
r sin(θ/2), reiθ) ∈ C2

is contained in Γ∗ and is a generator of the fundamental group of C2 \ {z2 = 0}. This, however,
contradicts the fact that the restriction of G ◦ F−1 to Γ∗ equals f .

It follows that any continuous CR-function on Γ∗ extends holomorphically to a full neighbour-
hood of the origin in the ambient C2. This implies that no compact neighbourhood of the origin
in Γ∗ is holomorphically convex, in particular, not rationally or polynomially convex.

Acknowledgment. We thank I. Kossovskiy for very useful discussions.
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