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Abstract—This expository paper is concerned with the properties of proper holomorphic map-
pings between domains in complex affine spaces. We discuss some of the main geometric
methods of this theory, such as the reflection principle, the scaling method, and the Kobayashi–
Royden metric. We sketch the proofs of certain principal results and discuss some recent
achievements. Several open problems are also stated.
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1. INTRODUCTION

This expository paper is dedicated to geometric properties of holomorphic mappings between
domains in complex affine spaces (in general of different dimensions). The first results in this
direction (mainly in complex dimension 2) are due to H. Poincaré, É. Cartan, and B. Segre. The
rigidity of complex structures with boundary—one of the main phenomena of complex analysis in
higher dimensions—was already discovered and studied in these classical works. The next ma-
jor step in this theory was made in the 1970s with intensive investigation of the geometry of
strictly pseudoconvex domains. Further progress concerns more general classes of domains (weakly
pseudoconvex or not pseudoconvex at all). In this survey paper we try to present some of the
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SOME ASPECTS OF HOLOMORPHIC MAPPINGS 213

main ideas in the development of the theory. Our presentation is certainly incomplete, as, re-
grettably, many important topics and results were not included in the scope of the paper. The
interested reader may become acquainted with them using other monographs and expository pa-
pers [9, 10, 15, 29, 48, 68, 80, 81, 83, 87, 90, 91, 105, 113, 114, 125, 141, 147, 152, 153].

2. PRELIMINARIES

Denote by z = (z1, . . . , zn) the standard complex coordinates in C
n. We often use the (vector)

notation z = x + iy for the real and imaginary parts. Denote by |z| the Euclidean norm of z and
by (z, w) =

∑
j zjwj the Hermitian inner product. We also use the notation 〈z, w〉 = (z,w).

As usual, a domain Ω in C
n is a connected open subset of C

n. Denote by ∂Ω the boundary
of Ω. The unit ball of Cn is denoted by B

n = {z ∈ C
n : |z| < 1}, while for n = 1 we use the notation

D := B
1 for the unit disc in C. The ball p + rBn of radius r > 0 centred at a point p ∈ C

n will
be denoted by B

n(p, r). Another basic example of a domain in C
n is the unit polydisc D

n or, more
generally, the polydisc D

n(p, r) := p+ rDn. Finally,

H =
{
z ∈ C

n : 2Re zn + |z1|2 + . . .+ |zn−1|2 < 0
}

(2.1)

is an unbounded realization of the unit ball Bn.

2.1. Classes of functions. Denote by O(Ω) the class of holomorphic functions in a domain Ω.
If Ω′ is a domain in C

m, we use the notation O(Ω,Ω′) for the class of holomorphic mappings from Ω
to Ω′.

For a positive integer k, Ck(Ω) denotes the space of Ck-smooth complex-valued functions in Ω.
Also Ck(Ω) denotes the class of functions whose partial derivatives up to order k extend as con-
tinuous functions on Ω. If s > 0 is a real noninteger and k is its integer part, Cs(Ω) denotes
the space of functions of class Ck(Ω) such that their partial derivatives of order k are (globally)
Hölder continuous in Ω with the exponent s− k; these derivatives automatically satisfy the Hölder
condition on Ω, so the notation Cs(Ω) for the same space of functions is also appropriate. Finally,
we denote by PSH(Ω) the class of plurisubharmonic functions on Ω.

Let Ω be a domain in C
n and f : Ω → C

N be a vector function (not necessarily holomorphic
or smooth) on Ω. Let γ be a subset of the boundary ∂Ω. The cluster set CΩ(f ; γ) of f on γ is
defined as the set of all limit points of the sequences {f(zk)} in C

N , where {zk} is any sequence in Ω
converging to a point in γ. The cluster set CΩ(f ; γ) is empty if lim|f(z)| = +∞ as z → γ. Note
that a holomorphic map f : Ω → Ω′ between two domains is proper if and only if the cluster set
CΩ(f ; ∂Ω) does not intersect Ω′. For bounded domains one can state this property in the equivalent
form: CΩ(f ; ∂Ω) ⊂ ∂Ω′.

2.2. Real submanifolds of complex spaces. A (closed) real submanifold E of a domain
Ω ⊂ C

n is of class Cs (respectively, real analytic) if for every point p ∈ E there exists an open
neighbourhood U of p and a map ρ : U → R

d of the maximal rank d < 2n and of class Cs

(respectively, real analytic) such that E ∩ U = ρ−1(0); then ρ is called a local defining (vector)
function of E. The positive integer d is the real codimension of E. In the fundamental special case
d = 1 we obtain the class of real hypersurfaces.

Let J denote the standard complex structure of Cn. In other words, J acts on a vector V by mul-
tiplication by i. For every p ∈ E the holomorphic tangent space HpE := TpE ∩ J(TpE) is the maxi-
mal complex subspace of the tangent space TpE of E at p. Clearly, HpE = {V ∈ C

n : ∂ρ(p)V = 0}.
The complex dimension of HpE is called the CR dimension of E at p; a manifold E is called a CR
(Cauchy–Riemann) manifold if its CR dimension is independent of p ∈ E.

A real submanifold E ⊂ Ω is called generic (or generating) if the complex span of TpM coincides
with C

n for all p ∈ E. Note that every generic manifold of real codimension d is a CR manifold of
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CR dimension n− d. A function ρ = (ρ1, . . . , ρd) defines a generic manifold if ∂ρ1 ∧ . . . ∧ ρd 
= 0. Of
special importance are the so-called totally real manifolds, i.e., submanifolds E for which HpE = {0}
at every p ∈ E. A totally real manifold is generic if and only if its real dimension is equal to n; this
is the maximal possible value for the dimension of a totally real manifold.

Let E be a generic manifold of real codimension d contained in the boundary ∂Ω of a domain Ω
in C

n. Our considerations are local. Consider tangent vector fields Xj, j = 1, . . . , n − d, on E (of
type (1, 0)) which form a basis in the space of local sections of the holomorphic tangent bundle
H(E) near p. A C1-smooth function f on E is called a CR function if it satisfies the following
first-order PDE system on E:

Xjf = 0, j = 1, . . . , n− d. (2.2)

These are the tangential Cauchy–Riemann equations. By Stokes’ formula equations (2.2) can be
rewritten in the equivalent form [E](f∂φ) = 0 for every test (n, n − d)-form φ on E; here [E]
denotes the current of integration over E. In this weak formulation the notion of a CR function can
be extended to the class of continuous or locally integrable functions on E. If E is a hypersurface
(d = 1) given by a defining function ρ with ∂ρ/∂zn 
= 0, then we can choose

Xj =
∂ρ

∂zn

∂

∂zj
− ∂ρ

∂zj

∂

∂zn
, j = 1, . . . , n− 1.

The following approximation theorem is due to Baouendi and Trèves [13].
Theorem 2.1. Let M be a smooth generic manifold in C

n and E ⊂ M be a smooth totally
real manifold of dimension n. Then in a neighbourhood of any point p ∈ E, any CR function f of
class Cs, s ≥ 0, on M can be approximated in the Cs-norm on M by the sequence of holomorphic
functions

(1Ef) ∗ exp{−k〈z, z〉}, k = 1, 2, . . . ,

where 1E is the characteristic function of E and the asterisk denotes the convolution operator.

2.3. Pseudoconvex and strictly pseudoconvex domains. Let Ω be a bounded domain
in C

n. Suppose that its boundary ∂Ω is a (compact) real hypersurface of class Cs in C
n. Then there

exists a Cs-smooth real function ρ in a neighbourhood U of the closure Ω such that Ω = {ρ < 0}
and dρ|∂Ω 
= 0. We call such a function ρ a global defining function. If s ≥ 2, one can consider the
Levi form of ρ:

L(ρ, p, V ) =
n∑

j,k=1

∂2ρ

∂zj∂zk
(p)VjVk. (2.3)

A bounded domain Ω with C2 boundary is called pseudoconvex (respectively, strictly pseudoconvex)
if L(ρ, p, V ) ≥ 0 (respectively, > 0) for every V ∈ Hp(∂Ω) (respectively, every nonzero V ∈ Hp(∂Ω)).
This definition is equivalent to the general notion of pseudoconvexity in the Grauert–Oka sense: Ω is
pseudoconvex if and only if it can be exhausted by a sequence of strictly pseudoconvex domains.
Every strictly pseudoconvex domain Ω admits a global defining function which is strictly plurisub-
harmonic on a neighbourhood U of Ω. An analog of this property for pseudoconvex domains was
established by Diederich and Fornaess [59].

Theorem 2.2. Let Ω be a bounded pseudoconvex domain with Cs boundary, s ≥ 2. Then there
exist a Cs-smooth defining function ρ in a neighbourhood U of Ω and a positive η0 < 1 such that
for any 0 < η < η0 the function ρ̂ := −(−ρ)η is a strictly plurisubharmonic bounded exhaustion
function for Ω (i.e., ρ̂ : Ω → (0, a) is a proper map for some a > 0).
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The famous example of the so-called worm domain due to the same authors [58] shows that there
exist smoothly bounded pseudoconvex domains without a plurisubharmonic defining function.

Let Γ be a real hypersurface of class C2 in C
n. One can view every holomorphic tangent space

HpΓ as an element of the Grassmannian G(n − 1, n) of hyperplanes in C
n. Then the holomorphic

tangent bundle H(Γ) can be viewed as a real submanifold of dimension 2n − 1 of the complex
manifold C

n × G(n − 1, n) of complex dimension 2n − 1. We call it the projectivization of the
holomorphic tangent bundle and denote it by PH(Γ). The following statement, due to Webster [157],
is easy to check in local coordinates.

Lemma 2.3. Γ has a nondegenerate Levi form if and only if PH(Γ) is a totally real manifold
in C

n ×G(n − 1, n).

2.4. Kobayashi–Royden pseudometric. Let z be a point of a domain Ω and V be a tan-
gent vector at z. The infinitesimal Kobayashi–Royden pseudometric FΩ(z, V ) (the “length” of the
vector V ) is defined as

FΩ(z, V ) = inf

{
λ > 0: ∃h ∈ O(D,Ω) with h(0) = z, h′(0) =

V

λ

}
. (2.4)

This is a nonnegative upper semicontinuous function on the tangent bundle of Ω; its integrated
form coincides with the usual Kobayashi distance. The Kobayashi–Royden metric is decreasing
under holomorphic mappings: if f : Ω → Ω′ is a holomorphic mapping between two domains in C

n

and C
m, respectively, then

FΩ′(f(z), df(z)V ) ≤ FΩ(z, V ). (2.5)

In fact, this is the largest metric in the class of (properly normalized) infinitesimal metrics that are
decreasing under holomorphic mappings. It is easy to obtain an upper bound on FΩ. Indeed, let
B
n(z,R) with R = dist(z, ∂Ω) be the ball contained in Ω. It follows by the holomorphic decreasing

property applied to the natural inclusion ι : Bn(z,R) → Ω that the Kobayashi–Royden metric of
this ball is greater than FΩ. This gives the upper bound

FΩ(z, V ) ≤ C|V |
dist(z, ∂Ω)

. (2.6)

Lower bounds require considerably more subtle analysis. Some general estimates can be obtained us-
ing plurisubharmonic functions. Sibony [139] proposed an approach based on the following Schwarz-
type lemma for subharmonic functions. For a domain Ω and z ∈ Ω, denote by Sz(Ω) the class of
functions u : Ω → [0, 1] such that u(z) = 0, u is of class C2 in a neighbourhood of z, and log u is a
plurisubharmonic function in Ω.

Lemma 2.4. Let u ∈ S0(D). Then

(a) u(ζ) ≤ |ζ|2 for ζ ∈ D; the equality holds at some point different from 0 if and only if u(ζ)
is identically equal to |ζ|2;

(b) Δu(0) ≤ 4, with equality if and only if u(ζ) = |ζ|2 for every ζ ∈ D.

Consider an infinitesimal pseudometric PΩ defined by

PΩ(z, V ) = sup
{
L(u, z, V )1/2 : u ∈ Sz(Ω)

}
. (2.7)

This pseudometric is locally bounded on the tangent bundle by Lemma 2.4(a) and is decreasing
under holomorphic mappings; hence

PΩ ≤ FΩ.
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To obtain the estimate from below for Sibony’s metric, it suffices to construct a function u ∈ Sz(Ω)
with controlled Levi form. For example, this leads to the following

Proposition 2.5. Let Ω be a domain in C
n and ρ be a negative C2-smooth plurisubharmonic

function in Ω. Suppose that the partial derivatives of ρ are bounded on Ω and there exists a constant
C1 > 0 such that

L(ρ, z, V ) ≥ C1|V |2 (2.8)

for all z and V . Then there exists a constant C2 > 0, depending only on the C2-norm of ρ,
such that

PΩ(z, V ) ≥ C2

(
C2
1

|〈∂ρ(z), V 〉|2
|ρ(z)|2 + C1

|V |2
|ρ(z)|2

)
. (2.9)

Note that ρ is not assumed to be a defining function of Ω, although this special case is particularly
important in applications. The original argument of Sibony assumes that Ω is globally bounded,
but this condition can be dropped. In fact, estimate (2.9) holds on an open subset of Ω where (2.8)
is satisfied. Therefore, it can be used in order to localize the Kobayashi–Royden metric. Note also
that Ω is not assumed to be bounded or hyperbolic (see [25, 26, 49, 142, 143]). In particular, this
leads to the following result (see [49]).

Proposition 2.6. Let Ω be a domain in C
n, ρ be a plurisubharmonic function in Ω with

E = ρ−1(0), and let f : D → Ω+ = {ρ ≥ 0} be a bounded holomorphic mapping such that the cluster
set CD(f, γ) on an open arc γ ⊂ ∂D is contained in E. Assume that for a certain point ζ ∈ γ the
cluster set CD(f, ζ) contains a point p ∈ E such that, for some ε > 0, the function ρ(z) − ε|z|2 is
plurisubharmonic in a neighbourhood of p. Then f extends to a 1/2-Hölder continuous mapping in
a neighbourhood of ζ in D ∪ γ.

The proof is based on estimate (2.9) in a tube neighbourhood of E of the form ρ < δ with small
δ > 0. A special case useful for applications arises when E is a totally real manifold: indeed, such
a manifold can be represented as the zero locus of a nonnegative strictly plurisubharmonic function
(see [96]).

2.5. Some properties of holomorphic functions near real manifolds. Analytic discs
form an important special class of holomorphic mappings. Recall that an analytic (or holomorphic)
disc in C

n is a holomorphic mapping f : D → C
n. The most interesting case arises when analytic

discs have some boundary regularity (at least, are continuous on D). The restriction f : ∂D → C
n is

called the boundary of the analytic disc f . We say that a disc f is attached or glued to a subset K
of C

n if f(∂D) ⊂ K.
Let E be a generic submanifold in a domain Ω ⊂ C

n defined as {ρ = (ρ1, . . . , ρd) = 0}. The
wedge W (Ω, E) in Ω with the edge E is the domain

W (Ω, E) =
{
z ∈ Ω: ρj(z) < 0, j = 1, . . . , d

}
.

One can also consider a more general class of domains if one fixes an open (convex) cone K in R
d

and defines a wedge-type domain by the condition {z ∈ Ω: ρ(z) ∈ K}. However, in many cases
the study of holomorphic functions on such domains can be reduced to that on the simpler wedges
W (Ω, E). For δ > 0 we also consider a δ-“truncated” wedge

Wδ(Ω, E) =

{
z ∈ Ω: ρj(z)− δ

∑
k �=j

ρk < 0, j = 1, . . . , d

}
⊂ W (Ω, E).

The complexification of a real analytic parametrization of a totally real submanifold yields the
following result.
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Proposition 2.7. Let E be a real analytic totally real submanifold of dimension n in C
n.

For every point p ∈ E there exists an open neighbourhood Ω in C
n and a holomorphic embedding

Φ: Ω → Cn such that Φ(p) = 0 and Φ(E ∩Ω) = Rn ∩Φ(Ω).
This proposition simplifies many aspects of complex analysis near real analytic totally real

submanifolds of maximal dimension. If E is merely smooth, then a more subtle result holds: there
exists a diffeomorphism Φ that takes E to R

n and is such that ∂Φ vanishes to infinite order on E.
In the study of totally real submanifolds the following gluing disc argument is often quite helpful.

It was introduced in [117] and then used by many authors. Without loss of generality, we may assume
that in a neighbourhood Ω of the origin a smooth totally real manifold E is defined by the equation
x = r(x, y), where a smooth vector function r = (r1, . . . , rn) satisfies the conditions rj(0) = 0 and
∇rj(0) = 0. Fix a positive noninteger s and consider the Hilbert transform H : u → H(u) for a
real function u ∈ Cs(∂D). It is uniquely defined by the conditions that the function u + iH(u) is
the trace of a function holomorphic on D and the integral average of H(u) over the circle is equal
to 0. This is a classical linear singular integral operator; it is bounded on the space Cs(∂D). Let
S+ = {eiθ : θ ∈ [0, π]} and S− = {eiθ : θ ∈ (π, 2π)} be the semicircles. Fix a C∞-smooth real
function ψj on ∂D such that ψj |S+ = 0 and ψj |S− < 0, j = 1, . . . , n. Set ψ = (ψ1, . . . , ψn).
Consider the generalized Bishop equation

u(ζ) = r
(
u(ζ),H(u)(ζ) + c

)
+ tψ(ζ), ζ ∈ ∂D, (2.10)

where c ∈ R
n and t = (t1, . . . , tn), tj ≥ 0, are real parameters. It follows by the implicit function

theorem that this equation admits a unique solution u(c, t) ∈ Cs(∂D) depending smoothly on the
parameters (c, t). Consider now the analytic discs f(c, t)(ζ) = PD(u(c, t)(ζ) + iH(u(c, t))(ζ)), where
PD denotes the Poisson operator of harmonic extension to D. The map (c, t) �→ f(c, t)(0) (the centres
of discs) is of class Cs. Every disc is attached to E along the upper semicircle. It is easy to see
that this family of discs fills the wedge Wδ(Ω, E) when δ > 0 and a neighbourhood Ω of the origin
are chosen small enough. Indeed, this is immediate when the function r vanishes identically (i.e.,
E = iRn), while the general case follows by a small perturbation argument.

This construction of gluing analytic discs is flexible enough and has several applications. As an
example we prove a version of the edge-of-the-wedge theorem following [1, 148].

Consider the generic manifolds Ej = {z ∈ Ω: ρk(z) = 0, k 
= j, k = 1, . . . , n} of dimension n+ 1.
On the unit circle we consider the open arcs Sj, j = 1, . . . , n, bounded by the points {e2πij/n, j =
0, . . . , n− 1}. Let ψj be C∞-smooth functions on ∂D such that ψj |Sj < 0 and ψj |(∂D \ Sj) = 0, j =
1, . . . , n. Equation (2.10) admits a solution in Cs(∂D) which depends smoothly on the parameters
(c, t) in a neighbourhood of the origin in R

2n (note that tj are not assumed to be positive here).
Every analytic disc from the family f(c, t)(ζ) obtained as above has the boundary attached to the
union

⋃
j Ej . Furthermore, their centres f(c, t)(0) fill a neighbourhood of the origin in C

n. Indeed,
the map (c, t) �→ f(c, t)(0) has the maximal rank 2n in a neighbourhood of the origin (this is
obvious when r = 0 and hence remains true under small perturbations). In combination with the
approximation result (Theorem 2.1) we obtain

Proposition 2.8. Let f be a continuous CR function on
⋃

j Ej. Then f extends holomorphi-
cally to a neighbourhood of E in C

n.
Indeed, by the maximum principle (applied along every analytic disc) the approximating family

of holomorphic functions converges in a neighbourhood of the origin.
As a corollary we get the edge-of-the-wedge theorem (for a more general result see [119]). Intro-

duce the domains Ω+ = {z ∈ Ω: ρj > 0, j = 1, . . . , n} and Ω− = {z ∈ Ω− : ρj(z) < 0, j = 1, . . . , n}.
Corollary 2.9. Let f+ and f− be functions holomorphic on the wedges Ω+ and Ω−, respec-

tively, and continuous up to the edge E. If f+ and f− coincide on E, then they extend to a
holomorphic function in a neighbourhood of E.
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In combination with Proposition 2.7 and the Schwarz reflection principle, this immediately gives
the following simple multidimensional version of this principle.

Proposition 2.10. Let E and E′ be real analytic totally real manifolds of dimension n and N
in C

n and C
N , respectively. Suppose that f : W (Ω, E) → C

N is a holomorphic mapping continuous
on Wδ(Ω, E) ∪ E for some δ > 0 and such that f(E) ⊂ E′. Then f extends holomorphically to a
neighbourhood of E.

A smooth version of this result also holds but requires some additional technical tools.

Proposition 2.11. Let W (Ω, E) be a wedge in C
n with a C∞-smooth totally real edge E of

dimension n. Suppose that f : W (Ω, E) → C
N is a holomorphic mapping such that the cluster set

CW (Ω,E)(f ;E) is contained in a C∞-smooth totally real manifold E′ of dimension N . Then for
every δ > 0 the mapping f extends to Wδ(Ω;E) ∪ E as a C∞-smooth mapping.

We sketch the proof based on the ideas of Pinchuk and Hasanov [127] (for details see [56]). The
first step is to establish the result for n = 1, i.e., when f is an analytic disc. This is a combination of
Proposition 2.6 and Chirka’s boundary regularity theorem for analytic discs [46]. The second step
is to apply the above construction of filling W (Ω, E) with analytic discs glued to E along the upper
semicircle. Since the Hölder constants are uniform with respect to the parameters, this implies the
Hölder continuity of f up to E. In the last step we use the smooth version of Proposition 2.7.
Let Φ and Ψ be (local) diffeomorphisms which take E and E′ to R

n and R
N , respectively, and

such that ∂Φ and ∂Ψ vanish to infinite order on E and E′, respectively. We can apply the usual
reflection principle to the mapping Ψ ◦ f ◦ Φ−1. This gives two functions in the opposite wedges
with the edge R

n. The functions are continuous up to R
n, coincide there, and have the property

that the ∂-part of their differential vanishes to a suitable order on R
n. But then these functions

are C∞-smooth up to the edge R
n. This is a very special case of the general elliptic regularity of

the ∂-operator. In our case it can be directly proved by slicing with complex linear discs and using
regularity of the Cauchy integral transform f �→ (2πi)−1f ∗ (1/ζ) on D.

3. GEOMETRY OF REAL ANALYTIC HYPERSURFACES

Real hypersurfaces in C
n, n > 1, have nontrivial geometry induced by the complex structure of

the ambient space. This is the main reason for rigidity of holomorphic mappings between domains
in C

n. In this section we describe classical methods used in the investigation of rigidity properties
of holomorphic mappings near boundaries of domains.

3.1. Complexification, Segre varieties, and differential equations. We first introduce
an important family of local biholomorphic invariants of a Levi nondegenerate real analytic hy-
persurface Γ in C

n, n > 1. This is a family of complex hypersurfaces called Segre varieties of Γ.
One can view them as (the graphs of) solutions of a holomorphic second-order PDE system with a
completely integrable prolongation to the space of 1-jets. When n = 2, such a system becomes a
second-order holomorphic ODE and the Segre family consists of complex curves. The biholomorphic
maps of Γ are precisely the Lie symmetries of its Segre family. Thus, the geometry of real analytic
hypersurfaces is closely related to the geometry of holomorphic ODEs and PDEs. This fundamental
correspondence, discovered by Segre [136], inspired É. Cartan [37] to study the geometry of real
hypersurfaces in C

2 in analogy with the geometry of a second-order ODE developed by the school
of S. Lie (see [146]). The approach of É. Cartan is very different and is based on his equivalence
method for Pfaffian systems.

All considerations of this section are local, so the results should be understood in terms of the
germs of the analytic objects involved. To simplify the notation, we will not use the language of
germs, so the reader should keep in mind the locality assumption.
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Let Γ be a real analytic hypersurface in a neighbourhood of the point 0 ∈ Γ in C
n. Then

Γ = {z : ρ(z, z) = 0}, where ρ is a local defining real analytic function. For w close enough to the
origin we consider the complex hypersurface

Qw = {z : ρ(z, w) = 0}. (3.1)

This hypersurface is called the Segre variety (associated with Γ) of the point w. The collection of
all Segre varieties is called the Segre family of Γ. More generally, if Γ is any real analytic set defined
as the zero set of the vector function ρ, its Segre varieties are complex analytic subsets of C

n also
defined by (3.1).

The following basic properties of the Segre family can be easily checked:
(i) z ∈ Qz if and only if z ∈ Γ;
(ii) z ∈ Qw if and only if w ∈ Qz;
(iii) if F is a holomorphic mapping in a neighbourhood of the origin such that F (Γ) ⊂ Γ′, where

Γ′ is another real analytic hypersurface, then F (Qw) ⊂ Q′
F (w), where Q′

• denotes the Segre
family of Γ′.

Property (iii) means that the Segre family is invariant with respect to biholomorphic mappings.
In the one-dimensional case Segre varieties are points and so property (iii) becomes the classical
Schwarz reflection principle. In higher dimensions this property leads to far-reaching consequences.
For applications it is convenient to state property (iii) in a more general form.

Lemma 3.1. Let Γ � 0 be a real analytic hypersurface in C
n and Γ′ � 0 be a real analytic

subset of C
N . Let F be a holomorphic mapping such that F (0) = 0 and F (Γ) ⊂ Γ′. Then

F (Qw) ⊂ Q′
F (w), where Q′

• denotes the Segre family of Γ′.

For the proof let Γ′ = {z′ ∈ C
N : φj(z

′, z′) = 0, j = 1, . . . , d}. Then φj(F (z), F (z)) = 0

whenever ρ(z, z) = 0. Therefore, φj(F (z), F (z)) = λj(z, z)ρ(z, z), where λj is a real analytic
function in a neighbourhood of the origin. It follows that φj(F (z), F (w)) = λj(z, w)ρ(z, w) for
(z, w) close to the origin in C

n × C
N . This proves the lemma.

We now draw a connection between the complex geometry of real analytic hypersurfaces and the
geometry of analytic differential equations and projective connections. The main idea is that the
Segre family is a general set of solutions of some second-order PDE system (or a single second-order
ODE when n = 2).

Let us discuss in some detail the case of dimension 2. We begin with the basic example of
Γ = {z2 + z2 + z1z1 = 0}, an unbounded realization of the unit sphere in C

2. The Segre family
has the form Qw = {z ∈ C

2 : z2 + w2 + z1w1 = 0}. This is just the family of all complex lines
in C

2 (except the “vertical” lines z1 = const). We view every Qw as the graph of a complex affine
function z2 = h(z1) that depends on two complex parameters w1 and w2. We treat z1 as an
independent variable and z2 as a dependent one. Then the Segre family is the set of graphs of
all solutions of the ordinary differential equation z̈2 = 0. In the general case we can assume that
M = {z : Re z2 = φ(z1, z1, Im z2)}, where ∇φ(0) = 0. By the implicit function theorem, Qw = {z :
z2 = h(z1, w1, w2)} for some holomorphic function h. Again we view z2 as the dependent variable
and z1 as the independent one. Applying the chain rule, we obtain djz2/dz

j
1 = (∂jh/∂zj1)(z1, w1, w2),

j = 1, 2. By the implicit function theorem, we represent the parameters (w1, w2) as functions of
(z1, z2, ż2) and obtain the holomorphic ODE

z̈2 = F (z1, z2, ż2). (3.2)

The Segre family of the real hypersurface Γ is precisely the set of the graphs of the solutions of (3.2).
The invariance property (iii) of the Segre family means that a biholomorphism f of Γ sends

the graph of a solution of (3.2) to the graph of another solution. But this means precisely that f
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is a (point) Lie symmetry of equation (3.2). Therefore, one can apply the classical theory of Lie
symmetries in order to study biholomorphisms of real analytic hypersurfaces.

As an example, consider a holomorphic differential equation

(S) : ü = F (x, u, u̇),

where x denotes an independent complex variable and F is a holomorphic function. A symmetry
group Sym(S) of equation (S) is a (maximal) local (Lie) group G acting on a domain in C

2 in such
a way that the following holds: for every solution u(x) of equation (S) and every g ∈ G the image
(if defined) of the graph of u under g is the graph of some solution of equation (S), which we denote
by g∗u. A holomorphic vector field

X = θ
∂

∂x
+ η

∂

∂u
(3.3)

is called an infinitesimal Lie symmetry of equation (S) if it belongs to the Lie algebra of Sym(S),
i.e., generates a one-parameter group of point Lie symmetries of equation (S). Denote by jmx (u)
the m-jet of u at x. In the most important case m = 2 we set u1 = ux and u11 = uxx. Then
j2x(u) = (x, u, u1, u11), and so (x, u, u1, u11) are natural coordinates on this jet space.

Every point Lie symmetry g canonically extends to Jm(1, 1) as a biholomorphic mapping g(m)

defined as follows: g(m) associates to Jm
x (u) the jet jmu(x)(g∗u). In particular, a one-parameter

group of symmetries generated by a vector field X lifts to Jm(1, 1). A vector field X(m) on Jm(1, 1)
which generates this lift is called the prolongation of order m of X. The classical Lie theory provides
powerful tools for the study of Lie symmetries, which are particularly convenient in the infinitesimal
case. For m = 2 we have

X(2) = X + η1
∂

∂u1
+ η11

∂

∂u11
. (3.4)

The general Lie theory gives the following expressions for the coefficients:

η1 = ηx + (ηu − θx)u1 − θu(u1)
2, (3.5)

η11 = ηxx + (2ηxu − θxx)u1 + (ηuu − 2θxu)(u1)
2 − θuu(u1)

3 + (ηu − 2θx)u11 − 3θuu1u11. (3.6)

Equation (S) defines a complex hypersurface (S2) in J2(1, 1) by the equation u11 = F (x, u, u1). The
fundamental principle of the Lie theory states that X is an infinitesimal symmetry of equation (S)
if and only if the vector field X(2) is tangent to (S2), that is,

X(2)(u11 − F (x, u, u1)) = 0 for (x, u, u1, u11) ∈ (S2). (3.7)

Consider the expansion F (x, u, u1) =
∑

ν≥0 fν(x, u)(u1)
ν . Plugging it into (3.7) and comparing

the coefficients of the powers of u1, we obtain a system of PDEs of the form

LD2(θ, η) = G(x, u,D1(θ, η)).

Here Dj denotes the set of the partial derivatives of the map (θ, η) of order j, G is an analytic
function, and L is a matrix with constant coefficients. Applying the partial derivatives with respect
to x and u to this system, after a direct computation we obtain

D3(θ, η) = H
(
x, u,D1(θ, η),D2(θ, η)

)
(3.8)

for some analytic function H. This implies that every infinitesimal Lie symmetry of equation (S)
is determined by its second-order jet at a given point. In particular, dimSym(S) ≤ 8.
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Consider again equation (3.2) describing the Segre family of Γ. The group of local biholomor-
phisms of Γ is embedded into the symmetry group of (3.2) as a totally real subgroup of maximal
dimension (see [144] for more details). As a consequence we find that the dimension of the real Lie
group of biholomorphisms of Γ is bounded above by 8.

In higher dimensions (n > 2) the Segre family of a Levi nondegenerate real analytic hypersur-
face Γ is described by a PDE system

uxixj = Fij(x, u, ux), (3.9)

where x ∈ C
n−1 and ux denotes the set of the first-order partial derivatives of the function u = u(x).

This system is completely integrable: its lift to the space of first-order jets is a first-order PDE
system which satisfies the Frobenius integrability conditions. For more details we refer the reader
to papers [114, 144], which are devoted to the study of Lie symmetries of PDE systems and Segre
families.

3.2. Equivalence problem for real hypersurfaces: Moser’s approach. Let Γ be a real
analytic strictly pseudoconvex hypersurface in C

n containing the origin. All consideration will be
local. We use the notation z = ( ′z, zn), ′z ∈ C

n−1. By the implicit function theorem (after a
permutation of coordinates), Γ can be written as the graph

yn = F ( ′z, ′z, xn) (3.10)

of a real analytic function F . Given a point p ∈ Γ, consider a real analytic curve γ in Γ with
a parametrization z = z(τ), τ ∈ (−τ0, τ0). Assume that γ passes through p in a noncomplex
tangential direction, i.e., z(0) = p and the vector ż(0) is not in HpΓ.

In a neighbourhood of p there exists a biholomorphic map z∗ = h(z) taking the curve γ to
the real interval ′z = 0, zn = τ (we drop the asterisk for simplicity), that is, h(z(τ)) = ( ′0, τ).
Furthermore, in the new coordinates Γ is given by the equation

yn = | ′z|2 +
∑
k,l≥2

Fkl(
′z, ′z, xn), (3.11)

where Fkl are real homogeneous polynomials of degree k in ′z and l in ′z with coefficients analytic
in xn.

Of course, such a change of coordinates is not unique. First of all this is due to the freedom in
the choice of the curve γ and its parametrization. Moreover, consider a transformation

( ′z, zn) �→ (U(zn)
′z, zn). (3.12)

Here zn �→ U(zn) is an (n − 1) × (n − 1) nondegenerate holomorphic matrix function of zn which
is unitary for zn = τ . This transformation fixes γ and preserves (3.11).

Using tensor notation, we write

Fkl =
∑

1≤αν , βμ≤n−1

aα1...αkβ1...βl
zα1 . . . zαk

zβ1 . . . zβl
.

Here we assume that the coefficients aαβ do not change under permutations of indices αν and βμ.
For k, l ≥ 1, we put

trFkl =
∑

bα1...αk−1β1...βl−1
zα1 . . . zαk−1

zβ1 . . . zβl−1

with
bα1...αk−1β1...βl−1

=
∑

αk=βl

aα1...αkβ1...βl
.
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Moser [45] proved that after a biholomorphic change of coordinates one can additionally achieve
in (3.11) the conditions

trF22 = (tr)2F32 = (tr)3F33 = 0. (3.13)

Representation (3.11), (3.13) is called the (Moser) normal form of Γ. A real analytic curve γ which
in the normal form has the equation ′z = 0, yn = 0 is called a chain.

Conditions (3.13) can be interpreted geometrically. First we note that for a given point p ∈ Γ
there exists a unique chain passing through p in a prescribed noncomplex tangential direction.
Furthermore, if Γ is given by equation (3.11), then the line ′z = 0, yn = 0 is a chain if and only
if (tr)2F32 = 0. Let now A be a unitary (n − 1) × (n − 1) matrix. There exists a unique map-
ping (3.12) such that U(0) = A and in the new coordinates trF22 = 0. This matrix A can be viewed
as a new choice of an orthonormal basis in H0Γ. Finally, consider an admissible reparametrization
( ′z, zn) �→ (

√
q̇(zn)

′z, q(zn)) of γ. Here q(0) = 0 and q(zn) = q(zn). Such a change of coordinates
preserves (3.11) and the conditions trF22 = 0 and (tr)2F32 = 0. If q additionally satisfies a certain
third-order ODE, then the condition (tr)3F33 = 0 also holds. Since q(0) = 0, the solution to this
equation is uniquely determined by its first- and second-order derivatives at the origin.

Thus, the normalization of Γ depends on the following data:

(i) the point p ∈ Γ corresponding to the origin in the normal form;
(ii) a noncomplex tangential direction at p defining the chain γ which has the equation ′z = 0,

yn = 0 in the normal form;
(iii) the choice of an orthonormal basis in HpΓ;
(iv) two real parameters fixing the parametrization of γ.

The main result of Moser’s theory can be stated as follows.
Theorem 3.2. For each choice of the initial data (i)–(iv) there exists a unique biholomorphic

mapping h taking Γ to the normal form.
The normal form of the sphere is yn = | ′z|2. Every choice of the initial conditions (i)–(iv)

determines a unique linear fractional automorphism of the sphere. Therefore, by Moser’s theorem
every local automorphism is global. We obtain the Poincaré–Alexander theorem (see the next
section for a detailed discussion).

Many applications of Moser’s theory are contained in Vitushkin’s expository papers [152, 153].

3.3. Equivalence problem: the Cartan–Chern approach. Cartan’s equivalence problem
(in the local form) can be stated as follows. Let U and V be open subsets in R

n. Suppose
that ωU = (ω1

U , . . . , ω
n
U ) and ΩV = (Ω1

V , . . . ,Ω
n
V ) are co-frames (bases of 1-forms) on U and V ,

respectively. Consider a prescribed linear group G. The problem is to determine all diffeomorphisms

f : U → V

satisfying the condition
f∗ΩV = ωUγUV with γUV ∈ G.

In the original work of É. Cartan, the group G is allowed to vary from point to point. Note that
many natural equivalence problems in differential geometry (for Riemannian structures, differential
equations, CR structures, etc.) can be represented in this form for an appropriate choice of the
co-frames and the group G.

The approach of É. Cartan to the solution of the above equivalence problem is based on the
observation that the problem has a (relatively) simple solution in the case of the trivial group
G = {e}. Even then a complete solution of the equivalence problem is not quite explicit. In most
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cases this method provides a number of geometric invariants of the problem at hand (a common
application of these invariants is to show that the equivalence problem does not admit any solution).
The equivalence problem is considered to be solved if it is reduced to the problem with G = {e}.
The main idea of this reduction consists in the introduction of a (finite) sequence of larger spaces
reducing the group G at every step.

The procedure proposed by É. Cartan comprises several iterated steps. First, the co-frames ω
and Ω must be extended in an equivariant way to U × G and V × G. There, the first structure
equations for dω and dΩ can be written. These equations contain the so-called torsion terms, and
the special procedure of absorption of these terms allows one to reduce the group. Note that this
requires the expansion of the initial system to a higher bundle.

In the case of Levi nondegenerate hypersurfaces in C
n (not necessarily real analytic but suffi-

ciently smooth) this approach leads to a complete solution of the local equivalence problem. This
was achieved by É. Cartan [37] for n = 2 and by Chern [45] and Tanaka [145] in all dimensions.
The adjacent equivalence problem for systems (3.9) was solved by Hachtroudi [93] using Cartan’s
method. This problem can also be viewed in terms of Cartan’s theory of projective connections.
This approach to the Segre geometry is developed by Chern [44] and Burns and Shnider [36].

Each of the methods described in this section gives useful information concerning local proper-
ties of biholomorphic mappings between strictly pseudoconvex or Levi nondegenerate hypersurfaces:
precise bounds on the dimension of the automorphism group, efficient parametrization of biholo-
morphisms by their second-order jets, etc. Notice that the Moser and Cartan–Chern methods
admit some generalizations to a wider class of real hypersurfaces (with special Levi degeneracies)
or to real manifolds of higher codimension. However, in these cases the approach based on Segre
varieties often turns out to be the most convenient and flexible. For example, the approach based
on the dynamical description of the Segre family by an analytic ODE was recently extended to a
wider class of hypersurfaces (with the degenerate Levi form) by Kossovskiy and Shafikov [103, 104].
Using the technique of the local theory of analytic dynamical systems and meromorphic differential
equations, they studied the geometry of Levi degenerate hypersurfaces and their formal (i.e., given
by formal power series) and analytic CR transformations. In particular, they proved in [104] that
the formal and holomorphic equivalences of real analytic hypersurfaces in C

n do not coincide (for
Levi nondegenerate hypersurfaces they coincide by Moser’s theory). This is a consequence of the
classical phenomenon of the local theory of analytic dynamical systems, where the formal and
analytic classifications are different. Further results in this direction were obtained recently by
Kossovskiy and Lamel [101].

4. HOLOMORPHIC MAPPINGS OF STRICTLY
PSEUDOCONVEX DOMAINS AND SCALING

We begin with the special case of the unit ball Bn ⊂ C
n, n > 1, and the Poincaré–Alexander

rigidity phenomenon [2, 131]: let U, V ⊂ C
n be neighbourhoods of points p, q ∈ ∂Bn, respectively,

and f : U → V , f(p) = q, be a biholomorphic (or even nonconstant holomorphic) map which takes
U ∩ ∂Bn to V ∩ ∂Bn; then f extends to an automorphism of Bn.

This result was used by Alexander [3] and Rudin [134] to prove the following

Theorem 4.1. Any proper holomorphic self-map of the unit ball B
n, n > 1, is an automor-

phism of B
n.

The Poincaré–Alexander phenomenon and Theorem 4.1 illustrate a great difference between
biholomorphic and proper holomorphic mappings in one and several complex variables. The follow-
ing result obtained by C. Fefferman [73] has been influential for the development of the theory of
holomorphic mappings.
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Theorem 4.2. Let f : Ω → Ω′ be a biholomorphic mapping between two strictly pseudoconvex
domains in C

n with C∞-smooth boundaries. Then f extends to Ω as a mapping of class C∞.
The original proof of this theorem was long and complicated, but it stimulated intensive research

on the boundary regularity of proper holomorphic mappings, which has led to the discovery of new
methods and results. In this section we present the main steps of a different, more elementary,
approach to the proof of Theorem 4.2.

4.1. The Schwarz reflection principle. The following theorem may be considered as the
Schwarz reflection principle in C

n, n > 1.
Theorem 4.3. Let Ω be a one-sided neighbourhood of a strictly pseudoconvex real analytic

hypersurface Γ in C
n. Let also Γ′ be a real analytic strictly pseudoconvex hypersurface in C

n.
Suppose that f : Ω → C

n is a holomorphic mapping of class C1(Ω ∪ Γ) such that f(Γ) ⊂ Γ′. Then
f extends holomorphically to a full neighbourhood of Γ in C

n.
Corollary 4.4. Let Ω and Ω′ be strictly pseudoconvex domains with real analytic boundaries

and f : Ω → Ω′ be a proper holomorphic map which extends to Ω as a C1 map. Then f extends
holomorphically to a neighbourhood of Ω.

We present here two different proofs of this theorem, both of which are local. The first one was
obtained in [117] and [110].

Fix a point p ∈ Γ. Let ρ and ψ be strictly plurisubharmonic real analytic local defining functions
of Γ and Γ′ near p and f(p), respectively. As usual, we consider them as power series in z and z.
Then

ψ(f(z), f(z)) = 0 (4.1)

whenever
ρ(z, z) = 0. (4.2)

Let X1, . . . ,Xn−1 be a basis in the space of tangential Cauchy–Riemann operators on Γ. Applying
them to (4.1), via the chain rule we obtain

Xjψ(f(z), f(z)) =

n∑
k=1

∂ψ

∂wk
(f(z), f(z))Xjf(z) = 0, j = 1, . . . , n− 1. (4.3)

It suffices to consider the case when f is not constant. Since both hypersurfaces are strictly pseu-
doconvex, we conclude that the tangent mapping df(p) is nondegenerate. Together with the non-
degeneracy of the Levi form of ψ at f(p), this allows us to apply the implicit function theorem to
system (4.1), (4.3). We obtain

f(z) = H
(
f(z),X1f(z), . . . ,Xn−1f(z)

)
, z ∈ Γ, (4.4)

where H is a holomorphic function in all variables. Let C � ζ �→ lc(ζ) be a family of parallel
complex affine lines depending on a parameter c ∈ C

n−1 that are transverse to Γ near p. Then the
intersection of every line with Γ is a real analytic curve γc in C. Every coefficient of Xj is a real
analytic function, and its restriction to γc extends to a function holomorphic in a neighbourhood
(whose size is independent of c) of γc. Replacing in (4.4) these coefficients with such holomorphic
extensions, by the one-dimensional Schwarz reflection principle we conclude that the restriction
of f to every linear section Ω ∩ lc extends holomorphically across Γ. Then the result follows by the
Hartogs lemma.

The second proof, due to Webster [157], is shorter. Since the hypersurfaces are strictly pseudo-
convex, the projectivizations of their holomorphic tangent bundles PH(Γ) and PH(Γ′) are totally
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real submanifolds of maximal dimension 2n − 1. Then the mapping z �→ (z, df(z)) is holomorphic
on a wedge-type domain with the edge PH(Γ), is continuous up to the edge, and takes it to PH(Γ′).
Hence, this mapping extends holomorphically to a neighbourhood of the edge by the reflection
principle (see Proposition 2.10).

These two proofs of Theorem 4.3 represent two different types of the reflection principle: analytic
and geometric. They both require additional assumptions on the regularity of f on the hypersur-
face Γ. The analytic approach needs C1 regularity, while the geometric one requires slightly weaker
regularity, namely, continuity of the lift of f up to PH(∂Ω). Furthermore, the geometric reflection
principle admits smooth generalizations. A C∞-smooth version of Theorem 4.3 was obtained by
Nirenberg, Webster, and Yang [116]: if the hypersurfaces Γ and Γ′ are merely C∞-smooth, then f
is necessarily of class C∞(Ω ∪ Γ). The proof follows along the same lines with the application of
Proposition 2.11.

4.2. Continuous extension. We need the following version of the classical Hopf lemma.
Proposition 4.5. Let Ω be a bounded domain with C2-smooth boundary in C

n and let K be
a compact subset of Ω. For every constant L > 0 there exists a constant C = C(K,L) > 0 with the
following property : if a function u ∈ PSH(Ω) is such that u(z) < 0 for every z ∈ Ω and u(z) ≤ −L
for all z ∈ K, then |u(z)| ≥ C dist(z, ∂Ω) for all z ∈ Ω.

One of the first results on the boundary behaviour of holomorphic mappings (see [94, 118]) is
the following

Theorem 4.6. Let f : Ω → Ω′ be a proper holomorphic mapping between two strictly pseudo-
convex domains in C

n. Then f extends to Ω as a 1/2-Hölder continuous mapping.
Let ρ and ψ be strictly plurisubharmonic global defining functions of Ω and Ω′, respectively.

The functions v(z) = ψ(f(z)) and u(p) = sup{ρ(z) : f(z) = p} are plurisubharmonic in Ω and Ω′,
respectively. Applying the Hopf lemma to these functions, we obtain Cρ(z) ≤ ψ(f(z)) ≤ C−1ρ(z)
for some constant C > 0. This is equivalent to the boundary distance preserving property

C dist(z, ∂Ω) ≤ dist(f(z), ∂Ω′) ≤ C−1 dist(z, ∂Ω). (4.5)

From the decreasing property of the Kobayashi–Royden pseudometric and the estimates for this
metric from above and below, it follows that

C|df(z)V |dist(f(z), ∂Ω′)−1/2 ≤ FΩ′(f(z), df(z)V ) ≤ FΩ(z, V ) ≤ C−1|V |dist(z, ∂Ω)−1

for every point z ∈ Ω and every tangent vector V . In view of (4.5) this implies the estimate

‖df(z)‖ ≤ C dist(z, ∂Ω)−1/2 (4.6)

for the operator norm of the differential. The theorem now follows by the classical integration
argument of Hardy and Littlewood.

The same proof works with minor modifications when the domain Ω is merely pseudoconvex:
instead of the defining function ρ one can use the bounded exhaustion function of Diederich and
Fornaess (Theorem 2.2). The assumptions on f and Ω′ can also be weakened (see Proposition 6.3
below). It was the idea of Diederich and Fornaess [61] to utilize the Kobayashi–Royden metric
instead of the previously used Carathéodory metric.

Theorem 4.6 does not allow one to immediately deduce Fefferman’s Theorem 4.2 from Theo-
rem 4.3 and its smooth counterpart. However, it was used by Nirenberg, Webster, and Yang [116]
to prove the continuity of the lift of f up to PH(∂Ω). This was done with rather tricky and
subtle arguments involving the Julia–Carathéodory lemma. The argument was later simplified by
Forstnerič [79]. In the next subsection we present a more transparent proof using scaling.
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4.3. The scaling method. Let Ω be a domain with a strictly pseudoconvex boundary of
class C2 and a defining function ρ near a point w0 ∈ ∂Ω. There exists a neighbourhood U of w0 in C

n

and a family of biholomorphic mappings hw : Cn → Cn, depending continuously on w ∈ ∂Ω ∩ U ,
such that the following conditions are satisfied:

(i) hw(w) = 0;

(ii) the defining function ρw := ρ ◦ h−1
w for the domain hw(Ω) has the form

ρw = 2Re zn + 2ReQw(z) +Hw(z) +Rw(z),

where Rw(z) = o(|z|2), Qw(z) =
∑n

μ,ν=1 qμν(w)z
μzν , and Hw(z) =

∑n
μ,ν=1 hμ,ν(w)z

μzν ;
furthermore, Qw(z) = 0 and Hw(z) = 0 when zn = 0;

(iii) each mapping hw sends the real normal of ∂Ω at the point w to the real normal {z1 = . . . =
zn−1 = Im zn = 0} of ∂hw(Ωw) at the origin.

In applications of this construction one can usually assume that w0 = 0 and ∂Ω is already
normalized near the origin; therefore, one can additionally assume that hw0 is the identity mapping.

As before, ′z = (z1, . . . , zn−1) so that z = ( ′z, zn−1). Consider a sequence of points {qk} in Ω
that converges to a point q ∈ ∂Ω. Denote by wk ∈ ∂Ω the point closest to qk. Set hk := hwk and
ρk := ρwk . Set δk = dist(hk(qk), ∂hk(Ω)). Then hk(qk) = ( ′0,−δk). Consider the dilations

dk : ( ′z, zn) �→
(
δ
−1/2
k

′z, δ−1
k zn

)
.

Finally, define the biholomorphic mappings Dk := dk ◦ hk. Note that this sequence of biholomorphic
mappings is determined by Ω and the sequence {qk}. We call the sequence {Dk} the scaling along a
sequence {qk}. Let Ωk = Dk(Ω) = {δ−1

k ρk ◦ d−1
k < 0}. It is easy to see that the sequence of functions

{δ−1
k ρk ◦ d−1

k } converges uniformly on compact subsets of C
n to the function 2Re zn + | ′z|2, which

defines the domain H given by (2.1). As a consequence, the sequence of domains {Ωk} converges
to H with respect to the Hausdorff distance.

Scaling along a sequence has many applications. As an example, we conclude the sketch of the
proof of Fefferman’s mapping theorem using the arguments from [127]. It suffices to show that under
the hypothesis of the theorem the lift (z, df(z)) of f to the tangent bundle extends continuously
to PH(∂Ω). Arguing by contradiction, assume that there exists a sequence of points {pk} in Ω
converging to a boundary point p such that their images qk converge to some point q ∈ ∂Ω′,
but the sequence {pk, df(pk)} does not converge to PH(∂Ω′). Let {Gk} and {Dk} be the scaling
sequences along the sequences {pk} and {qk}, respectively. Then one can show that the sequence
{fk = Dk ◦ f ◦ (Gk)−1} converges to a holomorphic mapping which is degenerate at some point.
On the other hand, it is easy to see by the standard normal family argument that the limit map is
a biholomorphism of the unit ball. This contradiction proves the theorem.

The idea of using almost holomorphic functions (i.e., functions with asymptotically vanishing
∂-operator) and the reflection principle in Fefferman’s theorem is due to Nirenberg, Webster, and
Yang [116]. It was also used for hypersurfaces of class Cm with noninteger m > 2 in [127], where it
was proved that a biholomorphic mapping f : Ω → Ω′ between strictly pseudoconvex domains with
boundaries of class Cm extends to Ω as a map of class Cm−1(Ω). A similar result but by different
methods was proved by Lempert [108]. Later Khurumov [99] proved that, in fact, f ∈ Cm−1/2(Ω).
This result is sharp.

4.4. Proper and locally proper mappings. The case when f : Ω → Ω′ is a proper mapping
can be reduced to the biholomorphic case via the following generalization of Alexander’s theorem
obtained in [122].
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Theorem 4.7. Let f : Ω → Ω′ be a proper holomorphic mapping between two strictly pseudo-
convex domains with C2-smooth boundaries. Then df(z) is nondegenerate at every point z ∈ Ω;
i.e., f is locally biholomorphic.

Arguing by contradiction, assume that the Jacobian determinant of f vanishes on a complex
hypersurface H in Ω. Let {pk} be a sequence of points in H converging to a boundary point, and
let qk = f(pk). Consider the scalings {Gk} and {Dk} along these sequences. Then the sequence
{fk = Dk ◦ f ◦ (Gk)−1} converges to a proper holomorphic mapping F : H → H, which is a
biholomorphism by Alexander’s theorem. On the other hand, it follows from the choice of {pk} that
dF vanishes at some interior point, which is a contradiction.

Corollary 4.8. A proper holomorphic self-mapping of a strictly pseudoconvex domain with
C2-smooth boundary is a biholomorphism.

A similar idea allows one to establish the following rigidity phenomenon for CR mappings [130].
Theorem 4.9. Let Γ and Γ′ be strictly pseudoconvex hypersurfaces in C

n. Suppose that U is a
neighbourhood of a point p ∈ Γ and f : Γ ∩ U → Γ′ is a continuous nonconstant CR mapping. Then
there exist neighbourhoods V and V ′ of p and f(p), respectively, such that f : Γ ∩ V → Γ′ ∩ V ′ is
a homeomorphism.

We can use the fact that f extends holomorphically to the pseudoconvex one-sided neighbour-
hood of p. The difficulty is that a priori f may not be a proper mapping there. The main idea of
the proof is to show that the set f−1(f(p)) is finite in a neighbourhood of p on ∂Ω. This will imply
that f is proper and will reduce the problem to the previous theorem. Arguing by contradiction,
suppose that this set contains a sequence converging to p and apply again the scaling (see [55] for a
more general scaling result needed here). Then one can show that the limit map is an automorphism
of the ball and at the same time is degenerate at some point, which is a contradiction.

5. EXTENSION OF GERMS OF HOLOMORPHIC MAPPINGS

In this section we present the results which generalize and develop the rigidity phenomenon
discovered by Poincaré and Alexander.

A real hypersurface Γ = ρ−1(0) in C
n is called real algebraic if it is defined by a real polynomial ρ.

For an open set U ⊂ C
n, a holomorphic map F : U → C

n is called algebraic if its graph is contained
in an algebraic subvariety of C

2n of dimension n. The following result is due to Webster [155].
Theorem 5.1. Let Γ and Γ′ be Levi nondegenerate real algebraic hypersurfaces in C

n of de-
grees m and m′, respectively, and let U be a neighbourhood in C

n of a point p ∈ Γ. Suppose
that f : U → C

n is a holomorphic mapping with a nondegenerate differential at p and such that
f(Γ) ⊂ Γ′. Then f extends to C

n as an algebraic mapping of degree bounded above by a constant
depending only on n, m, and m′.

Applying complex conjugation, we rewrite equation (4.4) in the form f(z) = G(z, z, F (z)), where
F = (f, Jf ). Here G is a (holomorphic) algebraic function and Jf denotes the Jacobian matrix of f
viewed as a C

n2-valued map. It follows that the mapping F takes Γ to the real algebraic set
M = {(z, ζ, ω) ∈ C

n × C
n × C

n2
: ζ = G(z, z, ω)}. By Lemma 3.1, F (Qw) is contained in Q′

F (w)

(the Segre variety defined by M), which implies that the restriction of f to Qw is an algebraic
map (of controlled degree). Consider n families of transverse Segre varieties for Γ. After a local
biholomorphic and algebraic change of coordinates one can transform them to families of parallel
coordinate hyperplanes. Now the classical theorem on separate algebraicity [32] can be applied
(see [138] for details).

We begin the discussion of the analytic case with the result of [120].
Theorem 5.2. Let Γ be a (connected) real analytic strictly pseudoconvex hypersurface in C

n,
n > 1, U a neighbourhood of a point p ∈ Γ, and f : U → C

n a nonconstant holomorphic mapping,
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and assume that f(U ∩ Γ) ⊂ ∂Bn. Then f can be continued along any path on Γ starting at p as a
locally biholomorphic mapping.

Corollary 5.3. Let Ω be a bounded strictly pseudoconvex domain in C
n, n > 1, with real

analytic simply connected boundary. Assume that f is a nonconstant holomorphic mapping in a
neighbourhood U of a point p ∈ ∂Ω such that f(U ∩ ∂Ω) ⊂ ∂Bn. Then f extends to a biholomorphic
mapping between Ω and B

n.
The proof uses the reflection principle. In our case equation (4.1) has the form (f, f)− 1 = 0.

Hence, in (4.3) one can apply the Cramer rule (instead of the implicit function theorem). It follows
that H in (4.4) is a rational function of f and Xjf . This allows one to extend f along the family lc
of complex lines meromorphically but “far enough.” With this the proof can be completed as
follows. First we complexify ∂Ω near a given point p by a biholomorphic change of coordinates.
Then we cut off a piece of ∂Ω by a real hyperplane parallel to the tangent plane at p. Next we
extend f meromorphically along a family of complex lines parallel to this hyperplane. Repeating
this procedure, we obtain a global meromorphic extension of f . The last step is to prove that this
extension is, in fact, holomorphic.

A real analytic hypersurface Γ is called spherical at a point p ∈ Γ if in a neighbourhood of p it
is locally biholomorphic to an open piece of the real sphere ∂Bn. It follows from Theorem 5.2 that
if a connected Γ is spherical at one point, then it is spherical at every point. Burns and Shnider [34]
constructed the following example. Let Γ = {z ∈ C

2 : y2 = |z1|2} (unbounded sphere) and Γ′ =
{z ∈ C

2 : sin ln|z2|2 = 0, e−π ≤ |z2| ≤ 1}. Then the mapping f(z) = (z1/
√
z2, exp{i ln z2}) with a

suitably chosen branch of ln z2 maps Γ \ {0} into Γ′ but does not extend even continuously to z = 0.
In this example Γ′ is a compact real analytic spherical hypersurface which is not simply connected.

A result similar to Theorem 5.2 holds if the sphere in the target space is replaced with an
algebraic hypersurface (see [137]).

Theorem 5.4. Let Γ be a connected essentially finite real analytic hypersurface in C
n and

p ∈ Γ. Let Γ′ be a compact strictly pseudoconvex real algebraic hypersurface in C
n. Let f be a germ

of a holomorphic mapping from Γ to Γ′ defined at p. Then f extends holomorphically along any
path on Γ with the extension sending Γ to Γ′.

In this result the hypersurface Γ is not assumed to be strictly pseudoconvex, although it follows
from the proof that it is pseudoconvex and that the set of weakly pseudoconvex points of Γ consists
precisely of the points where the extended map degenerates. The proof is based on the technique
of Segre varieties. The hypersurface Γ is called essentially finite if the map z → Qz is locally finite
near every point of Γ. The main idea is the holomorphic extension along Segre varieties: from the
properties of Segre varieties (see Section 3) one can conclude that the inclusion f(Qz) ⊂ Q′

f(z) must
hold not only for points in the domain of f but also for points z with the property that Qz has a
nonempty intersection with the open set where f is defined. This gives a holomorphic extension
of f to such points, which can be quite far away from the initial domain of f , no matter how small
it is. An iterative procedure then gives the extension of f along any curve in Γ. In particular,
this technique can be used to give an alternative independent proof of Theorem 5.2. In [102], this
technique was further refined to show that the germ of a biholomorphic mapping f : Γ → Γ′ also
extends across complex hypersurfaces that might be present in Γ. Here Γ′ is either a sphere or,
more generally, any nondegenerate hyperquadric in C

n.
Consider now the case of a real analytic hypersurface in the target domain. It turns out that

unlike the spherical case, for nonspherical strictly pseudoconvex hypersurfaces the phenomenon of
analytic continuation holds without any additional topological restrictions. This is a consequence
of the following result.

Theorem 5.5. Let Γ and Γ′ be nonspherical real analytic strictly pseudoconvex hypersurfaces
in C

n, n > 1, and U be a neighbourhood of a point p ∈ Γ, where the sets Γ, Γ′, U, and Γ ∩ U
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are connected and Γ′ is compact. Suppose that there exists a nonconstant holomorphic mapping
f : U → C

n such that f(U ∩ Γ) ⊂ Γ′. Then f continues analytically along any path in Γ as a locally
biholomorphic mapping.

In this form this theorem was proved in [121]. The proof is based on a careful analysis of
the behaviour of Moser’s chains on a nonspherical strictly pseudoconvex hypersurface. Vitushkin,
Ezhov, and Kruzhilin [154] obtained a different proof of this result in a more general setting when Γ
and Γ′ are nonspherical real analytic strictly pseudoconvex hypersurfaces in arbitrary n-dimensional
complex manifolds, n ≥ 2. We refer the reader to the surveys [152, 153] by Vitushkin for a
comprehensive discussion and further results in this direction.

For nonalgebraic Γ′, the problem of analytic continuation remains open in the presence of weakly
pseudoconvex points in Γ; for example, it is not known whether the map f in Theorem 5.5 extends
to a neighbourhood of an isolated weakly pseudoconvex point that Γ might have. The difficulty
is that the results of Moser’s theory do not hold in general near points where the Levi form of Γ
degenerates, and it is also not clear how to generalize the technique of analytic continuation along
Segre varieties for nonalgebraic target hypersurfaces.

We conclude this section with a result by Nemirovski and Shafikov [115] on uniformization of
strictly pseudoconvex domains.

Theorem 5.6. Let Ω and Ω′ be strictly pseudoconvex domains with real analytic boundaries.
Then the universal coverings of Ω and Ω′ are biholomorphically equivalent if and only if the bound-
aries of these domains are locally biholomorphically equivalent.

If the boundaries of Ω and Ω′ are locally biholomorphically equivalent somewhere, then by
Theorems 5.2 and 5.5 the germ of the equivalence map extends as a locally biholomorphic map f
along any path in ∂Ω and, hence, along any path in a one-sided neighbourhood V of ∂Ω. This
possibly multiple-valued map on V extends to the envelope of holomorphy of V , which is Ω by
Hartogs’ theorem. Kerner’s theorem [98] states that the envelope of holomorphy of the universal
covering V̂ of V is the universal covering of the envelope of holomorphy of V . This implies that f
extends to a map f : Ω̂ → Ω′. In the nonspherical case, the final result can be deduced by repeating
the argument for the inverse of the equivalence of ∂Ω and ∂Ω′. In the spherical case, an additional
argument using invariant metrics in needed. The proof of Theorem 5.6 in the other direction
essentially follows the general scheme outlined in Section 4: the equivalence map f : Ω̂ → Ω̂′ is first
extended smoothly to the boundary, and then the reflections principle (Theorem 4.3) is applied.

6. WEAKLY PSEUDOCONVEX DOMAINS

6.1. Finite type and plurisubharmonic peak functions. Consider a smooth real hy-
persurface Γ = ρ−1(0) in C

n. The following notion of the type of Γ at a point p ∈ Γ is due to
D’Angelo [57]. Denote by Op the space of germs of holomorphic mappings h : (C, 0) → C

n, h(0) = p.
Denote by ν(h) the order of vanishing of h− h(0) at the origin. Let also ν(ρ ◦ h) denote the order
of vanishing of the function ρ ◦ h at the origin. Then the type of Γ at 0 is defined as

τ(Γ, p) = sup

{
ν(ρ ◦ h)
ν(h)

, h ∈ Op

}
. (6.1)

In general the function p �→ τ(Γ, p) is not upper semicontinuous. Nevertheless, D’Angelo proved
the following. Let Ω be a smoothly bounded pseudoconvex domain and let q ∈ ∂Ω. Then there
exists a neighbourhood U of q such that for each p ∈ U ∩ ∂Ω

τ(∂Ω, p) ≤ τ(∂Ω, q)n−1

2n−2
. (6.2)
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A real analytic hypersurface is of finite type if and only if it contains no germs of complex analytic
sets of positive dimension. It is a result of Diederich and Fornaess [60] that a compact real analytic
subset of Cn contains no nontrivial complex analytic subsets, and so every bounded domain with
real analytic boundary in C

n is of finite type at every boundary point.
The following characterization of finite type is due to Fornaess and Sibony [75, 141].

Proposition 6.1. Let Ω be a smoothly bounded domain in C
n and p ∈ ∂Ω. Assume there exist

a function φp ∈ C0(Ω) plurisubharmonic in Ω and constants C > 0, λ > 0, and k > 0 such that

−C|z − p|λ ≤ φp(z) ≤ −|z|2kλ, z ∈ Ω. (6.3)

Then ∂Ω is of type less than 2k at p.

The function φp above is called a plurisubharmonic barrier (at p). If k = 1, the existence of a
barrier is equivalent to strict pseudoconvexity at p (see [140]).

We say that a boundary point q ∈ ∂Ω satisfies the barrier property if there exists a neigh-
bourhood U of q such that every point p ∈ U ∩ ∂Ω admits a barrier function (with k and λ
independent of p).

Theorem 6.2. Let Ω be a domain in C
n with a smooth pseudoconvex boundary of finite type

in a neighbourhood V of a point q ∈ ∂Ω. Then q satisfies the barrier property.

When n = 2 or when V ∩ ∂Ω is convex, this result is due to Fornaess and Sibony [75]. The
real analytic case is due to Diederich and Fornaess [63]. Finally, the general case was treated by
Cho [50].

Diederich and Fornaess [61] proposed the use of barrier functions in order to obtain lower bounds
for the Kobayashi–Royden metric. This approach works for a wide class of domains. As an appli-
cation we present the following result obtained in [143].

Proposition 6.3. Let Ω and Ω′ be domains in C
n whose boundaries are C2-smooth near some

points p ∈ ∂Ω and p′ ∈ ∂Ω′ that satisfy the barrier property. Let f : Ω → Ω′ be a holomorphic map-
ping such that for some neighbourhood U of p the cluster set CΩ(f ;U ∩ ∂Ω) does not intersect Ω′.
Assume also that the cluster set CΩ(f ; p) contains the point p′. Then f extends to a neighbourhood
of p in ∂Ω as a Hölder continuous mapping.

Various results concerning continuous extension of holomorphic mappings are also obtained
in [25, 26, 61, 74, 85].

6.2. ∂-Approach to boundary regularity. Let Ω be a bounded domain in C
n. Consider

the Hermitian Hilbert space L2(Ω) equipped with the standard Hermitian product (·, ·)L2(Ω). Then
O(Ω) ∩ L2(Ω) is a closed subspace in L2(Ω) and hence is itself a Hilbert space. Fix a point p ∈ Ω.
The evaluation map

lp : O(Ω) ∩ L2(Ω) → C, h �→ h(p)

is a bounded linear functional on O(Ω) ∩ L2(Ω). By the Riesz representation theorem there exists
a unique element in O(Ω) ∩ L2(Ω), which is denoted by KΩ(·, p), such that

h(p) = lp(h) = (h,KΩ(·, p))L2(Ω)

for all h ∈ O(Ω) ∩ L2(Ω). The function KΩ : Ω× Ω → C is called the Bergman kernel for Ω. By this
definition the function z �→ KΩ(z, p) is in L2(Ω) for every p ∈ Ω. Furthermore, KΩ(z, p) = KΩ(p, z)
and the function (z, w) �→ KΩ(z, w) is holomorphic on Ω× Ω. The orthogonal projection operator

PΩ : L2(Ω) → O(Ω) ∩ L2(Ω)
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is called the Bergman projection. One has PΩ(h) = (h,KΩ)L2(Ω). The following transformation
rules (see, for example, [132]) play a key role in the application of the Bergman kernel and the
Bergman projection to holomorphic mappings.

Theorem 6.4. Let f : Ω1 → Ω2 be a biholomorphic mapping between bounded domains in C
n.

Then
KΩ1(p, z) = Jf (p)KΩ2(f(p), f(z))Jf (z), PΩ1(Jfh ◦ f) = Jf (PΩ2(h) ◦ f)

for all h ∈ L2(Ω2). Here Jf denotes the determinant of the Jacobian matrix of f .
The above transformation rule for the Bergman projection (but not for the kernel) also remains

true for proper holomorphic mappings.
A smoothly bounded pseudoconvex domain Ω is said to satisfy Condition R if

PΩ(C
∞(Ω)) ⊂ C∞(Ω).

The following result is due to Bell and Catlin [23] and to Diederich and Fornaess [62].
Theorem 6.5. Let f : Ω1 → Ω2 be a proper holomorphic mapping between smoothly bounded

pseudoconvex domains. Suppose that Ω1 satisfies Condition R. Then f extends as a C∞-smooth
mapping to Ω1.

A version of this theorem for CR mappings between the boundaries of domains was obtained by
Bell and Catlin [24].

A general approach to verify Condition R for a prescribed class of domains relies on the ∂-Neu-
mann problem. Let Ω be a smoothly bounded pseudoconvex domain in C

n. Let g be a ∂-closed
(0, 1)-differential form with coefficients of class L2(Ω), i.e., g ∈ L2

(0,1)(Ω). The ∂-Neumann problem
consists in determining the regularity of the solution u to the equation ∂u = g which is orthogonal
to the kernel of the operator ∂, that is, to the class O(Ω) ∩ L2(Ω). This solution is called the
canonical solution. The operator

NΩ : L2
(0,1)(Ω) → L2(Ω), g �→ u

is called the ∂-Neumann operator on Ω. The relation between the Bergman projection and the
∂-Neumann operator is given by Kohn’s formula [100]

PΩ = Id− ∂∗NΩ∂.

Thus, if the ∂-Neumann operator is globally regular, i.e., maps the space C∞(Ω) to itself, then
Condition R holds. Regularity of the ∂-Neumann operator has been an active area of research and
led to the development of many important technical tools (see Catlin [38–40]). In particular, it is
known that the existence of plurisubharmonic barriers (6.3) implies the regularity of the ∂-problem
(see [41, 42, 141]).

A smoothly bounded domain Ω ⊂ C
n admits a defining function which is plurisubharmonic

along the boundary if there exists a smooth defining function of Ω whose Levi form is positive semi-
definite for all vectors at each boundary point (this condition is stronger than the pseudoconvexity,
which requires that the Levi form is positive semi-definite on the holomorphic tangent space). Boas
and Straube [31] proved that if Ω admits a defining function which is plurisubharmonic along the
boundary, then it satisfies Condition R. In particular, every smoothly bounded convex domain
satisfies Condition R.

Finally, it was shown by Christ [51] that for the worm domain of Diederich and Fornaess [58],
which is smooth and pseudoconvex, Condition R does not hold. This shows limitations of the
approach and raises an important question of finding sufficient and necessary conditions for the
regularity of the Bergman projection.
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7. AUTOMORPHISM GROUPS AND PROPER SELF-MAPPINGS

The geometry of the boundary of a domain Ω in C
n influences the structure of the group of

biholomorphic automorphisms of Ω. In turn, the automorphism group Aut(Ω) may completely
characterize the domain Ω. In this section we discuss some results in this direction.

7.1. Automorphisms of strictly pseudoconvex domains. We begin with the following
result, generally known in the literature as the Wong–Rosay theorem.

Theorem 7.1. Let Ω be a strictly pseudoconvex domain in C
n. Assume that Aut(Ω) is not

compact. Then Ω is biholomorphic to the unit ball B.
Since Aut(Ω) is not compact, there exists a sequence {fk} in Aut(Ω) which converges uniformly

on every compact subset of Ω to a boundary point q ∈ ∂Ω. Fix a point p ∈ Ω and set qk = fk(p).
Let {Dk} be the scaling sequence for {qk}. Then the sequence F k = Dk ◦ fk converges to a
biholomorphic mapping from Ω to B.

Theorem 7.1 was established by Webster [156] under the additional assumption that the group
Aut(Ω) has positive dimension. In full generality this result was obtained by Burns and Shnider [35]
using the Chern–Moser theory. A more elementary approach based on invariant metrics is due to
Wong [160] and Rosay [133]. The short proof presented above was given in [124, 126].

There are several other local versions of this result; here is one of them [72].
Theorem 7.2. Let Ω be a domain (not necessarily bounded) in C

n and let ∂Ω be C2-smooth
and strictly pseudoconvex in a neighbourhood of a point q ∈ ∂Ω. Suppose that there exists a se-
quence {fk} in Aut(Ω) and a point p ∈ Ω such that fk(p) → q as k → ∞. Then Ω is biholomorphic
to the unit ball B

n.
It is also interesting to consider the converse question: which groups can be realized as the

automorphism group of a domain in C
n? The following results are due to Winkelman [158, 159].

Theorem 7.3. Let G be a (finite or infinite) countable group. Then there exists a (connected)
Riemann surface M such that G is isomorphic to Aut(M).

Theorem 7.4. Let G be a connected (real) Lie group. Then there exists a Stein complete
hyperbolic complex manifold M on which G acts effectively, freely, properly, and with totally real
orbits, such that G is isomorphic to Aut(M).

Note that any compact real Lie group can be realized as the automorphism group of a strictly
pseudoconvex domain [16, 135].

7.2. Domains with large automorphism groups. Investigation of weakly pseudoconvex
domains with large automorphism groups was initiated by Greene and Krantz [88]. The following
result is due to Bedford and Pinchuk [19, 22].

Theorem 7.5. Let Ω be a bounded pseudoconvex domain with real analytic boundary in C
2.

Suppose that Aut(Ω) is not compact. Then Ω is biholomorphic to a domain of the form{
z ∈ C

2 : |z1|2 + |z2|2m < 1
}

(7.1)

for some positive integer m.
The same result also holds if Ω is a smoothly bounded pseudoconvex domain of finite type.

Furthermore, the assumption of pseudoconvexity (if the boundary is real analytic) can be dropped
(see [20]).

We outline the proof of Theorem 7.5. Since Aut(Ω) is noncompact, there exists a point a ∈ Ω
and a sequence of automorphisms {f j} such that the sequence qk = fk(a) converges to a boundary
point q ∈ ∂Ω. Then the sequence {fk} converges uniformly on compact subsets of Ω to a constant
map f0 ≡ q. Applying the scaling along the sequence {qk}, one can prove that Ω is equivalent to a
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domain of the form D = {2x2 + P (z1, z1) = 0}, where P is a nonzero real polynomial. Note that
the proof is more delicate than in the strictly pseudoconvex case and is based on precise estimates
for the Kobayashi–Royden metric in pseudoconvex domains of finite type in C2. These estimates
were obtained by Catlin [43]; a geometric proof of his result based on the scaling method was given
by Berteloot [28]. The one-parameter group Lt(z1, z2) = (z1, z2 + it) acts on the domain D. The
biholomorphism f : D → Ω defines a real one-parameter group of automorphisms ht = f ◦ Lt ◦ f−1.

The second step is to prove that the group {ht} is parabolic, that is, there exists a point p ∈ Ω
(called a parabolic point) such that

lim
t→−∞

ht(z) = lim
t→∞

ht(z) = p.

The proof also uses the estimates for the Kobayashi metric.
The next step is to study the holomorphic vector field X = (X1,X2) generating the parabolic

subgroup {ht}. This vector field is tangent to ∂Ω, that is,

Re

(
∂ρ

∂z1
X1 +

∂ρ

∂z2
X2

)
= 0.

This condition leads to a rather precise description of the jet of ∂Ω at a parabolic point p, and this
can be used to conclude the proof.

In the local case Verma [151] obtained the following classification result.
Theorem 7.6. Let Ω be a bounded domain in C

2. Suppose that there exists a point p ∈ Ω
and a sequence {φj} ∈ Aut(Ω) such that {φj(p)} converges to p∞ ∈ ∂Ω. Assume that the boundary
of Ω is real analytic and of finite type near p∞. Then exactly one of the following cases holds :

(i) if dimAut(Ω) = 2, then either

(a) Ω is biholomorphic to Ω1 = {z ∈ C
2 : 2Re z2 + P1(Re z1) < 0} where P1(Re z1) is a

polynomial that depends on Re z1, or
(b) Ω is biholomorphic to Ω2 = {z ∈ C

2 : 2Re z2 + P2(|z1|2) < 0} where P2(|z1|2) is a
homogeneous polynomial that depends on |z1|2, or

(c) Ω is biholomorphic to Ω3 = {z ∈ C
2 : 2Re z2 + P2m(z1, z1) < 0} where P2m(z1, z1) is a

homogeneous polynomial of degree 2m without harmonic terms;

(ii) if dimAut(Ω) = 3, then Ω is biholomorphic to Ω4 = {z ∈ C
2 : 2Re z2 + (Re z1)

2m < 0} for
some integer m ≥ 2;

(iii) if dimAut(Ω) = 4, then Ω is biholomorphic to Ω5 = {z ∈ C
2 : |z1|2 + |z1|2m < 0} for some

integer m ≥ 2;

(iv) if dimAut(Ω) = 8, then Ω is biholomorphic to B
2.

The dimensions 0, 1, 5, 6, and 7 cannot occur with Ω as above.
In higher dimensions the situation is more complicated. To the variables z1, . . . , zn we assign

the weights δ1, . . . , δn, where δj = (2mj)
−1 for mj a positive integer. If J = (j1, . . . , jn) and K =

(k1, . . . , kn) are multi-indices, we set wt(J) = j1δ1 + . . . + jnδn and wt(zJzK) = wt(J) + wt(K).
We consider real polynomials of the form

p(z, z) =
∑

wt(J)=wt(K)=1/2

aJKzJzK . (7.2)

The reality of p is equivalent to aJK = aKJ . The balance of the weights wt(J) = wt(K) implies
that the domain

G =
{
(w, z1, . . . , zn) ∈ C× C

n : |w|2 + p(z, z) < 1
}

(7.3)
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is invariant under the action of the real torus

(φ, θ) �→
(
eiφw, eiδ1θz1, . . . , e

iδnθzn
)
. (7.4)

The weighted homogeneity of p implies that the Cayley-type transform (w, z) �→ (w∗, z∗) defined by

w =

(
1− iw∗

4

)(
1 +

iw∗

4

)−1

, zj = z∗j

(
1 +

iw∗

4

)−2δj

(7.5)

maps G biholomorphically onto the domain

D =
{
(w, z1, . . . , zn) ∈ C× C

n : Imw + p(z, z) < 0
}
. (7.6)

The latter is an unbounded realization of G. Note that D is invariant under the translation along
the Rew-direction. Since p is homogeneous, the domain D is invariant with respect to the family
of anisotropic dilations. Hence the dimension of Aut(D) is at least 4.

Theorem 7.7. Let Ω ∈ C
n+1 be a smoothly bounded convex domain of finite type. If Aut(Ω)

is noncompact, then Ω is equivalent to a domain of the form (7.3).
This result is obtained in [21]. The scaling method in a convex domain Ω (not necessarily of finite

type) relies on the estimates for the Kobayashi–Royden metric, which also have other applications.
Denote by L(a, V ) the complex line passing through a point a ∈ Ω in the direction of a vector V .
Define δ(a, V ) to be the Euclidean distance from a to L(a, V ) ∩ ∂Ω. Then the following estimate
holds [21, 86]:

|V |
2δ(a, V )

≤ FΩ(a, V ) ≤ |V |
δ(a, V )

. (7.7)

Using this estimate and his version of the scaling method, Frankel [86] proved the following
Theorem 7.8. Suppose that Ω ⊂ C

n is a bounded convex domain and that there exists a
discrete subgroup of Aut(Ω) which acts properly discontinuously, freely, and cocompactly on Ω.
Then Ω is a bounded symmetric domain.

Recently, Zimmer [163] proposed a new approach to the problem of classifying convex domains
with large automorphism groups. Let Ω be a domain in C

n. The limit set of Ω is the set of points
z ∈ ∂Ω for which there exists some p ∈ Ω and some sequence φk ∈ Aut(Ω) such that φk(p) → z. If
Aut(Ω) is noncompact, the limit set is not empty. If Ω is a bounded convex domain with C1-smooth
boundary, the closed complex face of a point z ∈ ∂Ω is the closed set ∂Ω ∩Hz(∂Ω). The main result
of [163] is the following

Theorem 7.9. Suppose Ω is a bounded convex domain with C∞-smooth boundary. Then the
following conditions are equivalent :

(1) the limit set of Ω intersects at least two closed complex faces of ∂Ω;

(2) Ω is biholomorphic to the domain (7.3).

Notice that there is no finite type assumption in this theorem. The main new tool used by
Zimmer is the theory of Gromov hyperbolic metric spaces.

Suppose that (X, d) is a metric space. Let I ⊂ R be an interval. A curve σ : I → X is called
geodesic if d(σ(t1), σ(t2)) = |t1 − t2| for all t1, t2 ∈ I. A geodesic triangle is a choice of three points
in X and geodesic segments connecting these points. A geodesic triangle is said to be δ-thin if any
point on any of the sides of the triangle is within distance δ from the other two sides. A proper
geodesic metric space (X, d) is called δ-hyperbolic if every geodesic triangle is δ-thin. If (X, d) is
δ-hyperbolic for some δ ≥ 0, then (X, d) is called Gromov hyperbolic. Zimmer’s approach uses the
following result established in [162].
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Theorem 7.10. Suppose Ω ⊂ C
n is a bounded convex domain with smooth boundary. Then

the following conditions are equivalent :

(1) Ω has a finite type in the sense of D’Angelo;
(2) (Ω, dΩ) is Gromov hyperbolic, where dΩ is the Kobayashi distance on Ω.

Balogh and Bonk [7] established Gromov hyperbolicity of strictly pseudoconvex domains by
using estimates for the Kobayashi–Royden metric (see Proposition 2.5). Further results in this
direction were obtained recently by Bracci and Gaussier [33].

The condition of convexity is crucial in the proofs of the above results. It is not known whether
any bounded pseudoconvex domain with smooth boundary of finite type and noncompact automor-
phisms group in C

n, n > 2, is equivalent to (7.3). The question remains open even for domains
with real algebraic boundaries.

7.3. Proper self-mappings. Finally, we discuss some progress in the direction originated
from Alexander’s Theorem 4.1: a proper holomorphic self-map of Bn, n > 1, is a biholomorphism.
Its generalization to the case of strictly pseudoconvex domains (see Corollary 4.8) is based on
Theorem 4.7. However, the condition of strict pseudoconvexity is crucial for Theorem 4.7. Indeed,
the map f : (z1, z2) → (z21 , z2) takes the domain {z ∈ C

2 : |z1|4 + |z2|2} properly onto B
2 but its

critical locus is not empty. This is a serious obstacle for applications of the scaling method, and for
this reason the analogs of Alexander’s theorem are currently established only for special classes of
domains.

One of the most general results in this direction was obtained by Bedford [14].
Theorem 7.11. Let Ω be a bounded pseudoconvex domain with real analytic boundary in C

n,
n ≥ 2. Then every proper holomorphic self-mapping f : Ω → Ω is a biholomorphism.

The proof is based on a careful analysis of the branch locus of a proper holomorphic mapping
from a pseudoconvex domain with real analytic boundary. Notice that the assumption of real
analyticity is crucial here. To the best of our knowledge, it is not known whether the analog of The-
orem 7.11 remains true for pseudoconvex domains with smooth boundary of finite type in the sense
of D’Angelo. Certain results of this type are obtained for domains which admit some symmetries.

A domain Ω is said to be quasi-circular if there exist integers p and q, p + q ≥ 1, such that
(eipθz, eiqθw) ∈ Ω for θ ∈ [0, 2π] whenever (z, w) ∈ Ω. Thus, if p = q = 1, the domain Ω is circular;
when p = 0 or q = 0, Ω is a Hartogs domain. The following result is obtained in [53, 54].

Theorem 7.12. Let Ω be a smoothly bounded pseudoconvex quasi-circular domain of finite
type in C

2. Then every proper holomorphic self-map of Ω is a biholomorphism.
The proof uses the scaling method (for the study of the branch locus of the map) and arguments

from holomorphic dynamics.
Assumptions on regularity of the boundary can be weakened for domains with additional sym-

metries. For every a ∈ C
n denote by La : C

n → C
n the linear map Taz = (a1z1, . . . , anzn). Recall

that a domain Ω ⊂ C
n is called a Reinhardt (respectively, complete) domain if Ta(Ω) = Ω for

every a with |aj | = 1 (respectively, |aj | ≤ 1), 1 ≤ j ≤ n. We note that a complete description of
automorphisms of a wide class of hyperbolic Reinhardt domains was obtained by Kruzhilin [106].

The following result was established by Berteloot and Pinchuk [30]:
Theorem 7.13. Among bounded complete Reinhardt domains in C

2, the bidiscs are the only
domains that admit proper holomorphic self-mappings that are not automorphisms.

The same work also contains a detailed description of proper holomorphic maps between com-
plete Reinhardt domains. The general case of Reinhardt domains in C

2 (not necessarily complete)
was considered by Isaev and Kruzhilin [92]. They obtained a complete description of proper holomor-
phic mappings and classified all Reinhardt domains in C

2 that admit proper holomorphic self-maps
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which are not biholomorphisms. A partial generalization of Theorem 7.13 to higher dimensions was
obtained by Berteloot [27].

Proper holomorphic mappings between the classical Cartan domains and a wide class of Siegel
domains were studied by Tumanov and Henkin [149, 150] and by Henkin and Novikov [95]. We
present here one of their results.

Theorem 7.14. Let Ω ⊂ C
n, n > 1, be an irreducible bounded symmetric domain. Then every

proper holomorphic self-map f : Ω → Ω is an automorphism of Ω.

8. PROPER HOLOMORPHIC MAPPINGS BETWEEN REAL ANALYTIC DOMAINS

The goal of this section is to present the following results obtained by Diederich and Pinchuk
in [65, 66].

Theorem 8.1. Let f : Ω → Ω′ be a proper holomorphic mapping between two bounded domains
in C

n with real analytic boundaries. Suppose that at least one of the following conditions holds:

(a) n = 2;

(b) f extends continuously to Ω.

Then f extends holomorphically to a neighbourhood of Ω.
When the map f is assumed to be a biholomorphism and to extend smoothly to the boundary

of Ω, this result was obtained by Baouendi, Jacobowitz, and Trèves [11]. For pseudoconvex domains
this was proved in any dimension and without the assumption of boundary continuity by Diederich
and Fornaess [63] and by Baouendi and Rothschild [12]. In that case pseudoconvex boundaries
are automatically of finite type and Condition R holds. Therefore, a proper holomorphic map f
extends smoothly to Ω by Theorem 6.5. The case n = 2 was also considered by Huang [97] under
an additional assumption that f is continuous on Ω.

The case of condition (b) follows from a more general result.
Theorem 8.2. Let Γ ⊂ Ω and Γ′ ⊂ Ω′ be real analytic closed hypersurfaces of finite type, and

let f : Γ → Γ′ be a continuous CR mapping. Then f extends holomorphically to a neighbourhood
of Γ.

The proof of these results consists of two major parts:

(1) one proves that f extends as a proper holomorphic correspondence to a neighbourhood of ∂Ω;
(2) one proves that if f extends as a proper holomorphic correspondence, then it extends as a

holomorphic mapping to a neighbourhood of ∂Ω.

The main tool in the proof is the invariance property of Segre varieties associated with the real
analytic hypersurfaces. Their behaviour near Levi degenerate points of the boundary requires a
more subtle analysis. We describe now the main steps.

Let Ω be a bounded domain in C
n with real analytic boundary. There exists a neighbourhood W

of ∂Ω and a real analytic function ρ : W → R such that Ω ∩W = {z ∈ W : ρ(z) < 0} and dρ(z) 
= 0
for all z ∈ ∂Ω (a global defining function). Its complexification ρ(z,w) is defined on a suitable
neighbourhood V ⊂ C

2n of the diagonal Δ ⊂ W ×W and is holomorphic in z and antiholomorphic
in w. For points z ∈ C

n we use the notation z = ( ′z, zn) ∈ C
n−1 × C.

Let z0 ∈ ∂Ω. A local holomorphic coordinate system centred at z0 is called standard if the
defining function ρ can be written in these coordinates in the form ρ(z) = 2xn + o(|z|). A pair of
open neighbourhoods U1 ⊂ U2 (with U1 ⊂ U2) is called a standard pair of neighbourhoods of z0 if
it has the following properties:

(a) with respect to a suitable standard coordinate system at z0 one has U2 =
′U2 × U2n with ′U2

being an open neighbourhood of 0 ∈ C
n−1 and U2n an open neighbourhood on the zn-axis;
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(b) the complexification ρ(z, w) is well defined on U2 × U1 so that for each w ∈ U1 the Segre
variety Qw = {z ∈ U2 : ρ(z, w) = 0} is well defined;

(c) Qw can be written as a graph; that is, there exists a holomorphic function hw(
′z) on ′U2

(depending antiholomorphically on w) such that

Qw =
{
( ′z, zn) ∈ U2 : z2 = hw(

′z)
}
. (8.1)

Note that every point z0 ∈ ∂Ω admits a family of standard pairs of neighbourhoods such
that the corresponding U2 form a neighbourhood basis of z0. With this notation the function
h( ′z, w) := hw(

′z) can be written as a power series h( ′z, w) =
∑

j λj(w)z
j with coefficients λj

antiholomorphic on U1. There exists an integer N (depending only on ∂Ω) such that for all z0 ∈ ∂Ω
and any standard pair of neighbourhoods U1 ⊂ U2 of z0 the coefficients {λj : |j| ≤ N} uniquely
determine Qw. This allows us to define the structure of a finite-dimensional complex variety on the
family of all Segre varieties so that the maps

λ : U1 � w �→ Qw (8.2)

are finite antiholomorphic branched coverings. For any point w ∈ W , with W being a sufficiently
small open neighbourhood of ∂Ω, one has the following: the complex line lw through w containing
the real line passing through w and orthogonal to ∂Ω intersects the Segre variety Qw at exactly one
point sw, called the symmetric point of w. For w ∈ W \ Ω one always has sw ∈ Ω. The connected
component of Qw ∩Ω containing sw is denoted by sQw and is called the symmetric component.

The second important technical tool is provided by holomorphic correspondences. Let U and U ′

be open subsets of C
n. A proper holomorphic correspondence is a closed complex analytic subset

F ⊂ U × U ′ of pure dimension n such that the canonical projection π : F → U is proper. The
correspondence F is called irreducible if F ⊂ U × U ′ is irreducible as an analytic set (see [47] for
generalities on complex analytic sets). Let Ω and Ω′ be bounded domains in C

n and z0 ∈ ∂Ω be
a boundary point. We say that f extends as a proper holomorphic correspondence to a neigh-
bourhood U of z0 if there exists an open set U ′ ⊂ C

n and an irreducible proper holomorphic
correspondence F ⊂ U × U ′ such that

Γf ∩ {(Ω ∩ U)×Ω′} ⊂ F,

where Γf denotes the graph of f .
One can view this as an extension of f as a multiple-valued map. Indeed, to each point z ∈ U

the correspondence F assigns a finite number of points in the target space, namely, the set F̂ (z) :=
π′(π−1(z)), where π′ denotes the projection of F to U ′.

Let f : Ω → Ω′ be a proper holomorphic mapping between two bounded domains with real
analytic boundaries in C

n. Suppose that f extends as a correspondence F to a neighbourhood
of the point z0 ∈ ∂Ω. Choose standard coordinates such that z0 = 0, f(z0) = 0 and standard
neighbourhoods Uj and U ′

j , j = 1, 2. Then we have the following invariance property for the Segre
varieties under F̂ .

Proposition 8.3. For every (w,w′) ∈ F ∩ (U1 × U ′
1), the inclusion F̂ (Qw) ⊂ Q′

w′ holds.
Now we can explain how to construct a holomorphic correspondence which extends the graph

of f . For ζ ∈ Qw we denote by ζQw the germ of Qw at ζ. For every point z0 ∈ ∂Ω in a
standard coordinate system, a standard pair of neighbourhoods U1 ⊂ U2, and a suitably chosen
open neighbourhood U ′ of ∂Ω′, we define

V :=
{
(w,w′) ∈ (U1 \ Ω)× (U ′ \ Ω′) : sw′Q′

w′ ⊂ f(Qw ∩ Ω)
}
. (8.3)
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The important step is to show that V extends as an n-dimensional analytic set to a full neighbour-
hood of (0, 0), which, in fact, is the extension of the graph of f . This is not obvious, because this
requires the properness of the projection of V to U1 \ Ω.

The second part of the proof is given by the following
Theorem 8.4. Let Ω,Ω′ ⊂ C

n be bounded domains with real analytic boundaries and f :
Ω → Ω′ be a proper holomorphic mapping that extends as a holomorphic correspondence to a
neighbourhood of Ω. Then f extends holomorphically to a (possibly smaller) neighbourhood of Ω.

The original proof of this result [64] used the fact that f extends smoothly to pseudoconvex
points of ∂Ω. This result in turn used subelliptic estimates for the ∂-Neumann operator. Later
Pinchuk and Shafikov [128] gave a self-contained geometric proof without using the ∂-methods.
Further, in [67] Diederich and Pinchuk showed that for a holomorphic extension of the map f it is
enough to assume that its graph extends as an analytic set of dimension n (i.e., the projection π
from this set is not assumed to be proper).

9. ANALYTIC DISCS

In this section we consider a special case of proper holomorphic mappings from the unit disc
to domains in C

n. Since the unit disc does not have biholomorphic invariants, analytic discs are
more flexible than holomorphic mappings between domains in C

n for n > 1. This flexibility makes
them very useful in geometric complex analysis and its applications. These applications are often
based on the existence of analytic discs with boundaries in prescribed CR manifolds. We discuss
here some important results of this type.

9.1. Gromov’s theorem. Consider the standard symplectic form on C
n:

ω =

n∑
j=1

dxj ∧ dyj .

A real submanifold E of dimension n in C
n is called Lagrangian if ω|E = 0. It is easy to see

that every Lagrangian manifold is totally real, but the class of totally real manifolds is larger. The
following result is due to Gromov [89].

Theorem 9.1. Let E be a smooth compact Lagrangian submanifold in C
n. Then there exists

a nonconstant analytic disc smooth on D with the boundary attached to E.
This theorem has deep applications in symplectic geometry (see, for example, [6]). Note that

one can view it as a (partial) generalization of the Riemann mapping theorem. Indeed, when n = 1,
every real curve is Lagrangian.

From the analytic point of view the problem of constructing an analytic disc with the boundary
glued to E can be regarded as a Riemann–Hilbert type boundary value problem with nonlinear
boundary data (given by E). We sketch the main steps of Gromov’s approach following the work
of Alexander [4], who gave a simplified version of Gromov’s approach in the case of C

n. We note
that the original methods of Gromov lead to considerably more general results.

Step 1: Manifolds of discs and elliptic estimates. Fix a point p ∈ E and fix also a noninteger
r > 1. Consider the set of pairs

F =
{
f ∈ Cr+1(D,Cn) : f(∂D) ⊂ E, f(1) = p

}
. (9.1)

Denote by F an open subset of F which consists of those f that are homotopic to a constant
map f0 ≡ p in F . It is well known that F is a complex Banach manifold. Denote by G the complex
Banach space of all Cr maps g : D → C

n. Set H = {(f, g) ∈ F × G : ∂f/∂ζ = g}. Then H is a
connected submanifold of F ×G.
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For 0 < t < 1, let Dt := tD and D
+
t := tD ∩ {Im ζ > 0}.

Lemma 9.2. Let fk : (D
+
t , ∂D

+
t ∩ R) → (Cn, E) be maps of class Cr+1 that converge uniformly

to f : (D+
t , ∂D

+
t ∩ R) → (Cn, E). Suppose that the sequence gk = ∂fk/∂ζ converges in Cr(D+

t )
to g ∈ Cr(D+

t ). Then for every τ < t one has f ∈ Cr+1(D+
t ) and {fk} converges to f in D

+
τ in the

Cr+1-norm.
Denote by TDf = (2πi)−1f ∗ (1/ζ) the Cauchy–Green integral on D. Recall the classical

regularity property of the Cauchy–Green integral: for every noninteger s > 0 the linear map
TD : C

s(D) → Cs+1(D) is bounded. The proof of Lemma 9.2 given in [4] is based on the standard
elliptic “bootstrapping” argument employing the above regularity of the Cauchy–Green operator
and elementary estimates for the harmonic measures. Notice that this proof is purely local, i.e., all
estimates and the convergence are established in a neighbourhood of a given boundary point of a
disc. The global statement is the following

Lemma 9.3. Suppose that a sequence {fk} in F converges to a continuous mapping f :
(D, ∂D) → (Cn, E) uniformly on D and gk := ∂fk/∂ζ converge in Cr(D) to g ∈ Cr(D). Then
f ∈ Cr+1(D) and {fk} converges to f in F after possibly passing to a subsequence.

Considering a finite covering of ∂D by such neighbourhoods, we obtain Cr+1 convergence in a
neighbourhood of ∂D. The convergence in the interior of D follows, since fk = TDgk + hk and the
bounded sequence {hk} of holomorphic functions is a normal family.

Notice that the above boundary regularity and convergence results for analytic discs are quite
similar to the tools used in the proof of Fefferman’s mapping theorem.

Step 2: Renormalization and scaling. The canonical projection π : H → G given by π(f, g) = g
is a map of class C1 between two Banach manifolds. It is known [4, 89] that π is a Fredholm map
of index 0 and the constant map f0 is a regular point for π.

The crucial property of π is proved in [4]: the map π is not surjective. Now, arguing by
contradiction, suppose that there exists no nonconstant analytic disc of class Cr+1(D) attached to E;
then π−1(0) = {f0}. It follows that 0 ∈ G is a regular value of π. If π is proper, then Gromov’s
argument based on the Sard–Smale theorem implies surjectivity of π (see [4]), a contradiction. Thus,
it remains to show that π : H → G is proper.

Suppose by contradiction that π is not proper. Then there exists a sequence {(fk, gk)} ⊂ H
such that gk → g in G but fk diverge in F . For every k consider the function qk defined by
qk(ζ) = TDgk(ζ) for ζ ∈ D and qk(ζ) = 0 for ζ ∈ C \ D. Then qk → q = TDg in Cr+1(D,Cn) and
fk = qk + hk, where hk ∈ Cr+1(D,Cn) and hk is holomorphic on D. We have fk(∂D) ⊂ E and qk are
uniformly bounded since gk are; we conclude that hk|∂D are uniformly bounded. By the maximum
principle the functions hk are uniformly bounded on D. Hence, fk are uniformly bounded.

Set Mk = supD|h′k(λ)|. Since hk ∈ Cr(D,Cn) and r > 1, the constants Mk are finite for every k.
If {Mk} contains a bounded subsequence, then a subsequence of {hk} converges uniformly on D.
Then a subsequence of {fk} converges uniformly, and by Lemma 9.3 it converges in F , a contra-
diction. Thus, we may suppose that Mk → ∞. The key idea of [4] is to apply a renormalization
argument which is essentially a version of the scaling argument.

There exists λk ∈ ∂D with Mk = |h′(λk)|. Taking a subsequence if necessary, suppose that
λk → λ∗. Set zk = (1−M−1

k )λk ∈ D and consider the renormalization sequence of the Möbius maps

φk(λ) =
λ+ zk
1 + zkλ

.

Set f̃k = fk ◦ φk, q̃k = qk ◦ φk, and h̃k = hk ◦ φk. It is proved in [4] that after extracting
a subsequence, the sequences {q̃k} and {h̃k} converge uniformly on compact sets in D \ {−λ∗} to
a constant map c and a holomorphic map h̃, respectively.
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Notice that since qk converge in Cr+1(D), the sequence {q̃k} converges on compact sets in
D \ {−λ∗} in this norm. Since Lemma 9.3 is local, it applies and gives the convergence of {f̃k} to f̃
in the Cr+1-norm on compact sets in D \ {−λ∗} as well. Then again the argument of [4] shows that
|h̃′k(λk)| converges to 1/2 = |h̃′(λ∗)|. Hence, f̃ is a nonconstant disc of class Cr+1. By the boundary
regularity theorem for analytic discs, we conclude that f is of class C∞ on D \ {1}.

Furthermore, since E is a Lagrangian manifold, it is easy to see that the disc f̃ has bounded
area. This is due to the fact that for an analytic disc the area (induced by the Euclidean structure)
coincides with the symplectic area [D](f∗ω) (where [D] is the current of integration over D). Then [4,
Theorem 2] implies that f : D \ f−1(E) → C

n \E is a proper map. But then f̃ extends smoothly to
a neighbourhood of the point 1 (see Proposition 2.6) and so is smooth on D. This contradicts our
assumption of nonexistence of nonconstant analytic discs attached to E, and the theorem is proved.

The assumption that E is Lagrangian is crucial in Gromov’s theorem. Alexander [5] constructed
a totally real torus T 2 in C

2 which does not contain the boundary of any analytic disc. However,
in this example one can attach to T 2 the boundary of some Riemann surface (an annulus). This
phenomenon was recently studied by Duval and Gayet [71] for certain classes of totally real tori
in C

2. Their approach uses the results of Bedford and Gaveau [17], Bedford and Klingenberg [18],
and Kruzhilin [107] on filling topological 2-spheres, contained in compact strictly pseudoconvex
hypersurfaces in C

2, with Levi flat hypersurfaces. The filling is provided by a one-parameter family
of analytic discs attached to the sphere. These results have many other applications, including those
in symplectic topology.

9.2. Discs in pseudoconvex domains. Another approach to the extension of the Riemann
mapping theorem concerns construction of proper holomorphic discs in domains in C

n. We begin
with the following result of Forstnerič and Globevnik [84].

Theorem 9.4. Let Ω be a smoothly bounded strictly pseudoconvex domain in C
n. Then for

every point p ∈ Ω there exists an analytic disc f : D → Ω smooth on D such that p = f(0) and
f(∂D) ⊂ ∂Ω.

In fact, even stronger results in this direction have been obtained (we refer the reader to [70]
for a detailed account). The proof of Theorem 9.4 can be described as follows. Consider a global
defining function ρ of Ω. The idea is to construct an analytic disc attached to a suitable noncritical
sublevel set of ρ. When such a sublevel is a small deformation of a ball around p, this can be
achieved by the implicit function theorem. The main part of the proof consists of two major steps.
First, an approximate solution of the Riemann–Hilbert type boundary value problem allows one to
construct a homotopy on the space of analytic discs attached to the noncritical level sets of ρ. The
second step is a careful analysis of the Morse geometry of a critical level set of ρ, which allows one
to push an analytic disc on the post-critical level set. Combining these two tools, we can begin with
a small disc attached to some noncritical level and then deform it through other levels to a global
disc attached to the boundary.

For strictly convex domains even stronger results can be obtained. This theory was developed
by Lempert [108]. Let Ω be a strictly convex domain in C

n (this means the real Hessian of the
boundary is positive definite; in particular, Ω is strictly pseudoconvex). Fix a point p ∈ Ω. Then for
every tangent vector V at p there exists a unique analytic disc f centred at p in the direction of V
which is extremal for the Kobayashi–Royden metric of Ω. The condition of extremality means that
the infimum in the definition of the metric is achieved on this disc. It turns out that f is smooth
up to the boundary and its boundary is attached to ∂Ω. Moreover, f admits a holomorphic lift
which is attached to the projectivization of the holomorphic tangent bundle of ∂Ω. Since PH(∂Ω)
is a totally real manifold, f satisfies a Riemann–Hilbert type boundary value problem. When Ω is a
small deformation of the unit ball, this problem can be easily solved by the implicit function theorem.
The general case requires more advanced tools provided by the continuity method. It consists of
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two major steps: the implicit function theorem for the linearized Riemann–Hilbert boundary value
problem and a priori estimates (here the assumption of strict convexity is used).

In the case of the unit ball Lempert’s discs through the origin are just linear and are given by
the intersection of complex lines with the ball. It turned out that in the general case the geometry
of extremal discs through any point p is similar: they form a singular foliation of Ω with a unique
singularity at p. This allows one to construct the “Riemann mapping” from Ω to B

n which is
holomorphic along every extremal disc through a fixed point p and preserves the contact structure
of the boundary.

Lempert’s theory has many applications. For example, it provides an independent proof of
Fefferman’s mapping theorem. Furthermore, extremal discs form a very useful family of biholo-
morphic invariants, which leads to a solution of the biholomorphic equivalence problem [109]. The
logarithm of the Euclidean norm of the above “Riemann mapping” gives a solution of the complex
Monge–Ampère equation with a logarithmic pole at p; it can also be viewed as a higher dimensional
analog of the Green function. Donaldson used a similar approach [69] in order to construct regular
solutions of the Dirichlet problem for a certain class of complex Monge–Ampère equations.

10. POSITIVE CODIMENSION

In this section we consider the properties of holomorphic mappings f : Ω → Ω′, where Ω ⊂ C
n

and Ω′ ⊂ C
N with 1 < n < N (the case of positive codimension). These maps do not have flexibility

of analytic discs, since the boundary of the source domain has intrinsic geometry. Nevertheless, the
case of positive codimension is considerably more flexible than the equidimensional one. This is
illustrated by the following result due to Forstnerič [76] and Løw [111].

Theorem 10.1. Let Ω be a bounded strictly pseudoconvex domain with C2 boundary in C
n.

There is an integer N1 such that for every N ≥ N1 there exists a proper holomorphic mapping
f : Ω → B

N . Some of these embeddings extend continuously to Ω, but there also exist embeddings
that are not continuous on ∂Ω.

In particular, a direct analog of Fefferman’s mapping theorem is not true in the case of positive
codimension.

Note that the tools of the Moser theory or Cartan–Chern theory do not seem to be appropriate
in this case. This is one of the reasons why the study of the rigidity phenomenon in positive
codimension is a difficult problem. One of the main tools here is the geometric reflection principle
based on the geometry of Segre varieties, which seems to admit some generalization to the case of
positive codimension.

Forstnerič [82] showed that most generic real analytic CR manifolds of positive CR dimension
are not locally holomorphically embeddable to the germ of any generic real algebraic CR manifold of
the same real codimension. One of the principal facts is that an analog of the Poincaré–Alexander
phenomenon holds for CR mappings between real spheres of positive codimension if the initial
regularity of a CR mapping is sufficiently high. Forstnerič [77] proved that such a CR mapping
extends to a rational mapping with un upper bound on the degree (depending on the codimension).
Similar results are obtained for holomorphic mappings between real algebraic CR manifolds (see,
for example, [8, 52, 112, 161]). However, the extension of the Poincaré–Alexander phenomenon to
the real analytic category meets difficulties. The following result is due to Pinchuk [123].

Theorem 10.2. Let Γ be a (connected) real analytic strictly pseudoconvex hypersurface in C
n,

n > 1. Assume that f is a smooth CR mapping in a neighbourhood U of a point p ∈ Γ such that
f(U) ⊂ ∂BN with n ≤ N . Then f extends as a holomorphic mapping along any path in Γ.

The proof is based on the analytic reflection principle. Currently there is no extension of
this result to the case when the sphere ∂Bn is replaced with a real analytic strictly pseudoconvex
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hypersurface. Furthermore, even in the case of the local Schwarz-type reflection principle many
basic questions remain open.

Finally, Forstnerič [78] established the following

Theorem 10.3. Let f : Γ → Γ′ be a smooth CR mapping between real analytic strictly pseu-
doconvex hypersurfaces in C

n and C
N , respectively, n ≤ N . Then there exists an open dense subset

O ⊂ Γ such that f extends holomorphically to a neighbourhood of every point of O.

A natural question is whether the above set O coincides with the whole Γ. The following result
was obtained in [129].

Theorem 10.4. Let f : Γ → Γ′ be a smooth CR mapping between real analytic strictly pseudo-
convex hypersurfaces in C

n and C
N , respectively, and n ≤ N ≤ 2n. Then f extends holomorphically

to a neighbourhood of every point in Γ.

The proofs of Theorems 10.3 and 10.4 are based on the geometric reflection principle and the
study of Segre varieties. To the best of our knowledge, it is not known whether the condition
N ≤ 2n in Theorem 10.4 can be dropped.
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