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1 INTRODUCTION

It is an important and generally difficult problem in complex analysis to characterise convex-
ity (polynomial, rational, etc.) of compact sets in complex Euclidean spaces. Quite often, such a
characterisation involves ideas from an area of mathematics not directly related to the definition
of convexity. In this paper, we are concerned with rational convexity of compact sets in ℂ𝑛, see
Section 2 for basic definitions. Our principal result is the following.

Theorem 1.1. Let 𝑆 be a compact regular totally real set in ℂ𝑛, 𝑛 > 1. Then the following are
equivalent.

(i) 𝑆 is rationally convex.
(ii) There exists a smooth strictly plurisubharmonic function 𝜑 ∶ ℂ𝑛 → ℝ and a finite regular cover

{Σ𝑘𝑗 }𝑗=1,…,𝑟 of 𝑆 by totally real manifolds that are isotropic (Lagrangian) with respect to the Käh-
ler form 𝜔 = 𝑑𝑑𝑐𝜑, that is, that satisfy 𝜄∗

Σ𝑘𝑗
𝜔 = 0 for each 𝑗 = 1,… , 𝑟, where 𝜄Σ𝑘𝑗 ∶ Σ𝑘𝑗 → ℂ𝑛

denotes the inclusion map.

This theorem is a generalisation of a well-known result of Duval–Sibony [4] in which 𝑆 was
assumed to be a compact smooth totally real manifold. A compact 𝑆 ⊂ ℂ𝑛 is said to be a totally
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real set if it is the zero locus of a non-negative strictly plurisubharmonic function defined in a
neighbourhood of 𝑆. In particular, every totally real manifold is a totally real set. The study of
totally real sets was pioneered by Wells [21] and Harvey–Wells [10, 11]. A priori, totally real sets
may have no regularity, but it is known that locally they are contained in totally real manifolds.
This gives a cover of a totally real set 𝑆 by totally real manifolds, in general of different dimension.
We call the cover regular if any intersection of the manifolds in the cover is also a manifold. This
property allows us to construct a special cover of 𝑆 by totally real manifolds {Σ𝑘𝑗 }𝑗=1,…,𝑟. We call
a totally real set regular if it admits a regular cover. A prominent feature of this cover is that its
closure is itself a totally real set and a stratified space satisfying Whitney condition (B), this is the
content of Section 3 below.
The proof of the theorem, which is given in Section 4, in fact, gives a slightly more refined

statement, which is also new in the case of totally real manifolds.

Corollary 1.2. Let𝑀 ⊂ ℂ𝑛,𝑛 > 1, be a regular totally real set. A compact 𝑆 ⊆ 𝑀 is rationally convex
if and only if there exists a smooth strictly plurisubharmonic function 𝜑 ∶ ℂ𝑛 → ℝ, a neighbourhood
𝑈 of 𝑆 and a regular cover {Σ𝑘𝑗 }𝑗=1,…,𝑟 of𝑀 such that 𝜄∗

𝑈∩Σ𝑘𝑗
𝑑𝑑𝑐𝜑 = 0 for each 𝑗 = 1,… , 𝑟. In partic-

ular, if𝑀 is a totally real manifold, then𝑀 can be taken to be the cover, that is, 𝑆 is rationally convex
if and only if 𝜄∗

𝑈∩𝑀
𝑑𝑑𝑐𝜑 = 0.

The proof of Corollary 1.2 will be given in Section 4.
Some generalisations of the Duval–Sibony theorem were also obtained by Gayet [6], Duval–

Gayet [3], Shafikov–Sukhov [17] andMitrea [14]. In these results, 𝑆 is either an immersedmanifold
or has special isolated singularities. In the case dim𝑆 = 𝑛, such an 𝑆 cannot be a totally real set,
and so, these results apply to a different class of compacts. On the other hand, the set 𝑆 in our
result need not have any regularity at all, in particular, it may have a fractal-type behaviour.
As an application, combining Theorem 1.1 with the work of Berndtsson [1], we obtain the

following approximation result.

Corollary 1.3. Suppose that 𝑆 ⊂ ℂ𝑛, 𝑛 > 1, is a compact totally real set with a regular cover
{Σ𝑘𝑗 }𝑗=1,…,𝑟 that is isotropic (Lagrangian) with respect to someKähler form onℂ𝑛. Then any complex-
valued continuous function on 𝑆 can be approximated uniformly on 𝑆 by rational functions with the
poles off 𝑆.

The proof of Corollary 1.3 is immediate from Theorem 1.1; see Section 2.
The condition that 𝑆 admits a regular cover is a technical assumption needed for our arguments

to work.We do not know if this assumption is really necessary or if there exist totally real sets that
do not admit a regular cover.

2 RATIONAL CONVEXITY

Given a compact set 𝑆 ⊂ ℂ𝑛, the rationally convex hull of 𝑆, denoted by 𝑅(𝑆), is defined as

𝑅(𝑆) = {𝑧 ∈ ℂ𝑛 ∶ |𝑃(𝑧)| ⩽ ||𝑃||𝑆, 𝑃 is any rational function with poles off 𝑆}.
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We say that 𝑆 is rationally convex if 𝑅(𝑆) = 𝑆. This is equivalent to the following: for any point
𝑧0 ∈ ℂ

𝑛 ⧵ 𝑆, there exists a holomorphic polynomial 𝑃(𝑧) on ℂ𝑛 such that 𝑃(𝑧0) = 0 but 𝑃 does
not vanish on 𝑆. Any compact in ℂ is rationally convex, but in higher dimensions, it is gener-
ally difficult to determine whether a given compact is rationally convex or not, see, for example,
Stolzenberg [18] for an early work in this direction.
A general sufficient condition for rational convexity is given by Duval–Sibony [4, Theorem 1.1]:

if 𝜑 is a plurisubharmonic function on ℂ𝑛, ℂ𝑛 ⧵ supp 𝑑𝑑𝑐𝜑 is compact, then for any 𝑠 > 0, the set

𝐾𝑠 = {𝑧 ∈ ℂ
𝑛 ∶ dist(𝑧, supp 𝑑𝑑𝑐𝜑) ⩾ 𝑠}

is rationally convex. This theorem implies the following characterisation of rational convexity of
totally real sets.

Proposition 2.1. Let 𝑆 ⊂ ℂ𝑛 be compact totally real set given as the zero locus of a non-negative
strictly plurisubharmonic function 𝜑 defined in a neighbourhood of 𝑆. Then 𝑆 is rationally convex if
and only if 𝑑𝑑𝑐𝜑 extends to a Kähler form on ℂ𝑛.

The ‘if’ direction of Proposition 2.1 follows immediately from the proposition in Nemirovski
[16], which is a corollary of Theorem 1.1 of Duval–Sibony stated above. The proof in the other
direction can be deduced from the content of Section 4.1.
Further, Duval–Sibony theorem [4, Theorem 3.1] states the following: a smooth compact totally

real manifold in ℂ𝑛 is rationally convex if and only if it is isotropic with respect to a Kähler form in
ℂ𝑛. Our main result is a generalisation of this theorem.
Finally, Duval–Sibony [4, Theorem 2.1] gave the following characterisation of the rationally

convex hull of an arbitrary compact set 𝑆 ⊂ ℂ𝑛: for every 𝑧 ∉ 𝑅(𝑆), there exists a smooth positive
closed (1, 1)-form 𝜔 that is strictly positive at 𝑧 and vanishes in a neighbourhood of 𝑅(𝑆). This gives
a way to construct the Kähler form with respect to which a totally real rationally convex mani-
fold 𝑆 is isotropic. In the other direction, the proof of Duval–Sibony relies on the following result
(cf. [4, Lemma 1.2]): Suppose that 𝜑 is a continuous plurisubharmonic function on ℂ𝑛, and ℎ is a
holomorphic function on some domain 𝑉 ⊂ ℂ𝑛. Assume that

𝐾 = {𝑧 ∈ 𝑉 ∶ |ℎ(𝑧)| ⩾ 𝑒𝜑(𝑧)}
is compact. Then for every 𝑧 ∈ ℂ𝑛 ⧵ 𝐾, there exists an entire holomorphic function𝑓 such that𝑓(𝑧) =
0 but the hypersurface {𝑓 = 0} omits 𝐾. Algebraic approximation of 𝑓 then shows that the set 𝐾 is
rationally convex, and so, the proof of rational convexity of 𝑆 boils down to the construction of the
required functions 𝜑 and ℎ so that 𝑆 = 𝐾. These ideas will be used in the proof of our main result.
Rational convexity is important, in particular, in view of the Oka–Weil theorem, see, for exam-

ple, Stout [19]. It states that if 𝑆 is a rationally convex compact, then any function holomorphic
on 𝑆 can be approximated uniformly on 𝑆 by rational functions with poles off 𝑆. By Berndtsson
[1], any continuous function on 𝑆 can be approximated by functions holomorphic on 𝑆. This gives
the proof of Corollary 1.3: by Theorem 1.1, the set 𝑆 is rationally convex, and so, combining the
Oka–Weil theorem with Berndtsson, we obtain the required approximation.
Conversely, if 𝑆 is a compact such that any continuous function on 𝑆 can be approximated

uniformly on 𝑆 by rational functions with poles off 𝑆, then 𝑆 is rationally convex, see Stout [19,
Theorem 1.2.10]. Combinedwith Corollary 1.3, this implies that any compact subset of a rationally
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convex totally real set 𝑆 is itself rationally convex. This gives the proof of Corollary 1.2 in one
direction; see Section 4.2 for a complete proof. Note that this simple argument does not imply
Theorem 1.1 because a totally real set is not necessarily contained in a totally real manifold, as we
will see in the next section.

3 TOTALLY REAL SETS

Recall that a smooth manifold 𝑀 is totally real, if for any point 𝑝 ∈ 𝑀, the tangent plane 𝑇𝑝𝑀
does not contain any complex directions. A generalisation of this is the notion of a totally real
set. In this section, we give a quick introduction to this subject, and then, we define a special
subclass of totally real sets thatwe call regular. Totally real sets can be defined on arbitrary complex
manifolds, but for simplicity, we restrict our attention to compacts in ℂ𝑛, a general reference to
totally real sets is Stout [19].

Definition 3.1. A compact subset 𝑆 ⊂ ℂ𝑛 is called a totally real set if there exist a neighbourhood
𝑈 of 𝑆 in ℂ𝑛 and a non-negative strictly plurisubharmonic function 𝜑(𝑧) defined on 𝑈 such that
𝑆 = {𝜑 = 0}.

In fact, being a totally real set is a local notion. More precisely, the following holds: if for every
point 𝑝 in a compact set 𝑆, there exist a neighbourhood 𝑈𝑝 of 𝑝 in ℂ𝑛 and a non-negative smooth
strictly plurisubharmonic function 𝜑𝑝 such that 𝑆 ∩ 𝑈𝑝 = {𝑧 ∈ 𝑈𝑝 ∶ 𝜑𝑝(𝑧) = 0}, then 𝑆 is a totally
real set. This can be proved by considering a locally finite cover of 𝑆 by open sets 𝑈𝑝 and using
a partition of unity argument (see Lemma 6.1.3 of Stout [19]). In particular, it follows that any
compact totally real submanifold𝑀 of ℂ𝑛 is a totally real set. Indeed, it is well known that locally
the square-distance function to𝑀 is strictly plurisubharmonic, thus giving the required function
𝜑𝑝 near every point 𝑝 ∈ 𝑀.
The following result was proved by Harvey–Wells [11]: Let 𝜑 be a non-negative strictly plurisub-

harmonic function of class 𝐶𝑘+1, 𝑘 ⩾ 1, on the open set𝑈 ⊂ ℂ𝑛, and let 𝑆 be its zero locus. For every
𝑝 ∈ 𝑆, there exists a neighbourhood 𝑈𝑝 of 𝑝 and a totally real manifold𝑀𝑝 of class 𝐶𝑘 in 𝑈𝑝 such
that 𝑆 ∩ 𝑈𝑝 ⊂ 𝑀𝑝. (In this paper,we avoid questions ofminimal finite smoothness required for the
arguments to go through and simply assume 𝐶∞-smoothness of all the objects involved.) On the
other hand, suppose that 𝑆 ⊂ 𝑀 is a compact subset of a totally real submanifold𝑀 ⊂ ℂ𝑛. Then 𝑆
can be represented as the zero set of a smooth function ℎ (see Lemma 1.4.13 of Narasimhan [15]).
By taking 𝜑 to be the square-distance function to𝑀 and a sufficiently large even integer𝑚, we see
that the function 𝜑(𝑧) + ℎ𝑚(𝑧) is strictly plurisubharmonic in a small neighbourhood of 𝑀 and
its zero locus is exactly 𝑆. This shows that a compact 𝑆 is a totally real set if and only if 𝑆 is locally
contained in a totally real manifold.
A natural question is whether any totally real set is globally contained in some smooth totally

real manifold. A positive answer to this question would, of course, undermine the importance
of this class of compacts. This is, however, not the case. Consider the following example due to
Chaumat–Chollet [2].

Example 3.2. Consider the map 𝐹 ∶ ℝ3 → ℂ3 given by

𝐹(𝑡1, 𝑡2, 𝑡3) =
(
𝑡1 cos 𝑡3, 𝑡1 sin 𝑡3, 𝑡2 𝑒

𝑖𝑡3∕2
)
.
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One can verify that this is a totally real immersion of ℝ3 ⧵ {𝑡1 = 0} into ℂ3. The restriction of 𝐹 to
a subdomain

𝐷 = {𝑡 ∈ ℝ3 ∶ (𝑡1, 𝑡2, 𝑡3) ∈ (0, 2) × (−1, 1) × ℝ}

can be seen as the universal cover of its image Σ ∶= 𝐹(𝐷), which is a totally real submanifold of
ℂ3 of dimension 3. One can see that 𝐷 contains the infinite strip

𝑇 = {𝑡 ∈ ℝ3 ∶ 𝑡1 = 1, −1∕2 ⩽ 𝑡2 ⩽ 1∕2, 𝑡3 ∈ ℝ},

which is mapped by 𝐹 onto a compact subset of Σ. The set𝑀 = 𝐹(𝑇) is a Möbius strip. Consider
the set 𝑆 = 𝑀 ∪ Δ, where Δ is a disc

Δ =
{
𝑧 ∈ ℂ3 ∶ 𝑥21 + 𝑥

2
2 ⩽ 1, 𝑦1 = 𝑦2 = 𝑧3 = 0

}
.

Then

Γ = 𝑀 ∩ Δ =
{
𝑧 ∈ ℂ3 ∶ 𝑥21 + 𝑥

2
2 = 1, 𝑦1 = 𝑦2 = 𝑧3 = 0

}
.

One can verify that 𝑆 ⧵ {0} ⊂ Σ and thatΔ is contained inℝ3𝑥. Hence, 𝑆 is a totally real set.However,
𝑆 is not contained in a totally real submanifold of an open set in ℂ3. Indeed, suppose that Σ0 is a
totally real three-dimensional manifold that contains 𝑆. The tangent bundle 𝑇Σ0 when restricted
to Δ is trivial, because Δ is contractible, so, in particular, 𝑇Σ0|Γ is trivial. For each 𝑝 ∈ Γ, 𝑇𝑝Σ0
contains both 𝑇𝑝𝑀 and 𝑇𝑝ℝ2(𝑥1,𝑥2). But this is impossible because no neighbourhood of Γ in𝑀 is
orientable.

Let 𝑆 ⊂ ℂ𝑛 be a totally real set. By the discussion above, there exists a locally finite cover
{𝑈𝛼}𝛼∈𝐴 of 𝑆 by open sets in ℂ𝑛 such that for each 𝛼 ∈ 𝐴, the set 𝑆 ∩ 𝑈𝛼 is contained in some
totally real submanifold 𝑀𝛼 of 𝑈𝛼. Then {𝑀𝛼}𝛼∈𝐴 is a cover of 𝑆 by totally real manifolds. Note
that by compactness of 𝑆, the set 𝐴 can always be chosen to be finite.

Definition 3.3. We say that {𝑀𝛼}𝛼∈𝐴 is a regular cover of 𝑆 if any intersection of manifolds in
{𝑀𝛼} is either empty or is a smooth manifold. We say that a totally real set 𝑆 is regular, if it admits
a regular cover {𝑀𝛼}.

As an example, consider a compact real-analytic set 𝑆 ⊂ ℂ𝑛 of dimension at most 𝑛 − 1, which
has only isolated singularities andwhich is a totally real set (in the sense of Definition 3.1). Then 𝑆
is a regular totally real set. Indeed, the regular part of 𝑆 is a disjoint union of totally real manifolds
(in general not of the same dimension even if 𝑆 is irreducible), denote these by 𝑀1,𝑀2,… ,𝑀𝑘.
Let 𝑞1, 𝑞2, … , 𝑞𝑚 be the singular points of 𝑆. For each 𝑞𝑗 , there exists a local totally real manifold
𝑀𝑞𝑗

that contains a neighbourhood of 𝑞𝑗 in 𝑆. We may choose these manifolds to be disjoint.
Then {𝑀1, … ,𝑀𝑘,𝑀𝑞1

, … ,𝑀𝑞𝑚
} is a regular cover of 𝑆, since 𝑀𝑗 ∩𝑀𝑞𝑙

is either empty or is an
open subset of 𝑀𝑗 . A detailed discussion of totally real analytic sets can be found in Wells [21].
Another instance of a regular totally real set is given in Example 3.2: themanifolds Σ andΔ form a
regular cover of the set 𝑆. Thus, a regular totally real set in general is not contained in a totally real
manifold. Finally, we note that we do not have any examples of totally real sets that are not regular.
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A priori, a totally real set may have no regularity, as any compact subset of a totally real mani-
fold is a totally real set. This is a general difficulty when working with such objects. As a way to
overcome this problem, we now construct a new totally real set that contains the given regular
totally real set and is a finite union of smooth manifolds with the special intersection property
described above. This construction will be used in the proof of the main theorem. For the last
statement in the proposition below, recall that a closed subset 𝑋 of a topological space 𝑌 is called
a neighbourhood retract of𝑌 if𝑋 is a retract of some open subset of𝑌 that contains𝑋; the subset𝑋
is called an absolute neighbourhood retract or ANR (for the class of metrizable topological spaces),
if𝑋 is a neighbourhood retract of𝑌 whenever𝑋 is a closed subset of a metric space𝑌. For further
details, see, for example, Fritsch–Piccinini [5].

Proposition 3.4. Let 𝑆 ⊂ ℂ𝑛 be a regular totally real set and let 𝛿 > 0 be arbitrary. Then there exists
a collection of smooth totally real manifolds Σ𝑘𝑗 , 𝑗 = 1,… , 𝑟, dimΣ𝑘𝑗 = 𝑘𝑗 , 𝑘1 < 𝑘2 < ⋯ < 𝑘𝑟, with
the following properties:

(i) 𝑆 ⊂ Σ ∶=
⋃
1⩽𝑗⩽𝑟 Σ𝑘𝑗 ;

(ii) if 𝑝 ∈ Σ𝑘𝑗 ∩ Σ𝑘𝑙 , 𝑘𝑗 < 𝑘𝑙 , then there exists a neighbourhood𝑉𝑝 ⊂ ℂ
𝑛 of 𝑝 such that 𝑉𝑝 ∩ Σ𝑘𝑗 ⊂

Σ𝑘𝑙 . In particular, {Σ𝑘𝑗 }𝑗=1,…,𝑟 is a regular cover of 𝑆;
(iii) Σ is a totally real set;
(iv) Σ is contained in the 𝛿-neighbourhood of 𝑆.
(v) The compact Σ can be stratified to satisfy Whitney condition (B). It is also ANR, in particular,

there exists a neighbourhood basis of Σ that retracts to Σ.

Throughout the paper, 𝐵(𝑧, 𝜌) denotes the Euclidean ball in ℂ𝑛 of radius 𝜌 centred at 𝑧.

Proof. Let = {𝑀𝛼} be a finite regular cover of 𝑆. For any 𝑝 ∈ 𝑆, consider the manifold 𝑀𝑝 =

∩𝑝∈𝑀𝛼
𝑀𝛼, that is, the intersection of all manifolds in the cover that contain 𝑝. From the definition

of a regular cover, in some neighbourhood𝑈𝑝 of 𝑝,𝑀𝑝 is a totally real submanifold of𝑈𝑝 of some
dimension 𝑘𝑝 such that 𝑆 ∩ 𝑈𝑝 ⊂ 𝑀𝑝. Note that if 𝑘𝑝 = 0, then 𝑝 is an isolated point of 𝑆. We call
𝑀𝑝 the canonical manifold at 𝑝 with respect to, and 𝑘𝑝 the index of 𝑝. Let 0 ⩽ 𝑘1 < 𝑘2 <⋯ <

𝑘𝑟 ⩽ 𝑛 be the list of all indices appearing in 𝑆. Our proof is a reverse induction on 𝑘𝑗 , 𝑗 = 1,… , 𝑟.
Define

𝑆𝑘𝑗 = {𝑝 ∈ 𝑆 ∶ index(𝑝) = 𝑘𝑗}.

We claim that the set 𝑆 = ∪𝑗⩽𝑙𝑆𝑘𝑗 is an open subset of 𝑆 (in the topology induced by ℂ
𝑛) for all 𝑙,

and hence, 𝑆 ⧵ 𝑆 is a closed subset of ℂ𝑛. Indeed, if 𝑝 ∈ 𝑆, then in a neighbourhood 𝑉 of 𝑝, the
set 𝑆 ∩ 𝑉 is contained in a manifold of dimension 𝑘𝑗 for some 𝑗 ⩽ 𝑙, and therefore, index(𝑞) ⩽ 𝑘𝑗
for all 𝑞 ∈ 𝑉𝑝 ∩ 𝑆. Therefore, 𝑝 belongs to 𝑆 together with its small neighbourhood, which shows
that 𝑆 is open, and 𝑆 ⧵ 𝑆 is closed.
Consider 𝑆𝑘𝑟 , the closed subset of 𝑆 containing points of the top index. For every 𝑝 ∈ 𝑆𝑘𝑟 , there

exists 𝜀 = 𝜀(𝑝) > 0 such that the canonical manifold 𝑀𝑝 is a submanifold of 𝐵(𝑝, 2𝜀), and 𝑆 ∩
𝐵(𝑝, 2𝜀) ⊂ 𝑀𝑝. Set

𝑀(𝑝, 𝜀) = 𝑀𝑝 ∩ 𝐵(𝑝, 𝜀).
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Then 𝑆𝑘𝑟 admits a finite cover by manifolds 𝑀(𝑝𝑗, 𝜀), 𝑝𝑗 ∈ 𝑆𝑘𝑟 . We now show that after some
surgery on the manifolds 𝑀(𝑝𝑗, 𝜀), they can be glued together to form one manifold. Indeed,
suppose𝑀(𝑝1, 𝜀) ∩ 𝑀(𝑝2, 𝜀) = 𝐾 ≠ ∅. From the properties of the regular cover, the set 𝐾 is a
submanifold of 𝐵(𝑝1, 𝜀) ∩ 𝐵(𝑝2, 𝜀). If dim𝐾 < 𝑘𝑟, then 𝐾 ∩ 𝑆𝑘𝑟 = ∅, as otherwise, 𝑆𝑘𝑟 would con-
tain points of index ⩽ dim𝐾. Further, since the same property also holds in the balls of radius
2𝜀, we conclude that 𝐾 ∩ 𝑆𝑘𝑟 = ∅. Therefore, we may remove from𝑀(𝑝1, 𝜀) and𝑀(𝑝2, 𝜀) a small
closed neighbourhood of𝐾without affecting their intersectionwith 𝑆𝑘𝑟 . The only other possibility
is that dim𝐾 = 𝑘𝑟, which means that the manifolds𝑀(𝑝1, 𝜀) and𝑀(𝑝2, 𝜀) agree on the intersec-
tion and can be glued together. Repeating this procedure for all 𝑀(𝑝𝑗, 𝜀), we conclude that the
manifolds𝑀(𝑝𝑗, 𝜀) can be glued together to form amanifoldΣ𝑘𝑟 of dimension 𝑘𝑟 that contains 𝑆𝑘𝑟 .
The manifold Σ𝑘𝑟 has only finitely many connected components.
We now continue by induction. Suppose that for 𝑚 > 1, we have constructed manifolds

Σ𝑘𝑚, Σ𝑘𝑚+1 … , Σ𝑘𝑟 , dimΣ𝑘𝑗 = 𝑘𝑗 , which satisfy the intersection property (ii) of the proposition and
such that

⋃
𝑚⩽𝑗⩽𝑟

𝑆𝑘𝑗 ⊂
⋃
𝑚⩽𝑗⩽𝑟

Σ𝑘𝑗 .

We outline the construction of the manifold Σ𝑘𝑚−1 . Let

𝑅𝑚 = ∪𝑗⩾𝑚Σ𝑘𝑗 . (1)

Lemma 3.5. 𝑆𝑘𝑚−1 ⧵ 𝑅𝑚 is a closed subset of 𝑆.

Proof. Indeed, if (𝑝𝜈) is a sequence in 𝑆𝑘𝑚−1 ⧵ 𝑅𝑚 that converges to some point 𝑝0, then 𝑝0 ∈
∪𝑗⩾𝑚−1𝑆𝑘𝑗 , since ∪𝑗⩾𝑚−1𝑆𝑘𝑗 is a closed set as shown above. On the other hand, 𝑝0 cannot be
a point in 𝑅𝑚 as otherwise it would be contained in 𝑅𝑚 together with a small neighbourhood.
And since 𝑅𝑚 contains all points in ∪𝑗⩾𝑚𝑆𝑘𝑗 , we conclude that 𝑝0 ∈ 𝑆𝑘𝑚−1 ⧵ 𝑅𝑚. This shows that
𝑆𝑘𝑚−1 ⧵ 𝑅𝑚 is closed. □

As in the case of 𝑆𝑘𝑟 discussed above, for every point 𝑝 ∈ 𝑆𝑘𝑚−1 ⧵ 𝑅𝑚, there exists 𝜀 = 𝜀(𝑝)
such that the canonical manifold 𝑀𝑝 is a submanifold of 𝐵(𝑝, 2𝜀), and 𝑆 ∩ 𝐵(𝑝, 2𝜀) ⊂ 𝑀𝑝. Then
the set 𝑆𝑘𝑚−1 ⧵ 𝑅𝑚 can be covered by a finite collection of manifolds 𝑀(𝑝𝑗, 𝜀) = 𝑀𝑝𝑗

∩ 𝐵(𝑝𝑗, 𝜀),
𝑝𝑗 ∈ 𝑆𝑘𝑚−1 ⧵ 𝑅𝑚. As above, if the intersection of two such manifolds is non-empty, then either a
small neighbourhood of the intersection can be removed from 𝑀(𝑝𝑗, 𝜀) without affecting their
intersection with 𝑆𝑘𝑚−1 , or the manifolds coincide near the intersection. After removing all lower
dimensional intersections,𝑀(𝑝𝑗, 𝜀) can be glued together to form a 𝑘𝑚−1-dimensional manifold
Σ𝑘𝑚−1 that contains 𝑆𝑘𝑚−1 ⧵ 𝑅𝑚. Suppose now that 𝐾 = Σ𝑘𝑚−1 ∩ Σ𝑘𝑗 for some 𝑗 > 𝑚 − 1, 𝐾 ≠ ∅.
Note that 𝐾 is constructed as an intersection of some submanifolds in, and therefore, by the
regularity of, it is a smooth manifold. Suppose that dim𝐾 < 𝑘𝑚−1, and let 𝑝 ∈ 𝐾 ∩ Σ𝑘𝑚−1 ∩ 𝑆.
Then 𝑝 belongs to the closure of somemanifold𝑀(𝑞, 𝜀) of dimension 𝑘𝑗 that was used in the con-
struction of Σ𝑘𝑗 . By increasing this 𝜀 slightly we see that near 𝑝, the set 𝑆 is locally contained in
a totally real manifold of dimension = dim𝐾, that is, the index of 𝑝 is less than 𝑘𝑚−1. Since the
points of index less than 𝑘𝑚−1 form an open set in 𝑆, there exists a closed neighbourhood of𝐾 that
is disjoint from 𝑆𝑘𝑚−1 . By removing this neighbourhood from Σ𝑘𝑚−1 , we can ensure that the latter
does not intersect Σ𝑘𝑗 along a manifold of lower dimension. And if dim𝐾 = 𝑘𝑚−1, then it simply



8 BOUDREAUX and SHAFIKOV

means that 𝐾 is an open subset of Σ𝑘𝑚−1 . A similar analysis holds when 𝑝 ∈ 𝐾 ∩ Σ𝑘𝑗 ∩ 𝑆 or when
𝑝 is a point in the intersection of the boundaries of Σ𝑘𝑗 and Σ𝑘𝑚−1 . This gives the manifold Σ𝑘𝑚−1
that satisfies (ii).
This inductive procedure gives the required manifolds of all dimensions 𝑘1, … , 𝑘𝑟. Note that if

𝑘1 = 0, then 𝑆𝑘1 consists of isolated points, these are open sets in 𝑆. Further, the set 𝑆 ⧵
⋃
1<𝑗⩽𝑟 Σ𝑘𝑗

consists of finitely many such points, and their union is Σ𝑘1 . The cover {Σ𝑘𝑗 } is regular because
intersection of any of the manifolds in the cover is an open subset of the manifold of the smallest
dimension in the intersection. This verifies properties (i) and (ii).
By construction, every point in the closure of Σ𝑘𝑗 belongs to a totally real manifold. This implies

(iii). Finally, property (iv) can be achieved by choosing all 𝜀 involved in the construction of Σ𝑘𝑗 to
be less than the given 𝛿.
Proof of (v). To satisfy this property, we will need to further modify the set

Σ =
⋃
1⩽𝑗⩽𝑟

Σ𝑘𝑗 . (2)

Returning to the inductive construction of Σ, note that the set 𝑆𝑘𝑟 is compactly contained in Σ𝑘𝑟 .
Therefore, after a small shrinking followed by a small perturbation of the boundary of Σ𝑘𝑟 , we
may assume that Σ𝑘𝑟 is a manifold with boundary, in particular, the boundary 𝑏Σ𝑘𝑟 is a smooth
closedmanifold of dimension 𝑘𝑟 − 1. Similarly, by Lemma 3.5 for all 1 < 𝑚 ⩽ 𝑟, the set 𝑆𝑘𝑚−1 ⧵ 𝑅𝑚,
where 𝑅𝑚 is defined by (1), is compactly contained in Σ𝑘𝑚−1 . Again, after a small shrinking and
perturbation, we may assume that Σ𝑘𝑚−1 is a manifold with boundary that compactly contains
𝑆𝑘𝑚−1 ⧵ 𝑅𝑚. We conclude that Σ𝑘𝑗 , 1 ⩽ 𝑗 ⩽ 𝑟, can be chosen so that Σ𝑘𝑗 are manifolds with bound-
ary and properties (i)–(iv) still hold. By construction, each Σ𝑘𝑗 is compactly contained in a bigger
manifold of the same dimension, which we denote by Σ̃𝑘𝑗 (the original Σ𝑘𝑗 ). Also note that 𝑏Σ𝑘𝑗
is a closed submanifold of Σ̃𝑘𝑗 .
In themanifold Σ̃𝑘𝑟 , consider the closed submanifold 𝑏Σ𝑘𝑟 and some Σ𝑘𝑗 , 𝑗 < 𝑟, 𝑘𝑗 > 0, that has

non-empty intersection with Σ𝑘𝑟 . By construction of Σ𝑘𝑗 and from property (ii) of the proposition,
we may assume that near 𝑏Σ𝑘𝑟 , we have the inclusion Σ̃𝑘𝑗 ⊂ Σ̃𝑘𝑟 . Taking Σ̃𝑘𝑟 as the ambient space,
we may apply Thom’s transversality theorem [7] to conclude that after a small perturbation of
𝑏Σ𝑘𝑟 , the manifold 𝑏Σ𝑘𝑟 intersects Σ̃𝑘𝑗 transversely. After a small perturbation of 𝑏Σ𝑘𝑗 , we may
further assume that 𝑏Σ𝑘𝑟 and 𝑏Σ𝑘𝑗 also intersect transversely (note that the latter condition in
general does not follow from the transversality of 𝑏Σ𝑘𝑟 and Σ̃𝑘𝑗 ). Finally, since transversality is
stable under small perturbations, we may repeat this procedure for all 𝑗 ≠ 𝑟 to ensure that all Σ̃𝑘𝑗
and 𝑏Σ𝑘𝑗 , 𝑗 ≠ 𝑟, intersect 𝑏Σ𝑘𝑟 transversely.
We now continue by induction: once a small perturbation of 𝑏Σ𝑘𝑟 ensures that intersections of

𝑏Σ𝑘𝑟 with manifolds Σ𝑘𝑗 and 𝑏Σ𝑘𝑗 are transverse for all 𝑗 < 𝑟, we may continue with perturbation
of 𝑏Σ𝑘𝑟−1 within Σ̃𝑘𝑟−1 so that its intersection with Σ𝑘𝑗 and 𝑏Σ𝑘𝑗 is transverse for all 𝑗 < 𝑟 − 1. Then
repeat this for all 𝑏Σ𝑘𝑗 , 1 ⩽ 𝑗 ⩽ 𝑟. This is possible because the procedure requires a finite number
of perturbations and transversality is stable under small perturbations.
To continue with our argument, we note the following elementary result whose proof is left for

the reader.

Lemma 3.6. Let𝑋 be a smoothmanifold,𝑌 ⊂ 𝑋 be a closed submanifold and 𝑍 ⊂ 𝑋 be a relatively
compact manifold with boundary 𝑏𝑍. If 𝑍 and 𝑏𝑍 intersect 𝑌 transversely, then 𝑌 ∩ 𝑍 is a manifold
with boundary 𝑏𝑍 ∩ 𝑌.
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We now give a locally finite stratification of the set Σ into smooth manifolds. Basically, it is
obtained by taking connected components of all possible intersections and their complements of
manifolds Σ𝑘𝑗 and 𝑏Σ𝑘𝑙 , 1 ⩽ 𝑗, 𝑙 ⩽ 𝑟. This can be formally organised by the following induction
procedure. To begin with, consider

Σ𝑘𝑟 = Σ𝑘𝑟

⋃(
𝑏Σ𝑘𝑟 ⧵ (∪

𝑟−1
𝑗=1
Σ𝑘𝑗 )

)⋃
𝑊𝑟−1, (3)

where𝑊𝑟−1 = 𝑏Σ𝑘𝑟 ∩ (∪
𝑟−1
𝑗=1
Σ𝑘𝑗 ) is a compact set that is contained in∪

𝑟−1
𝑗=1
Σ𝑘𝑗 . The connected com-

ponents of the first two terms in the union in (3) give a stratification of Σ𝑘𝑟 ⧵ 𝑊𝑟−1 into disjoint
smooth manifolds of dimension 𝑘𝑟 and 𝑘𝑟 − 1. This can be continued inductively: for 1 < 𝑚 ⩽ 𝑟,
let 𝑅𝑚 be defined as in (1). We write 𝑅𝑚 = 𝑇𝑚 ∪𝑊𝑚−1, where

𝑊𝑚−1 = ((Σ ⧵ 𝑅𝑚)) ∩ 𝑅𝑚, 𝑇𝑚 = 𝑅𝑚 ⧵𝑊𝑚−1.

Note that for𝑚 = 𝑟, 𝑅𝑟 = Σ𝑘𝑟 , and so, this decomposition agrees with (3). For𝑚 < 𝑟, we have

𝑇𝑚 =
⋃
𝑗⩾𝑚

[
Σ𝑘𝑗 ∪

(
𝑏Σ𝑘𝑗 ⧵ (∪𝑙<𝑗Σ𝑘𝑙 )

)]
.

Assuming that 𝑇𝑚 is already stratified, we give a stratification of 𝑇𝑚−1. Note that 𝑇𝑚 ⊂ 𝑇𝑚−1, and
(𝑇𝑚−1 ⧵ 𝑇𝑚) ⊂ Σ𝑘𝑚−1 . Consider the following decomposition:

Σ𝑘𝑚−1 ⧵ 𝑇𝑚 = Σ𝑘𝑚−1 ⧵
(
∪𝑗⩾𝑚Σ𝑘𝑗

) ⋃
𝑗⩾𝑚

(Σ𝑘𝑚−1 ∩ 𝑏Σ𝑘𝑗 )

⋃
𝑗⩾𝑚

[(
𝑏Σ𝑘𝑚−1 ∩ 𝑏Σ𝑘𝑗

)
⧵
(
∪𝑙<𝑚−1Σ𝑘𝑙

)]⋃[
𝑏Σ𝑘𝑚−1 ⧵

(
∪𝑗≠𝑚−1Σ𝑘𝑗

)]⋃
𝑊𝑚−2, (4)

where again,𝑊𝑚−2 is a compact set contained in ∪𝑚−2𝑗=1
Σ𝑘𝑗 , or empty if𝑚 = 2. By Lemma 3.6, all

the terms above are smooth manifolds, and so, formula (4) gives stratification of Σ𝑘𝑚−1 ⧵ 𝑇𝑚 into
connected manifolds of dimension 𝑘𝑚−1 and 𝑘𝑚−2. Repeating this inductive procedure for all 𝑚
gives the required stratification of Σ.
Observe that the obtained stratification of Σ satisfies the frontier condition, that is, if 𝑋 and 𝑌

are two strata and 𝑌 ⊂ 𝑋, then 𝑌 ⊂ 𝑋 ⧵ 𝑋. We now claim that this stratification satisfies Whitney
condition (B) (for a general reference on stratified spaces, see, for example, Trotman [20]). Recall
that a stratified space satisfies Whitney condition (B) if the following holds: Let 𝑋 and 𝑌 be two
adjacent strata of the stratification (i.e., 𝑌 ⊂ 𝑋 ⧵ 𝑋). Suppose that the sequences (𝑥𝑗) ⊂ 𝑋 and
(𝑦𝑗) ⊂ 𝑌 both converge to a point 𝑦 ∈ 𝑌, the sequence of straight lines 𝑙𝑗 passing through points
𝑥𝑗 and 𝑦𝑗 converges to a line 𝑙0, and the sequence of the tangent planes 𝑇𝑥𝑗𝑋 converges to a plane
𝑇0 as 𝑗 → ∞. Then 𝑙0 ⊂ 𝑇0. This condition, for example, holds if 𝑋 is a manifold with boundary,
and 𝑌 ⊂ 𝑏𝑋, or if 𝑋 is an open subset of a larger manifold with boundary and 𝑌 is a manifold in
the topological boundary of 𝑋.
To see that the stratification of Σ constructed above satisfies Whitney condition (B), assume

that 𝑋 and 𝑌 are some strata defined by (3) or (4) such that 𝑌 ⊂ 𝑋 ⧵ 𝑋. Consider several cases,
where 1 < 𝑚 ⩽ 𝑟 + 1.
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(a) 𝑋 = Σ𝑘𝑚−1 ⧵ (∪𝑗⩾𝑚Σ𝑘𝑗 ). In this case, 𝑋 is an open subset of Σ𝑘𝑚−1 and the stratum 𝑌 is a
submanifold in its boundary. Therefore, the Whitney condition (B) holds.

(b) 𝑋 = Σ𝑘𝑚−1 ∩ 𝑏Σ𝑘𝑗 for some 𝑗 ⩾ 𝑚. Then 𝑋 is an open subset of the closed manifold 𝑏Σ𝑘𝑗 , and
𝑌 is contained in its boundary, so Whitney condition (B) holds.

(c) 𝑋 = (𝑏Σ𝑘𝑚−1 ∩ 𝑏Σ𝑘𝑗 ) ⧵ (∪𝑙<𝑚−1Σ𝑘𝑙 ) for some 𝑗 ⩾ 𝑚. In this case,𝑋 is an open subset of 𝑏Σ𝑘𝑚−1
with 𝑌 in its boundary. Again, Whitney condition (B) holds.

(d) 𝑋 = 𝑏Σ𝑘𝑚−1 ⧵ (∪𝑗≠𝑚−1Σ𝑘𝑗 ). This case follows in a similar manner.

This shows that the stratification of Σ satisfies Whitney condition (B).
Stratified spaces satisfying Whitney condition (B) are triangulable, see, for example, Goresky

[8]. It is well known (e.g., Fritsch–Piccinini [5, Theorem 3.3.10]) that any CW-complex, in
particular, a triangulable space, is ANR. This immediately implies part (v) of the proposition. □

Let us conclude this section with two remarks regarding Proposition 3.4.

(1) The surgeries performed in the proof introduce only finitely many holes. Together with the
observation that each manifold in the construction of Σ can be chosen to be contractible, this
ensures that the stratified space Σ has finitely generated first homology class.

(2) A more sophisticated topological argument can be used to prove that Σ is, in fact, a
neighbourhood deformation retract, but we do not need it for the purpose of this paper.

4 PROOF OF THEOREM 1.1 AND COROLLARY 1.2

Here, we provide the proof of Theorem 1.1. Each direction of the proof has its own subsection,
with a brief interlude to indicate the proof of Corollary 1.2.

4.1 Proof of (i)⟹ (ii)

Suppose that 𝑆 is a rationally convex regular totally real set. Using Proposition 3.4 and a given
regular cover {𝑀𝛼} of 𝑆, we construct a regular cover {Σ′𝑘𝑗 }𝑗=1,…,𝑟 of 𝑆 satisfying (i)–(v). Since

Σ
′
=
⋃
𝑗 Σ

′

𝑘𝑗
is totally real, there exists a neighbourhood 𝑈 of Σ

′
and a non-negative strictly

plurisubharmonic 𝜑1 ∈ 𝐶∞(𝑈) with 𝜑−11 (0) = Σ
′
.

Let 𝐵 be a ball large enough so that 𝑈 ⊂ 𝐵. For each 𝑧 ∈ 𝐵 ⧵ 𝑈, by Duval–Sibony [4, Theorem
2.1] (see Section 2), there exists a smooth positive closed (1,1) form𝜔𝑧 onℂ𝑛 that is strictly positive
at 𝑧 and zero in a neighbourhood of 𝑆. Select a finite sequence of such forms {𝜔𝓁} so that if 𝑤 ∈
𝐵 ⧵ 𝑈, then 𝜔𝓁(𝑤) > 0 for some 𝓁. Set 𝜔 ∶=

∑
𝓁 𝜔𝓁 . The form 𝜔 is a smooth positive closed (1,1)-

form on ℂ𝑛 that is zero on a closed neighbourhood 𝑉 ⊂ 𝑈 of 𝑆, and is strictly positive elsewhere
on a neighbourhood of 𝐵. By shrinking 𝛿 > 0 in the statement of Proposition 3.4, we may find
another regular cover {Σ𝑘𝑗 }𝑗=1…,𝑟 of 𝑆 satisfying properties (i)–(v) with Σ𝑘𝑗 ⊂ Σ

′
𝑘𝑗
for each 𝑗 and

whose union Σ is contained in 𝑉 as a relatively compact subset. Let 𝜒1 ∶ ℂ𝑛 → [0, 1] be a smooth
function that is identically zero on 𝑈 and 𝜒1 = 1 outside of 𝐵. For 𝜀 > 0, set

�̃�(𝑧) ∶= 𝜔(𝑧) + 𝜀 𝑑𝑑𝑐
(
𝜒1(𝑧) ⋅ |𝑧|2).
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When 𝜀 is small enough, �̃� is a smooth closed-(1,1) form that is zero on 𝑉 and strictly positive
elsewhere. Let 𝜑2 ∈ 𝐶∞(ℂ𝑛) be a plurisubharmonic function with 𝑑𝑑𝑐𝜑2 = �̃�, and 𝜒2 ∈ 𝐶∞0 (𝑈)
with 𝜒2 = 1 on a neighbourhood of 𝑉 in 𝑈. For 𝐶 > 0, set

𝜑(𝑧) ∶= 𝜒2(𝑧) ⋅ 𝜑1(𝑧) + 𝐶𝜑2(𝑧).

The function 𝜑 is strictly plurisubharmonic on ℂ𝑛 if 𝐶 is large enough, and

𝜄∗Σ𝑘𝑗
𝑑𝑑𝑐𝜑 = 𝜄∗Σ𝑘𝑗

𝑑𝑑𝑐𝜑1 = 𝑑

(
𝜄∗Σ𝑘𝑗

𝑑𝑐𝜑1

)
= 0

for each 𝑗, since the gradient of 𝜑1 vanishes on Σ𝑘𝑗 for each 𝑗. This completes the proof that (i)
implies (ii).
Note that a similar argument can be used to show the implication (1)⟹ (3) for totally real sets

as discussed in Section 2.

4.2 Proof of Corollary 1.2

Suppose that 𝑆 ⊆ 𝑀 is a compact rationally convex subset of a regular totally real set 𝑀. Let
{Σ𝑘𝑗 }𝑗=1,…,𝑟 be a regular cover of 𝑆 satisfying properties (i)–(v) of Proposition 3.4. Choose a neigh-

bourhood𝑈 of 𝑆 such that {𝑈 ∩ Σ𝑘𝑗 }𝑗=1,…,𝑟 is a regular cover of 𝑆, and 𝑆 ∶= 𝑈 ∩ ∪
𝑟
𝑗=1
Σ𝑘𝑗 is a totally

real set; consequently, there exists a strictly plurisubharmonic 𝜑, defined in a neighbourhood of
𝑆, with 𝜑−1(0) = 𝑆. We can now apply the methods of the proof above, shrinking𝑈 as necessary,
to extend the domain of 𝜑 to all of ℂ𝑛.
Conversely, given the existence of a smooth strictly plurisubharmonic function 𝜑 ∶ ℂ𝑛 → ℝ, a

neighbourhood of 𝑈 of 𝑆, and a regular cover {Σ𝑘𝑗 }𝑗=1,…𝑟 of𝑀 such that 𝜄∗
𝑈∩Σ𝑘𝑗

𝑑𝑑𝑐𝜑 = 0 for each

𝑗 = 1,… , 𝑟, an application of Theorem 1.1 shows that, after shrinking 𝑈 slightly, the closure of
�̂� ∶= 𝑈 ∩ (∪𝑟

𝑗=1
Σ𝑘𝑗 ) is a rationally convex totally real compact. As 𝑆 ⊂ �̂�, 𝑆 is rationally convex as

well. Indeed, in view of Corollary 1.3, any complex-valued continuous function on the closure of
�̂� can be approximated uniformly by rational functions. Therefore, continuous functions on 𝑆 can
be approximated uniformly by rational functions, completing the proof [19, Theorem 1.2.12].

4.3 Proof of (ii)⟹ (i)

The proof in this direction is more involved. Assume (ii) holds. In view of Proposition 3.4, wemay
assume that the cover {Σ𝑘𝑗 }𝑗=1,…,𝑟 satisfies properties (i)–(v). Further, note that the new cover is
also isotropic with respect to the given form 𝑑𝑑𝑐𝜑, as each element of the new cover is —modulo
some holes made by the surgeries — an intersection of members of the original cover. We will
show that, for sufficiently small 𝛿 > 0, the regular cover {Σ𝛿

𝑘𝑗
} has the property that Σ

𝛿
=
⋃𝑟
𝑗 Σ

𝛿

𝑘𝑗

is rationally convex. Since Σ
𝛿
shrinks down to 𝑆 as 𝛿 ↘ 0, it will follow that 𝑆 is rationally convex.

Let 𝜌 = 𝜌𝛿 denote a strictly plurisubharmonic function in a neighbourhood 𝑈 of Σ
𝛿
with the

property that 𝜌−1({0}) = Σ
𝛿
.
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Lemma 4.1 (cf. Lemma 3.2 of Duval–Sibony [4]). For each sufficiently small 𝛿 > 0, there exists
a smooth strictly plurisubharmonic function �̃� ∶ ℂ𝑛 → ℝ such that for every 𝑚 ∈ ℕ, there exists a
smooth function ℎ in a neighbourhood of Σ

𝛿
with the following properties:

(a) |ℎ| = exp(�̃� + 𝜎) with 𝜎 vanishing on Σ𝛿 and 𝜎 ⩽ −𝑐 ⋅ 𝜌, where 𝑐 is a positive constant.
(b) �̄�ℎ vanishes to order𝑚 on Σ

𝛿
.

We now show that the lemma implies the theorem, following Duval–Sibony [4].
Set Σ

𝛿

𝜀 ∶= {𝑧 ∈ 𝑈 ∶ 𝜌(𝑧) < 𝜀}. Choose 𝜀 > 0 small enough so that Σ
𝛿

2𝜀 is contained in 𝑈 as a
relatively compact subset and is pseudoconvex.
Using Hörmander’s estimates [12], we solve the equation �̄�𝑢 = �̄�ℎ on Σ

𝛿

2𝜀 with the estimate‖𝑢‖2
𝐿2(Σ

𝛿

2𝜀)
⩽ 𝐶‖�̄�ℎ‖2

𝐿2(Σ
𝛿

2𝜀)
, where 𝐶 can be chosen independently of 𝜀.

Choose 𝜂 > 0 small enough so that for each 𝑥 ∈ Σ
𝛿

𝜀 , the ball 𝐵(𝑥, 𝜂𝜀) centred at 𝑥 with radius

𝜂𝜀 is contained in Σ
𝛿

2𝜀.

For a point 𝑧 ∈ Σ
𝛿

𝜀 , we may apply a lemma of Hörmander–Wermer [13] to see that

|𝑢(𝑧)| ≲ 𝜀 sup
𝐵(𝑧,𝜂𝜀)

|�̄�𝑢| + 𝜀−𝑛‖𝑢‖𝐿2(𝐵(𝑧,𝜂𝜀))
≲ 𝜀𝑚+1 + 𝜀−𝑛‖�̄�ℎ‖

𝐿2(Σ
𝛿

2𝜀)

≲ 𝜀𝑚+1 + 𝜀−𝑛+𝑚 = O(𝜀3),

provided that𝑚 is large.
Set ℎ̃ ∶= 𝑒(𝑐∕2)𝜀(ℎ − 𝑢); ℎ̃ is holomorphic on Σ

𝛿

𝜀 . On Σ
𝛿
we have, for small 𝜀 > 0,

|ℎ̃| = 𝑒(𝑐∕2)𝜀|ℎ − 𝑢| ⩾ 𝑒(𝑐∕2)𝜀(𝑒�̃� − O(𝜀3)) = 𝑒�̃�+(𝑐∕2)𝜀 − O(𝜀3) ⩾ 𝑒�̃�.

On the other hand, on the boundary 𝑏Σ
𝛿

𝜀 of Σ
𝛿

𝜀 , we have

|ℎ̃| ⩽ 𝑒(𝑐∕2)𝜀(𝑒�̃�−𝑐𝜀 + O(𝜀3)) ⩽ 𝑒�̃�−(𝑐∕2)𝜀 + O(𝜀3) < 𝑒�̃�.

We can now apply a lemma of Duval–Sibony [4, Lemma 1.2], with Ω = ℂ𝑛 (see Section 2), to
conclude that Σ

𝛿
is rationally convex for sufficiently small 𝜀 > 0.

Proof of Lemma 4.1. To begin, we use Proposition 3.4 to construct a new regular cover {Σ′
𝑘𝑗
}𝑗=1,…,𝑟

with Σ
′

𝑘𝑗
⊂ Σ𝑘𝑗 for each 𝑗. This cover is also isotropic with respect to the form 𝑑𝑑𝑐𝜑. By part (v)

in Proposition 3.4, Σ
′
is a retract of some open set Σ̃′ ⊂ ℂ𝑛, and by Hatcher [9, Proposition 1.17],

there is an injection 𝐻1(Σ
′
, ℤ) ↪ 𝐻1(Σ̃

′, ℤ). Let 𝛾1, … , 𝛾𝑝 ∈ 𝐻1(Σ̃′, ℤ) be a basis for the image of
this injection, and 𝛼1, …𝛼𝑝 be a corresponding dual basis of closed 1-forms on Σ̃′. Wemay assume
that the curves 𝛾1, … 𝛾𝑝 are supported on Σ

′
; moreover, we may assume that they are piecewise

smooth.
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Lemma4.2. For each𝓁 = 1,… , 𝑝, there exists a smooth compactly supported function𝜓𝓁 satisfying

𝜄∗
Σ
′

𝑘𝑗

𝑑𝑐𝜓𝓁 = 𝜄
∗

Σ
′

𝑘𝑗

𝛼𝓁 , 𝑗 = 1, … , 𝑟.

Proof. Fix 𝓁 ∈ {1, … , 𝑝}. We will first construct an open cover {𝑈𝑗}𝑟𝑗=1 of Σ
′
with special properties

via reverse induction on 𝑗. Let 𝑈𝑟 be a neighbourhood of Σ
′

𝑘𝑟
such that 𝑈𝑟 ∩ Σ𝑘𝑟 ⊂ Σ𝑘𝑟 . Suppose

that 𝑈𝑟,… ,𝑈𝑗+1 have been constructed. Let 𝑈𝑗 be a neighbourhood of Σ
′

𝑘𝑗
⧵
⋃
𝑖>𝑗 𝑈𝑖 such that

𝑈𝑗 ∩ Σ𝑘𝑗 ⊂ Σ𝑘𝑗 and𝑈𝑗 ∩ Σ
′

𝑘𝑖
= ∅ for any 𝑖 > 𝑗. In this way, we construct an open cover {𝑈𝑗} of Σ

′

with the property that for any 𝑗, 𝑈𝑗 ∩ Σ
′

𝑘𝑖
= ∅ whenever 𝑖 > 𝑗.

Now, let {𝜒𝑗} be partition of unity subordinate to {𝑈𝑗}, and choose 𝜓𝓁,𝑗 ∈ 𝐶∞0 (𝑈𝑗) such that

𝜄∗𝑈𝑗∩Σ𝑘𝑗
𝑑𝑐𝜓𝓁 = 𝜄

∗
𝑈𝑗∩Σ𝑘𝑗

(𝜒𝑗𝛼𝓁).

This can be achieved if we assume that 𝜓𝓁,𝑗 is zero on 𝑈𝑗 ∩ Σ𝑘𝑗 and specify derivatives of 𝜓𝓁,𝑗 in
the directions contained in 𝐽(𝑇Σ𝑘𝑗 ). Set 𝜓𝓁 ∶=

∑𝑟
𝑖=1 𝜓𝓁,𝑖 . Then

𝜄∗
Σ
′

𝑘𝑗

𝑑𝑐𝜓𝓁 =

𝑟∑
𝑖=1

𝜄∗
Σ
′

𝑘𝑗

𝑑𝑐𝜓𝓁,𝑖 .

If Σ
′

𝑘𝑗
∩ 𝑈𝑖 = ∅, then clearly 𝜄∗

Σ
′

𝑘𝑗

𝑑𝑐𝜓𝓁,𝑖 = 0. If Σ
′

𝑘𝑗
∩ 𝑈𝑖 ≠ ∅, then 𝑗 ⩽ 𝑖 by construction, and so,

Σ
′

𝑘𝑗
∩ 𝑈𝑖 is a submanifold of Σ𝑘𝑖 . In either case,

𝜄∗
Σ
′

𝑘𝑗

𝑑𝑐𝜓𝓁,𝑖 = 𝜄
∗

Σ
′

𝑘𝑗

(𝜒𝑖𝛼𝓁),

so we conclude that

𝜄∗
Σ
′

𝑘𝑗

𝑑𝑐𝜓𝓁 =

𝑟∑
𝑖=1

𝜄∗
Σ
′

𝑘𝑗

(𝜒𝑖𝛼𝓁) = 𝜄
∗

Σ
′

𝑘𝑗

𝛼𝓁

for each 𝑗. □

Applying the lemma, note that

∫𝛾𝑠 𝑑
𝑐𝜓𝓁 = ∫𝛾𝑠 𝛼𝓁 = 𝛿𝑠𝓁

for 1 ⩽ 𝑠,𝓁 ⩽ 𝑝.
Set 𝜑𝜆 ∶= 𝜑 + 𝜆1𝜓1 +⋯ + 𝜆𝑝𝜓𝑝, where 𝜆 = (𝜆1, … , 𝜆𝑝) is chosen small enough so that 𝜑𝜆 is

strictly plurisubharmonic on ℂ𝑛, and

∫𝛾𝓁 𝑑
𝑐𝜑𝜆 ∈ 2𝜋ℤ∕𝑀 for each 1 ⩽ 𝓁 ⩽ 𝑝

and some large integer𝑀. Here the assumption that 𝜄∗
Σ𝑘𝑗
𝑑𝑑𝑐𝜑 = 0 for each 𝑗 has been used.
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Set 𝜑2 ∶= 𝑀𝜑𝜆 and fix 𝑥0 ∈ Σ
′
. It is straightforward to see that the function g ∶ Σ

′
→ ℝ∕2𝜋ℤ,

given by

g(𝑥) = ∫
𝑥

𝑥0

𝑑𝑐𝜑2,

is well defined. Indeed, the integration is being taken over some piecewise smooth curve in Σ
′

connecting 𝑥0 to 𝑥, and it is independent of the choice of curve. Define now ℎ1 ∶ Σ
′
→ ℂ by setting

ℎ1 = 𝑒
𝜑2𝑒𝑖g .

Shrinking further 𝛿 > 0 in the statement of Proposition 3.4 yields another regular cover {Σ′′
𝑘𝑗
}𝑟
𝑗=1

of 𝑆 with Σ
′′

𝑘𝑗
⊂ Σ′

𝑘𝑗
.

We next claim that ℎ1 may be extended to a smooth function ℎ2, defined on a neighbourhood
of Σ

′′
= ∪𝑗Σ

′′

𝑘𝑗
so that �̄�ℎ2|Σ′′ = 0 and |ℎ2| agrees with 𝑒𝜑2 to order 1 on Σ′′. We will construct the

extension locally and patch it together using a partition of unity.
For 𝑞 ∈ Σ

′′
, let 𝑗(𝑞) = max{𝑗 ∶ 𝑞 ∈ Σ′

𝑘𝑗
}. Then there exists a neighbourhood 𝑈𝑞 so that

𝑈𝑞 ∩ Σ
′
𝑘𝑗(𝑞)

⊂ Σ′
𝑘𝑗(𝑞)

. Write𝑀𝑞 ∶= 𝑈𝑞 ∩ Σ
′
𝑘𝑗(𝑞)

; observe that𝑀𝑞 is a smooth submanifold of Σ′𝑘𝑗(𝑞) .
Firstly, assume that dim𝑀𝑞 = 𝑛. We apply Hörmander–Wermer [13, Lemma 4.3] to extend

the function (𝜑2 + 𝑖g)|𝑀𝑞
smoothly to a function Φ𝑞 defined on an open neighbourhood of 𝑀𝑞

with the property that �̄�Φ𝑟 = 0 on 𝑀𝑞. (Strictly speaking, g is a multiple-valued function, so we
must first choose a local branch of g .) We may assume that Φ𝑞 is defined on𝑈𝑞, by shrinking the
neighbourhood if necessary.
Now assume that dim𝑀𝑞 < 𝑛. By shrinking𝑈𝑞 if necessary, we may assume that there exists a

totally real manifold �̂�𝑞 of maximal dimension 𝑛 containing𝑀𝑞, and let 𝑁𝑞,𝑥 be the orthogonal
complement of 𝑇𝑥(𝑀𝑞) in 𝑇𝑥(�̂�𝑞). Extend the function (𝜑2 + 𝑖g)|𝑀𝑞

to a function Φ𝑞 on �̂�𝑞 with
the condition that 𝑑Φ𝑞|𝑁𝑞,𝑥 = 𝛼|𝑁𝑞,𝑥, where 𝛼 is given by

𝛼 = 𝑑𝜑2 + 𝑖𝑑
𝑐𝜑2.

Using the same lemma of Hörmander–Wermer from the previous paragraph, we may extend Φ𝑞
further to an open neighbourhood of �̂�𝑞 with �̄�Φ𝑞 = 0 on �̂�𝑞. For simplicity of notation, this
extension will also be called Φ𝑞.
Let {𝜒𝑗} be a partition of unity associated with this covering, along with extensions Φ𝑗 , smooth

totally real manifolds 𝑀𝑗 , and real vector bundles 𝑁𝑗,𝑥. Set ℎ2 ∶=
∑
𝑗 𝜒𝑗𝑒

Φ𝑗 . Observe that this

function is indeed an extension of ℎ1|Σ′′ to an open neighbourhood of Σ′′. We have
�̄�ℎ2 =

∑
𝑗

�̄�𝜒𝑗𝑒
Φ𝑗 +

∑
𝑗

𝜒𝑗𝑒
Φ𝑗 �̄�Φ𝑗 =

∑
𝑗

�̄�𝜒𝑗
(
𝑒Φ𝑗 − ℎ̃1

)
+
∑
𝑗

𝜒𝑗𝑒
Φ𝑗 �̄�Φ𝑗,

where ℎ̃1 is any extension of ℎ1 from Σ
′′
to ℂ𝑛. Since the 𝑒Φ𝑗 agree and equal ℎ̃1 on Σ

′′
, we see that

�̄�ℎ2 = 0 on Σ
′′
.

We will now show that |ℎ2| = 𝑒𝜑2 to order 1 on Σ′′. Firstly, we similarly have
𝑑ℎ2 =

∑
𝑗

𝑒Φ𝑗𝑑𝜒𝑗 +
∑
𝑗

𝜒𝑗𝑒
Φ𝑗𝑑Φ𝑗 =

∑
𝑗

𝑑𝜒𝑗
(
𝑒Φ𝑗 − ℎ̃1

)
+
∑
𝑗

𝜒𝑗𝑒
Φ𝑗𝑑Φ𝑗. (5)
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As before, the first sum on the right side of (5) above vanishes on Σ
′′
. Fix 𝑥 ∈ Σ

′′
and 𝑣 ∈ 𝑇𝑥ℂ𝑛 ≅

𝑇𝑥ℝ
2𝑛. Note that

𝑇𝑥ℂ
𝑛 = 𝑇𝑥𝑀𝑗 ⊕ 𝐽(𝑇𝑥𝑀𝑗) ⊕ 𝑁𝑗,𝑥 ⊕ 𝐽(𝑁𝑗,𝑥)

for every 𝑗 with 𝑥 ∈ 𝑀𝑗 . So, if 𝑣 ∈ 𝑇𝑥𝑀𝑗 , then

𝑑Φ𝑗(𝑣) = 𝑑ℎ(𝑣) = 𝑑(𝜑2 + 𝑖g)(𝑣) = 𝑑𝜑2(𝑣) + 𝑖𝑑
𝑐𝜑2(𝑣) = 𝛼(𝑣).

If 𝑣 ∈ 𝐽(𝑇𝑥𝑀𝑗), then applying the above expression yields

𝑖𝑑Φ𝑗(𝑣) = 𝑑Φ𝑗(𝐽(𝑣)) = 𝛼(𝐽(𝑣)) = 𝑖𝛼(𝑣).

If 𝑣 ∈ 𝑁𝑗,𝑥, then by construction,

𝑑Φ𝑗(𝑣) = 𝛼(𝑣),

and similarly,

𝑖𝑑Φ𝑗(𝑣) = 𝑑Φ𝑗(𝐽(𝑣)) = 𝛼(𝐽(𝑣)) = 𝑖𝛼(𝑣)

whenever 𝑣 ∈ 𝐽(𝑁𝑗,𝑥). By linearity, we see that 𝑑Φ𝑗 = 𝛼 at the point 𝑥. Consequently, we conclude
through linearity that 𝑑Φ𝑗 = 𝛼 on Σ

′′
, as 𝑥 was chosen arbitrarily.

Applying this to (5) shows that on Σ
′′
, we have

𝑑ℎ2 = ℎ2𝛼 = ℎ2(𝑑𝜑2 + 𝑖𝑑
𝑐𝜑2). (6)

Define a holomorphic branch of the logarithm, 𝐿, near ℎ2(𝑥). Since �̄�ℎ2 = 0 on Σ
′′
,

𝑑(𝐿(ℎ2)) = 𝑑(log |ℎ2| + 𝑖 arg(ℎ2)) = 𝑑(log |ℎ2|) + 𝑖𝑑(arg(ℎ2)); (7)

on the other hand, applying (6) shows

𝑑(𝐿(ℎ2)) = 𝜕(𝐿(ℎ2)) + �̄�(𝐿(ℎ2)) = 𝜕(𝐿(ℎ2)) =
𝜕ℎ2
ℎ2

=
𝑑ℎ2
ℎ2

= 𝑑𝜑2 + 𝑖𝑑
𝑐𝜑2. (8)

Comparing the real parts of (7) and (8) yields

𝑑(log |ℎ1|) = 𝑑𝜑2,
and hence |ℎ1| = 𝑒𝜑2 to order 1 at points of Σ′′.
Shrinking 𝛿 > 0 even further gives a regular cover {Σ′′′

𝑘𝑗
}𝑗=1,…,𝑟 of 𝑆 with the property that Σ

′′′

𝑘𝑗
⊂

Σ′′
𝑘𝑗
for each 𝑗.

Lemma 4.3. The function ℎ2 can be furthermodified to a function ℎ on a neighbourhood of Σ
′′′
with

the additional property that �̄�ℎ = 0 to order𝑚 on Σ
′′′
∶= ∪𝑗Σ

′′′

𝑘𝑗
.
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Proof. As before, for each 𝑞 ∈ Σ
′′′
, we may write 𝑗′(𝑞) = max{𝑗 ∶ 𝑞 ∈ Σ′′

𝑘𝑗
}; there exists a neigh-

bourhood 𝑈𝑞 of 𝑞 so that 𝑈𝑞 ∩ Σ′′𝑘𝑗′(𝑞) ⊂ Σ
′′
𝑘𝑗′(𝑞)

and 𝑈𝑞 ∩ Σ𝑘𝑖 = ∅ for 𝑖 > 𝑗′(𝑞). Set 𝑀′
𝑞 ∶= 𝑈𝑞 ∩

Σ′′
𝑘𝑗′(𝑞)

. Following the proof of Hörmander–Wermer [13, Lemma 4.3], we find that, after possibly

shrinking 𝑈𝑞, we can construct a local extension ℎ̂𝑞 of ℎ2|Σ′′′ on 𝑈𝑞 with �̄�ℎ̂𝑞 vanishing to order
𝑚 on Σ

′′′
and such that

ℎ̂𝑞 − ℎ2 = O
(
dist( ⋅ ,𝑀𝑞)

𝑚
)
.

Now let {𝑈𝑗} be an associated finite covering of Σ
′′′
with associated extensions ℎ̂𝑗 , and let {𝜒𝑗} be

a partition of unity subordinate to the cover. Set ℎ ∶=
∑
𝑗 𝜒𝑗ℎ̂𝑗 . Then ℎ is equal to ℎ2 on Σ

′′′
. For

a fixed 𝑥 ∈ Σ
′′′
, we have

�̄�ℎ =
∑
𝑗

𝜒𝑗�̄�ℎ̂𝑗 +
∑
𝑗

ℎ̂𝑗�̄�𝜒𝑗 =
∑
𝑗

𝜒𝑗�̄�ℎ̂𝑗 +
∑
𝑗

(ℎ̂𝑗 − ℎ2)�̄�𝜒𝑗

=
∑
𝑗

𝜒𝑗 ⋅ O
(
dist( ⋅ ,𝑀𝑗)

𝑚
)
+
∑
𝑗

O
(
dist( ⋅ ,𝑀𝑗)

𝑚
)
⋅ �̄�𝜒𝑗

⩽ O
(
dist( ⋅ , Σ

′′′
)𝑚

)

near 𝑥, because the open cover was constructed so that 𝑈𝑗 ∩ Σ
′′′
⊂ 𝑀𝑗 for each 𝑗. We conclude

that �̄�ℎ vanishes to order𝑚 at points of Σ
′′′
. □

To show part (a) of Lemma 4.1, we repeat the proof of Lemma 3.3 in Duval–Sibony [4]. Because
Σ
′′′
is totally real, there exists a non-negative strictly plurisubharmonic function 𝜌 in a neigh-

bourhood of Σ
′′′
with 𝑉 ∩ {𝑥 ∶ 𝜌(𝑥) = 0} = Σ

′′′
. Notice that for 𝜀 > 0 and 𝜏 > 0, there exists a

𝑓 ∈ 𝐶∞([0,∞)) supported on [0, 𝜏] such that 𝑓(𝑡) = 𝑡 for 𝑡 small and 𝑓′(𝑡) ⩾ −𝜀, 𝑡𝑓′′(𝑡) ⩾ −𝜀
for every 𝑡. (This is the same function used in the proof of Lemma 3.3 in Duval–Sibony [4].) Set
𝜃 ∶= 𝜑2 − log |ℎ2|; note that 𝜃 is strictly plurisubharmonic on Σ′′′.
Choose 𝐴 > 0 such that

𝜃 ⩾ −(𝐴∕2)𝜌 (9)

in some neighbourhood of Σ
′′′
. We also choose 𝜏 > 0 small enough so that 𝜌 is strictly plurisub-

harmonic on {𝑥 ∶ 𝜌(𝑥) ⩽ 𝜏}; therefore, we have a neighbourhood 𝑉 of Σ
′′′
on which 𝜃 and 𝜌 are

strictly plurisubharmonic and on which (9) holds. Fix 𝜀 > 0 such that on 𝑉 we have

3𝜀𝐴𝜌−1𝑑𝜌 ∧ 𝑑𝑐𝜌 ⩽ 𝑑𝑑𝑐𝜃 and 3𝜀𝐴𝑑𝑑𝑐𝜌 ⩽ 𝑑𝑑𝑐𝜃.

Indeed, this is possible as 𝜃 is strictly plurisubharmonic on 𝑉 and all forms which are being com-
pared are (1,1) forms; also, note that multiplication by 𝜌−1 does not introduce singularities to the



ON RATIONAL CONVEXITY OF TOTALLY REAL SETS 17

form 𝑑𝜌 ∧ 𝑑𝑐𝜌 because 𝜌 has no first order terms in its Taylor expansion at points of Σ
′′′
. Now,

𝑑𝑑𝑐(𝜃 + 𝐴𝑓(𝜌)) = 𝐴𝑓′′(𝜌)𝑑𝜌 ∧ 𝑑𝑐𝜌 + 𝐴𝑓′(𝜌)𝑑𝑑𝑐𝜌 + 𝑑𝑑𝑐𝜃 ⩾
1

3
𝑑𝑑𝑐𝜃 > 0

on 𝑉. Moreover, near Σ
′′′
, we have

𝜃 + 𝐴𝑓(𝜌) ⩾ −
𝐴

2
𝜌 + 𝐴𝜌 ⩾

𝐴

2
𝜌.

Setting �̃� ∶= 𝜑2 + 𝐴𝑓(𝜌) completes the proof of the lemmaand therefore the proof that (ii) implies
(i). □

ACKNOWLEDGEMENTS
Wewould like to thankMatthias Franz for helpful discussions concerning ANR spaces.Wewould
also like to thank the anonymous referee for valuable comments, in particular, for suggesting the
statement of Proposition 2.1. The second author is partially supported by Natural Sciences and
Engineering Research Council of Canada.

JOURNAL INFORMATION
The Bulletin of the London Mathematical Society is wholly owned and managed by the London
Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission.
All surplus income from its publishing programme is used to support mathematicians and
mathematics research in the form of research grants, conference grants, prizes, initiatives for
early career researchers and the promotion of mathematics.

REFERENCES
1. B. Berndtsson, A remark on approximation on totally real sets, Complex analysis and digital geometry, Acta

Univ. Upsaliensis Skr. Uppsala Univ. C Organ. Hist., vol. 86, Uppsala Universitet, Uppsala, 2009, pp. 75–80.
2. J. Chaumat and A.-M. Chollet, Ensembles pics pour 𝐴∞(𝐷) non globalement inclus dans une variété intégrale,

Math. Ann. 258 (1981/82), no. 3, 243–252.
3. J. Duval and D. Gayet, Rational convexity of non-generic immersed Lagrangian submanifolds, Math. Ann. 345

(2009), no. 1, 25–29.
4. J. Duval and N. Sibony, Polynomial convexity, rational convexity, and currents, Duke Math. J. 79 (1995), no. 2,

487–513.
5. R. Fritsch and R. A. Piccinini, Cellular structures in topology, Cambridge Studies in Advanced Mathematics,

vol. 19, Cambridge University Press, Cambridge, 1990.
6. D. Gayet, Convexité rationnelle des sous-variétés immergées lagrangiennes, Ann. Sci. École Norm. Sup. (4) 33

(2000), no. 2, 291–300.
7. M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Graduate Texts in Mathematics,

vol. 14, Springer, New York-Heidelberg, 1973, x+209 pp.
8. M. Goresky, Triangulation of stratified objects, Proc. Amer. Math. Soc. 72 (1978), no. 1, 193–200.
9. A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002, xii+544 pp.
10. R. Harvey and R. O. Wells Jr, Holomorphic approximation and hyperfunction theory on a 𝐶1-totally real

submanifold of a complex manifold, Math. Ann. 197 (1972), 287–318.
11. R. Harvey and R. O. Wells Jr, Zero sets of non-negative strictly plurisubharmonic functions, Math. Ann. 201

(1973), 165–170.
12. L. Hörmander,An introduction to complex analysis in several variables. 3rd ed., North-HollandMathemathical

Library, vol. 7, North-Holland Publishing Co., Amsterdam, 1990, xii+254 pp.
13. L. Hörmander and J. Wermer, Uniform approximation on compact sets in 𝐶𝑛, Math. Scand. 23 (1968), 5–21.



18 BOUDREAUX and SHAFIKOV

14. O. Mitrea, A characterization of rationally convex immersions, J. Geom. Anal. 30 (2020), no. 1, 968–986.
15. R. Narasimhan,Analysis on real and complexmanifolds, North-HollandMathematical Library, vol. 35, Reprint

of the 1973 edition, North-Holland Publishing Co., Amsterdam, 2007, xiv+246 pp.
16. S. Nemirovskiı̆, Finite unions of balls in ℂ𝑛 are rationally convex, Russian Math. Surveys 63 (2008), no. 2, 381–

382.
17. R. Shafikov and A. Sukhov, Rational approximation and Lagrangian inclusions, Enseign. Math. 62 (2016),

no. 3–4, 487–499.
18. G. Stolzenberg, Polynomially and rationally convex sets, Acta Math. 109 (1963), 259–289.
19. E. L. Stout, Polynomial convexity, Progress inMathematics, vol. 261, Birkhäuser Boston, Inc., Boston,MA, 2007,

xii+439 pp.
20. D. Trotman, Stratification theory, Handbook of geometry and topology of singularities. I, Springer, Cham, 2020,

pp. 243–273.
21. R. O. Wells Jr, Real-analytic subvarieties and holomorphic approximation, Math. Ann. 179 (1969), 130–141.


	On rational convexity of totally real sets
	Abstract
	1 | INTRODUCTION
	2 | RATIONAL CONVEXITY
	3 | TOTALLY REAL SETS
	4 | PROOF OF THEOREM 1.1 AND COROLLARY 1.2
	4.1 | Proof of (i) (ii)
	4.2 | Proof of Corollary 1.2
	4.3 | Proof of (ii) (i)

	ACKNOWLEDGEMENTS
	JOURNAL INFORMATION
	REFERENCES


