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Abstract. In this note we derive an upper bound for the Hausdorff and box dimen-
sion of the stable and local stable set of a hyperbolic set A of a C? diffeomorphisms
on a n-dimensional manifold. As a consequence we obtain that dimg W*(A) = n
is equivalent to the existence of a SRB-measure. We also discuss related results for
expanding maps.

1. Introduction. Let M be an n-dimensional smooth Riemannian manifold, f :
M — M a diffeomorphism, and A C M a locally maximal hyperbolic set of f.
Given € > 0, we define the local stable set of A by

WE(A) = {x € M : dist(f*(z),A) < ¢ for all k € N}. (1)

In this paper we investigate the complexity of W2(A) in terms of its upper box
dimension dimpW2(A). It is a classical result of Bowen [3] that there exist examples
of C* horseshoes A with positive Lebesgue measure, in particular dimpW2(A) = n.
On the other hand, by a result of Bowen and Ruelle [5], if f is a C%-diffeomorphism
and A is not an attractor then W?(A) has zero Lebesgue measure. We extend the
latter result by showing that the upper box dimension of W#(A) is strictly smaller
than n. More precisely, we derive an upper bound for the upper box dimension
of W2(A) which is given in terms of the exponential expansion rate of the tangent
map defined by

s = lem %log (max{||ka(x)H cx €A}, (2)

and the topological pressure of the unstable Jacobian. If A is not an attractor this
bound is strictly smaller than n. Our main result is the following:
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Theorem 1. Let f : M — M be a C?-diffeomorphism, and A a locally mazimal
hyperbolic set of f, which is not a periodic orbit, such that f|A is topologically
mizing. Define ¢* = —log|det Df|E"|. Then

P(¢")

S

3)

Here P(¢") denotes the topological pressure of ¢, see Section 2 for details. We
note that our result holds for manifolds of arbitrary dimension, in particular, we
do not require f to be conformal on A. Since f is a diffeomorphism, the analogous
result also holds for the local unstable set W2*(A) of A. We define the stable set of
A by

We(A) = {z € M : dist(f*(z),A) — 0 for k — co}. (4)
As a consequence of Theorem 1 we obtain that the upper bound in (3) also provides
an upper bound for the Hausdorff dimension of W#(A) (see Corollary 7).
Another consequence of Theorem 1 is the following:

Corollary 2. Suppose that f and A are as in Theorem 1, and assume that A has
empty interior. Then dimgA is strictly smaller than n.

We note that the case when A has non-empty interior actually occurs. For exam-
ple, if f is an Anosov diffeomorphism, then the entire manifold M is a hyperbolic
set. The result of Corollary 2 was known in some special cases. In particular, if
M is a surface, that is, n = 2, then the classical result of McCluskey and Manning
[12] states that the Hausdorff dimension of A coincides with the box dimension of
A, and that its value is strictly smaller than 2. Recently, significant progress has
also been made toward the estimation of the dimension of hyperbolic sets of higher
dimensional manifolds. In [1] Barreira applied the non-additive topological pressure
to derive estimates for the unstable/stable slice dimensions (i.e. the dimension of
the intersection of the unstable/stable manifolds with the hyperbolic set). Later,
Franz [6] obtained upper bounds for the dimension of an invariant set admitting an
equivariant splitting in terms of the topological entropy and the uniform Lyapunov
exponents. Her results particularly apply to hyperbolic sets of diffeomorphisms.
Further, Barreira [2] gave estimates for the dimension of a repeller of a expanding
map by using the non-additive topological pressure and singular value functions.
We refer to [13] for related results.

All these results provide upper bounds for the dimension of a hyperbolic set
in terms of other important dynamically defined quantities. However, it is often
difficult to calculate these upper bounds for concrete examples. Corollary 2, on the
other hand, states without further calculations that the dimension of a hyperbolic
set is strictly smaller than n. This has not been known before in this generality.

Another consequence of Theorem 1 is a new characterization for f to have an
invariant probability measure u supported on A whose conditional measures on the
unstable manifolds are absolutely continuous with respect to the Lebesgue measure.
Such a measure p is called an SRB measure of the diffeomorphism f.

Corollary 3. Suppose that f and A are as in Theorem 1, and let € > 0 be small.
Then the following are equivalent.

(i) dmpW2(A) = n;
(ii) dimpg W*5(A) = n;
(iii) f admits a SRB measure on A;
(iv) A is an attractor of f;



STABLE SETS, HYPERBOLICITY AND DIMENSION 405

(v) W#(A) has positive Lebesgue measure.

The novelty of Corollary 3 is the implication (ii) implies (iii), while the other
implications are well-known, and are not consequences of our results.

This paper is organized as follows. In Section 2 we consider hyperbolic diffeo-
morphisms and derive an upper bound of the box dimension of the local stable set
of a hyperbolic set. Furthermore, we apply this bound to establish the corollaries
stated in the introduction. Finally, in Section 3 we study repellers of expanding
maps, and derive related results as in the case of diffeomorphisms.

2. Stable sets for diffeomorphisms. Let f: M — M be a C? diffeomorphism on
an n-dimensional Riemannian manifold, and A C M a hyperbolic set. This means
that A is a compact f-invariant set, and that there exist a continuous splitting of
the tangent bundle Ty M = E* @ E?, and constants ¢ > 0 and A € (0,1) such that
for each = € A:

L. Df()(EY) = BY,, and Df(x)(E3) = Fjyy:
2. |Df~*(z)v|| < eA¥|lv|| whenever v € E¥ and k € N;
3. |Df¥(x)v]| < eAF||v|| whenever v € ES and k € N.

We say that A is locally maximal if there exists an open neighborhood U of A such
that A = (e f kU. We shall always assume that A is a locally maximal hyperbolic
set, which is not a periodic orbit, and that f|A is topologically mixing.

We say that A is an attractor of f if there are arbitrarily small neighborhoods
U of A such that f(U) C U. This includes the case of Anosov diffeomorphisms for
which the entire manifold M is a hyperbolic set. We say that A is a repeller of f if
it is an attractor of f~!. We note that there are other notions of an attractor and
repeller. Here we follow the definitions of [4] which suit well our purposes.

Given k € N, we define a metric dy on M given by
dk(.’L‘,y) = i_OIna)é_ld(fz(.T),fz(y)), (5)
where d(.,.) denotes the distance induced by the Riemannian metric on M. Fol-
lowing Bowen [4], for x € A, ¢ > 0 and k € N we define the sets

B(z,e,k)={y e M : dp(z,y) < e} (6)
and
B(Ae,k) = | B(x,e,k). (7)
xEA

Recall that W2 (A) denotes the local stable set of A (see (1)). It is an immediate
consequence of the shadowing lemma that if ¢ is sufficiently small, then there exists
€ > 0 such that
w2 < (J ), (8)
TzEA
where W2 (z) denotes the local stable manifold of size € of z € A. Furthermore, by
choice of €, the number € can be chosen arbitrarily small.

We now define the topological pressure (see for example [16] for a detailed dis-
cussion). Let 6 > 0. A set E C M is called (k,d)-separated with respect to f if
di(z,y) < 6 implies x = y for all x,y € E. For all (k,§) € N x RT let Fy(d) be a
maximal (k, d)-separated subset of A with respect to f (in the sense of inclusion).
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We denote by C(A,R) the Banach space of all continuous functions from A to R.
The topological pressure of f is a mapping P : C(A,R) — R defined by

k-1
P(p) = lim lim sup % log Z exp (Zcpo fl(as)> . (9)

6—0
k=00 CE€ By (6)

We are particularly interested in the topological pressure of the function ¢* : A — R
defined by ¢*(z) = —log |detD f(z)|E¥|, where detD f (x)| E¥ denotes the Jacobian
of the linear map Df(x)|EY. We will need the following result which is due to
Bowen.

Proposition 4 ([4]). Ife > 0 is small enough then:
(i) limp—oo 7 log (vol(B(A, €, k) = P(¢*) < 0;
(ii) P(¢*) =0 if and only if W2 (A) has nonempty interior, in which case A is an
attractor.

We note that the right-hand side inequality in (i) also follows as an application
of the Margulis-Ruelle inequality and the variational principle.

We recall the definitions of some fractal dimensions that we use in the paper (see
e.g. [11] for details). Let A C M and s > 0. The s-dimensional Hausdorff measure
of A is defined by

H?(A) = supinf {Z diam(Ug)® : A C U Uy, diam(Uy) < 5} ,

€>0 k=1 k=1

where diam(Uy) denotes the diameter of the set Uy with respect to the Riemannian
metric on M. We define the Hausdorff dimension of A by

dimyg A = inf{s: H*(A) = 0} = sup{s: H*(A) = oo}.

For a relatively compact set A we denote by N.(A) the least number of balls with
radius € needed to cover A. We define the lower and upper box dimensions of A by

log N.(A _ log N.(A
di71111‘314 = lim inf LE() and dlmBA = lim sup L&()
e—0 —loge or  _loge
It follows that

where equality holds for sufficiently regular sets (see [11] for details).
We now prove Theorem 1 stated in the introduction.

Proof of Theorem 1. We first remark that it follows from Proposition 4 that if A is
not an attractor, then P(¢*) < 0, and therefore inequality (3) provides a non-trivial
estimate.

Observe that since the operator norm is submultiplicative, the limit defining s
exists (see e.g. [16]). Furthermore, since A is not an attracting cycle, s > 0. If A is
an attractor, then by Proposition 4, P(¢*) = 0, and inequality (3) trivially holds.
Thus, we may assume that A is not an attractor, in which case P(¢*) < 0.

Let § > 0. It follows from a simple continuity argument that there exist € > 0
and ks € N such that for all x € BWZS(A),e) ={zx € M : Jy € W2(A), d(z,y) < e}
we have

IDf* ()| < exp(ks(s +0)). (11)
From now on we consider the map g = f*s. Note that A is also a hyperbolic set
of g. Evidently W2 (A) is forward invariant under g. It follows from the variational
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principle that Py(¢g) = ksPr(¢%); moreover s; = kssg. Thus it is sufficient to
prove inequality (3) for g. We continue to use the notation s, ", P(¢™), etc. for
g instead of f. Let x € A and k € N. It follows from Proposition 4 that for
sufficiently small,
1
P(¢*) = klim z log(vol(B(A, 2¢, k))), (12)
v — 00

where B(A,2¢,,k) = (J,cp B(%,2¢,k) (see (6)). From this we obtain that, if & is
sufficiently large then

vol(B(A, 2¢,k)) < exp(k(P(¢") + 9)). (13)

For all £ € N we define real numbers
€

- exp(s + §)k

and neighborhoods By, = B(WZ(A),r) of W2(A). Let y € By. Then there exists
x € W2(A) with d(z,y) < r,. An elementary induction argument in combination
with the mean-value theorem implies d(g%(x),¢'(y)) < € for all i € {0,...,k — 1}.
Using (8) and making ¢ smaller if necessary, we can assure that x is contained in
the local stable manifold of size ¢ of a point in A. It follows that y € B(A,2e,k).
Hence By C B(A,2e,k). Therefore, (13) implies that

vol(By,) < exp(k(P(¢") + 4)) (14)
for sufficiently large k. Let us recall that for ¢ € [0,n] the ¢-dimensional upper
Minkowski content of a relatively compact set A C M is defined by

1(A
M**(A) = limsup vol( pz,
p—0 (2p)7~

where A, = {p € M : 3¢ € A : d(p,q) < p}, and vol denotes the volume induced
by the Riemannian metric on M. Let t € [0,n] and py = 73 for all k € N. Then we
have

< limsup O(B) (15)
k—oo (k )
< exp(s+6)"t

SR T (bexp(s +6)" exp(P(6") + )

Let t > n+ %. Then exp(s + §)" texp(P(¢*) + §) < 1. This implies
M**(W2(A)) = 0. Hence t > dimgW2(A) (see [11]). Since § can be chosen ar-
bitrarily small, the result follows. O

Remark. We note that the idea of estimating the dimension of an invariant set by
calculating the volume of neighborhoods of the set was introduced by the second
author of this paper in [17] for estimating the dimension of an invariant set of a C*
diffeomorphism. For a related result in the case of polynomial automorphisms of
C™ see [15].

Applying Theorem 1 to f~! we obtain an analogous result for the local unstable
set

WH(A) = {z € M : dist(f*(z),A) <& for all k € N}.
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Corollary 5. Let f : M — M be a C? diffeomorphism on an n-dimensional
Riemannian manifold, A C M a locally mazimal hyperbolic set, which is not a
periodic orbit, such that f|A is topologically mizing. Let ¢° = log|det Df|E®|.
Then for sufficiently small € > 0 we have

P(¢°)

S

dmpWo(A) < n+ : (16)

where s is defined as in (2) for the map f~1.

Note that if M is a surface, then the dimension of W2/*(A) can be expressed
using Bowen’s formula. Namely,

/s 1 Qimy, WS (z) N A = dimpW™*(z) N A
are independent of z € A (see [12]), and it is not too hard to see that
dimpy W3/%(A) = dimpW2/%(A) = t*/5 + 1. (17)

The right equality in (17) can be shown using the fact that when n = 2 the
holonomies are lipschitz continuous (see for instance [8]). On the other hand, the
following example shows that the dimension of W2 (A) can be arbitrarily close to
n.

Example 1. Let B C R? be a unit square, and let f : B — R? be a linear
horseshoe map with the expansion rate A* > 2 and the contraction rate \* < %, see
Figure 1. It is well-known that A = {x € B : f¥(z) € B for all k € Z} is a locally
maximal hyperbolic set of f, and that f|A is topologically mixing. Moreover, we
have

w log2 s log 2
= an = — .
log A\ log A\$
1 — u S

)\S )\S

)\S

Figure 1. A Linear Horseshoe Map
As it was mentioned above, we also have dimy W2/“(A) = dimpW:/"(A) =
t%/s 4 1. Therefore, by choosing A" close to 2 (respectively A* close to %) we obtain
the following.
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Corollary 6. For each € > 0 there exists a linear horseshoe map of R? such that
dimpy WE"(A) = dimpW2/"(A) > 2 —¢.

We now apply Theorem 1 to obtain an upper bound for the Hausdorff dimension
of the stable set of A.

Corollary 7. Let f : M — M be a C?-diffeomorphism, and A a locally mazimal
hyperbolic set of f, which is not a periodic orbit, such that f|A is topologically
mizing. Define ¢* = —log|det D f|E¥|. Then
P U
dimgW?(A) <n+ % (18)
Proof. Tt follows from Theorem 1 (also using (10)) that dimy W2 (A) < n + %.
Obviously, W2 (z) C W2(A) for all € A, hence

P U
dimp U Wi(z) <n-+ M (19)
S
z€EA
It is a consequence of the shadowing lemma that
We(A) = | W (). (20)

TEA
On the other hand, we have W*(z) = U,y /¥ (WZ(f*(x))). Together we obtain

we)=J " (U WS(!B)) : (21)

keN HASHIN

The corollary now follows from equations (19), (21) and the fact that the Hausdorff
dimension is stable with respect to countable unions. O

Remark. Since we have taken countable unions of sets whose box dimensions are
uniformly bounded above by n + P ), we obtain the same upper bound for the
packing dimension of W#(A).

We now provide the proofs of the corollaries stated in the introduction.

Proof of Corollary 2. If A is an attractor, then A can not be a repeller. Otherwise,
we would have W2/*(z) C A for all € A, in which case, since A has a local
product structure, A would have non-empty interior. Therefore, Proposition 4 (or
the analogous proposition for f~1) implies that either P(¢%) < 0 or P(¢*) < 0.

The result now follows from Theorem 1 and Corollary 5. O

Proof of Corollary 3. (i)=-(iv) If (i) holds, then by Theorem 1, P(¢") = 0. There-
fore, (iv) follows from Proposition 4.

(iv) = (ii) is trivial.

(if)=(iii) Assume dimg W#(A) = n. Then it follows from Corollary 7 and Proposi-
tion 4 (i) that P(¢*) = 0. Since A is a locally maximal hyperbolic set on which f is
topologically mixing, there exists a unique equilibrium measure j4« of the potential
¢". This means that

0= P(6") = by (1) + [ 6", (22)

where hy,. (f) denotes the measure-theoretic entropy of f with respect to pigu.
Moreover, pigu is ergodic. Let Aj(z) < --- < A(x) be the Lyapunov exponents of x
with respect to f with multiplicities mq(z),--- ,my(z). The fact that pgu is ergodic
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implies that the Lyapunov exponents and the multiplicities are constant pi4u-almost
everywhere. We denote the corresponding values by A;(ug«) and m;(peg«). From
the fact that A is a hyperbolic set it follows that

- [ o Ni(pg )mi(jage ). (23)

Ai (M¢u)>0
Therefore, equations (22) and (23) imply that

b (= 3 Mo Imilus) — [ X A@mi) duge @)

Ai(pgu)> Ai(z)>0

Hence pgw satisfies Pesin’s entropy formula. Finally, from the work of Ledrappier,
Strelcyn and Young in [9] and [10] we conclude that pgu is a SRB measure.
(iii)=-(v) follows from [4] and [10].

Finally, (v)=(i) follows from (8) and (21). O

3. Expanding maps. In this section we consider a C? map f from a n-dimensional
smooth Riemannian manifold M to itself. The map f is not assumed to be invert-
ible. Let A C M be a compact invariant set of f. We say that f is expanding on
A if there exist ¢ > 0 and A € (1, 00) such that for each = € A:

|Df*(z)v| > eAF|lv|| whenever v € T, M and k € N.

Furthermore, we say that A is locally maximal if there exists an open neighborhood
U C M of A such that A = ),y f¥(U). If f is expanding on a locally maximal
set A we say that A is a repeller of f. We shall always assume that f is expanding
on A, A is locally maximal, and f|A is topologically mixing. We define the function
¢: A — R by ¢(x) = —log|det Df(x)|.

We start by proving the version of Proposition 4 for expanding maps.

Proposition 8. If ¢ > 0 is small enough then
1
Jim_ - log (vol(B(A, &, k)) < P(¢) <0 (25)

Proof. We first show the right-hand side inequality of (25). Consider an ergodic
invariant probability measure p supported on A, and let 0 < Ay (p) < -+ < N\(p) be
the Lyaponov exponents of p. Denote by m;(u) the multiplicity of the Lyapunov
exponent A;(u). It follows from the Margulis-Ruelle inequality that

£ < Nula) i) = - / g (26)

On the other hand, the variational principle states that

P(¢) = sup ( +f ¢du) (27)

where the supremum is taken over all (ergodic) invariant probability measures on
A. Combining (26) and (27) yields P(¢) <0

We now show the left-hand side inequality in (25). Fix some 6 < . Let Ej(9)
be a maximal (k, 0)-separated subset of A. Let € A; then « € B(y, d, k) for some
y € Ey(9), because otherwise Ey () U{z} would be (k, §)-separated. Here B(y, d, k)
is defined as in (6). We conclude that B(z,¢,k) C B(y,0 + ¢, k), and

B(Aek)c | By.d+ek), (28)
yEEL(J)
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see (7) for the definition. For z € A and k € N we define
k=1
Skp(x) =D o(f(x)).
i=0

Analogously as in the case of diffeomorphisms (see [4], [5]), there exists Csc > 1
such that if ¢ is small enough then

vol(B(z,d + &,k)) < Csic - exp S (x) (29)
for all z € A and k € N. Therefore (28) and (29) imply that
VOI(B(A7 g, k)) < C5+E : Z €xXp Sk¢(y) (30)
yEEL(3)

The map f|A is expansive; therefore for § small enough we have

P(g)=Tmsup og | 3 exp(Sko(y)) | (31)

koo YEEL(5)

The result follows now by taking the logarithm, dividing by k and taking the upper
limit in (30) and applying (31). O

We would like to point out that the proof of Proposition 8 is based on ideas of
the corresponding proof of Bowen [4] for diffeomorphisms.

Quan and Zhu classified in [14] the invariant measures u of a C? endomorphism
f for which Pesin’s entropy formula holds; they showed that p has this condition if
and only if u satisfies the SRB property. This property is a generalized condition of
an SRB measure for diffeomorphisms defined for the corresponding measure on the
inverse limit map, see [14] for details. In particular, if f is an expanding map and
1 is absolutely continuous with respect to Lebesgue, then Pesin’s entropy formula
holds, see [7].

Proposition 9. P(¢) = 0 if and only if f admits an invariant measure p satisfying
the SRB-property. In particular, this is the case when f has an invariant measure
which is absolutely continuous with respect to Lebesgue.

Proof. If P(¢) = 0 then the same arguments as in the proof of Corollary 3 imply
that there exists an invariant measure p satisfying Pesin’s formula; hence, p has
the SRB property. On the other hand, if u has the SRB property then p satisfies
Pesin’s entropy formula. It now follows from the variational principle and a similar
argument as in the proof of Corollary 3 that P(¢) = 0. O

Remark. Tt is easy to see that P(¢) = 0 actually occurs. For example, if f : St —
S1, f(z) = 22, then the entire manifold S* is a repeller. In this case the measure of
maximal entropy (given by the distribution of the periodic points of f) is absolutely
continuous with respect to Lebesgue.

We now present our main results for expanding maps.

Theorem 10. Let f be a C? self map on an n-dimensional smooth Riemannian
manifold M, and let A be a locally mazimal repeller of f such that f|A is topologi-
cally mixing. Then

aa@Agn+5%l (32)

where s is defined as in (2).
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Proof. The proof of the theorem is analogous to the proof of Theorem 1 just by
replacing W#(A) by A and applying Proposition 8 instead of Proposition 4. O

Corollary 11. Let f be a C? self map of an n-dimensional smooth Riemannian
manifold M, and let A be a repeller of f such that f|A is topologically mixing. Then
the following are equivalent.

(ii) f admits an invariant measure p satisfying the SRB property.

Proof. If dimpA = n then, by Theorem 10 and Proposition 8, P(¢) = 0. Therefore,
Proposition 9 implies that f admits an invariant measure p satisfying the SRB
property. On the other hand, if x4 is an invariant measure satisfying the SRB
property, then Pesin’s entropy formula holds for p, see [14]. It now follows from
Theorem B of [7] that vol(A) > 0, in particular, dimgA = n. O
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