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Rational approximation and Lagrangian inclusions

Rasul Shafikov and Alexandre Sukhov

Abstract. We show that any real compact surface S , except the sphere S2 and the projective
plane RP2 , admits a pair of smooth complex-valued functions f1 , f2 with the property
that any continuous complex-valued function on S is a uniform limit of a sequence of
Rj .f1; f2/ , where Rj .z1; z2/ are rational functions on C2 .

Mathematics Subject Classi�cation (2010). Primary: 32E20, 32E30, 32V40, 53D12.

Keywords. Rational convexity, polynomial convexity, Lagrangian manifold, symplectic
structure, plurisubharmonic function.

1. Introduction

�is work concerns approximation of continuous functions on a compact real
surface by a special class of smooth functions. To illustrate this we consider
the one-dimensional example �rst. In the space of continuous complex-valued
functions on the unit circle S1 � C let R � C 0.S1/ be the subalgebra of
functions of the form R.ei� / , where � 2 Œ0; 2�� and R.z/ is a rational function
on C with poles o� S1 . It follows from the Stone-Weierstrass theorem that
R is dense in C 0.S1/ . Note that by the maximum principle the subspace of
polynomials in ei� is not dense in C 0.S1/ . We consider the case of dimension
2. Our main result is the following

�eorem 1.1. Let S be a smooth compact real surface without boundary, and let
C 0.S/ be the space of continuous complex-valued functions on S . �ere exists
a pair of smooth functions fj W S ! C , j D 1; 2 , such that for every function
F 2 C 0.S/ there is a sequence ¹Rn.z1; z2/º of rational functions on C2 with
the following properties:

(i) For every n the denominator of the composition Rn.f1; f2/ does not vanish
on S .
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(ii) If S is not the unit sphere S2 and is not the projective plane RP2 , then
¹Rn.f1; f2/º converges to F in C 0.S/ .

(iii) If S D S2 , then there exists a rotation � of S2 (depending on F ) such
that ¹Rn.f1; f2/º converges to the composition F ı � in C 0.S2/ .

(iv) If S D RP2 , then there exists a smooth di�eomorphism � of RP2 (depending
on F ) such that ¹Rn.f1; f2/º converges to the composition F ı� in C 0.RP2/ .

�is result provides an a�rmative answer to the question communicated to us
by Nemirovski. Note that the pair f1; f2 is independent of F , and that rational
functions in �eorem 1.1 cannot be replaced by polynomials. To see this, suppose
that for a given surface S there exist continuous functions f1; f2 such that any
continuous function on S can be approximated by polynomials in f1 and f2 .
Since C 0.S/ separates points on S , the map f D .f1; f2/ W S ! f .S/ � C2 is
a bijection, hence a homeomorphism. By assumption, any continuous function on
f .S/ can be approximated by holomorphic polynomials, which forces f .S/

to be polynomially convex in C2 . Recall that a compact set X � C2 is
polynomially convex if for every point z 2 C2 nX there is a polynomial P such
that jP.z/j > supw2X jP.w/j . However, no compact topological n -dimensional
submanifold of Cn is polynomially convex, see [Sto, Cor. 2.3.5]), and this proves
the claim.

�e functions f1 , and f2 in �eorem 1.1 will be given as the coordinate
components of a singular Lagrangian (with respect to the standard symplectic
form !st ) embedding of S into C2 . For example, in the simplest case of the
torus S1 � S1 , we can take fj D ei�j , j D 1; 2 , thinking of �j 2 Œ0; 2��

as a parametrization of each circle S1 . For an arbitrary surface we employ in
Section 2 a result of Givental [Giv] (see also Audin [Aud]), who proved the
existence on S of a Lagrangian inclusion – a local Lagrangian embedding of S
into C2 that can have, in addition to transverse double self-intersection points,
singularities that are called open Whitney umbrellas; furthermore, such a map is
a homeomorphism near every umbrella. Moreover, one can �nd such an inclusion
without self-intersection points, i.e., a topological embedding, with two exceptions,
the sphere S2 and the projective plane RP2 . �ese two surfaces do not admit
a singular Lagrangian embedding into C2 , but can be included with transverse
double points, and so one needs more functions to generate C 0.S/ .

Although no embedding of S into C2 is polynomially convex, we prove in
Section 3 that there exists a Lagrangian inclusion of S into C2 such that its
image is rationally convex. A compact set X in Cn is called rationally convex if
for every point z 2 Cn nX there exists a complex algebraic hypersurface passing
through z and avoiding X . �is is used in the proof of �eorem 1.1 which is
given in Section 4.
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�at rational convexity is closely connected with the property of being La-
grangian became apparent from the work of Duval [Duv]. Duval and Sibony [DS]
showed that a compact n -dimensional submanifold of Cn is rationally convex
whenever it is Lagrangian with respect to some Kähler form. It was further
proved by Gayet [Gay] that an immersed Lagrangian submanifold in Cn with
transverse double self-intersections is also rationally convex. �is was generalized
to certain nontransverse self-intersections by Duval and Gayet [DG]. Interaction
between Lagrangian geometry and rational convexity was recently explored by
Cieliebak-Eliashberg [CE] and Nemirovski-Siegel [NS] using topological methods.

2. Lagrangian embeddings and inclusions

A nondegenerate closed 2-form ! on C2 is called a symplectic form. By
Darboux’s theorem every symplectic form is locally equivalent to the standard
form

!st D
i

2
.dz ^ d Nz C dw ^ d Nw/ D dd c �st; �st D jzj

2
C jwj2;

where .z; w/ , z D x C iy , w D u C iv , are complex coordinates in C2 , and
d c D i.@�@/ . If a symplectic form ! is of bidegree .1; 1/ and strictly positive, it
is called a Kähler form. A smooth function � is called strictly plurisubharmonic
if dd c � is strictly positive de�nite. It is called a potential of ! if dd c� D ! .
A real n -dimensional submanifold S � Cn is called Lagrangian with respect to
! if !jS D 0 .

It follows from Arnold [Arn1] that a compact Lagrangian submanifold of
Cn has zero Euler characteristic. On the other hand, according to the result of
Givental [Giv], any compact surface admits a Lagrangian inclusion into C2 (we
use the terminology introduced in Arnold [Arn2]), i.e., a smooth map � W S ! C2

which is a local Lagrangian embedding (i.e., ��!st D 0 ) except a �nite set
of singular points that are either transverse double self-intersections (or simply
double points) or the so-called open Whitney umbrellas. �e standard open
Whitney umbrella is the map

(1) � W R2.t;s/ 3 .t; s/ 7!
�
ts;
2t3

3
; t2; s

�
2 R4.x;u;y;v/:

Images of the standard open Whitney umbrella under complex a�ne maps that
preserve the symplectic form !st will also be called standard umbrellas. Finally,
open Whitney umbrellas are de�ned as images of the standard umbrella under
a local symplectomorphism, i.e., a local di�eomorphism that preserves the form
!st . If S is orientable then each inclusion satis�es the following topological
identity
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(2) � �.S/C 2 � d �m D 0;

and if S is nonorientable, then

(3) �.S/C 2 � d �m D 0 mod 4:

Here �.S/ is the Euler characteristic of S , d is the number of double points,
and m is the number of umbrella points.

In the orientable case, a double point should be counted taking into account
its index, which comes from some orientation on S and the standard orientation
on C2 . In fact, according to the result of Audin [Aud], any combination of
numbers �.S/ , d , and m , for which formula (2) is valid, can be realized in a
Lagrangian inclusion. In particular, if �.S/ � 0 , then we may choose d D 0 ,
and m D ��.S/ . �is means that any orientable surface, except the sphere S2 ,
admits a singular Lagrangian embedding (i.e., inclusion without double points),
while the Whitney sphere WjS2 W S2 ! C2 , where

(4) W W R3 3 .t; s; �/! .t C i t�; s C is�/;

is a Lagrangian immersion of S2 with one double point.
In the nonorientable case formula (3) is valid mod 4 according to [Aud].

Givental [Giv] showed that if �.S/ � �2 , then in fact we may take d D 0 ,
that is, all such surfaces admit a singular Lagrangian embedding into C2 . He
also gave an explicit construction of a Lagrangian inclusion of RP2 with two
double points and one umbrella. Recently Nemirovski and Siegel [NS] gave all
possibilities for the number of umbrella points that may appear in a singular
Lagrangian embedding of an arbitrary compact surface S . �ese are given by
(i) m D ��.S/ and � ¤ 2 , if S is orientable;
(ii) .�.S/;m/ ¤ .1; 1/ or .0; 0/ , and m 2 ¹4 � 3�;�3�;�3� � 4; : : : ; � C 4 �

4b�=4C 1cº , if S is nonorientable.
In particular, all nonorientable surfaces except RP2 admit a singular Lagrangian
embedding, while Givental’s inclusion of RP2 into C2 with two double points
and one umbrella has the simplest possible combination of singularities.

Suppose now that � W S ! C2 is a Lagrangian inclusion with umbrella
points p1; : : : ; pm . �en, in a neighbourhood Uj of every pj , there exists a
symplectomorphism �j W U0 ! Uj from a neighbourhood of the origin in C2

that maps the standard umbrella (1) to �.S/\Uj . Any symplectomorphism � is
locally Hamiltonian. �is means that in a (simply connected) neighbourhood U

there exists a smooth function h W U ! R , called the Hamiltonian, such that the
vector �eld Vh , uniquely de�ned by the equation

(5) i.Vh/ !st D dh;
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gives the �ow �h� on U with the property that �h1 D � . Here i.Vh/ is
the contraction operator. Conversely, a smooth function h W C2 ! R with
compact support de�nes uniquely a vector �eld Vh that satis�es (5). �e �ow
of Vh generates a one parameter family of symplectomorphisms of C2 . �ese
symplectomorphisms are the identity outside the support of h .

Let Lj be the linear translation in C2 sending pj to the origin, and let hj be
the Hamiltonian of the symplectic maps L�1j ı ��1j de�ned in a neighbourhood
Uj of pj . Let h be a smooth function on C2 that agrees with hj in Uj and
vanishes outside a small neighbourhood QUj of Uj . �en the di�eomorphism ˆ

de�ned by the �ow �h1 is a symplectomorphism of C2 which is the identity map
outside QUj . By construction, ˆı � is a standard open Whitney umbrella near pj .
Repeating this procedure for all umbrella points gives a new Lagrangian inclusion
(denoted again by � ) with only standard umbrellas. �us we obtain the following
version of Givental’s theorem.

Proposition 2.1. Let S be a compact real surface without boundary. �ere exists
a Lagrangian inclusion � W S ! C2 such that all its open Whitney umbrella
points are standard. Furthermore, if S ¤ S2 or RP2 , then S admits a singular
Lagrangian embedding with only standard umbrellas and without double points.

3. Rational convexity of Lagrangian inclusions

Here we prove the following

Proposition 3.1. Let S be a compact real surface without boundary and let
� W S 7! .C2; !st/ be a Lagrangian inclusion given by Proposition 2.1. �en �.S/

is rationally convex in C2 .

Proposition 3.1 was already proved by the authors [SS3] in the special case
of a Lagrangian inclusion with a single umbrella. We include here a detailed
presentation for convenience of the reader.

We will identify S and �.S/ as a slight abuse of notation. �e ball of radius
" centred at a point p is denoted by B.p; "/ , and the standard Euclidean distance
between a point p 2 Cn and a set Y � Cn is denoted by dist.p; Y / . Our
approach is a modi�cation of the method of Duval-Sibony and Gayet. �e main
tool here is the following result.
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Lemma 3.2 ([DS], [Gay]). Let � be a plurisubharmonic C1 -smooth function
on Cn , and let h be a C1 -smooth function on Cn . Let X D ¹jhj D e�º be
compact. Suppose that

(1) jhj � e� ;
(2) @h D O.dist.�; S/ 3nC5

2 / ;
(3) jhj D e� with order at least 1 on S ;
(4) For any point p 2 X at least one of the following conditions holds: (i) h

is holomorphic in a neighbourhood of p , or (ii) p is a smooth point of S ,
and � is strictly plurisubharmonic at p .

�en X is rationally convex.

We remark that if follows from the proof of the lemma in [Gay] that in fact,
we may assume that � is merely continuous at points where h is holomorphic.

�e proof of Proposition 3.1 consists of �nding the functions � and h that
satisfy Lemma 3.2 with X D S . �is will be achieved in three steps: we �rst
construct a closed .1; 1/-form ! that vanishes near singular points of S and
such that !jS D 0 . �e form ! is a modi�cation of the standard symplectic
form !st in C2 near singular points of S . Near self-intersection points this is
done in the paper of Gayet [Gay], and so we will deal with the umbrella points.
Secondly, from ! and its potential � we construct the required function h . In
the last step we replace � with a function � C � , for a suitable � , so that the
pair ¹� C �; hº satis�es all the conditions of Lemma 3.2.

Step 1: �e form ! . Our modi�cation of the form !st and its potential is
an inductive procedure on the umbrella points. Let p1; : : : ; pm be the umbrella
points on S , pj D .xj ; uj ; yj ; vj / . By the assumption in �eorem 3.1, after a
translation of pj to the origin, the surface S is parametrized near pj by the
mapping � given by (1). Let Lj W .z; w/! .z; w/ � pj be the translation of pj
to the origin, so that �j D L�1j ı � parametrizes S near pj .

For a function f we have d cf D �fydx C fxdy � fvdu C fudv . Using
this we have ��d c�st D �2t2sdt �

2
3
t3ds . Consider the pluriharmonic function

�1 D
v2

2
�

u2

2
. �en ��d c�1 D ��d c�st . �e function �st � �1 is strictly

plurisubharmonic and satis�es

(6) ��d c.�st � �1/ D 0:

Let �1 D .�st��1/ıL1 . Since Lj are C -linear, they commute with d c . �erefore,
d c�1jS D 0 near p1 and dd c�1 D !st . Let r W RC ! RC be a smooth increasing
convex function such that r.t/ D 0 when t � "1 and r.t/ D t � c when t > "2 ,
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for some suitably chosen c > 0 and 0 < "1 < "2 . We choose "2 > 0 so small
that the set ¹�1 < "2º does not contain any singular points of S except p1 . Let

(7) Q�1 D r ı �1; !1 D dd
c. Q�1/:

�en ��!1 D 0 by (6). �erefore, the surface S remains Lagrangian with respect
to the form !1 . �is gives us the required modi�cation of !st near p1 . Note that
our construction gives two neighbourhoods U1 b U 01 of p1 , which can be chosen
arbitrarily small, so that !1jU1 D 0 and !1 D !st in C2 nU 01 . On the other hand,
the potential Q�1 is a global modi�cation of �st but it remains plurisubharmonic
on C2 .

Consider now the modi�cation of Q�1 and !1 near p2 . Up to an additive
constant the potential Q�1 for !1 near p2 agrees with .�st��1/ıL1 . We construct
�2 in the form

�2 D . Q�1 � �2/ ı L
0
C C;

with a suitable choice of a function �2 and a constant C . �e condition
��2 d

c�2 D 0 is equivalent to

��d c
�
.�st � �1/ ı L1 � �2

�
D 0:

�is can be achieved by choosing

�2 D �2x1x � 2y1y � v1v � 3u1u:

�en d c�2jS D 0 near p2 . Further, �2.p2/ D 0 by a suitable choice of the
constant C , and dd c�2 D !1 . Now take Q�2 D r ı �2 , where r is as above, and
set !2 D dd c Q�2 . �is gives the required modi�cation near p2 .

�is procedure can be repeated for all other pj , j D 2; : : : ; m . Note that at each
step the modi�cation of the function Q�j�1 is obtained by adding linear terms in
.x; u; y; v/ precomposed with a translation. �is ensures that the form !j remains
unchanged in the complement of some small neighbourhood U 0j of the point pj .
For the same reason, the function Q�j remains globally plurisubharmonic, which
is, in fact, strictly plurisubharmonic outside the union of the neighbourhoods U 0j .
We repeat this procedure m times for all umbrella points to obtain the function
Q� and the form Q! .

Denote by pmC1; : : : ; pN the double points of S . �en [Gay, Prop. 1] gives
further modi�cation of the form Q! and its potential Q� near the double points.
Combining everything together yields the following result.
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Lemma 3.3. Given " > 0 su�ciently small, there exists a .1; 1/-form Q! and
0 < "0 < " such that

(i) Q!jS D 0 ;
(ii) Q! D ! on C2 n

�
[NjD1B.pj ; "/

�
.

(iii) Q! vanishes on B.pj ; "0/ , j D 1; : : : ; N .

Furthermore, there exists a smooth function Q� on C2 such that dd c Q� D Q! .
�e function Q� is plurisubharmonic on C2 , and strictly plurisubharmonic on
C2 n

�
[NjD1 B.pj ; "/

�
.

Step 2: �e function h . Let � W S ! C2 be a Lagrangian inclusion, and Q� be
the potential of the form Q! given by Lemma 3.3. For simplicity we drop tilde
from the notation. We recall the construction in [DS] and [Gay] of a smooth
function h on C2 such that jhj

ˇ̌
S D e

� and @h.z/ D O.dist.z; S/6/ .
Let QS be a deformation retract of S . Note that it exists because near an

umbrella point the surface S is the graph of a continuous vector-function. Let
k , k D 1; : : : ; l , be the basis in H1. QS;Z/ Š H1.S;Z/ supported on S . Using de
Rham’s theorem one can �nd closed forms ˇk on QS such that

R
�
ˇk D ı�k , and

such that ˇk vanish in the balls B.pj ; "/ as in Lemma 3.3 around the singularities
of S . Further, there exist smooth functions  k with compact support in QS such
that  k vanish on S [ .[NjD1B.pj ; "// , and for k D 1; : : : ; l ,

(8) ��d c�k D �
�ˇk :

Indeed, for each k , we set �k D A.z;w/r1 C B.z;w/r2 , where r1.z; w/ and
r1.z; w/ are local de�ning functions of S and A;B are some unknown functions.
Plugging this expression into (8) gives a linear system for the restrictions of A
and B to S that can be solved. A suitable extension of this solution with support
in QS gives the result. Note that near singular points the extension is identically
zero.

For �k > 0 the function �C
Pl
jD1 �k k agrees with � on S . For su�ciently

small �k it is strictly plurisubharmonic outside the balls B.pj ; "/ and globally
plurisubharmonic since the functions  k vanish in B.pj ; "/ . Further, there exists
a choice of �k and M > 0 such that for the function

(9) Q� DM
�
� C

lX
jD1

�j j

�
the form ��d c Q� is closed on S and has periods which are multiples of 2� .
�en there exists a C1 -smooth function � W S ! R=2�Z that vanishes on
the intersection of S with B.pj ; "/ , j D 1; : : : ; N , and such that ��d c Q� D d� .
By [HW], there exists a function h de�ned on C2 such that
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hjS D e
Q�Ci�
jS

and @h.z/ D O.dist.z; S/6/ . It follows that Q�� log jhj vanishes to order 1 on S .
Note that h is constant near singular points of S . Finally, the function h can be
suitably extended to C2 preserving the inequality given by (1) in Lemma 3.2.

Step 3: �e function � . A closed subset K in Cn is called locally polynomially
convex near a point p 2 K if for every su�ciently small " > 0 the intersection
K \ B.p; "/ is polynomially convex in Cn . Again, for simplicity of notation we
denote by � the function (9) constructed in Step 2. It does not yet satisfy the
conditions of Lemma 3.2 because there are still some smooth points on S where
the function h is not holomorphic and � is not strictly plurisubharmonic. For
this we will replace � by a function Q� D �C c � � , where the function � will be
constructed using local polynomial convexity of S , and c > 0 will be a suitable
constant.

We recall our result from [SS1, SS2].

Lemma 3.4. Let S be a Lagrangian inclusion in C2 , and let p0; : : : ; pN

be its singular points. Suppose that S is locally polynomially convex near
every singular point. �en there exists a neighbourhood � of S in C2

and a continuous non-negative plurisubharmonic function � on � such that
S \ � D ¹p 2 � W �.p/ D 0º . Furthermore, for every ı > 0 one can choose
� D .dist.z; S//2 on � n [NjD1B.pj ; ı/; in particular, it is smooth and strictly
plurisubharmonic there.

�e standard open Whitney umbrella is locally polynomially convex by [SS1],
and S is locally polynomially convex near transverse double self-intersection
points by [SS2]. For the proof of the lemma we refer the reader to [SS2].

To complete the construction of the function � , we choose the function � in
Lemma 3.4 with ı > 0 so small that the balls B.pj ; ı/ are contained in balls
B.pj ; "0=2/ given by Lemma 3.3. Note that � is de�ned only in a neighbourhood
� of S , but we can extend it as a smooth function with compact support in C2 .
Consider now the function

Q� D � C c � �:

We choose the constant c > 0 so small that the function Q� remains to be
plurisubharmonic on C2 . At the same time, since c > 0 and � is strictly
plurisubharmonic on S outside small neighbourhoods of singular points, we
conclude that the function Q� is strictly plurisubharmonic outside the balls B.pj ; ı/ .
It also follows that X D ¹jhj D e Q�º D S . �e pair Q� and h now satis�es all the
conditions of Lemma 3.2. �is completes the proof of Proposition 3.1.

For the proof of �eorem 1.1 we will also need the following result.
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Corollary 3.5. Suppose that � W S ! C2 is a Lagrangian inclusion of a compact
surface. �en �.S/ admits a Stein neighbourhood basis.

Indeed, one can take neighbourhoods of �.S/ of the form ¹� < "º where �

is a function given by Lemma 3.4 and " > 0 is small enough.

4. Rational approximation on surfaces

�e classical Oka-Weil theorem (see, e.g., [Sto]) states that any holomorphic
function in a neighbourhood of a rationally convex compact set X � Cn can be
approximated uniformly on X by rational functions with poles o� X . Rational
functions can be replaced by holomorphic polynomials if X is polynomially
convex. We will need the following approximation result, which is due to O’Farrel–
Preskenis–Walsch [FPW] (see also Stout [Sto]):

Let X be a compact holomorphically convex set in Cn , and let X0 be a
closed subset of X for which X n X0 is a totally real subset of the manifold
CnnX0 . A function f 2 C.X/ can be approximated uniformly on X by functions
holomorphic on an neighbourhood of X if and only if f jX0 can be approximated
uniformly on X0 by functions holomorphic on an neighbourhood of X .

Recall that a set X is called a totally real set of a manifold M if there
is a neighbourhood U of X in M on which is de�ned a nonnegative strictly
plurisubharmonic function � of class C 2 such that X D ¹p 2 U W �.p/ D 0º .
�e following result can be found in Stout [Sto, �m 6.2.9]:

A compact connected subset X of a Stein manifold M is holomorphically convex
if and only if there is a sequence �j of domains in M with �j � �k , when
j � k , and with

T
j �j D X such that if for each j , . Q�j ; projj / is the envelope

of holomorphy of �j , then
T
j projj . Q�j / D X .

Suppose now that X D �.S/ is a Lagrangian inclusion given by Proposition 2.1;
it is rationally convex by Proposition 3.1. Let X0 be the set of singular points
of X , i.e., the set of double points and Whitney umbrellas. �en X n X0

is a smooth totally real submanifold, and so for each point p 2 X n X0

there exists a neighbourhood in which the square of the distance to X is a
strictly plurisubharmonic function. From these neighbourhoods we can construct
a neighbourhood U � X n X0 with a nonnegative strictly plurisubharmonic
function on it that vanishes on X nX0 . �is shows that X nX0 is a totally real
set in C2 nX0 .

�e set X0 is �nite, hence it satis�es the assumption of the O’Farrel–Preskenis–
Walsch theorem. By Lemma 3.5, X � C2 admits a Stein neighbourhood basis
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¹�j ºj . Each �j is Stein, therefore, Q�j D �j , and it follows from above that X is
holomorphically convex. �us, all conditions in the result of O’Farrel–Preskenis–
Walsch, stated above, are satis�ed, and we conclude that any continuous function
on X can be approximated by holomorphic functions in a neighbourhood of
X , hence by rational functions as seen by the Oka–Weil theorem. Combining
everything together gives the following.

Proposition 4.1. If � W S ! C2 is a Lagrangian inclusion with standard umbrellas,
then any continuous function on �.S/ can be approximated uniformly on �.S/ by
rational functions with poles o� �.S/ .

With this the main result is easily veri�ed.

Proof of �eorem 1.1. (i and ii) By Proposition 2.1, there exists a singular La-
grangian embedding f D .f1; f2/ W S ! C2 with standard umbrellas as the
only singularities. �e required statements now follow from Proposition 4.1.

(iii) Formula (4) gives an immersion of the sphere S2 into C2 with one double
point, but this does not give the approximation result because the coordinate
functions attain the same value at the double point. However, by the Borsuk–
Ulam theorem (see, e.g., [Hat]), any continuous function F W S2 ! R2 has
at least two antipodal points p and q on S2 where it attains the same value.
Hence, it can be approximated by rational functions but only after we apply
a rotation of S2 that sends p and q to the north and south poles of S2 ,
which are the preimages of the double point.

(iv) A similar story holds for RP2 , for which one needs two double points. Let
f D .f1; f2/ W RP2 ! C2 be the Lagrangian inclusion with two double
points and one standard umbrella. By the Whitney approximation theorem
it su�ces to approximate any smooth function F W RP2 ! C . Since RP2
cannot be di�eomorphic to any subset of C , a generic point in the image
of F will have at least two pre-images. Applying a di�eomorphism �

of RP2 we may assume that there exist points pj ; qj 2 RP2 such that
.F ı �/.pj / D .F ı �/.qj / , j D 1; 2 , and fj .pk/ D fj .qk/ , j; k D 1; 2 . �en
by Proposition 4.1, F ı � can be approximated by rational combinations of
f1 and f2 .
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