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Abstract. It is proved that a germ of a holomorphic map from a real analytic hypersurface M
in Cn into a strictly pseudoconvex compact real algebraic hypersurface M ′ in CN , 1 < n ≤ N
extends holomorphically along any path on M .

1. Introduction

In this paper we consider the problem of analytic continuation of a germ of a holomorphic map
sending a real analytic hypersurface into another such hypersurface in the special case when the
target hypersurface is real algebraic but of higher dimension. Our principal result is the following.

Theorem 1.1. Let M be a connected smooth real-analytic minimal hypersurface in Cn, M ′ be a
compact strictly pseudoconvex real algebraic hypersurface in CN , 1 < n ≤ N . Suppose that f is a
germ of a holomorphic map at a point p ∈ M and f(M) ⊂ M ′. Then f extends as a holomorphic
map along any smooth CR-curve on M with the extension sending M to M ′.

We note that when M is a minimal hypersurface, then the CR-orbit of p is all of M (see
Section 2 for details), and therefore, the theorem above gives analytic continuation of f to every
point of M .

In the equidimensional case the problem of analytic continuation of a germ of a map between
real analytic hypersurfaces has attracted a lot of attention (see, for example, [24], [35], [34], [26],
[30] and [32]). This problem, which originated in the work of Poincaré [28] (generalized later
in [33] and [1]), is related to other fundamental questions in several complex variables, such as
boundary regularity of proper holomorphic mappings, the theory of CR maps, and classification
of domains in complex spaces (for the latter connection see [34], [26], [32], [23]).

The situation seems to be more delicate in the case of different dimensions. The first result of
this type is probably due to Pinchuk [25] who proved that a germ of a holomorphic map from a
strictly pseudoconvex real analytic hypersurface M ⊂ Cn into a sphere S2N−1, 1 < n ≤ N , extends
holomorphically along any path on M . Just recently Diederich and Sukhov [9] proved that the
same extension holds if M is weakly pseudoconvex. Theorem 1.1 is a direct generalization of these
results (although our methods are quite different). Further, in the case when dim M = dim M ′,
Theorem 1.1 generalizes the result in [30], where the hypersurface M was assumed to be essentially
finite, a stronger condition than minimality. Other related results also include various extensions
obtained when both M and M ′ are algebraic (see e.g. [16], [29], [2], [6], [36], [19] and references
therein), which state that under certain conditions a map between two real algebraic submanifolds
(or even sets) is algebraic, and therefore extends to a dense open subset of Cn.

Much like in the equidimensional case, analytic continuation can be used to prove boundary
regularity of holomorphic maps.
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supported by DST (India) grant no.: SR/S4/MS-283/05 and UGC-SAP-IV.
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Theorem 1.2. Let D and D′ be smoothly bounded domains in Cn and CN respectively, 1 < n ≤ N ,
∂D is real-analytic, ∂D′ is real algebraic, and let f : D → D′ be a proper holomorphic map.
Suppose there exists a point p ∈ ∂D and a neighbourhood U of p such that f extends smoothly
to ∂D ∩ U . Then the map f extends continuously to D, and the extension is holomorphic on
a dense open subset of ∂D. If D′ is strictly pseudoconvex, then f extends holomorphically to a
neighbourhood of D.

For n = N a similar result is contained in [31]. We note that without the assumption of smooth
extension of f somewhere on ∂D the conclusion of Theorem 1.2 is false in general. Indeed, there
exist proper holomorphic maps of balls of different dimension that do not extend even continuously
to the boundary ([18],[12]), or that are continuous up to the boundary but are not of class C2

([11],[15]). Further, there exist proper maps f : Bn → BN which are continuous up to the
boundary, and f(S2n−1) = S2N−1, provided that N is sufficiently large ([14]).

On the other hand, if f is known to extend smoothly to all of ∂D, then f extends holomor-
phically everywhere on ∂D according to [5] and [22]. We use these results to obtain holomorphic
extension of f somewhere on the boundary of D to start analytic continuation along ∂D. Also
without the assumption of algebraicity, Forstnerič [13] proved that a proper holomorphic map
f : D → D′ between strictly pseudoconvex domains D ⊂ Cn, D′ ⊂ CN , 1 < n ≤ N , with
real analytic boundaries which extends smoothly to ∂D, necessarily extends holomorphically on
a dense open subset of ∂D (this was recently improved in [27] by showing that the extension is
holomorphic everywhere provided that 1 < n ≤ N ≤ 2n.)

The above stated theorems follow from a more general result asserting a local extension of the
map f as a correspondence. More precisely, the following holds.

Theorem 1.3. Let M (resp. M ′) be smooth hypersurfaces in Cn (resp. CN ), 1 < n ≤ N , where
M is real analytic and minimal, and M ′ is compact real algebraic. Suppose Σ ⊂ M is a connected
open set, and f : Σ → M ′ is a real analytic CR map. Let b ∈ ∂Σ, and ∂Σ ∩ M be a smooth
generic submanifold. Then there exists a neighbourhood Ub ⊂ Cn of b such that f extends to a
holomorphic correspondence F : Ub → CN with F (Ub ∩M) ⊂ M ′.

We note that in the context of Theorem 1.1 it follows that M is pseudoconvex, however, in
Theorem 1.3 neither M nor M ′ has to be pseudoconvex. The extension given by Theorem 1.3 is
guaranteed to be single valued if M ′ satisfies the property that Q′

z′ ∩M ′ = {z′} near any z′ ∈ M ′.
In particular this holds if M ′ is strictly pseudoconvex (cf. [13]).

There are no known results when a similar analytic continuation would hold under the as-
sumption that M ′ is merely real analytic. The problem is not well understood even in the
equidimensional case, where it is only known that the germ of a map f : M → M ′ extends along
any path on M when both M and M ′ are strictly pseudoconvex ([24], [34]). The case of different
dimensions seems to be even more difficult.

Acknowledgment. The authors would like to thank Prof. J. Merker for numerous remarks
concerning the first draft of the paper, in particular for pointing out the construction of ellipsoids
used in Section 4.1.

2. Preliminaries

Let M be a smooth real analytic hypersurface in Cn, n > 1, 0 ∈ M , and U a neighbourhood
of the origin. If U is sufficiently small then M ∩ U can be identified by a real analytic defining
function ρ(z, z), and for every point w ∈ U we can associate to M its so-called Segre variety in U
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defined as
Qw = {z ∈ U : ρ(z, w) = 0}. (1)

Note that Segre varieties depend holomorphically on the variable w. In fact, in a suitable neigh-
bourhood U = ′U × Un ⊂ Cn−1 × C we have

Qw =
{
z = (′z, zn) ∈ U : zn = h(′z, w)

}
, (2)

where h is a holomorphic function. From the reality condition on the defining function the
following basic properties of Segre varieties follow:

z ∈ Qw ⇔ w ∈ Qz, (3)

z ∈ Qz ⇔ z ∈ M, (4)

w ∈ M ⇔ {z ∈ U : Qw = Qz} ⊂ M. (5)
The set Iw := {z ∈ U : Qw = Qz} is itself a complex analytic subset of U . So (5), in particular,
implies that if M does not contain non-trivial holomorphic curves, then there are only finitely
many points in U that have the same Segre variety (for U sufficiently small). For the proofs of
these and other properties of Segre varieties see e.g. [10], [8] or [3].

A hypersurface M is called minimal if it does not contain any germs of complex hypersurfaces.
In this case the dimension of the set Iw can be positive (but less than n− 1) for all w ∈ M .

If f : U → U ′, U ⊂ Cn, U ′ ⊂ CN , is a holomorphic map sending a smooth real analytic
hypersurface M ⊂ U into another such hypersurface M ′ ⊂ U ′, and U is as in (2), then f(z) = z′

implies f(Qz) ⊂ Q′
z′ for z close to the origin. This invariance property of Segre varieties will play

a fundamental role in our arguments. We will also denote by ws the symmetric point of a point
w = (′w,wn) ∈ U , which is by definition the unique point defined by Qw ∩ {z ∈ U : ′z = ′w}.

Suppose now that the hypersurface M ⊂ CN is smooth, compact, connected, and defined as
the zero locus of a real polynomial P (z, z). Then we may define Segre varieties associated with M
as projective algebraic varieties in PN . Further, this can be done for every point in PN . Indeed,
let M be given as a connected component of the set defined by

{z ∈ CN : P (z, z) = 0}. (6)

We can projectivize the polynomial P to define M in PN in homogeneous coordinates

ẑ = [ẑ0, ẑ1, . . . , ẑN ], zk =
ẑk

ẑ0
, k = 1, . . . , N, (7)

as a connected component of the set defined by

{ẑ ∈ PN : P̂ (ẑ, ẑ) = 0}, (8)

where the homogeneous polynomial P̂ is defined by

P̂ (ẑ0, . . . , ẑN , ẑ0, . . . , ẑN ) = (ẑ0ẑ0)deg P · P
(

ẑ1

ẑ0
, . . . ,

ẑN

ẑ0
,
ẑ1

ẑ0

, . . . ,
ẑN

ẑ0

)
.

We may define now the polar of M as

M̂ c = {(ẑ, ζ̂) ∈ PN × PN : P̂ (ẑ, ζ̂) = 0}. (9)

Then M̂ c is a complex algebraic variety in PN × PN . Given τ ∈ PN , we set

Q̂τ = M̂ c ∩ {(ẑ, ζ̂) ∈ PN × PN : ζ̂ = τ}. (10)

We define the projection of Q̂τ to the first coordinate to be the Segre variety of τ .
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Recall that for domains D ⊂ Cn and D′ ⊂ CN , a holomorphic correspondence F : D → D′

is a complex analytic set A ⊂ D × D′ of pure dimension n such that the coordinate projection
π : A → D is proper (while π′ : A → D′ need not be). In this situation, there exists a system of
canonical defining functions

ΦI(z, z′) =
∑
|J |≤m

ΦIJ(z)z′J , (z, z′) ∈ D ×D′, |I| = m, (11)

where ΦIJ(z) are holomorphic on D, and A is the set of common zeros of the functions ΦI(z, z′).
For details see, e.g. [4]. It follows that π is in fact surjective and a finite-to-one branched covering.
In particular, there exists a complex subvariety S ⊂ D and a number m such that

F := π′ ◦ π−1 = {f1(z), . . . , fm(z)}, (12)

where f j are distinct holomorphic maps in a neighborhood of z ∈ D \ S. The set S is called the
branch locus of F . We say that the correspondence F splits at z ∈ D if there is an open subset
U 3 z and holomorphic maps f j : U → D′, j = 1, 2, . . . ,m, that represent F . Thus F splits at
every point z ∈ D \ S.

Let M be a smooth real hypersurface Cn. A smooth curve γ : [0, 1] → M is called a CR-curve,
if for t ∈ (0, 1), γ′(t) ∈ Hγ(t)(M), where Hp(M) denotes the complex tangent space to M at a
point p ∈ M . We denote by Orb(p) the set of all points on M which can be connected with p by
a piecewise smooth CR curve. Orb(p) is called the CR orbit of p. It is well known that for any
p ∈ M , the CR-orbit Orb(p) is a CR submanifold of M of the same CR dimension. Therefore, if
M is minimal, then the CR-orbit of any point p ∈ M contains an open neighbourhood of p in M .
For a detailed discussion of CR-orbits see e.g. [3], or a recent survey [21].

It follows from the above discussion that as a consequence of Theorem 1.1 the map f can be con-
tinued analytically to any point on M . In particular, one can say that f extends holomorphically
along any curve on M .

3. Proof of Theorem 1.3

In the proof of Theorem 1.3 we modify the approach in [30] to our situation. The strategy can
be outlined as follows. Without loss of generality we may assume that f is a holomorphic map
defined in a neighbourhood of Σ, and f(Σ) ⊂ M ′. According to [30], Prop. 5.1, there exists a
dense open subset ω of Qb with the property that for a ∈ ω, Qa ∩ Σ 6= ∅. Furthermore, there
exists a non-constant curve γ ⊂ Σ ∩Qa with the endpoint at b. Thus we have a choice of points
ξ and a such that

a ∈ Qb, ξ ∈ γ ⊂ Σ ∩Qa. (13)

The extension of f to the point b can be proved in two steps. Suppose that f is holomorphic in
Uξ, which is some neighbourhood of ξ. Let U be a neighbourhood of Qξ. We first show that the
set A defined by

A =
{
(w,w′) ∈ U × CN : f(Qw ∩ Uξ) ⊂ Q′

w′
}

(14)

is complex analytic with the property that A contains Γf , the graph of f , and the projection
π : A → U is surjective. Further, A can be extended to an analytic subset of U × PN , and we
denote by π′ : A → PN the other coordinate projection.

Secondly, we choose suitable neighbourhoods Ua and U∗ of a and Qa respectively, and consider
the set

A∗ =
{
(w,w′) ∈ U∗ × PN : π−1(Qw ∩ Ua) ⊂ π′−1(Q′

w′)
}

. (15)
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We then show that A∗ also contains the graph of f , and its projection π∗ to the first component is
also surjective. In particular, π∗(A∗) contains a neighbourhood of b. Note that by construction the
dimension of A may be bigger than n = dim Γf . An important fact, however, is that dim A∗ = n,
regardless of the dimension of the set A. This allows us to show that f extends locally as a
holomorphic correspondence to a neighbourhood of b.

3.1. Extension along Qξ. In this subsection we show that if f is holomorphic at ξ ∈ Σ, then
we can extend the graph of f as an analytic set along Qξ. It follows from (3) that there exist
neighbourhoods Uξ of ξ and U of Qξ such that for any point w ∈ U , the set Qw∩Uξ is non-empty.
Further, Uξ and U can be chosen such that Qw ∩ Uξ is connected for all w ∈ U . We claim that
the set defined by (14) is a closed complex analytic subset of U × CN . Indeed, the inclusion
f(Qw ∩ Uξ) ⊂ Q′

w′ can be expressed (cf. [30]) as

P ′ (f(′z, h(′z, w)), w′) = 0, (16)

where P ′(z′, z′) is the defining polynomial of M ′, and h is the map defined in (2). After conjugation
this becomes a system of holomorphic equations in w and w′. The variable ′z plays the role of a
parameter here, but from the Noetherian property of the ring of holomorphic functions, we may
extract a finite subsystem which defines A as a complex analytic set. Further, since the equations
in (16) are polynomials in w′, we may projectivize A. This defines an analytic set in U × PN ,
which we denote again by A for simplicity.

Finally, observe that by the invariance property of Segre varieties it follows that A contains
the points of the form (w, f(w)), w ∈ Uξ, and therefore A contains the germ at ξ of the graph of
f . This also shows that A is not empty. We may consider only the irreducible components of the
least dimension which contain Γf . Thus we may assume that dim A ≡ m ≥ n.

3.2. Extension along Qa. Let π : A → U and π′ : A → PN be the natural projections. Since
PN is compact, and A is closed in U × PN , the projection π is proper. By the Remmert proper
mapping theorem, π(A) is a complex analytic subset of U , which simply means that π(A) = U .
For ζ ∈ A let lζπ ⊂ A be the germ of the fibre π−1(π(ζ)) at ζ. Then for a generic point ζ ∈ A,
dim lζπ = m − n which is the smallest possible dimension of the fibre. By the Cartan-Remmert
theorem (see e.g. [17]) the set

S := {ζ ∈ A : dim lζπ > m− n} (17)

is complex analytic, and by the Remmert proper mapping theorem π(S) is complex-analytic in
U . We note that dim π(S) < n − 1. This can be seen as follows: if (m − n) + k is the generic
dimension of the fibre over π(S), k > 0, then dim S = dim π(S)+(m−n+k). Since dim S ≤ m−1,
dim π(S) ≤ n− 1− k, and the assertion holds.

From the above considerations we conclude that π(S) does not contain Qb ∩ U . The sets U
and Uξ defined in Section 3.1 certainly depend on the choice of ξ. However, if we vary the point
ξ in Σ, then the sets defined by (14) with a different choice of ξ will coincide on the overlaps and
satisfy the properties stated in Section 3.1. Hence, if a ∈ π(S) ∩ Qξ ∩ Qb, then we may slightly
rearrange points a ∈ Qb and ξ ∈ Σ ∩ Qa, and repeat the above constructions (keeping the same
notation), so that a /∈ π(S).

Let Ua be a neighbourhood of the point a in U , so small that Ua ∩ π(S) = ∅. Let γ ⊂ Qa ∩ Σ
be a path connecting ξ and b. We may choose a neighbourhood U∗ of γ (including its endpoints)
and Ua in such a way that Qw ∩ Ua is non-empty and connected for any w in U∗. Consider the
set A∗ defined in (15).
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Lemma 3.1. A∗ is a complex-analytic subset of U∗ × PN .

Proof. Let (w0, w
′
0) ∈ A∗ be an arbitrary point. Consider π−1(Qw0 ∩ Ua). This is a complex

analytic subset of A ∩ (Ua × PN ). Since Ua ∩ π(S) = ∅, the fibres of π are of constant dimension
for points in Ua. Therefore, π−1(Qw0 ∩Ua) has constant dimension m−1. It follows that analytic
sets π−1(Qw ∩Ua) have the same dimension and vary analytically as w varies near w0. We denote
by B(X, ε) the open ε-neighbourhood of a set X.

Let q ∈ π−1(Qw0 ∩ Ua). Then there exists an affine coordinate patch U ′ ⊂ PN , q ∈ Ua × U ′,
with coordinates

(z, ζ ′) = (z1, . . . , zn, ζ ′n+1, . . . , ζ
′
n+N ) ∈ Ua × U ′, (18)

and a choice of a coordinate plane in Ua × U ′ passing through q, which is spanned by

(z1, z2, . . . , zn−1, ζ
′
k1

, ζ ′k2
. . . , ζ ′km−n

) (19)

for some k1, k2, . . . km−n, such that for some εq > 0, the set π−1(Qw0 ∩ Ua) ∩ B(q, εq) can be
represented as in (11), i.e. as the zero locus of the functions

ΦI(z, ζ ′) =
∑

0≤j≤mq

|J |≤Mq

ΦIjJ(z1, z2, . . . , zn−1, ζ
′
k1

, ζ ′k2
. . . , ζ ′km−n

)(zn)j(ζ̃ ′)J , |I| ≤ lq, (20)

where ζ̃ ′ are the remaining (N −m + n) coordinates in U ′, J = (j1, . . . , jN−m+n), and ΦIjJ are
holomorphic functions. Since π−1(Qw∩Ua) depend anti-holomorphically on w, there exists δq > 0
and a connected open neighbourhood Ωq ⊂ B(q, εq) of the point q, such that for |w − w0| < δq a
similar representation also holds for π−1(Qw ∩ Ua) ∩ Ωq with functions

ΦI(z, ζ ′, w) =
∑

0≤j≤mq

|J |≤Mq

ΦIjJ(z1, . . . , zn−1, ζ
′
k1

, . . . , ζ ′km−n
, w)(zn)j(ζ̃ ′)J , |I| ≤ lq, (21)

where the dependence on w is holomorphic.
We claim that there exist δ > 0 and a finite collection of points qk ∈ π−1(Qw0 ∩ Ua), k =

1, 2, . . . , l such that ∪l
k=1Ωqk has a non-empty intersection with every irreducible component of

π−1(Qw ∩ Ua), provided that |w − w0| < δ.
To prove the claim first observe that from compactness of PN and continuity of the fibres of

the projection π, it follows that given any small ε > 0 there exists δ > 0 such that the distance
between π−1(Qw ∩ Ua) and π−1(Qw0 ∩ Ua) is less than ε whenever |w − w0| < δ. The distance in
Ua × PN can be taken with respect to the product metric of the standard metric in Cn and the
Fubini-Study metric in PN .

Denote by Sj
w the irreducible components of π−1(Qw ∩ Ua), j = 1, . . . , lw, where w is a point

in some small neighbourhood of w0. Choose ε1 > 0 and δ1 > 0 such that for |w − w0| < δ1, none
of the components Sj

w is entirely contained in B(∂Ua × PN , ε1). Such ε1 and δ1 exist because
every Sj

w surjectively projects onto Qw ∩ Ua. Then (Ua × PN ) \B(∂Ua × PN , ε1) is compact, and
therefore, the open cover of the set

π−1(Qw0 ∩ Ua) \B(∂Ua × PN , ε1) (22)

by Ωq, where q ∈ π−1(Qw0 ∩ Ua), admits a finite subcover, say, Ωq1 , . . . Ωql . Let

ε2 = min
k=1,...,l

{
sup{α > 0 : B(qk, α) ⊂ Ωqk}

}
. (23)
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Then there exists δ2 such that the distance between π−1(Qw ∩Ua) and π−1(Qw0 ∩Ua) is less than
ε2 whenever |w − w0| < δ2. Finally, choose δ = min{δ1, δ2}. Then for any w with |w − w0| < δ,
any component Sj

w has a non-empty intersection with ∪kΩqk . This proves the claim.
We now show that A∗ is complex-analytic in a neighbourhood of a point (w0, w

′
0) ∈ A∗. Choose

q1, . . . ql as claimed above. We fix some qk, k ∈ {1, 2, . . . , l} and let η = w, η′ = w′. Let further
G = Ωqk×{|(η, η′)−(η0, η

′
0)| < δ} be a small neighbourhood of (qk, w0, w

′
0) in Cn

z ×CN
ζ′ ×Cn

η×CN
η′ .

We define
X1 = {(z, ζ ′, η, η′) ∈ G : P ′(ζ ′, η′) = 0}, (24)

X2 = {(z, ζ ′, η, η′) ∈ G : Φk
I (z, ζ ′, η) = 0, |I| ≤ lqk}, (25)

where Φk
I (z, ζ ′, η) are holomorphic functions in as defined in (21). Both of these sets are complex

analytic in G. Then the set of points (w,w′) for which the inclusion

π−1(Qw ∩ Ua) ∩ Ωqk ⊂ π′−1(Q′
w′) (26)

holds is conjugate to the set X∗ in the (η, η′) space which is characterized by the property that
(η, η′) ∈ X∗ whenever π−1

2 (η, η′) ⊂ π−1
1 (η, η′), where πj is the coordinate projection from Xj to

the (η, η′)-space. The set X∗ can be also defined as

X∗ = {(η, η′) : dim π−1
2 (η, η′) = dim π−1

12 (η, η′)}, (27)

where π12 : X1∩X2 → Cn+N
(η,η′). Further, dim π−1

2 (η, η′) = m−1, for all (η, η′), and so dim π−1
12 (η, η′) ≤

m− 1. Thus, X∗ = π12(X̃), where

X̃ = {(z, ζ ′, η, η′) ∈ X1 ∩X2 : dim l(z,ζ′,η,η′)π12 > m− 2}. (28)

By the Cartan-Remmert theorem X̃ is a complex analytic subset of G. Denote by π̃ the projection
from X̃ to the space of variables (z1, . . . , zn−1, ζ1, . . . , ζkm−n , η, η′). By construction of functions
in (21) the map π̃ is proper. Hence, by the Remmert proper mapping theorem, π̃(X̃) is complex
analytic. Finally, consider the projection π(η,η′) : π̃(X̃) → (η, η′). From the construction of the
set π̃(X̃), dim π−1

(η,η′)(η, η′) = m− 1, for (η, η′) ∈ X∗. But in fact, dim π−1
(η,η′)(π(η,η′)(x)) = m− 1,

for any x ∈ π̃(X̃). Thus we may identify X∗ with π̃(X̃) ∩ {(z1, . . . , zn−1, ζ1, . . . , ζkm−n) = const}.
This proves that the set X∗ is complex analytic. After conjugation, we may assume that the set
defining the inclusion in (26) is also complex analytic.

If an open set of the irreducible component Sj
w is contained in π′−1(Q′

w′) for some w′, then by
the uniqueness theorem, the whole component Sj

w must be contained in π′−1(Q′
w′). Therefore,

since ∪l
k=1Ωqk has a non-empty intersection with every Sj

w, the system of equations defining
the inclusion (26), combined for k = 1, . . . , l, completely determines the inclusion in (15), and
therefore it defines A∗ as a complex-analytic set near (w0, w

′
0).

So far we have showed that A∗ is a local complex analytic set, i.e defined by a system of
holomorphic equations in a neighbourhood of any of its points. To prove that A∗ is a complex-
analytic subset of U∗ × PN it is enough now to show that A∗ is closed in U∗ × PN . Suppose
(wj , w′j) → (w0, w′0), as j →∞, for some sequence (wj , w′j) ∈ A∗, and suppose that (w0, w′0) ∈
Ua × PN . This means that π−1(Qwj ∩ Ua) ⊂ π′−1(Q′

w′j ). Since Qwj → Qw0 and Q′
w′j → Q′

w′0 , by
analyticity also π−1(Qw0 ∩ Ua) ⊂ π′−1(Q′

w′0), and therefore (w0, w′0) ∈ A∗. This completes the
proof of Lemma 3.1. �

Lemma 3.2. The set A∗ contains the germ of the graph of f at (ξ, f(ξ)). Further,

A∗ ∩
(
(Uξ ∩ U ∩ U∗)× PN

)
⊂ A.
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Proof. Suppose z ∈ (Uξ ∩ U ∩ U∗). We need to show that

π−1(Qz ∩ Ua) ⊂ π′−1
(
Q′

f(z)

)
. (29)

Let w ∈ Qz ∩ Ua be an arbitrary point, and let (w,w′) ∈ A. Then f(Qw ∩ Uξ) ⊂ Q′
w′ . In

particular, since z ∈ Qw ∩ Uξ, we have f(z) ∈ Q′
w′ . But this implies w′ ∈ Q′

f(z). In other
words, (w,w′) ∈ {w} × Q′

f(z). Since w′ was an arbitrary point in A over w, we conclude that

π−1(w) ⊂ π′−1
(
Q′

f(z)

)
. Consequently, (29) follows, and (z, f(z)) ∈ A∗.

As for the second assertion, we observe that for (w,w′) ∈ A∗, where w is sufficiently close to ξ,
the inclusion π−1(Qw ∩ Ua) ⊂ π′−1(Q′

w′) is equivalent to π−1(Qw ∩ Uξ) ⊂ π′−1(Q′
w′), because

Qw ∩ U is connected. From Section 3.1 the set A contains the germ of the graph of f near ξ,
and therefore, the inclusion Γf ⊂ A∗ in particular implies f(Qw ∩Uξ) ⊂ Q′

w′ , which by definition
means (w,w′) ∈ A. �

Lemma 3.2 shows that A∗ is non-empty. Also note that since PN is compact, the projection
π∗ : A∗ → U∗ is proper, and therefore, π∗(A∗) = U∗. Define π′∗ : A∗ → PN .

3.3. Extension as a correspondence. Let now Ω be a small connected neighbourhood of the
path γ ⊂ Qa ∩ M , which connects ξ and b, such that for any w ∈ Ω, the symmetric point ws

belongs to U∗, and let Qs
w denote the connected component of Qw∩U∗ which contains ws. Denote

further by S∗ the set of points z ∈ U∗ for which π∗−1(z) ⊂ A∗ does not have the generic dimension.
The same argument as at the beginning of Section 3.2 shows that S∗ is a complex analytic set of
dimension at most n− 2, and so Ω \ S∗ is connected. To prove the extension of f to the point b
we will need the following result.

Lemma 3.3. For any point w ∈ Ω \ S∗,

π∗−1(Qs
w) ⊂ π′∗

−1(Q′
w′), ∀ w′ ∈ π′∗ ◦ π∗−1(w). (30)

Proof. Denote by Z the set of points in Ω \ S∗ for which (30) holds. We show that Z = Ω \ S∗.
For the proof we shrink Uξ so that Uξ ⊂ Ω.

Let w ∈ Uξ \ S∗ be some point, and (w,w′) ∈ A∗. Note that zs = z for any z ∈ M , and
therefore, for w sufficiently close to ξ, the set Qw∩Uξ coincides with Qs

w∩Uξ. Let z ∈ Qw∩Uξ be
arbitrary. Then (z, z′) ∈ A∗ means π−1(Qz ∩Ua) ⊂ π′−1(Q′

z′). For z and w sufficiently close to ξ,
Qz is connected in U , and therefore, π−1(Qz ∩ Uξ) ⊂ π′−1(Q′

z′). The last inclusion in particular
means that π−1(w) ⊂ π′−1(Q′

z′). Thus for any w′ ∈ π′ ◦ π−1(w), w′ ∈ Q′
z′ , or z′ ∈ Q′

w′ . By
Lemma 3.2, A∗ is contained in A near ξ, and it follows that for any w′ ∈ π∗′ ◦ π∗−1(w), z′ ∈ Q′

w′ .
From that (30) follows, and we proved that the set Z contains a small neighbourhood of ξ.

Let Z◦ be the largest connected open set which contains ξ and is contained in Z. From the
above considerations, Z◦ 6= ∅. We show that if w ∈ (Z◦ \ Z◦) ∩ (Ω \ S∗), then w ∈ Z◦. Let
(w,w′) ∈ A∗ for some w′. Since dim S∗ < dim Qs

w = n − 1, we may find a point α ∈ (Qs
w \ S∗),

and by repeating the argument of Lemma 3.1 we may construct a complex analytic set

Aw = {(x, x′) ∈ Uw × PN : π∗−1(Qs
x ∩ Uα) ⊂ π∗′

−1(Q′
x′)}, (31)
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where Uw and Uα are suitably chosen neighbourhoods of w and α respectively. For every point
x ∈ Uw ∩ Z◦, and every x′ such that (x, x′) ∈ A∗, the inclusion in (31) holds. This implies

A∗ ∩
(
(Z◦ ∩ Uw)× PN

)
⊂ Aw, (32)

and in particular, Aw is non-empty. By the uniqueness theorem, it follows that A∗∩ (Uw×PN ) ⊂
Aw, and therefore, the projection from Aw to the first component is surjective. Thus, for any
x ∈ Uw, the set Qx ∩Uα (and therefore Qs

x) will be “mapped” by A∗ into Segre variety of a point
x′, whenever (x, x′) ∈ A∗. Hence, Uw ⊂ Z◦.

Since Ω \ S∗ is connected, it follows now that Z = Ω \ S∗. �

We now consider only an irreducible component of A∗ which has the smallest dimension, and
such that it contains the germ of the graph of f at ξ. Denote for simplicity this component again
by A∗. Note that Lemma 3.3 still holds for the new A∗.

Lemma 3.4. dim A∗ = n.

Proof. Since π∗ : A∗ → U∗ is surjective, for any z ∈ M ∩ U∗ the set π∗−1(z) is non-empty. We
show that for a given z0 ∈ Σ \ S∗, the set π∗−1(z0) is discrete near (z0, f(z0)) ∈ A∗. Indeed, by
Lemma 3.3, (z, z′) ∈ A∗ \ π∗−1(S∗) implies π∗−1(Qs

z) ⊂ π′∗−1(Q′
z′). In particular this means that

π′∗(π∗−1(z)) ⊂ Q′
z′ , which implies that z′ ∈ Q′

z′ . Then from (4) it follows that for any z ∈ M close
to z0, and any z′ close to f(z0), the inclusion (z, z′) ∈ A∗ implies z′ ∈ M ′. Since π′∗(π∗−1(z))
is a locally countable union of complex analytic sets, and M ′ contains no non-trivial germs of
complex analytic varieties by [7], it follows that π∗−1(z) is discrete near (z0, f(z0)). This means
that dim A∗ = n near (z0, f(z0)). But then the lemma follows, since dim A∗ is constant. �

To finish the proof of the theorem, we consider two cases. First, suppose that b 6∈ S∗. Since
M ′ is compact, the cluster set of f |γ(b) is well-defined. Let b′ be a point in the cluster set of the
point b. It is enough to show now that there exist neighbourhoods Ub 3 b and U ′

b′ 3 b′ such that
A∗ ∩Ub ×U ′

b′ is a holomorphic correspondence. By construction, (b, b′) ∈ A∗, and from the proof
of Lemma 3.4 we conclude that π∗−1(b) is discrete near (b, b′). Therefore we may choose Ub and
U ′

b′ in such a way that A∗ ∩ (Ub × ∂U ′
b′) = ∅. It follows then that π∗|A∗∩(Ub×U ′

b′ )
is a proper map,

and therefore,
F := π′∗|A∗∩(Ub×U ′

b′ )
◦ π∗−1|Ub

(33)

is the desired extension of f as a holomorphic correspondence.
Secondly, suppose b ∈ S∗. Consider a sequence of points wj ∈ (Σ ∩ Ω) \ S∗ such that wj → b

and lim f(wj) = b′ for some b′ ∈ M ′. Then

π∗−1(Qs
wj ) ⊂ π′∗

−1(Q′
f(wj)).

It follows that
π∗−1(Qs

b) ⊂ Q′
b′ . (34)

Indeed, it is enough to prove this inclusion in a neighbourhood of any point in Qs
b. Since dim S∗ <

dim Qb, we may choose this point to be outside S∗. The inclusion then follows by analyticity of
the fibres of π∗ : A∗ → U∗.

As in the proof of Lemma 3.4, it follows from (34) that π∗−1(b) is discrete near (b, b′), and
the same argument as above shows that f extends to a neighbourhood of b as a holomorphic
correspondence.
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Finally, if F is the extension of f as a correspondence, then F (M) ⊂ M ′. The reason again is
that if z ∈ M and z′ ∈ F (z), then F (Qz) ⊂ Q′

z′ by (30) and (34), which implies z′ ∈ Q′
z′ , and

by (4), z′ ∈ M ′.
This completes the proof of Theorem 1.3.

4. Proof of other results.

4.1. Proof of Theorem 1.1. We first show that the map f can be extended holomorphically
along any smooth CR-curve γ on M , i.e. for which the tangent vector to γ at any point is
contained in the complex tangent to M . For this we use the construction of a family of ellipsoids
as it is done in [20]. We refer to this paper for details of the construction. Let q be the first
point on γ to which f does not extend holomorphically. Near q there exists a smooth CR vector
field L such that γ is contained in an integral curve of L. By integrating L we obtain a smooth
coordinate system (t, s) ∈ R × R2n−2 on M such that for any fixed s0 the segments (t, s0) are
contained in the trajectories of L. We may further choose a point p ∈ γ sufficiently close to q, so
that f is holomorphic near p. After a translation, assume that p = (0, 0). For ε > 0 define the
family of ellipsoids on M by

Eτ = {(t, s) : |t|2/τ + |s|2 < ε}, (35)

where ε > 0 is so small that for some τ0 > 0 the ellipsoid Eτ0 is compactly contained in the
portion of M where f is holomorphic. Then ∂Eτ is generic at every point except the set

Λ = {(0, s) : |s|2 = ε}.

Let further τ1 > 0 be such that q ∈ ∂Eτ1 .
To prove that f extends holomorphically to a neighbourhood of q we argue by contradiction.

For that we assume that τ∗ is the smallest positive number such that f does not extend holo-
morphically to some point on ∂Eτ∗ , and assume that τ∗ < τ1. By construction, τ∗ > τ0. Also
by construction, near any point b ∈ ∂Eτ∗ to which f does not extend holomorphically, the set
∂Eτ∗ is a smooth generic submanifold of M , since the non-generic points of ∂Eτ∗ are contained
in Λ, where f is already known to be holomorphic. Then by Theorem 1.3 the map f extends as
a correspondence F to a neighbourhood of b.

We now show that F is single valued. Suppose w′ ∈ F (w) for w ∈ M , then by the invariance of
Segre varieties F (Qw) ⊂ Q′

w′ , and in particular, w′ ∈ Q′
w′ . But since M ′ is strictly pseudoconvex,

in a sufficiently small neighbourhood of w′ ∈ M ′ there exists only one point on M ′ whose Segre
variety contains w′, namely Q′

w′ itself. Thus the correspondence F splits into several holomorphic
maps, one of which by analyticity extends the map f .

This shows that τ∗ cannot be smaller than τ1, which proves that the map f extends holomor-
phically to q, and therefore along any CR-curve on M .

Finally, observe that minimality of M implies that CR-orbit of any point on M coincides with
M . Therefore, using analytic continuation along CR-curves we obtain continuation of f to a
neighbourhood of any point on M .

4.2. Proof of Theorem 1.2. By [5] and [22] it follows that smooth extension of f implies
holomorphic extension to a neighbourhood of p. Let ω ⊂ M be a open set where the extension of
f is holomorphic, and suppose b ∈ ∂ω is a point near which ∂ω is a smooth generic manifold. Then
by Theorem 1.3 the map f admits an extension as a holomorphic correspondence F : Ub → CN ,
where Ub is some neighbourhood of b. This, in particular, proves that f extends continuously to
Ub ∩ ∂D. Indeed, if q ∈ Ub ∩ ∂D, then the cluster set of q with respect to f must be contained
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in the set F (q) which is finite. Since the cluster set is connected it must reduce to a single point
thereby showing that f is continuous at q.

Further, by the splitting property of correspondences, there exists a complex analytic subset
S ⊂ Ub such that near any point q ∈ Ub \ S, F can be represented by a finite collection of
holomorphic mappings. It follows from the uniqueness theorem, that for q ∈ ∂D \ S one of
the maps of the splitting must coincide with the map f defined in D. This proves holomorphic
extension of f to a dense open subset of ∂D ∩ Ub.

Let Σ be the largest subset of ∂D defined by the property that if a ∈ Σ, then there is a
neighbourhood Ua 3 a in Cn such that f extends continuously to ∂D ∩ Ua and holomorphically
past a dense open subset of ∂D∩Ua. Then Σ is relatively open in ∂D by definition and non-empty
by assumption. We show that Σ does not contain any boundary points. Suppose on the contrary
that q ∈ ∂Σ = Σ \ Σ. Let γ be a CR-curve passing through q and entering Σ. Such γ exists by
the minimality of M . Let p ∈ γ∩Σ be close to q. We now repeat the construction of the family of
ellipsoids used in the proof of Theorem 1.1. Let Eτ be defined by (35) and centered at p. Then for
some τ0 > 0, Eτ0 touches ∂Σ at some point, say b (which may be different from q). We now claim
that b ∈ Σ. This will yield a contradiction to the assumption that Σ has a nonempty boundary,
thus proving the first half of the theorem.

As in the proof of Theorem 1.3, since b ∈ ∂Eτ0 is a generic point, there exists a dense open set
ω ∈ Qb such that for a ∈ ω, Qa ∩ Eτ0 contains a curve with the end point at b. Fix some a ∈ ω,
and suppose that

Qa ∩ Eτ0 6⊂ S, (36)

where S is the branching locus of the correspondence F extending f . Then we choose a point
ζ ∈ (Qa∩Eτ0)\S, and a branch of F which gives holomorphic extension of f near ζ. We now may
repeat the proof of Theorem 1.3 to show that f extends as a correspondence to a neighbourhood
of b. If Qa ∩Eτ0 ⊂ S, we simply choose another point a ∈ ω so that (36) holds. This proves that
f extends as a correspondence to a neighbourhood of b, and thus b ∈ Σ.

Finally, the second statement of the theorem follows immediately from Theorem 1.1.
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