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The paper considers a class of Lagrangian surfaces in C2 with isolated singularities of

the unfolded Whitney umbrella type. We prove that generically such a surface is locally

polynomially convex near a singular point of this kind.

1 Introduction

Owing to its deep relation to the approximation problems, pluripotential theory, and

Banach algebras (see, for instance, [2, 31] for a detailed discussion), polynomial convex-

ity of real submanifolds of Cn is a well-studied subject in complex analysis. Gromov [18]

found remarkable connections between the polynomial (or the holomorphic disc) convex-

ity of real manifolds and global rigidity of symplectic structures. In the present work,

we prove that a generic Lagrangian surface in C2 is polynomially convex near an isolated

singularity which is topologically an unfolded Whitney umbrella. This study is inspired

by the work of Givental [17], where he proved, in particular, that a compact real sur-

face S admits a smooth map ι : S → C2, isotropic with respect to the standard symplectic

structure on C2, such that the singularities of ι are isolated and either self-intersections
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or unfolded Whitney umbrellas. More precisely, if we denote the standard coordinates

in C2 by z= x + iy and w= u+ iv, then

ω= dx ∧ dy + du∧ dv

is the standard symplectic form on C2. A smooth map φ : C2 → C2 is called symplectic if

φ∗ω=ω. Since such a map is a local diffeomorphism, we call it a (local) symplectomor-

phism. A smooth map ι : S → (C2, ω) from a smooth real surface S is called isotropic if

ι∗ω= 0. Givental [17] showed that near a generic point p∈ S, which is an isolated singular

point of ι of rank 1, the map

π : R2
(t,s) → R4

(x,u,y,v) : (t, s)→
(

ts,
2t3

3
, t2, s

)
(1)

is a local normal form for ι. In particular, this means that there exists a local symplec-

tomorphism near ι(p) sending ι(S) onto a neighborhood of the origin in Σ := π(R2). The

set Σ , as well as ι(S) near ι(p), is called the unfolded (or open) Whitney umbrella. Our

main result is the following.

Theorem 1. Suppose φ : C2 → C2 is either a generic real-analytic symplectomorphism

near the origin or the identity map. Then there exists a neighborhood of the point φ(0)

in the surface φ(Σ) with compact polynomially convex closure. �

The case where φ is the identity map is considered separately since it is not

generic. This implies that the Whitney umbrella Σ is polynomially convex near the ori-

gin. This theorem also holds under weaker assumptions, namely, if φ is a generic local

real-analytic diffeomorphism and Dφ(0), the differential of φ at zero, is symplectic, or

if φ is a C ∞-smooth symplectomorphism with the jet at the origin satisfying some addi-

tional assumptions; see Section 5 for details.

Denote by B(p, r) the open Euclidean ball of C2 of radius r > 0 centered at p. As

an application of Theorem 1, we obtain the following result.

Corollary 1. Let φ be as in Theorem 1. Then for ε > 0 sufficiently small, any con-

tinuous function on φ(Σ) ∩ B(φ(0), ε) can be uniformly approximated by holomorphic

polynomials. �
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5150 R. Shafikov and A. Sukhov

It will be shown in Section 4 that the genericity assumption of Theorem 1

imposes restrictions only on the 2-jet of φ at the origin. More precisely, it suffices to

require that such a jet does not lie in a real-algebraic submanifold of codimension 2

(after the standard identification of the space of 2-jets at the origin with the Euclidean

space). Our approach is based on the observation that φ(Σ) is contained in the zero locus

set M of a strictly plurisubharmonic function with a unique critical point at the origin.

Hence M is a strictly pseudoconvex hypersurface smooth everywhere except the origin.

This allows us to consider the characteristic foliation induced on φ(Σ) by the embed-

ding φ(Σ) ↪→ M. The origin is a unique singular point for this foliation. It follows by the

Hopf lemma that if f is a holomorphic disc with boundary attached to φ(Σ), then its

boundary is transverse to the leaves of the characteristic foliation at every point dif-

ferent from the origin. Suppose now that the structure of leaves of the characteristic

foliation near the origin is topologically the same as the phase portrait of a dynamical

system near a saddle stationary point on the plane. Then the boundary of f will touch a

leaf of the characteristic foliation, proving that such a holomorphic disc does not exist.

This observation suggests a strategy for the proof of our main result. The proof consists

of two parts.

First, we use Oka’s Characterization Theorem for hulls [25], developed and

adapted to the case under consideration in the work of Stolzenberg [29], Duval [12], and

Jöricke [22]. This enables us to generalize the aforementioned argument and prove poly-

nomial convexity of φ(Σ) near the origin under the assumption that the phase portrait

of the characteristic foliation is topologically a saddle (Sections 2 and 3). The remainder

of the paper (Sections 4–7) is devoted to the study of the characteristic foliation near the

origin. In Section 4, we write explicitly a 5-jet of the corresponding dynamical system

on the plane; the origin is a stationary point with a high order of degeneracy. At the

end of this section, we describe explicitly the genericity assumption on the 2-jet of φ.

Section 5 is expository: for the reader’s convenience we recall relevant tools from the

local theory of dynamical systems; in particular, we explain where the real analyticity

assumption comes from. In Sections 6 and 7, we give a complete topological descrip-

tion of the phase portrait of the aforementioned dynamical system proving that it is a

saddle.

The problem remains open to determine local polynomial convexity for non-

generic Whitney umbrellas as we have no counterexamples to Theorem 1 if the gener-

icity assumption is dropped. Our method relies on the properties of the phase portrait

of the dynamical system associated with the characteristic foliation near the umbrella,

and cannot be applied if some specific terms in the low-order jets at the origin of the
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map φ vanish. On the other hand, in applications to topological properties of surfaces

the generic situation is often sufficient. Furthermore, our method works in some non-

generic cases, for instance, for the standard umbrella Σ (this case is treated separately

in Sections 4 and 6).

Convexity (polynomial, rational or holomorphic) of a Lagrangian or totally real

manifold E embedded into Cn have been studied by several authors (see, for instance,

[1, 2, 11, 13, 16, 18, 21, 31]). It is well known that the local polynomial convexity can

fail near points where E is not totally real. In the complex dimension n= 2, the tangent

space of E is a complex line, so such points are called complex; generically, these points

are isolated in E . The complex geometry of these points is well understood by now.

There are three types of generic complex points: elliptic, hyperbolic, and parabolic (see,

for instance, [2, 31]), and the local polynomial convexity depends on the type. Bishop

[5] and Kenig and Webster [24] proved that a neighborhood of an elliptic point in E has

a nontrivial hull. On the other hand, Forstnerič and Stout [15] proved that E is locally

polynomially convex near a hyperbolic point. The parabolic case is intermediate and in

general both possibilities occur. This case was studied by Jöricke [22, 23]. These results

and their development have several important applications, in particular, to the problem

of complex and symplectic filling and topological classification of 3-contact structures.

In general, a compact real surface does not admits a Lagrangian or totally real

embedding into C2; for instance, torus is the only compact orientable real surface admit-

ting a Lagrangian embedding into C2. By comparison, Givental’s result is quite general

as it applies to all compact surfaces. This makes it natural to study self-intersections

and Whitney umbrellas on immersed Lagrangian manifolds in analogy with local analy-

sis of real surfaces near complex points. Currently, only few results are obtained in this

direction.

The present work is the first step in the study of the most general case where

Whitney umbrellas arise. Our result implies that local convexity properties near a

generic real analytic Lagrangian deformation of the standard Whitney umbrella are

similar to those of a hyperbolic point. This is a necessary step leading toward under-

standing the global geometry of immersed Lagrangian manifolds containing Whitney

umbrellas.

2 Geometry of Whitney Umbrellas

The map π : R2
(t,s) → R4

(x,u,y,v) given by (1) is a smooth homeomorphism onto its image,

nondegenerate except at the origin, where the rank of π equals one. It satisfies π∗ω≡ 0,
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5152 R. Shafikov and A. Sukhov

and so Σ is a Lagrangian submanifold of (C2, ω) with an isolated singular point at the

origin. Thus,

Σ =
{
(z, w) ∈ C2 : x = ts, u= 2t3

3
, y= t2, v= s; t, s ∈ R

}
.

The crucial role in our approach is played by an auxiliary real hypersurface M

defined by

M = {(z, w) ∈ C2 : ρ(z, w)= x2 − yv2 + 9
4 u2 − y3 = 0}. (2)

Clearly, Σ is contained in M. Note that the hypersurface M is smooth away from the

origin, and strictly pseudoconvex in B(0, ε) \ {0} for ε sufficiently small.

Suppose now that φ : C2 → C2 is a local smooth diffeomorphism near the origin

such that its linear part Dφ(0) at the origin is a symplectic map. Without loss of gener-

ality, we may assume that φ(0)= 0. The standard symplectic structure on C2 is given by

the matrix

Ω =
(

0 I2

−I2 0

)
,

where I2 denotes the identity matrix on R2. Similarly, we write

Dφ(0)=
(

A B

C D

)
. (3)

The condition that Dφ(0) is symplectic means that (Dφ(0))tΩ Dφ(0)=Ω (where t stands

for matrix transposition). Therefore, the real (2 × 2)-matrices A, B = (bjk), C and D = (djk)

satisfy

AtD − C tB = I2, AtC = C t A, DtB = BtD. (4)

The standard complex structure of C2 in real coordinates is given by the matrix

J =
(

0 −I2

I2 0

)
,

which corresponds to multiplication by i. We perform an additional complex linear

change of coordinates ψ . Let ψ : R4 → R4 be a linear transformation given by the 4 × 4
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matrix (
Dt −Bt

Bt Dt

)
. (5)

This matrix commutes with J and so gives rise to a nondegenerate complex linear map

in C2. Let

Σ ′ =ψ ◦ φ(Σ),

and

M′ = (ψ ◦ φ)(M).

The differential at the origin of the composition ψ ◦ φ is given by

D(ψ ◦ φ)(0)=
(

I2 0

E G

)
, (6)

where we used identities (4) to simplify the matrix. Further, a direct calculation shows

that

G = (gkj)= BtB + DtD, (7)

and therefore, the matrix G is symmetric with positive entries in the main diagonal.

The determinant

Δ= g11g22 − g2
12 (8)

of G coincides with that of the matrix in (5) corresponding to a C-linear map of C2. Hence

Δ is also positive. Let ρ ′ = ρ ◦ (ψ ◦ φ)−1, and

Ω ′ = {(z′, w′) ∈ C2 : ρ ′(z′, w′) < 0}. (9)

It follows from (2) and (6) that

ρ ′(z′, w′)= x′2 + 9
4 u′2 + o(|(z′, w′)|2). (10)

In particular, the function ρ ′ is strictly plurisubharmonic in a neighborhood of the

origin, and the hypersurface M′ is strictly pseudoconvex in a punctured neighborhood

of the origin.
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5154 R. Shafikov and A. Sukhov

Lemma 1. The polynomial hull of the set B(0, ε) ∩Σ ′ for sufficiently small ε > 0 is con-

tained in Ω ′ ∩ B(0, ε). �

Proof. Choose ε > 0 small enough such that ρ ′ is strictly plurisubharmonic in B(0, ε).

The polynomially convex hull of B(0, ε) ∩Σ ′ is contained in B(0, ε). By a classical

result (see, for instance, [20]), the polynomially convex hull of B(0, ε) ∩Σ ′ coincides

with its hull with respect to the family of functions plurisubharmonic in B(0, ε).

Since for any point p in B(0, ε) \ Ω̄ ′, we have ρ ′(p) > 0, the assertion of the lemma

follows. �

3 Characteristic Foliation and Polynomial Convexity

In this section, we explain the strategy of the proof of Theorem 1.

3.1 Characteristic foliation

Let X be a totally real surface embedded into a real hypersurface Y in C2. Define on X a

field of lines determined at every p∈ X by

L p = TpX ∩ HpY,

where HpY = TpY ∩ J(TpY) denotes the complex tangent line to Y at the point p and J

denotes the standard complex structure of C2. Integral curves, that is, curves that are

tangent to L p at each point p, of this line field define a foliation on X. It is called the

characteristic foliation of X.

We consider the characteristic foliation of Σ \ {0} ⊂ M and (ψ ◦ φ)(Σ) \ {0} ⊂
(ψ ◦ φ)(M). Characteristic foliations are invariant under biholomorphisms. Therefore, in

order to study the characteristic foliation on φ(Σ) with respect to φ(M), it is sufficient

to study the characteristic foliation of Σ ′ =ψ ◦ φ(Σ) with respect to M′.

Recall that a rectifiable arc is a homeomorphic image of an interval under a

Lipschitz map. Our ultimate goal is to prove the following.

Proposition 1. There exist ε > 0 small enough and two rectifiable arcs γ1 and γ2 in Σ ′ ∩
B(0, ε) passing through the origin with the following properties:

(i) γ j are smooth at all points except, possibly, the origin;

(ii) γ1 ∩ γ2 = {0};
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(iii) if K is a compact subset of Σ ′ ∩ B(0, ε) and is not contained in γ1 ∪ γ2, then

there exists a leaf γ of the characteristic foliation onΣ ′ such that K ∩ γ �= ∅

but K does not meet both sides of γ . �

We point out that by (i) and (ii) the union γ1 ∪ γ2 does not bound any subdomain

with the closure compactly contained in Σ ′ ∩ B(0, ε).

The proof of the proposition will be given in Sections 4–7. Considering pull-

back of the characteristic foliation by ψ ◦ φ ◦ π we obtain a smooth vector field in a

neighborhood of the origin in R2
(t,s) with the stationary point at the origin. The study of

its integral curves is based on the local theory of dynamical systems and can be read

independently from the rest of the paper.

Assuming Proposition 1, we now prove our main results. The proof is based on

the argument due to Duval [12] and Jöricke [22, 23]. Suppose that φ satisfies the assump-

tions of Theorem 1, and Σ ′ = (ψ ◦ φ)(Σ). First we establish nonexistence of holomorphic

discs attached to Σ ′ near the Whitney umbrella. In what follows we denote by Δ the

unit disc of C. By a holomorphic disc we mean a map f :Δ→ C2 holomorphic in Δ and

continuous on Δ̄. As usual, by its boundary we mean the restriction f |∂Δ; we identify it

with its image f(∂Δ).

Corollary 2. There exists δ > 0 with the following property: a holomorphic disc

f :Δ→ B(0, δ) with the boundary attached to Σ ′, that is, satisfying f(∂Δ)⊂Σ ′, is

constant. �

Before we proceed with the proof, we recall some basic notions. Let U ⊂ Rn be

a domain and N be a real submanifold of dimension d in U . As usual, denote by D(U )
the space of test-functions on U . The current of integration [N] corresponding to N

is a continuous linear form on the space Dd(U ) of differential forms of degree d with

coefficients in D(U ) defined by

[N](ψ)=
∫

N
ψ, ∀ψ ∈Dd(U ). (11)

The current [N] may be well-defined even when N has some singularities provided

that the behavior of N near its singular locus is not too bad. For instance, the cur-

rent of integration over a complex analytic set or a rectifiable curve is well-defined,
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5156 R. Shafikov and A. Sukhov

see [7, 14, 19, 31]. The exterior derivative d[N] is then defined by duality: d[N](ψ) :=
(−1)n−d+1[N](dψ).

Proof. Let ε > 0 be given by Proposition 1. Without loss of generality, we may assume

that ε is such that the function ρ ′ in (10) is strictly plurisubharmonic in the ball B(0,2ε).

Set δ= ε/2. Suppose that there exists a nonconstant holomorphic disc f :Δ→ B(0, δ)

with boundary glued to Σ ′. The function ρ ′ ◦ f is subharmonic in the unit disc, so the

maximum principle implies that f(Δ) is contained in Ω ′ = {ρ ′ < 0}. The proof consists of

two parts.

(1) First we show that the boundary of f is not contained in γ1 ∪ γ2. Arguing

by contradiction, assume that f(∂Δ)⊂ γ1 ∪ γ2. The image V := f(Δ) is a complex one-

dimensional analytic subset of Ω ′ and its boundary bV := V̄\V is contained in γ1 ∪ γ2.

Since the arcs γ j are rectifiable, it follows by the well-known results [7, 19, 31] that two

cases can occur. The first possibility is that the closure V̄ is a complex one-dimensional

analytic subset of C2 contained in B(0, ε). This is impossible since a closed complex

analytic subset of positive dimension cannot be compactly contained in C2 (e.g., [7]). The

second case is when the area of V is bounded, V defines the current of integration [V ] on

C2, and d[V ] = −[bV ] in the sense of currents. Since d2 = 0 for currents, the current [bV ] is

closed, that is, d[bV ](ψ)= 0 for all ψ ∈D(C2). Furthermore, there exists a closed subset

E in bV of the Hausdorff 1-measure 0 such that the couple (V,bV) is a complex manifold

with boundary in a neighborhood of every point in bV \ E . Then bV is the union of closed

subarcs of the arcs γ j. In particular, bV is not a closed curve and has nonempty boundary

in C2. Let p be a boundary point of bV and U be a sufficiently small neighborhood of

p such that U ∩ bV is an arc in U with the end p. Considering test-forms ψ ∈D1(U ), we

conclude by Stokes’ formula that d[bV ] �= 0 in C2 since the Dirac mass at p appears in the

exterior derivative: a contradiction.

(2) By the uniqueness theorem the set of points f−1(0) has measure zero on the

unit circle. Since Σ ′ is totally real outside the origin, it follows by the boundary regu-

larity theorem [7] that f is smooth (even real analytic) up to the boundary outside the

pull-back f−1(0). Applying the Hopf lemma (see, for instance, [27]) to the subharmonic

function ρ ′ ◦ f on Δ, we conclude that f is transverse to the hypersurface M′ at every

point different from the origin. Therefore, the complex line tangent to f(Δ) at a bound-

ary point is transverse to the tangent complex line of M′ at this point. In particular, the

boundary K := f(∂Δ) is transverse to the leaves of the characteristic foliation ofΣ ′. This

contradicts Proposition 1. �
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3.2 Sweeping out the envelope by analytic curves

Given a compact set K, we denote by K̂ its polynomially convex hull. We also recall two

useful related notions. The essential hull Kess of K is defined by

Kess = K̂ \ K,

and the trace Ktr of Kess is the intersection

K tr = Kess ∩ K.

A local maximum principle of Rossi [28, 31] states that if K is a compact set in Cn,

E ⊂ K̂ is compact, U is an open subset of Cn that contains E , and if f ∈O(U ), then

|| f ||E = || f ||(E∩K)∪∂E , where the boundary of E is taken with respect to K̂. By choosing

E = Kess and U = C2, we see that Kess is contained in K̂ tr. Therefore, to prove that K is

polynomially convex, it is enough to show that K tr is empty.

Let

X =Σ ′ ∩ B(0, ε).

Then X is a closed disc, and the punctured disc X \ {0} is real analytically and total

really embedded into ∂Ω ′ \ {0}, where Ω ′ is given by (9), and ε is such that Lemma 1

holds.

Proposition 2. The essential hull Xess cannot intersect a leaf of a characteristic folia-

tion at a totally real point of X without crossing it. �

This result is due to Duval [12] (see also Jöricke [22]) in the case where a totally

real disc is contained in the boundary of a smoothly bounded strictly pseudoconvex

domain of C2. A detailed exposition of the proof is contained in [31]. The proof, which

is an application of Oka’s method (developed also by Stolzenberg [29]), is purely local

and works without any essential modification in our case where ∂Ω ′ admits an isolated

singularity at the origin. For reader’s convenience we sketch the main steps of this con-

struction.

Step 1. Oka’s characterization theorem. We will state all results for dimension 2

because we deal with this case only; for more general versions, see [29, 31].

Let U ⊂ O be two open subsets of C2. Let F : [0,1] × U → C be a continuous func-

tion that for every t ∈ [0,1] defines a nonconstant holomorphic function ft := F (t, •) on U .
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The zero locus of ft,
Vt := {p∈ U : ft(p)= 0}, t ∈ [0,1],

is a purely one-dimensional complex analytic subset of U . Suppose that every Vt is

also closed in O. Then we call Vt an analytic curve in O and call {Vt}t∈[0,1] a con-

tinuous family of analytic curves in O. The classical version of Oka’s method is the

following (see [31]):

Oka’s Characterization Theorem. Let K be a compact subset of C2 and O be a neigh-

borhood of K̂. If {Vt} is a continuous family of analytic curves in O such that V0 intersects

K̂, but V1 does not, then some Vt must intersect K. �

Many various versions of this fundamental principle are known. For us the fol-

lowing criterion is useful (cf. [11]): Let {Vt}t∈[0,1] be a continuous family of analytic curves

in a neighborhood O of Ω ′ ∩ B(0, ε) such that for all t the curves Vt do not intersect Xtr

and V1 does not intersect Ω̄ ′. Then the curves Vt do not intersect Xess.

Indeed, since the essential hull Xess is contained in X̂tr by Rossi’s local maxi-

mum principle and X̂tr is contained in Ω ′ ∩ B(0, ε) by Lemma 1, it suffices to apply Oka’s

theorem.

The first step of the construction is the following key technical tool of [12]:

Lemma 2. Let p∈ X \ {0} be an arbitrary point. Then p does not lie in Xtr if there exist

two continuous families {Vt}t∈[0,1] and {Wt}t∈[0,1] of analytic curves in an open neighbor-

hood O of Ω ′ ∩ B(0, ε) with the following properties:

(i) V0 and W0 meet X transversely at p and with opposite signs of intersection;

(ii) for t> 0, the varieties Vt and Wt are disjoint from Xtr;

(iii) V1 and W1 do not intersect Ω̄ ′. �

Duval’s original result is stated for the O(Ḡ)-hull of a smooth totally real

surface X ⊂ ∂G, where G ⊂ C2 is a smoothly bounded strictly pseudoconvex domain.

The proof is also valid in our situation. Indeed, in order to show that p does not

belong to Xess, it suffices to find a neighborhood U of p such that X̂ does not inter-

sect U \ X. Let F,G : [0,1] × O → C be the functions defining the families {Vt}, {Wt} that

satisfy conditions of the lemma. We use the notation ft = F (t, •) and gt = G(t, •). It fol-

lows from (i) that near p the functions f0 and g0 provide local holomorphic coordi-

nates and the real surface X is defined near p by the equation g0 = h ◦ f0. Here h is a

C 2-diffeomorphism in a neighborhood of the origin in C, fixing the origin and reversing
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the orientation, so that |hζ̄ (0)|> |hζ (0)|. Denote by τΔ− the left semidisc of radius τ > 0,

that is, τΔ− = {ζ ∈ C : |ζ |< τ, �ζ < 0}. For α ∈ τΔ− and a complex parameter a, con-

sider the analytic curves Ca in O defined by the equation

( f0 − a)(g0 − h(a))= αhζ̄ (a).

There exists τ > 0 such that when the parameter a runs over a small neighborhood of

the origin in C and α runs over τΔ−, the family {Ca} fills out an open set U \ X for a

suitable neighborhood U of p. The proof due to [10, Lemma 1, pp. 584–585], is obtained

by the linear approximation of h near a. One verifies two properties of the family Ca.

First, given α ∈ τΔ− and a, the curve Ca avoids X. Second, for every point q ∈ U \ X, one

can find suitable a and α such that Ca contains q.

Finally, we note that every curve Ca can be swept out of Ω ′ through a continuous

family of analytic curves in O in accordance with Oka’s characterization of hulls. Such

a sweeping family of analytic curves is explicitly constructed in [12, pp. 110–111], using

the defining functions ft, gt and the assumptions (ii) and (iii) of Lemma 2.

This shows that no point near p can be in Xess, and therefore p does not belong

to Xtr. This verifies Lemma 2.

Step 2 : Construction of the families {Vt} and {Wt}. We employ the second part of

the construction due to Duval [12].

Fix an orientation on the real hypersurface ∂Ω ′ and the disc X. This allows one

to define an orientation on the leaves of the characteristic foliation. Let p∈ X \ {0} and

v1 and v2 be vectors in the tangent space TpX giving a positively oriented basis there.

A nonzero vector v tangent to the leaf of the characteristic foliation through p defines

the positive orientation on this leaf if the triple v1, v2, Jv is a positively oriented basis

of Tp(∂Ω
′). Here J denotes the standard complex structure of C2, that is, the vector Jv

can be identified with iv.

We argue by contradiction. Let p∈ X \ {0} be a totally real point such that p lies

in the leaf γ of the characteristic foliation, p∈ Xess, but Xess does not meet both sides

of γ . Fix an open neighborhood U ′ of p small enough so that 0 does not lie in Ū ′ and

Ω ′ ∩ U ′ is biholomorphic to a strictly convex domain. More precisely, one can assume

that there are local coordinates (z′, w′) in U ′ such that p corresponds to the origin 0′, U ′

is a ball, and Ω ′ ∩ U ′ is strictly convex. Let x and y be points on X near 0′ that lie on the

same leaf of the characteristic foliation. Assume that the direction from x to y along this

leaf is positive for the orientation described earlier. Denote by L(x, y) the complex line

through x and y. Then, L(x, y) meets X ∩ U ′ at the points x and y only; this intersection
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5160 R. Shafikov and A. Sukhov

is transversal, positive at x, and negative at y; see [12, Lemma 2]. Denote by Δ(x, y) the

intersection of the line L(x, y) with the ball U ′.

Denote by γ ′ a leaf of the characteristic foliation near p parallel to γ . By

assumption, one can choose γ ′ to be disjoint from Xess in U ′. Consider a (short) arc

α : [0,1] → X ∩ U ′ such that α(0)= p, α(1)= p′, where p′ is a point of γ ′ and such that for

t> 0 the point α(t) is on the same side of γ as the leaf γ ′. Finally, choose a point x ∈ γ
that precedes p, and a corresponding point x′ ∈ γ ′ that precedes p′. Let β : [0,1] → X be

an arc in γ ′ with β(0)= x′, β(1)= p′.

Now we are able to construct the first family {Vt} of analytic curves. We begin

with the family Δ(x′, α(t)), where 0 ≤ t ≤ 1. As it was already mentioned, the line L(x, p)

intersects X with positive sign at p. This property is stable with respect to continuous

deformations of complex lines L(q, p) where q moves from x to x′ in X. Hence, the first

disc V0 =Δ(x′, α(0)) of our family intersects X at p with positive sign. We continue this

family with the discs Δ(β(t), p′), 0 ≤ t ≤ 1, starting with t = 0. When t = 1 we arrive to the

complex tangent Δ(p′, p′). The final piece of the family {Vt} is obtained by the translation

Δ(p′, p′) into the complement of Ω ′ along the outward normal direction to ∂Ω ′ at p′.

Similarly, we proceed with the construction of the second family {Wt} using a point y∈ γ
that succeeds p along γ and a corresponding point y′ ∈ γ ′ that succeeds p′ along γ ′.

The curves V0 and W0 meet transversally at p with opposite signs of intersection

and for t> 0 the curves Vt and Wt do not meet Xtr. In the aforementioned local coordi-

nates (z′, w′) on U ′ these curves are intersections of the complex lines with U ′ described

earlier, that is, the corresponding functions ft, gt are degree one polynomials in (z′, w′).

Since the families {Vt} and {Wt} can be chosen arbitrarily close to the complex tangent

line to ∂Ω ′ at p, their boundaries are contained in ∂U ′ and do not intersect Ω̄ ′. Therefore

Vt and Wt are analytic curves in a suitably chosen global neighborhood O of Ω ′ ∩ B(0, ε)

in C2. Now Step 1 can be used. Lemma 2 implies that p does not lie in Xess, which gives

a contradiction. Proposition 2 is proved.

3.3 Proof of the main results

We now prove the main results of the paper assuming that Proposition 1 holds.

Proof of Theorem 1. Let γ1 and γ2 be as in Proposition 1. It follows from Propositions 1

and 2 that Xtr is contained in the union γ1 ∪ γ2, and Rossi’s maximum principle implies

Xess ⊂ γ̂1 ∪ γ2.

A rectifiable arc is polynomially convex [29]. Moreover, if Y is compact and

polynomially convex, and Γ is a compact connected set of finite length, then the set

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/2013/22/5148/729906 by U
niversity of W

estern O
ntario user on 30 April 2020



Local Polynomial Convexity of the Unfolded Whitney Umbrella in C2 5161

(Ŷ ∪ Γ ) \ (Y ∪ Γ ) is either empty or contains a complex purely one-dimensional analytic

subvariety of C2 \ (Y ∪ Γ ) (see [31, p. 122]). By taking Y and Γ to be our rectifiable curves

γ j, we see as in the proof of Corollary 2 that their union cannot bound a complex one-

dimensional variety. Therefore, γ1 ∪ γ2 is polynomially convex: γ̂1 ∪ γ2 = γ1 ∪ γ2 ⊂ X. As

a consequence we obtain that Xess also is contained in X. Let p be a point of X̂ \ X.

Then p∈ Xess \ X which is impossible. This implies that X̂ \ X is empty. Hence, X is

polynomially convex. Theorem 1 is proved. �

Proof of Corollary 1. Let φ(0)= p. By Theorem 1 there exists ε > 0 such that X =
φ(Σ) ∩ B(p, ε) is polynomially convex. We may further assume that φ(Σ) ∩ ∂B(p, ε) is

a rectifiable and even smooth curve. By the result of Anderson et al. [3, Theorem 1.5], if

X is a polynomially convex compact subset of Cn, and X0 is a compact subset of X such

that X \ X0 is a totally real submanifold of Cn, of class C 1, then continuous functions on

X can be approximated by polynomials if and only if this can be done on X0. We apply

this result to X = φ(Σ) ∩ B(p, ε) and X0 = {p} ∪ (φ(Σ) ∩ ∂B(p, ε)). The set X0, is polynomi-

ally convex. Indeed, if not, we obtain as in the proof of Theorem 1 that X̂0 \ X0 contains

a complex purely one-dimensional analytic subvariety V of C2 \ X0. But then V is con-

tained in X̂, which contradicts Theorem 1. Furthermore, by [30] or [31, p. 122], continuous

functions on X0 can be approximated by polynomials. From this the corollary follows. �

The rest of the paper is devoted to the proof of Proposition 1.

4 Reduction to a Dynamical System

In this section, we deduce the dynamical systems describing the pull-back in R2
(t,s) of the

characteristic foliations onΣ andΣ ′. In Sections 6 and 7, we will discuss the topological

behavior of these foliations near the origin. For simplicity, the integral curves of these

dynamical systems will also be called the leaves of the characteristic foliation.

4.1 Foliation on Σ

The tangent plane to Σ \ {0} is spanned by the vectors

Xt =

⎛
⎜⎜⎜⎜⎝

s

2t2

2t

0

⎞
⎟⎟⎟⎟⎠ , Xs =

⎛
⎜⎜⎜⎜⎝

t

0

0

1

⎞
⎟⎟⎟⎟⎠ .
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5162 R. Shafikov and A. Sukhov

The directional vector of the characteristic line field is determined from the equation

X = αXt + βXs, (12)

where α = α(t, s) and β = β(t, s) are some smooth functions on R2 \ {0}, and the vector X

belongs to the complex tangent Hπ(t,s)M. Let

I2 =
(

1 0

0 1

)
, J =

(
0 −I2

I2 0

)
.

Multiplication by i of a vector in C2 corresponds to multiplication by J of the corre-

sponding vector in R4. For v ∈ TpM, the inclusion v ∈ HpM holds if and only if v, iv ∈ TpM.

Therefore,

X ∈ Hπ(t,s)M ⇐⇒ 〈J(αXt + βXs),∇ρ〉 = 0,

where 〈·, ·〉 is the standard Euclidean product in R4, and ∇ρ is the gradient of the func-

tion ρ. Therefore, we can choose

α = 〈J Xs,∇ρ〉, β = −〈J Xt,∇ρ〉. (13)

A calculation yields

∇ρ = (2ts,3t3,−s2 − 3t4,−2t2s),

and

α = −3t3 − ts2 − 3t5,

β = s3 + 4t2s + 7st4.

Thus,

X = αXt + βXs = α dπ

(
1

0

)
+ β dπ

(
0

1

)
= dπ

(
α

β

)
, (14)

where dπ is the differential of the map π . It follows that the characteristic foliation on

Σ \ {0} (or, more precisely, its pull-back on R2\{0} by the parametrization map π ) is given
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by the system of ODEs of the form

ṫ = −3t3 − ts2 − 3t5,

ṡ = s3 + 4t2s + 7st4,

(15)

where the dot denotes the derivative with respect to the time variable τ .

4.2 Foliation on Σ ′

Let f : R2 → R4 be given by

f :=ψ ◦ φ ◦ π,

where we use the notation of the previous section. The directional vector of the charac-

teristic foliation on Σ ′ is determined by

X′ = αX′
t + βX′

s,

where X′
t = ∂ f/∂t and X′

s = ∂ f/∂s and α= α(t, s), and β = β(t, s) are some smooth functions

on R2 \ {0} that are chosen in such a way that vector X′ belongs to the complex tangent

H f(t,s)M′. We have

X′ ∈ H f(t,s)M
′ ⇐⇒ 〈J(αX′

t + βX′
s),∇ρ ′〉 = 0,

where ρ ′ is a defining function of M′, and the gradient ∇ρ ′ is expressed in terms of (t, s)

using the parametrization f . Therefore, we can choose

α(t, s)= 〈J X′
s,∇ρ ′〉, β(t, s)= −〈J Xt,∇ρ ′〉. (16)

Thus,

X′ = αX′
t + βX′

s = df

(
α

β

)
. (17)

It follows that the characteristic foliation on Σ ′ is determined by the system of ODEs of

the form

ṫ = α(t, s),

ṡ = β(t, s).
(18)
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5164 R. Shafikov and A. Sukhov

We write f(t, s)= ( f1(t, s), . . . , f4(t, s)), where using (6) and (1) we may express

each fj as a power series in (t, s):

f1(t, s)= x +
∑

j+k+l+m≥2

f̃1
jklm xjukylvm

= ts + f1
02s2 + f1

12ts2 + f1
21t2s + f1

03s3 +
∑

j+k≥4

f1
jkt jsk, (19)

where f̃1
jklm and f1

jk are real numbers. Similarly,

f2(t, s)= u+
∑

j+k+l+m≥2

f̃2
jklm xjukylvm

= 2

3
t3 + f2

02s2 + f2
12ts2 + f2

21t2s + f2
03s3 +

∑
j+k≥4

f2
jkt jsk. (20)

Denote by ejk the entries of the matrix E in (6). Then

f3(t, s)= e11x + e12u+ g11y + g12v +
∑

j+k+l+m≥2

f̃3
jklm xjukylvm

= g12s + g11t2 + e11ts + f3
02s2 + 2e12

3
t3 + f3

12ts2 + f3
21t2s + f3

03s3 +
∑

j+k≥4

f3
jkt jsk; (21)

f4(t, s)= e21x + e22u+ g12y + g22v +
∑

j+k+l+m≥2

f̃4
jklm xjukylvm

= g22s + g12t2 + e21ts + f4
02s2 + 2e22

3
t3 + f4

12ts2 + f4
21t2s + f4

03s3 +
∑

j+k≥4

f4
jkt jsk. (22)

From these formulas we immediately obtain

X′
t =

⎛
⎜⎜⎜⎜⎝

s + 2 f1
21ts + f1

12s2

2t2 + 2 f2
21ts + f2

12s2

2g11t + e11s + 2e12t2 + 2 f3
21ts + f3

12s2

2g12t + e21s + 2e22t2 + 2 f4
21ts + f4

12s2

⎞
⎟⎟⎟⎟⎠+ o(|(t, s)|2), (23)
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and

X′
s =

⎛
⎜⎜⎜⎜⎝

t + 2 f1
02s + f1

21t2 + 2 f1
12ts + 3 f1

03s2

2 f2
02s + f2

21t2 + 2 f2
12ts + 3 f2

03s2

g12 + e11t + 2 f3
02s + f3

21t2 + 2 f3
12ts + 3 f3

03s2

g22 + e21t + 2 f4
02s + f4

21t2 + 2 f4
12ts + 3 f4

03s2

⎞
⎟⎟⎟⎟⎠+ o(|(t, s)|2). (24)

The defining equation of M′ can be chosen to be ρ ◦ (ψ ◦ φ)−1, where ρ defines M

as in (2). Let (x′,u′, y′, v′) be the coordinates in the target domain of ψ ◦ φ, in particular,

we have x′ = f1, u′ = f2, y′ = f3, and v′ = f4. Let

(D(ψ ◦ φ)(0))−1 =
(

I2 0

E ′ G ′

)
, E ′ = (e′

jk), G ′ = (g′
jk). (25)

Then

(ψ ◦ φ)−1(x′,u′, y′, v′)=
⎛
⎝x′ +

∑
j+k+l+m≥2

h1
jklm x′ ju′ky′lv′m, u′ +

∑
j+k+l+m≥2

h2
jklm x′ ju′ky′lv′m,

e′
11x′ + e′

12u′ + g′
11y′ + g′

12v
′ +

∑
j+k+l+m≥2

h3
jklm x′ ju′ky′lv′m,

e′
21x′ + e′

22u′ + g′
12y′ + g′

22v
′ +

∑
j+k+l+m≥2

h4
jklm x′ ju′ky′lv′m

⎞
⎠ . (26)

Therefore,

ρ ′(x′,u′, y′, v′)

=
⎛
⎝x′ +

∑
j+k+l+m≥2

h1
jklm x′ ju′ky′lv′m

⎞
⎠

2

−
(
e′

11x′ + · · · + g′
12v

′ +
∑

h3
jklm x′ ju′ky′lv′m

)

·
(
e′

21x′ + · · · + g′
22v

′ +
∑

h4
jklm x′ ju′ky′lv′m

)2
+ 9

4

⎛
⎝u′ +

∑
j+k+l+m≥2

h2
jklm x′ ju′ky′lv′m

⎞
⎠

2

−
(
e′

11x′ + · · · + g′
12v

′ +
∑

h3
jklm x′ ju′ky′lv′m

)3
. (27)

Note that in (27) the only quadratic terms are x′2 and 9
4 u′2. By taking partial derivatives

in this expression with respect to x′,u′, y′, and v′, and expressing the resulting vector in
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5166 R. Shafikov and A. Sukhov

terms of (t, s) we will obtain the coordinates of the vector

∇ρ ′ =
(
∂ρ ′

∂x′ ,
∂ρ ′

∂u′ ,
∂ρ ′

∂y′ ,
∂ρ ′

∂v′

)
= (Rx(t, s), Ru(t, s), Ry(t, s), Rv(t, s)).

To determine the phase portrait of the characteristic foliation, we will only need some

low-order terms in the power series

α(t, s)=
∑
j,k≥0

α jktks j, β(t, s)=
∑
j,k≥0

β jktks j.

Therefore, instead of explicit differentiation of (27), we will employ a different strategy

for computing coefficients of the terms of lower degree in the (t, s)-Taylor expansion of

α and β.

4.3 The power series of α

We have

α(t, s)= 〈J X′
s,∇ρ ′〉 = −(X′

s)3 · Rx − (X′
s)4 · Ru + (X′

s)1 · Ry + (X′
s)2 · Rv. (28)

We proceed in several steps computing the coefficients in the expansion for α. To begin

with, there cannot be a free term in the power series of α because every term in ∇ρ ′ will

necessarily have positive degree in t or s.

Term t: Since no component of ∇ρ ′ can contain a degree-zero term or the monomial t,

there is no term t in α.

Term s: The first two components of X′
s do not contain free terms; therefore, monomial s

can appear in α only if Rx or Ru will contain it. By inspection of (19)–(22), we see that y′

and v′ are the only terms that can produce monomial s. Therefore, for s to appear in Rx or

Ru, the function ρ ′ must contain at least one of the terms x′y′, x′v′, u′y′, or u′v′. However,

from (27) neither of these terms exists. Thus, there is no monomial s in the power series

of α.

Term ts: We inspect terms in X′
s of degree lower than ts. These appear in (X′

s)1 (terms t

and s), in (X′
s)2 (term s), in (X′

s)3 (a free term, t and s), and in (X′
s)4 (a free term, t and s).

Therefore, for ts to appear in α, at least one of the following options must occur:

(1) either Rx or Ru has t, s or ts;

(2) Ry has either t or s;
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Local Polynomial Convexity of the Unfolded Whitney Umbrella in C2 5167

(3) Rv has t.

Of these three options only (1) can happen: ρ ′ contains the term x′2, and therefore, Rx

contains 2ts. It follows now from (19), (24), and (28) that α11 = −2g12.

To simplify further considerations, we note that term t cannot occur in any of

the components of the vector ∇ρ ′.

Term t2: By inspection of X′
s, we conclude that either Rx or Ru has term t2, so ∇ρ ′ must

have either x′y′, x′v′, u′y′, or u′v′, neither of which appears. This means that α does not

contain term t2.

Term s2: By inspection of X′
s, the following options are possible:

(1) either Rx or Ru has s or s2;

(2) either Ry or Rv has term s.

Option (2) is impossible, but ρ ′ can have terms u′2, u′v′2, or u′y′2, which gives (1). We

have the following expression for α02, which depends on the coefficients of the Taylor

expansion for (ψ ◦ φ)−1:

α02 = 9

2
(h2

0002g2
22 + f2

02 + h2
0020g2

12).

Term t3: By analyzing of X′
s, the following options are possible:

(1) either Rx or Ru has at least one of t2 or t3;

(2) Ry has t2.

Option (2) can happen only if ρ ′ would have y′2 or y′v′, which is impossible. For the same

reason in option (1) terms Rx or Ru cannot produce t2. The only term in ∇ρ ′ that can

produce t3 is u′. Therefore, the only possibility in (1) is the term t3 in Ru, which indeed

happens since ρ ′ contains u′2. It follows that α30 = −3g22.

Thus,

α(t, s)= −2g12ts + α02s2 − 3g22t3 +
∑

j+k>2,( j,k)�=(3,0)
α jkt jsk.

4.4 The power series of β

We have

β(t, s)= −〈J X′
t,∇ρ ′〉 = (X′

t)3 · Rx + (X′
t)4 · Ru − (X′

t)1 · Ry − (X′
t)2 · Rv.
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Again, there cannot be a free term in β because every term in ∇ρ ′ will necessarily have

positive degree in t or s. Further, no component in ∇ρ ′ can produce a term t, and so the

power series of β cannot contain monomial t.

Term s: Since no component of X′
t contains a free term, β cannot have monomial s.

Term ts: By inspection of X′
t, we conclude that either Rx or Ru must have term s, which

is impossible. Hence, β does not contain monomial ts.

Terms t2 and s2: Analogous considerations show that these terms cannot appear

in β.

Term t2s: By inspection of X′
t the following is possible for R:

(1) Rx has at least one of t2, s, or ts;

(2) Ru has at least one of t2, s, or ts;

(3) Ry has t2;

(4) Rv has s.

Options (3) and (4) imply that ρ ′ has v′2, y′2, or v′y′, neither of which is possible. Option

(2) implies that ρ ′ has u′y′, u′v′, and u′x′. Neither of these terms is present in ρ ′, so (2) is

also not possible. Option (1) implies that ρ ′ has at least one of x′y′, x′v′, and x′2. Only the

latter happens, and so β21 = 4g11.

Term ts2: This term can appear in β. We have

β12 = 2e11 + 6g12 f2
02.

Term t3: By analyzing of X′
t, the only option is that either Rx or Ru has term t2. This is

however not possible.

Term t4: The possibilities for R are as follows:

(1) Rx has at least one of t2 or t3;

(2) Ru has at least one of t2, or t3;

(3) Rv has t2.

Option (3) cannot occur. The only possible option in (1) or (2) is that t3 appears in Ru.

This comes from the term u′2 in ρ ′. It follows that β04 = 6g12.

Term s3: We have

β03 = 2e11 f1
02 + 9

2 e21 f2
02.
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Combining everything together we get

β(t, s)= 4g11t2s + β12ts2 + β03s3 + 6g12t4 +
∑

j+k>3, ( j,k)�=(4,0)
β jkt jsk.

We note that if φ is merely a smooth diffeomorphism, then these calculations

give the values for the jets of α and β at the origin of the corresponding orders. In either

case, the characteristic foliation on Σ ′ is given by

ṫ = α(t, s)= −2g12ts + α02s2 − 3g22t3 + o(|t|3 + |s|2 + |ts|),

ṡ = β(t, s)= 4g11t2s + β12ts2 + β03s3 + 6g12t4 + o(|t2s| + |ts2| + |s|3 + |t|4).
(29)

It is easy to see that for a generic symplectomorphism φ : (x,u, y, v) �→
(x′,u′, y′, v′) and a generic ψ the coefficients α02, β12, and β03 do not vanish. Indeed, if

ψ is close to the identity map and the component u′ of φ contains the term av2 with

a �= 0, then f2
02 �= 0 and α02, β12, and β03 do not vanish. Therefore, they do not vanish

generically.

Remark. It follows from these considerations that our restriction on φ to be generic

involves only the 2-jet of φ at the origin. In other words, it suffices to require in

Theorem 1 that φ has a generic 2-jet at the origin. �

Lemma 3. Let φ be a local symplectomorphism near the origin, and let X be the vector

field near the origin in R2 corresponding to the characteristic foliation on Σ ′. Then X
does not vanish outside the origin. �

Proof. Since φ is symplectic, φ(Σ \ {0}) is a Lagrangian surface, in particular, totally

real. Therefore, ψ ◦ φ(Σ \ {0}) does not contain complex points. Further, it easily follows

from (16) that α(t0, s0)= β(t0, s0)= 0, (t0, s0) �= 0 if and only if f(t0, s0) is a complex point

of Σ ′. From this the result follows. �

5 Generalities on Planar Vector Fields

For the proof of Proposition 1, we need to determine the topological structure of the

orbits or maximal integral curves associated with the vector fields defined by (15)

and (29). Both systems have higher order degeneracy (the linear part vanishes) at the

origin, and consequently, it is a nonelementary singularity of (15) and (29). Therefore,
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5170 R. Shafikov and A. Sukhov

standard results, such as the Hartman–Grobman theorem, do not apply here. Instead,

we will use some more advanced tools from dynamical systems. We will be primarily

interested in understanding the topological picture of (15) and (29) near the origin up to

a homeomorphism preserving the orbits. In this section, we outline relevant results and

recall some common terminology.

5.1 Finite jet determination of the phase portrait

The local phase portrait of a vector field near a nonelementary isolated singularity can

be determined through a finite sectorial decomposition. This means that a neighborhood

of the singularity is divided into a finite number of sectors with certain orbit behavior in

each sector. If the vector field has at least one characteristic orbit (i.e., orbits approach-

ing in positive or negative time the singularity with a well-defined slope limit), then the

boundaries of the sectors can be chosen to be characteristic orbits. The overall portrait

is then understood by gluing together the topological picture in each sector. The general

result due to Dumortier [8] (see also [9]) can be stated as follows:

Suppose that a C ∞-smooth vector field X singular at the origin in R2 satisfies the

Łojasiewicz inequality

|X (x)| ≥ c|x|k, c> 0, k∈ N,

for x ∈ R2 is some neighborhood of the origin. Then X has the finite sectorial decompo-

sition property, that is, the origin is either a center (all orbits are periodic), a focus/node

(all orbits terminate at the origin in positive or negative time), or there exists a finite

number of characteristic orbits that bound sectors with a well-defined orbit behavior

(hyperbolic, parabolic, or elliptic). If the vector field X has a characteristic orbit, then

its phase portrait is determined by its jet of finite order k, in the sense that any other

vector field with the same jet of order k at the origin has the phase portrait homeomor-

phic to that of X . Further, whether the vector field X has a characteristic orbit depends

only on a jet of X of some finite order.

The original proof of this result in [8] is based on the desingularization by means

of successive (homogeneous) blow-ups. After each blow-up, the singularity is replaced

by a circle, and after a finite number of such blow-ups, one obtains a vector field with

only nondegenerate singularities. The construction of the blow-up maps depends only

on a finite order jet of the original vector field at the origin. From the configuration

of the singularities of the modified system on the preimage of the origin under the

composition of blow-ups, it is always possible to deduce whether the original vector
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Local Polynomial Convexity of the Unfolded Whitney Umbrella in C2 5171

field has a characteristic orbit. If such an orbit exists, then the singularity is not a

center or a focus, and the phase portrait is determined by a jet of finite order. Fur-

ther, the Łojasiewicz inequality holds for any real analytic vector field in a neighbor-

hood of an isolated singularity (see, e.g., [4]) and, in particular, in our case, in view of

Lemma 3.

Alternatively, it is possible to use quasihomogeneous blow-ups, which are cho-

sen according to the Newton diagram associated with X (see [26]). The advantage is

that this gives a computational algorithm for constructing the sectorial decomposition

for a particular system. A detailed discussion of this approach for real analytic sys-

tems is given in Bruno [6] in the language of normal forms. Using Bruno’s method,

we will show that for a real analytic φ in general position, the vector field defined

by (29) will always have a characteristic orbit, and its phase portrait near the origin

is a saddle.

If in Theorem 1 the map φ is smooth, then the vector field corresponding to the

characteristic foliation is only smooth, and the Łojasiewicz inequality imposes addi-

tional assumption on the vector field, and therefore on φ. The Łojasiewicz condition

depends on the jet of the vector field at the origin and holds for all jets outside a set

of infinite codimension in the space of jets, but it is not clear whether for a generic

smooth symplectomorphism the inequality is satisfied. However, assuming that the

Łojasiewicz condition does hold, the topological picture of the characteristic foliation is

determined by its finite jet at the origin. Therefore, we may consider a polynomial vec-

tor field obtained by truncation of (29) at sufficiently high order without distorting the

phase portrait of the system. After that we may apply Bruno’s method to determine its

geometry. Thus, in Theorem 1 we may assume that φ is a generic smooth symplectomor-

phism such that the vector field corresponding to the characteristic foliation satisfies

the Łojasiewicz inequality.

If in Theorem 1 the map φ is a real analytic diffeomorphism with Dφ(0) sym-

plectic, then all of the arguments go through provided that the vector field (29) vanishes

at the origin only. The latter holds for the following reason: consider near the origin the

complexification F of the real analytic map f =ψ ◦ φ ◦ π : R2 → C2. Then F : C2 → C2 is a

holomorphic map such that F |R2
(t,s)

= f , in particular, F (R2)=Σ ′. Moreover, since f has

rank 2 outside the origin, it follows that the Jacobian of F does not vanish on R2 \ {0},
and therefore, F is a local biholomorphism near any point on R2 \ {0}. But this implies

that Σ ′ \ {0} is totally real, and therefore the characteristic foliation has no singularities

outside the origin. Thus, Theorem 1 holds under the assumption that φ is a generic real

analytic diffeomorphism with Dφ(0) symplectic.
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5172 R. Shafikov and A. Sukhov

In the remaining part of this section, we outline general theory of normal forms

and sector decomposition of dynamical systems due to Bruno [6], while the actual

numerical calculations for (15) and (29) are presented in Section 6.

5.2 Normal forms for elementary singularities

We state three theorems due to Bruno on normal forms for vector fields near an isolated

elementary singularity. Consider the system

ẋi = λixi + σixi−1 + ϕi(X), i = 1,2, (30)

where xi are smooth functions of a real variable and X = (x1, x2). Here σ j, λ j are real,

σ1 = 0 and the series ϕi does not contain constant or linear terms. In other words, using

the notation XQ = xq1
1 xq2

2 for Q = (q1,q2) ∈ Z2, we can write

ϕi(X)=
∑

Q

fiQ XQ, i = 1,2,

where qj ≥ 0, q1 + q2 > 0. The main assumption is that at least one of the eigenvalues λi

is nonzero that is |λ1| + |λ2| �= 0. This means that the origin is an elementary singularity.

We suppose below that all systems considered in the Normal Forms Theorems are real

analytic, though the considerations in the formal power series category also make sense.

The goal is to transform system (30) to the simplest possible form

ẏi = ψ̃i(Y) := λi yi + σi yi−1 + ψi(Y), i = 1,2 (31)

by a local invertible change of coordinates

xi = yi + ξi(Y), i = 1,2, (32)

where the series ξi in Y = (y1, y2) do not contain constant or linear terms:

ξi(Y)=
∑

|Q|>1

hiQYQ, i = 1,2.
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Local Polynomial Convexity of the Unfolded Whitney Umbrella in C2 5173

We use the notation |Q| = |q1| + |q2|. Such a change of coordinates in general is not real

analytic, that is, the series ξi can be divergent. For this reason we consider formal power

series ξi and refer to (32) as a formal changes of coordinates.

It is convenient to use the representation

ψ̃i(Y)= yigi(Y)= yi

∑
Q∈Ni

giQYQ, i = 1,2, (33)

where

N1 = {Q = (q1,q2) ∈ Z2 : q1 ≥ −1,q2 ≥ 0,q1 + q2 ≥ 0},

N2 = {Q = (q1,q2) ∈ Z2 : q1 ≥ 0,q2 ≥ −1,q1 + q2 ≥ 0}.

Set Λ= (λ1, λ2) and denote by 〈•, •〉 the standard inner product in R2.

Principal normal form [6, Chapter II, Section 1, Theorem 2, p. 105]: There exists a formal

change of coordinates (32) such that system (30) in the new coordinates takes the form

(31), where giQ = 0 for Q = (q1,q2) satisfying 〈Q,Λ〉 = q1λ1 + q2λ2 �= 0.

Therefore, the normal form (31) contains only terms of the form yigiQYQ

satisfying

〈Q,Λ〉 = 0. (34)

Such terms are called resonant.

The fundamental question on the convergence of a normalizing change of coor-

dinates for an analytic system (30) is discussed in [6]. In the cases that we will con-

sider in this article, normalizing changes of coordinates (32) will be analytic or at least

C ∞-smooth local diffeomorphisms (see [6]). This is sufficient for the study of local topo-

logical behavior of integral curves.

Consider now a more general system of two differential equations in two vari-

ables of the form

ẋi = λixi + xi

∑
Q∈V

fiQ XQ = λixi + xi fi, i = 1,2, (35)

where Λ= (λ1, λ2) �= 0. The set V ⊂ Z2, over which the exponents Q run, is to be pre-

scribed. In the hypothesis of the Principal Normal Form Theorem, ϕi(X) are power series

in nonnegative powers of variables and the corresponding V is almost completely con-

tained in the first quadrant of the plane.
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5174 R. Shafikov and A. Sukhov

To formulate a weaker assumption on V, we consider two vectors R∗ and R∗ in R2

contained in the second and the forth quadrant, respectively, and denote by V the sector

bounded by R∗ and R∗ and containing the first quadrant. We assume that R∗ and R∗ are

such that V has an angle less than π . As a consequence, the sector V is the convex cone

generated by R∗ and R∗, that is, consists of the vectors α1 R∗ + α2 R∗ with α j ≥ 0. We use

the notation |X| = (|x1|, |x2|) and |X|Q = |x1|q1 |x2|q2 .

Denote by V(X) the space of power series
∑

Q fQ XQ, where Q ∈ V. Since in our sit-

uation such a series can have an infinite number of terms with negative exponents (even

after multiplication by xi), the notion of its convergence requires clarification. Consider

first a numerical series ∑
Q∈Z2

aQ, (36)

where the indices Q run through Z2. Let (Ωn) be an increasing exhausting sequence of

bounded domains in R2. Set

Sn =
∑

Q∈Ωn

aQ

(the partial sums). If the sequence (Sn) admits the limit S and this limit is independent

of the choice of the sequence (Ωn), then we say that series (36) converges to the sum S.

It is well-known that if for some sequence (Ωn) the sequence of the partial sums of the

series ∑
Q∈Z2

|aQ| (37)

converges, then series (36) and (37) converge. In this case we say that series (36)

converges absolutely.

Under the aforementioned assumptions on R∗ and R∗ a series of class V(X) is

called convergent if it converges absolutely in the set

UV(ε)= {X : |X|R∗ ≤ ε, |X|R∗ ≤ ε, |x1| ≤ ε, |x2| ≤ ε}, (38)

for some ε > 0. As explained in detail in [6], this subset of the real plane is a natural

domain of convergence for such a series. As an example we notice that when the sec-

tor V is defined by the vectors R∗ = (1,0) and R∗ = (0,1), that is, coincides with the first

quadrant, then the class V(X) coincides with the class of usual power series with non-

negative exponents and the set UV(ε) coincides with the bidisc of radius ε.
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Local Polynomial Convexity of the Unfolded Whitney Umbrella in C2 5175

Let V be a sector that determines system (35). We consider changes of variables

of the form

xi = yi + yihi(Y), i = 1,2, (39)

where hi ∈ V(Y), that is, hi(Y)=
∑

Q∈V hiQYQ. In the new coordinates the system takes the

form

yi = λi yi + yigi(Y), i = 1,2. (40)

Second normal form [6, Chapter II, Section 2, Theorem 1, p. 128]: Suppose that V is a

sector as described earlier. Then system (35) can be transformed by a formal change of

variables (39) into a normal form (40) with gi ∈ V(Y). The coefficients of gi satisfy giQ = 0

if 〈Q,Λ〉 �= 0.

The normalizing change of coordinates in this theorem in general is not conver-

gent, even if system (35) is analytic. However, such a change of coordinates is always

convergent or C ∞-smooth in UV(ε). For this reason the behaviors of the integral curves

of systems (35) and (40) coincide in the sector given by (38) for sufficiently small ε > 0.

The third theorem deals with the case somewhat intermediate with respect to

the two previous theorems. Let V be the sector in (35) as defined already by the vec-

tors R∗ and R∗. Assume that R∗ = (r∗
1 , r

∗
2) and R∗ = (r1∗,−1) with r∗

1 < 0< r∗
2 , r1∗ > 0, and

|r∗
1/r

∗
2 |< r1∗. Note that the conditions on r∗

1 , r∗
2 , and r1∗ exactly mean that R∗ and R∗ are

in the second and forth quadrants, respectively, and the angle of V is less than π .

The additional assumption that we impose is that the expressions on the right-

hand side of (35) are the series in integer nonnegative powers of x2. Since the series f1(X)

does not contain negative powers of x2, the coefficient f1Q in f1(X) vanishes unless the

vector Q lies in the sector

1V = {Q : Q = α1 R∗ + α2 · (1,0), α1, α2 ≥ 0}.

Denote by 1V(X) the class of such series f1. Furthermore, since x2 f2(X) also does

not contain negative powers of x2, the coefficient f2Q in f2(X) of (35) will vanish unless

the vector Q lies either in 1V, or along the ray {q2 = −1, q1 ≥ r1∗}. Denote the class of

series f2 satisfying this property by 2V(X).
Sector 1V corresponds to the set

1U(ε)= {X : |X|R∗ ≤ ε, |x1| ≤ ε}, (41)
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5176 R. Shafikov and A. Sukhov

and power series in 1V(X) are called convergent if they converge absolutely in some

1U(ε). Observe that 1V is contained in V and that 1U(ε) contains the sector UV(ε) given

by (38).

Third normal form [6, Chapter II, Section 2, Theorem 2, p. 134]: If the series fi in (35)

are of class iV(X), then there exists a formal change of coordinates (39), where the hi are

series of class iV(Y), which transforms (35) into system (40) in which the gi are series of

class iV(Y) consisting only of terms giQYQ satisfying 〈Q,Λ〉 = 0.

Analogous statement also holds if we interchange the role of variables x1 and x2.

Furthermore, it is shown in [6] that the behaviors of the integral curves of system (35)

and the normal form (40) coincide in the region given by (41) similar to the Second Nor-

mal Form Theorem.

The advantage of the Third Normal Form over the Second Normal Form is that it

describes the behavior of integral curves on a bigger region, albeit for a smaller class of

power series.

Methods of integration of systems given in the aforementioned normal forms are

carefully described in [6]. This makes it possible to construct the local phase portrait of

these systems.

5.3 The Newton diagram

Let X be a real analytic vector field on R2 given by

ṫ =
∑

j+k>1

α jkt jsk = tf1(t, s),

ṡ =
∑

j+k>1

β jkt jsk = sf2(t, s).
(42)

Of course, this notation for components of X is independent of the notation of Section 4,

where f was the map defined in Section 4.2. We write

fj(t, s)=
∑

Q

fjQ(t, s)
Q, (43)

where Q = (q1,q2) and (t, s)Q = tq1sq2 . The support D of X is the set of points Q = (q1,q2)

in Z2 such that | f1Q| + | f2Q| �= 0. Fix a vector P ∈ R2 and put c = supQ∈D〈Q, P 〉; here 〈•, •〉
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Local Polynomial Convexity of the Unfolded Whitney Umbrella in C2 5177

denotes the euclidean inner product. The set

L P = {Q ∈ R2 : 〈Q, P 〉 = c}

forms the support line L P of D with respect to the vector P , while the set

L(−)P = {Q ∈ R2 : 〈Q, P 〉 ≤ c}

defines the support half-space L(−)P corresponding to the vector P .

The Newton polygon Γ is defined as the intersection of all the support half-

spaces of D, that is,

Γ =
⋂

P∈R2\{0}
L(−)P .

It coincides with the closure of the convex hull of D (see [6]). Its boundary consists of

edges, which we denote by Γ (1)
j , and vertices, which we denote by Γ (0)

j , where j is some

enumeration. In this notation the upper index expresses the dimension of the object.

Part of the boundary of Γ , called the Newton diagram or the open Newton poly-

gon in the terminology of [6], denoted by Γ̂ , plays an important role in the theory of

power series transformations. For simplicity we consider only the case relevant to us

when D is contained in the set {Q = (q1,q2) : qj ≥ −1, j = 1,2}. Then the Newton diagram

can be constructed explicitly as follows. Let q2∗ = min{q2 : (q1,q2) ∈ D}. Then x2 = q2∗ is the

horizontal support line to D. Set q1∗ = min{q1 : (q1,q2∗) ∈ D}. The point Γ (0)
1 := (q1∗,q2∗) is

the left boundary point of the intersection of D with the horizontal support line q2 = q2∗.

Consider the support line L P for D through Γ (0)
1 satisfying the following assumptions:

(i) P = (p1, p2) with p1 < 0 and p2 < 0;

(ii) L P contains at least one other point of D.

The first assumption means that the line L p admits a normal vector that lies in the third

quadrant. In particular, L P is not a horizontal or vertical line. Clearly, these two con-

ditions define such a support line uniquely. If the line L P does not exist, our procedure

stops on this first step and we set Γ̂ = {Γ (0)
1 }, that is the Newton diagram consists of a

single vertex. Otherwise, denote by Γ (0)
2 the left boundary point of the intersection of D

with L P . Consider now the support line through Γ (0)
2 with the aforementioned properties

(i) and (ii); hence, it contains a point of D different from Γ
(0)

1 . Continuing this procedure,

we arrive at the point Q∗ = (q∗
1,q

∗
2) which is the lowest point of D on the left vertical

support line of D, that is, q∗
1 = min{q1 : (q1,q2) ∈ D} and q∗

2 = min{q2 : (q∗
1,q2) ∈ D}. Denote
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5178 R. Shafikov and A. Sukhov

this last point by Γ (0)
k . For every j = 1, . . . ,k − 1, we denote by Γ (1)

j the edge joining the

vertices Γ (0)
j and Γ

(0)
j+1. Thus by construction, the points Γ (0)

1 and Γ
(0)

k are joined by the

Newton diagram Γ̂ .

It is important to notice here that all edges and vertices of the Newton diagram

Γ̂ are edges and vertices of the Newton polygon Γ , but in general, not all edges and

vertices of Γ are edges and vertices of Γ̂ . Consider some examples.

Example 1. Let D consist of two points (1,1) and (1,2). Then the Newton diagram con-

sists of a single vertex Γ (0)
1 = (1,1). �

The next example will occur in Section 6.

Example 2. Let D consist of three points (2,0), (4,0), and (0,2). Then the Newton

diagram is formed by two vertices Γ (0)
1 = (2,0) and Γ (0)

2 = (0,2), and one edge Γ (1)
1 , which

is the segment joining these vertices. �

5.4 Nonelementary singularity

Bruno’s method for construction of the phase portrait of a vector field near a nonele-

mentary singular point can be described as follows. For each element Γ (d)
j of the Newton

diagram associated with (42), there is a corresponding sector Ud
j in the phase space R2

(t,s),

so that together they form a neighborhood of the origin (here boundaries of the sectors

are not necessarily integral curves). In each U0
j one brings the system to a normal form,

and in U1
j one uses power transformations (quasihomogeneous blow-ups) to reduce the

problem to the study of elementary singularities of the transformed system. This allows

one to determine the behavior of the orbits in each sector applying the Normal Form

theorems discussed and using a careful study of integral curves for all types of normal

forms in [6]. After that the results in each sector are glued together to obtain the overall

phase portrait of the system near the origin.

We now consider some important special cases corresponding to particular ele-

ments of the Newton diagram.

Case of a vertex. Let Q = Γ
(0)
j be a vertex of the Newton diagram. Consider the

edges Γ (1)
j−1 and Γ (1)

j adjacent to Q in the Newton diagram. Next, consider the unit (i.e.,

their coordinates are coprime integers) vectors Rj−1 = (r1, j−1, r2, j−1) and Rj = (r1, j, r2, j)

directional to Γ (1)
j−1 and Γ (1)

j , respectively. We impose here the restrictions r2, j−1 > 0 and

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/2013/22/5148/729906 by U
niversity of W

estern O
ntario user on 30 April 2020



Local Polynomial Convexity of the Unfolded Whitney Umbrella in C2 5179

r2, j > 0 so these vectors are determined uniquely. Set R∗ = −Rj−1 and R∗ = Rj. In the spe-

cial case when Q is a boundary point of Γ̂ , one of the adjacent edges does not exist, so if

Q is the right boundary point Q∗, we set R∗ = (1,0), and if Q is the left boundary point

Q∗, we put R∗ = (0,1).

The method of [6] associates to Q a set defined by

U (0)j (ε)= {(t, s) ∈ R2 : (|t|, |s|)R∗ ≤ ε, (|t|, |s|)R∗ ≤ ε, |t| ≤ ε, |s| ≤ ε}, (44)

for some ε > 0. System (42), after the change of the old time variable τ with the new time

variable τ1 satisfying dτ1 = (t, s)Q dτ , is of form (35). Furthermore, the vectors R∗ and R∗
defined already by the adjacent edges at Q will generate for this new system (35) the

convex cone V as described in the previous subsection, so the notation is consistent.

The obtained system satisfies the assumptions of the Principal or the Second Normal

Form Theorem. The behavior of the integral curves of the normal form and the original

system coincides in U (0)j (ε) for ε sufficiently small.

A particularly simple case occurs when Q = (q1,q2)= Γ
(0)
j is the first (i.e., the

right) or the last (i.e., the left) point of Γ̂ , and Q is not contained in the first quadrant

(Type I according to classification in [6, p. 138]). In this situation one of the coordinates

of Q equals −1. Say, if q2 = −1, that is, Q is the right point of Γ̂ , then one takes R∗ = (1,0)

according to the general rule stated already. The corresponding normal form has vertical

integral curves. It follows that the original system (42) in the set

U∗(ε)= {(t, s) ∈ R2 : (|t|, |s|)R∗ ≤ ε, |t| ≤ ε}

does not have any integral curves terminating at the origin. Similarly, if q1 = −1, that is,

if Q is the left point of Γ , then R∗ = (0,1), and again in

U∗(ε)= {(t, s) ∈ R2 : (|t|, |s|)R∗ ≤ ε, |s| ≤ ε}

the system does not have any characteristic orbits.

Case of an edge. Suppose now that Γ (1)
j is an edge of Γ̂ . Let R= (r1, r2), r2 > 0 be

a unit directional vector of Γ (1)
j . The corresponding set in the phase space is given by

U1
j (ε)= {(t, s) ∈ R2 : ε≤ (|t|, |s|)R ≤ 1/ε, |t| ≤ ε, |s| ≤ ε}. (45)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/2013/22/5148/729906 by U
niversity of W

estern O
ntario user on 30 April 2020



5180 R. Shafikov and A. Sukhov

Consider the power transformation given by y1 = tk1sk2 , y2 = tr1sr2 , where the integers k1

and k2 are chosen such that the determinant of the matrix

A=
(

k1 k2

r1 r2

)
(46)

equals 1. In the matrix form, we can write X = (t, s),

Q =
(

q1

q2

)
,

FQ =
(

f1q

f2q

)
.

Then (42) can be given by

˙(ln X)=
∑
Q∈D

FQ XQ, (47)

where XQ = tq1sq2 . The power transformation can be expressed now as Y = XA, taking (47)

into

˙(ln Y)=
∑

Q′∈D′
F ′

Q′YQ′
,

with Y = (y1, y2), Q′ = (At)−1 Q, D′ = (At)−1D (the superscript t stands for transposition),

and F ′
Q′ = AFQ. After division by the maximal power of y1, one obtains a new system.

Here the y2-axis corresponds to {t = s = 0} in the original coordinates, and therefore,

one needs to investigate the new system in a neighborhood of the y2-axis. Quite often

the topological behavior of the system in U1
j (ε) can be determined by considering the

truncation of the system which is obtained by taking the sum in (43) only over the ver-

tices contained in Γ
(1)
j . The detailed discussion is in [6, pp. 140–141]. For instance, in

the situation which we will encounter here, the truncated system will have an elemen-

tary singularity. In general, the singularities of the new system can be nonelementary,

but they are simpler than those of the original system. Therefore, the general method

described earlier can be applied and an induction procedure can be used.

We do not go into further details since the goal of this section is just to outline

the strategy of the employed method. The computations of the next sections will strictly

follow the presented method and, as we hope, will clarify the details.
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Local Polynomial Convexity of the Unfolded Whitney Umbrella in C2 5181

Fig. 1. The Newton diagram for (48).

6 Phase Portrait of the Standard Umbrella

Since the standard umbrella corresponds to the nongeneric case where φ is the identity

map, we study its characteristic foliation separately. We rewrite system (15) in the form

ṫ = t(−3t2 − s2 − 3t4)= tf1(t, s),

ṡ = s(s2 + 4t2 + 7t4)= sf2(t, s),
(48)

and set

fj(t, s)=
∑

Q

fjQ(t, s)
Q,

where Q = (q1,q2) is the multi-index with integer entries, and (t, s)Q = tq1sq2 .

The Newton diagram Γ̂ consists of two vertices Γ (0)
1 = (2,0) and Γ (0)

2 = (0,2) and

the line segment (edge) Γ (1)
1 between them (see Figure 1). We point out that the point

(4,0) lies in the support D but does not belong to the Newton diagram Γ̂ . For each

element of the Newton diagram (the two vertices and the edge), there is a corresponding

sector in the phase space R2
(t,s), so that together they form a neighborhood of the origin.

Accordingly, we consider three cases.
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Case 1. First consider the vertex (2,0). Following the strategy outlined in

Section 5.4, we set R∗ = (1,0) and R∗ = (−1,1). We can make the change of time dτ1 = t2dτ .

This yields the system

dt

dτ1
= −t(3 + t−2s2 + 3t2)= −3t + tf1(t, s),

ds

dτ1
= s(4 + t−2s2 + 7t2)= 4s + sf2(t, s).

(49)

The Newton diagram Γ̂ corresponding to (49) has vertices (−2,2) and (2,0), and in par-

ticular, it is contained in the sector V (with the angle <π ) bounded by the rays generated

by R∗ and R∗. Therefore, for sufficiently small ε, in the sector

U (0)1 = {(t, s) ∈ R2 : (|t|, |s|)R∗ ≤ ε, (|t|, |s|)R∗ ≤ ε} = {|t| ≤ ε, |s| ≤ ε|t|},

there exists a smooth change of variables (t, s) putting the initial system to the Second

Normal Form of Bruno. In the new coordinates the system has the form

ẏ1 = −3y1 + y1

∑
g1Q(y1, y2)

Q,

ẏ2 = 4y2 + y2

∑
g2Q(y1, y2)

Q,

(50)

where the coefficients g1Q and g2Q are all zero except those for which −3q1 + 4q2 = 0.

The line L := {−3y1 + 4y2 = 0} determined by the linear part of system (50) intersects the

interior of the sector V (see Figure 2). It follows (see Bruno [6, p. 132]) that the system

defined by (50), and hence by (49), is a saddle, that is, each ray {y1 = 0, y2 > 0}, {y1 > 0, y2 =
0} is an integral curve, and in each quadrant in R2, the integral lines are homeomorphic

to hyperbolas. This is the description of system (18) in sector U (0)1 .

Case 2. Consider now the second vertex (0,2). Here we have R∗ = (1,−1) and

R∗ = (0,1) (Figure 3). The corresponding sector where the change of dependent variables

will be performed is given by

U (0)2 = {(t, s) ∈ R2 : (|t|, |s|)R∗ ≤ ε, (|t|, |s|)R∗ ≤ ε} =
{
|s| ≤ ε, |s| ≥ |t|

ε

}
.
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Local Polynomial Convexity of the Unfolded Whitney Umbrella in C2 5183

Fig. 2. Case 1 for (48).

The change of time dτ1 = s2 dτ transforms system (18) into

dt

dτ1
= −t + t(3t2s−2 + 3t4s−2),

ds

dτ1
= s + s(4t2s−2 + 7t4s−2).

(51)

As just seen, there exists a smooth change of variables (t, s) putting this system to the

second normal form:

ẏ1 = −y1 + y1

∑
g1Q(y1, y2)

Q,

ẏ2 = y2 + y2

∑
g2Q(y1, y2)

Q,

where the coefficients g1Q and g2Q are all zero except those that belong to the line

L := {−q1 + q2 = 0}. This line intersects the sector V bounded by R∗ and R∗ which

implies that this system is again a saddle. This gives the phase portrait of (18) in

sector U (0)2
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Fig. 3. Case 2 for (48).

Case 3. The remaining case of the edge between (2,0) and (0,2) will correspond

to the sector U (1)1 , which is the complement of U (0)1 ∪ U (0)2 . We make the following change

of variables

y1 = t,

y2 = t−1s.
(52)

In the matrix form, we write X = (t, s), and the change of variables (52) can be expressed

as Y = XA with the matrix of exponents

A=
(

1 0

−1 1

)
.
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Then system (18) takes the form

ẏ1 = y1(−3y2
1 − y2

1 y2
2 − 3y4

1),

ẏ2 = y2(7y2
1 + 2y2

1 y2
2 + 10y4

1).

The edge of Γ̂ becomes vertical in the new system. Performing as before a change of

time, we may divide both sides by y2
1 to obtain

ẏ1 = −3y1 − y1y2
2 − 3y3

1 = y1(−3 − y2
2 − 3y2

1),

ẏ2 = 7y2 + 2y3
2 + 10y2

1 y2 = y2(7 + 2y2
2 + 10y2

1).

(53)

Under the change of variables (52), the line y1 = 0 corresponds to the origin, and there-

fore, we are interested in the integral curves of system (53) that intersect the line y1 = 0

at points with y2 �= 0. The set {y1 = 0, ±y2 > 0} are integral curves of (53), but they cor-

respond to t = s = 0 in the original system. According to Bruno [6, p. 141], the points on

the y2 axis can be either simple points, in which case the integral curves of (53) near

such points are parallel to the y2-axis, or singular points. The truncation of system (53)

(see the end of the previous section) contains only the terms that correspond to the edge

under consideration and its vertices, and thus has the form

ẏ1 = y1 f̂ ′
1̂0
(y2),

ẏ2 = y2 f̂ ′
2̂0
(y2),

(54)

where f̂ ′
2̂0
(y2)= 7 + 2y2

2 (we follow the notation of [6]). Singular points are determined

from the equation f̂ ′
2̂0
(y2)= 0. In our case f̂ ′

2̂0
(y2) is strictly positive. Therefore, in (54) all

points with y1 = 0, y2 �= 0 are simple points. From this we conclude that in the sector U (1)1

no integral curves of system (18) intersect the origin.

With this information the integral curves in all sectors can be glued together. It

is readily verified that the phase portrait of system (18) is in fact a saddle, the integral

curves in each quadrant of R2 are homeomorphic to hyperbolas and do not intersect the

coordinate axes (see Figure 4).
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Fig. 4. Phase portrait of (48).

7 Phase Portrait of Umbrella in General Position

We now perform similar calculations for the algorithm to determine the topologi-

cal structure near the origin of the dynamical system defined by (29). First of all we

represent it in the canonical form

ṫ = t(−2g12s + α02t−1s2 − 3g22t2 + o(|s| + |t−1s2| + |t|2)),

ṡ = s(4g11t2 + β12ts + β03s2 + 6g12t4s−1 + o(|t2| + |ts| + |s2| + |t4s−1|)).
(55)

The Newton diagram Γ̂ consists of three vertices (−1,2), (0,1), and (4,−1), and the two

edges between them (Figure 5). Five cases should be considered each corresponding to a

vertex or an edge of Γ̂ .

Case 1. Vertex (4,−1). This corresponds to the situation discussed in Section 5.4.

We obtain immediately the behavior of integral curves of the system. Namely, in the
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Fig. 5. The Newton diagram for (55).

sector

U (0)1 = {(t, s) ∈ R2 : (|t|, |s|)(1,0) ≤ ε, (|t|, |s|)(−2,1) ≤ ε} = {|t| ≤ ε, |s| ≤ ε|t|2}

the integral curves are vertical, in particular, there are no curves terminating at the

origin.

Case 2. Vertex (−1,2). Again the same analysis works here. Since (−1,2) is the

end point of Γ̂ , that is, of Type I in [6, p. 138], it follows from [6] that in

U (0)3 = {(t, s) ∈ R2 : (|t|, |s|)(0,1) ≤ ε, (|t|, |s|)(1,−2) ≤ ε} = {|s| ≤ ε, |t| ≤ ε|s|2}

the integral curves are horizontal, and no curves terminate at the origin.
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Case 3. Vertex (0,1). This is Type III in [6, p. 139]. After a change of time so that

dτ1 = s dτ , the system takes the form

ṫ = t(−2g12 + α02t−1s − 3g22t2s−1 + o(1 + |t−1s| + |t2s−1|)),

ṡ = s(4g11t2s−1 + β12t + β03s + 6g12t4s−2 + o(|t2s−1| + |t| + |s| + |t4s−2|)).
(56)

There are two sectors which can be assigned to vertex (0,1). One of them is determined

by R∗ = (2,−1) and R∗ = (−1,1), and equals

U (0)2 = {(t, s) ∈ R2 : (|t|, |s|)R∗ ≤ ε, (|t|, |s|)R∗ ≤ ε}.

We may apply here the Second Normal Form of Bruno. Since we consider a generic case,

we have λ1 = −2g12 �= 0. Further, λ2 = 0, because the second equation has no free term.

Recall that we use the notation Λ= (λ1, λ2). The line L determined by

L = {Q = (q1,q2) ∈ R2 : 〈Q,Λ〉 = 0} = {q1 = 0} (57)

enters the interior of the sector bounded by R∗ and R∗. It follows that in U (0)2 there are

no integral curves terminating at the origin.

On the other hand, we may use the Third Normal Form of Bruno for (56). It is

valid on a bigger domain, namely, on

2U (0)2 = {(t, s) ∈ R2 : (|t|, |s|)R∗ ≤ ε, |s| ≤ ε} = {|t|2 ≤ ε|s|, |s| ≤ ε}.

The region of the (t, s)-space where the dynamics takes place is given by

2V = {Q : Q = a1 R∗ + a2 · (0,1), a1,a2 ≥ 0}.

Now the line L determined from (57) enters 2V along its boundary, the s-axis. In general,

this yields a complicated behavior of the system in 2U (0)2 . In fact, there are four possi-

bilities as described in [6, p. 134 Case c)]. So which case is it? The salvation comes from

Case 2 seen earlier: it describes the behavior of the system in U (0)3 (which is a subset

of 2U (0)2 and a neighborhood of the s-axis). According to Case 2, the integral curves are

horizontal near the s-axis, which eliminates all possibilities but one. We conclude that

no integral curves enter the origin in 2U (0)2 .
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Case 4. Edge connecting (0,1) and (−1,2). The corresponding sector is defined by

U (1)2 = {Q ∈ R2 : ε≤ (|t|, |s|)(−1,1) ≤ ε−1}

(see [6, p. 139]). This case is subsumed by Case 3 because U (1)2 ⊂ 2U (0)2 in a suitable neigh-

borhood of the origin.

Case 5. Edge connecting (0,1) and (4,−1). We will consider the truncation of

system (29), that is, we keep only terms that are related to the edge under consideration.

We have

ṫ = t(−2g12s − 3g22t2),

ṡ = s(−4g11t2 + 6g12t4s−1).

(58)

The directional vector is R= (−2,1), and the sector in which the dynamics should be

understood is

U (1)1 =
{
(t, s) : ε≤ (|t|, |s|)(−2,1) ≤ 1

ε
, |t|, |s| ≤ ε

}
=
{
ε|t|2 ≤ |s|, |s| ≤ 1

ε
|t|2, |t| ≤ ε, |s| ≤ ε

}
. (59)

We need to make the following change of coordinates:

y1 = t,

y2 = t−2s,
(60)

which corresponds to the matrix

A=
(

1 0

−2 1

)
.

In the new coordinate system, (58) becomes

ẏ1 = y1(−2g12y2
1 y2 − 3g22y2

1),

ẏ2 = y2(4g12y2
1 y2 + (6g22 + 4g11)y

2
1 + 6g12y2

1 y−1
2 ).

(61)
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We divide by the maximal power of y1, which equals 2 in this case, by performing the

change of the independent variable: dτ1 = y2
1 dτ . This yields

ẏ1 = y1(−2g12y2 − 3g22),

ẏ2 = y2(4g12y2 + (6g22 + 4g11)+ 6g12y−1
2 ).

(62)

This is the system of Type I in [6, p. 125]. The y2-axis is an integral curve, but

it corresponds to the origin in (58). Consider first the points where the expression

4g12y2
2 + (6g22 + 4g11)y2 + 6g12 is not zero; the integral curves near such a point are par-

allel to the y2-axis. Going back to the original system via the inverse transformation

to (60), we see that the y2-axis blows down to the origin. Hence, these integral curves

do not terminate at zero in the original system. Now we need to investigate the situa-

tion near points where the aforementioned expression vanishes. For this we solve the

quadratic equation

2g12y2
2 + (3g22 + 2g11)y2 + 3g12 = 0. (63)

The discriminant of this equation is

D = 4g2
11 + 9g2

22 + 12g11g22 − 24g2
12.

Since 4g2
11 + 9g2

22 ≥ 12g11g22, it follows that D ≥ 24g11g22 − 24g2
12 = 24Δ> 0. Here Δ is

defined by (8). Thus, Equation (63) always has two simple roots:

c± =
−(3g22 + 2g11)±

√
4g2

11 + 9g2
22 + 12g11g22 − 24g2

12

4g12
.

(since we consider the generic case, we can assume that g12 �= 0). We point out that c±
are either both positive or both negative.

We need to investigate the dynamics near each point (0, c±). For that we first

need to translate c± to the origin via

z1 = y1, y2 = c± + z2.
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Fig. 6. Phase portrait in y-coordinates for g12 > 0.

In the new coordinates, the system becomes

ż1 = z1(−(2g12c± + 3g22)− 2g12z2),

ż2 = z2((8g12c± + 6g22 + 4g11)+ 4g12z2).

(64)

This is a system for which the origin is an elementary singularity (the linear part is not

zero). To determine the dynamics, we need to understand the sign of the coefficients of

the linear part, that is, of

λ1 = −(2g12c± + 3g22)= − 3
2 g22 + g11 ∓ 1

2

√
4g2

11 + 9g2
22 + 12g11g22 − 24g2

12

and

λ2 = 8g12c± + 6g22 + 4g11 = ±2
√

4g2
11 + 9g2

22 + 12g11g22 − 24g2
12.
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Fig. 7. Phase portrait of (55), g12 > 0.

Claim. λ1 and λ2 are of opposite signs both for c+ and c−. �

First note that λ1 and λ2 depend only on the coefficients gjk, that is, only on

the linear part of the map ψ ◦ φ. Therefore, it is enough to prove the claim for linear

symplectomorphisms. If φ is the identity map, then it is easy to see that λ1 and λ2 are of

opposite signs.

Suppose that for some linear symplectic map φ0, the signs of λ1 and λ2 are the

same. Since the symplectic group is connected, there is a path γ ⊂ Sp(4,R) connecting

the identity and φ0, and since λ j depend continuously on φ, there exists a symplectic map

on γ for which one of the λ j is zero. Since D> 0, it has to be λ1. So − 3
2 g22 + g11 = ± 1

2

√D.

Therefore,

4g2
11 − 12g11g22 + 9g2

22 = 4g2
11 + 9g2

22 + 12g11g22 − 24g2
12.

This implies that Δ= 0 – contradiction. This proves the claim.
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Since λ j are of different signs, it follows that both for c+ and c−, system (64) is a

saddle at the origin. Now we are able to describe the overall dynamics in U (1)1 . In (y1, y2)-

coordinates, we have the following: y2-axis as well as the lines y2 = c+ and y2 = c− are the

integral curves. More precisely, the integral curves are six half-lines: L1 = {(y1, c+), y1 >

0}, L2 = {(y1, c+), y1 < 0}, L3 = {(y1, c−), y1 > 0}, L4 = {(y1, c−), y1 < 0}, L5 = {(0, y2) : y2 > c+},
and L6 = {(0, y2) : y2 < c−}, and one interval I = {(0, y2) : min{c−, c+}< y2 <max{c−, c+}}.
The phase portraits near the points (0, c+) and (0, c−) are saddles, whose orbits in

between the lines y2 = c+ and y2 = c− are glued together, and are asymptotic to L1 and L3

or to L2 and L4; they do not touch I . Other orbits are asymptotic to L2 and L5 or to L5

and L1 or to L6, L4 or, finally, to L6 and L3 (see Figure 6). Going back to the original sys-

tem via the inverse transformation to (60), we see that the y2-axis blows down to a point,

and we have two integral curves s = c±t2 entering the origin, while other integral curves

are contained in the compliment of these two curves. Now, if we choose ε > 0 sufficiently

small in (59), we see that both curves s = c±t2 enter U (1)1 . This completes Case 5.

Now if we combine all the five cases together, and glue the integral curves from

all the cases, we see that the phase portrait at the origin of system (29) is a saddle

(Figure 7). With this analysis we can now conclude the proof of Proposition 1. Indeed,

let γ1 and γ2 be the curves s = c±t2. If K is a small compact not contained in the union of

γ1 and γ2, then one of the hyperbolas of the characteristic foliation will touch K at some

point. This proves Proposition 1.
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[5] Bishop, E. “Differentiable manifolds in complex Euclidean space.” Duke Mathematical Jour-

nal 32 (1965): 1–21.

[6] Bruno, A. D. Local Methods in Nonlinear Differential Equations. Springer Series in Soviet

Mathematics. Berlin: Springer, 1989, translation from Bruno, A. D. Lokal’nyj metod neline-

jnogo analiza differentsial’nykh uravnenij. (Russian)“Nauka”, Moscow, 1979. 253 pp.

[7] Chirka, E. “Regularity of the boundaries of analytic sets.” Matematicheskiĭ Sbornik 117,

no. 3 (1982): 291–336.

[8] Dumortier, F. “Singularities of vector fields on the plane.” Journal of Differential Equations

23, no. 1 (1977): 53–106.

[9] Dumortier, F., J. Llibre, and J. Artés. Qualitative Theory of Planar Differential Systems,

xvi+298. Universitext. Berlin: Springer, 2006.

[10] Duval, J. “Un exemple de disque polynomialement convexe.” Mathematische Annalen 281,

no. 4 (1988): 583–8.
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[15] Forstnerič, F. and E. L. Stout. “A new class of polynomially convex sets.” Arkiv för Matematik

29, no. 1 (1991): 51–62.
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