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ABSTRACT. A general class of singular real hypersurfaces, called
subanalytic, is defined. For a subanalytic hypersurface M in Cn,
Cauchy-Riemann (or simply CR) functions on M are defined,
and certain properties of CR functions discussed. In particular,
sufficient geometric conditions are given for a point p on a sub-
analytic hypersurface M to admit a germ at p of a smooth CR
function f that cannot be holomorphically extended to either
side of M. As a consequence it is shown that a well-known con-
dition of the absence of complex hypersurfaces contained in a
smooth real hypersurface M, which guarantees one-sided holo-
morphic extension of CR functions on M, is neither a necessary
nor a sufficient condition for one-sided holomorphic extension
in the singular case.
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1. MAIN RESULTS

In this paper we define a class of non-smooth real hypersurfaces in Cn, which
we call subanalytic, and study general properties of CR functions defined on them.
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Precise definitions are given in Section 2.1 and Section 3.1, but roughly speak-
ing, a subanalytic hypersurface M ⊂ Cn is a real codimension one subanalytic set
which divides any small enough neighbourhood U of any point p ∈ M into two
one-sided neighbourhoods U±. This gives a well-defined local orientation on the
smooth part Mreg of M, which allows us to do integration. We define a locally
integrable function f on a subanalytic hypersurface M to be CR if it satisfies∫

Mreg
f ∂̄ϕ = 0,

where ϕ is a test form of bidegree (n,n − 2). In Proposition 3.2, we show that,
just as with smooth hypersurfaces, continuous boundary values of holomorphic
functions on subanalytic hypersurfaces are CR.

It follows from the definition that the restriction of a CR function on a suban-
alytic set M to its regular part Mreg is CR in the usual sense. Although a function
on M which is CR on Mreg may fail in general to be CR on M, our first theo-
rem gives some sufficient conditions for a CR function on the smooth locus of a
hypersurface M to be CR on all of M.

Theorem 1.1. Let M be a subanalytic hypersurface in Cn, and let E be a sub-
analytic subset of Cn contained in M such that E is of codimension at least one in M.
Suppose that f is a function on M which is CR on M \ E.

(i) If f is continuous on M and vanishes on E, then f is CR on M.
(ii) If E has codimension at least two in M, and for z near E we have |f(z)| =

O(dist(z, E)−α), where 0 ≤ α < 1, then f is CR on M. In particular, if f is
bounded on M, then f is a CR function on M.

Theorem 1.1 is proved in Section 3 using the classical technique of
Bochner [2]. This method can be used to prove more general results of this type,
but we only develop the topic to the extent needed for our purposes.

The main thrust of this paper is in determining the conditions under which
there exist continuous CR functions on subanalytic hypersurfaces which are not
(locally) boundary values of holomorphic functions. For a smooth hypersurfaceM
in Cn, the existence of such functions onM near a point p ∈M is equivalent to the
existence of the germ of a complex analytic hypersurface A through p contained
in M. We say that a real hypersurface M (smooth or subanalytic) in a complex
manifold is non-minimal at a point p ∈ M, if there is a germ of a complex analytic
hypersurface A such that p ∈ A and A ⊂ M. If there is no such germ A, we say
thatM is minimal at p. Therefore, non-extendable CR functions exist near a point
on a smooth hypersurface (or even a hypersurface that can be locally represented
as a graph near a point) provided the hypersurface is non-minimal at that point.

For subanalytic hypersurfaces, the condition for the existence of non-extend-
able CR functions is more subtle. First of all, without an additional topological
assumption, non-minimality by itself does not suffice. Further, there is another
geometric condition, first introduced in [9], called two-sided support, that also
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gives rise to non-extendable CR functions. We say that M has proper two-sided
support at p ∈ M if there is an open neighbourhood Ω of p such that M dividesΩ into two connected components Ω+ and Ω−, and there exist germs at p of dis-
tinct complex analytic hypersurfaces A± ⊂ Ω± such that A+ ∩M = A− ∩M, see
Section 4.3 for details. We have the following sufficient conditions for the exis-
tence of smooth non-extendable CR functions on subanalytic hypersurfaces.

Theorem 1.2. Let M be a subanalytic hypersurface in Cn and p ∈ M. Suppose
that at least one of the following statements holds:

(i) M is non-minimal at p, i.e., there exists a complex hypersurface Z ⊂ M such
that p ∈ Z, and Z divides M locally into more than one component at p.

(ii) M has proper two-sided support at p.
Then, for every integer m ≥ 0 there is a CR function on M near p, of class Cm, that
does not extend as a holomorphic function to either side.

By a Cm-smooth function on M, we mean a function which is the restriction
to M of a Cm-smooth function on Cn. It should be noted that the assumption
that the hypersurface M is subanalytic plays a crucial role in the proof. While the
notion of non-minimality and proper two-sided support makes sense for singular
hypersurfaces of more general types, the proof of Theorem 1.2 would fail for more
general singular hypersurfaces whenm ≥ 1.

Note that if a hypersurface M can be represented as a graph near a point p,
and M is non-minimal at p, then the complex hypersurface contained in M must
divide M into two components (see [7]). Hence, the assumption that Z locally
divides M in (i) of Theorem 1.2 is automatically satisfied. However, in general, a
subanalytic hypersurface cannot be locally represented as the graph of a function.
At such a non-graph point p ∈ M, it is possible that M is non-minimal, but the
complex hypersurface A ⊂ M through p does not locally divide M near p. In
Sections 5 and 6 we consider some examples of such hypersurfaces, in particular,
we prove the following.

Theorem 1.3.
(i) For n ≥ 2, let

M1 = {(z1, . . . , zn) ∈ Cn : Re(z1z2)+ |z1|2 = 0}.

ThenM1 is non-minimal at the origin, but if f is a bounded CR function near
the origin, then f extends holomorphically to one side of M1. Further, if f is
Ck-smooth on M near 0, then the extension is Ck up to the boundary.

(ii) For n ≥ 3, let

N1 = {(z1, . . . , zn) ∈ Cn : Re(z1z2 + z1z̄3) = 0}.

Then N1 is non-minimal at the origin, but every bounded CR function on N1
near the origin extends holomorphically to a full neighbourhood of the origin.
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Further, there are infinitely many biholomorphically inequivalent hypersurfaces M ⊂
Cn, N ⊂ Cn with properties described in (i) and (ii).

Consequently, minimality is not a necessary condition for the local one-sided
holomorphic extension of all CR functions on a singular hypersurface. This is in
striking contrast with smooth or graph-like hypersurfaces.

In part (i), when f is merely bounded, the boundary value on M1 of the
extension should be understood in the sense of distributions on the smooth part,
see Section 3.3 for details. Part (ii) implies that every bounded CR function
on N1 near 0 is actually real-analytic. The proof of Theorem 1.3 is based on
the construction of the local envelope of holomorphy of an arbitrarily thin one-
sided neighbourhood of M \ {z1 = 0} (resp. N \ {z1 = 0}), followed by an
application of the Lewy extension theorem. The envelopes are obtained by an
explicit construction of analytic discs and the Kontinuitätssatz.

In the smooth (or even graph-like) situation, minimality is a necessary, as well
as sufficient condition for local holomorphic extension of CR functions to one
side. The sufficiency of minimality for C2 hypersurfaces is a celebrated result [20]
of Trépreau. This has been generalized to graphs of continuous real-valued func-
tions by Chirka [8]. It was shown in [9] that for singular hypersurfaces, minimal-
ity is no longer a sufficient condition for local one-sided holomorphic extension
(see Section 4.3). Combining this with Theorem 1.3 above we conclude that for
singular hypersurfaces minimality is neither a necessary nor a sufficient condition for
one-sided holomorphic extension of CR functions.

2. SUBANALYTIC SETS AND HYPERSURFACES

2.1. Definitions. Recall that a subset E of a real analytic manifold X is
called semianalytic if it is locally defined by finitely many real analytic equations
and inequalities. More precisely, for each p ∈ X, there is a neighbourhood U of
p, and real analytic in U functions fi, gij , where i = 1, . . . , r , j = 1, . . . , s, such
that

E ∩U =
r⋃
i=1

( s⋂
j=1

{x ∈ U : gij(x) > 0 and fi(x) = 0}
)
.

A real analytic set is clearly semianalytic. A subanalytic subset E of a real analytic
manifold X is one which can be locally represented as the projection of a semian-
alytic set. More precisely, for every p ∈ X, there exist a neighbourhood U of p in
X, a real analytic manifold Y , and a relatively compact semianalytic set Z ⊂ X×Y
such that E ∩ U = π(Z), where π : X × Y → X is the natural projection. In
particular, semianalytic sets are subanalytic. An excellent reference on semi- and
subanalytic sets is [4].

The dimension of a subanalytic set E, dimE, is the maximal dimension of the
germ of a real analytic submanifold contained in E. If E is a subanalytic subset
of a manifold X, by Ereg (the regular points of E) we denote the set of points
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p ∈ E near which E is a (real-analytic) submanifold of X of dimension dimE. Its
complement E \ Ereg (the singular locus) is denoted by Esing.

We now define the class of objects in which we are interested. Let X be a
topological space, let Y ⊂ X be a locally closed subset (i.e., for each q ∈ Y there
is a neighbourhood V of q in X such that V ∩ Y is a closed subset of V ), and
let p ∈ Y. We will say that Y locally separates X at p if the following holds:
for every neighbourhood V of p in X, there is a connected open neighbourhood
U of p contained in V , such that the set U \ Y has exactly two open connected
components U±, and we have U+ ∩ U− = Y ∩ Ū . A smooth hypersurface in
RN locally separates RN at each point, which is part of our intuitive idea of a
hypersurface. However, if X is a manifold, the notion of being locally separating
is much weaker than being a topological submanifold. For example, the set Y =
{x ∈ R4 : x2

1 +x2
2 −x3

3 −x2
4 = 0} locally separates R4 at each of its points, but is

not a topological submanifold of R4 near 0.
We can now make the following definition.

Definition 2.1. A locally closed subanalytic subset M of a real analytic man-
ifold X is called a subanalytic hypersurface in X if M locally separates X at each
point.

We note some elementary properties of subanalytic hypersurfaces.

(1) Let S be the set of smooth points of M, i.e., the set of points near which M
is a smooth manifold. Then S is a submanifold (possibly non-closed and possibly
non-connected) of codimension one in X. Indeed, S is a submanifold of X near
each of its points. But no submanifold of codimension two or more can locally
separate X.

(2) Let Ω be a neighbourhood of p ∈ M such that Ω \M has two connected
componentsΩ±. Then each component ofΩ∩Mreg is orientable, and it is possible
to assign an orientation to each component in such a way that the positive normal
points into Ω+ at each point.

To see this, consider the function ρ on X given

ρ(x) =


dist(x,M) for x ∈ Ω+,
−dist(x,M) for x ∈ Ω−.

Thanks to [4, Proposition 7.4], the function ρ2 is real analytic in a neighbourhood
of Mreg. It is easy to see that ρ itself is smooth in a neighbourhood of Mreg and
∇ρ is non-zero on Mreg. We orient each component of Mreg so that ∇ρ is the
positive normal.

(3) Here and in the sequel we denote byH the Hausdorff measure of codimen-
sion 1 in RN . Let M ⊂ RN be a subanalytic hypersurface. We denote by L1

loc(M)
the space of functions on M that are locally integrable on M with respect to the
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measureH in the following sense: f ∈ L1
loc(M), if for every compact K contained

in an open set U ⊂ X, where U has the property thatM∩U is closed in U , we have∫
K∩M

|f |dH < ∞ (since M is locally closed, every point has a neighbourhood in

which M is closed). It will be clear from Lemma 2.3 that every bounded function
on M is in L1

loc(M).

2.2. Properties. Subanalytic sets enjoy several closure properties: locally fi-
nite unions and intersections, set-theoretic differences, complements, topological
closures and interiors, and proper projections onto linear subspaces of subanalytic
sets are subanalytic. The sets of regular points and the singular locus of a subana-
lytic set are themselves subanalytic.

A fundamental property of subanalytic sets [10] is that they admit a stratifi-
cation by real analytic manifolds. In fact, any subanalytic set X in an open setΩ ⊂ RN can be represented as a locally finite disjoint union of subanalytic subsets
Ai of Ω, where each Ai is a (possibly non-closed) real analytic submanifold ofΩ, and the family {Ai} satisfies the frontier condition: if Ak ∩ A` is nonempty,
then Ak ⊂ A`, and dimAk < dimA`. For a subanalytic hypersurface, which is a
bounded subanalytic subset of RN , the stratification will consist of a finite number
of strata. Moreover, given a subanalytic set E ⊂ X, the stratification of X may be
chosen to be compatible with E, i.e., E (and therefore X \ E) is a union of strata.
The maximum dimension of a stratum in a stratification of a subanalytic set E
equals dimE, the dimension of E, and therefore, it is independent of the choice of
stratification.

An important property of subanalytic sets is Łojasiewicz’s inequality. In a sim-
ple form that suffices for our purposes it can be stated as follows: let K be a subset
of RN , and f : K → R be a function such that its graph is a compact subanalytic
set in RN+1, and let X = f−1(0). Then there exist C, r > 0 such that for any
x ∈ K,

(2.1) |f(x)| ≥ C dist(x,X)r .

Łojasiewicz’s inequality implies that any two subanalytic sets X and Y in RN are
regularly situated, i.e., for any x0 ∈ X ∩ Y there exist a neighbourhood V of x0,
and C, r > 0 such that for any x ∈ V ,

(2.2) dist(x,X)+ dist(x, Y) ≥ C dist(x,X ∩ Y)r .

For more details see, e.g., [4]. These inequalities are crucial for our construction
of smooth non-extendable CR functions.

Now we recall some metric properties of subanalytic sets. Let Γ ⊂ RN be an
analytic subvariety (not necessarily closed.) Suppose there exist an open set U in
a linear subspace E ⊂ RN , with dimE = k, and an analytic map ϕ : U → E⊥
with values in the orthogonal complement of E, such that Γ is the graph of ϕ
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in E ⊕ E⊥ = RN . We say that Γ is an ε-analytic patch if the differential of ϕ is
bounded by ε, i.e., ‖dϕ(x)‖ < ε for each x ∈ U .

Note that a smooth analytic submanifold of RN can be covered by a family of
ε-analytic patches, thanks to the implicit function theorem. The following result
shows that any bounded subanalytic set can be almost covered by finitely many
ε-analytic patches.

Result 2.2 ([13, Proposition 1.4; 17, Theorem 3.3]). Let Y ⊂ RN be a
bounded subanalytic set with dimY = k, and let ε > 0. Then there are disjoint
subanalytic sets Γ ε1 , . . . , Γ εK contained in Y such that

(i) dim(Y \⋃Ki=1 Γ εi ) < k,
and

(ii) the Γ εi are ε-analytic patches.

We now draw a corollary from this result. Since we are interested mainly
in hypersurfaces, we assume that the subanalytic sets are of codimension one,
although analogous results are easily proved for higher codimension.

Lemma 2.3. Let M be a bounded subanalytic subset of RN , dimM = N − 1.
There is a constant C > 0 such that if A is an affine subspace of RN with A∩Ω ⊂M,
then

H (M ∩ B(A, r)) ≤ CrN−dimA−1,

where B(A, r) = {x ∈ RN : dist(x,A) < r}.
Proof. Let B be a large enough ball in RN such that M ⊂ B. Fix ε > 0, and

using the theorem quoted before this lemma, write M as the disjoint union of
a finite number K of ε-analytic patches {Γi}Ki=1 each of dimension N − 1, and a
subanalytic set R, with dimR < N − 1. SinceH (R) = 0, it follows that,

H (B(A, r)∩M) =
K∑
i=1

H (B(A, r)∩ Γi).
Therefore, to prove the claim it is sufficient to show that for each i we have

(2.3) H (B(A, r)∩ Γi) ≤ C · rN−dimA−1,

for some constant C independent of A. We fix such an i.
There is an N − 1 dimensional subspace Ei of RN , an open set Ui ⊂ Ei, and a

real analytic map ϕi : Ui → E⊥i such that Γi is the graph of ϕi in Ei ⊕ E⊥i . Note
that Ui ⊂ B automatically holds. Denote by πi the orthogonal projection from
RN to Ei. Then, πi(Γi) = Ui, and

πi(B(A, r)∩ Γi) ⊂ πi(B(A, r))∩ Ui
⊂ B(πi(A), r)∩ Ui,
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since πi does not increase distances. Note that dimπi(A) = dimA, since πi is
injective on Γi. It is easy to see that

H (B(πi(A), r)∩ Ui) ≤ C · rN−dimA−1,

where C depends only on the radius of the ball B but is independent of A and r .
Therefore,

H (B(A, r)∩ Γi) = ∫
πi(B(A,r)∩Γi)

√
1+ |dϕi|2 dH (x)

≤
√

1+ ε2 ·H (πi(B(A, r)∩ Γi))
≤ C

√
1+ ε2rN−dimA−1,

which proves the result. ❐

3. CR FUNCTIONS AND REMOVABLE SINGULARITIES

3.1. CR functions on singular hypersurfaces. Recall that for a smooth real
hypersurface M in a complex manifold X, a function f on M is called CR if it
satisfies the tangential Cauchy-Riemann equations ∂̄bf = 0. More generally, we
can consider distributions which satisfy this equation. If f ∈ L1

loc(M) and M
is orientable, the tangential Cauchy-Riemann equations can be rewritten in the
adjoint form: f is CR if and only if for each ϕ ∈ Dn,n−2(X) (the space of C∞

forms with compact support in X of bidegree (n,n− 2)) we have
∫
M
f ∂̄ϕ = 0.

We wish to generalize the notion of CR functions to singular hypersurfaces.
In [9], we considered the class of real-analytic hypersurfaces. The smooth part
of such hypersurfaces is always locally orientable, and this allows us to define CR
functions using the adjoint form of the Cauchy-Riemann equations.

For the more general class of subanalytic hypersurfaces considered here, we
define CR functions in the same way. Let M be a subanalytic hypersurface in Cn,
n ≥ 2, and let f ∈ L1

loc(M). We say that f is CR at p ∈ M, if there exists an
open neighbourhood Ω of p in Cn such that Ω \ M has exactly two connected
components, Ω+ and Ω−, and for every ϕ ∈ Dn,n−2(Ω), we have

(3.1)
∫
Mreg∩Ω f ∂̄ϕ = 0,

where each component of Mreg ∩ Ω is oriented in such a way that the positive
normal points into Ω+. We say that f is CR on M if it is CR at each point of M.
When M and f are smooth, this is equivalent to the tangential Cauchy-Riemann
equations ∂̄bf = 0.

It follows from the definition that being CR is a local property. If now ω is
an open set of a subanalytic hypersurface M, such that there exists a well-defined
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orientation onω, then a simple argument involving partition of unity shows that
if f is CR at every point ofω, then f is CR onω in the sense that (3.1) holds for
some open neighbourhood Ω ofω and all forms ϕ with compact support in Ω.

3.2. Proof of Theorem 1.1. Let M be a bounded subanalytic hypersurface
in Cn. For a subset E of M and a function f on M define

Sf (E, r) = ess. supH
r/2<dist(z,E)<r

|f(z)|,

i.e., Sf (E, r) is the essential supremum (with respect to the measure H ) of |f |
over the points on M which are at distance at least r/2 and at most r from E. We
let CR(M) denote the space of CR functions onM.

Now let E be a closed subanalytic subset of M of dimension at most 2n − 2.
We fix a stratification of the subanalytic hypersurface M by finitely many disjoint
subanalytic subsets of Cn which are real analytic submanifolds of Cn satisfying the
frontier condition and compatible with E, i.e., E and M \E are the union of some
strata. We have the following result:

Proposition 3.1. Let f ∈ L1
loc(M) ∩ CR(M \ E), let A(p) be the stratum

through p ∈M, and let k(p) = dimA(p). If at each p ∈ E we have

(3.2) lim
r→0+

r 2n−k(p)−2Sf (A(p), r) = 0,

then f is CR on M.

Proof of Proposition 3.1. For the given stratification (compatible with E), de-
note by Ed the union of all strata contained in E of dimension greater than or
equal to d. Then E0 = E, the inclusion Ed+1 ⊂ Ed holds, and E2n−1 = ∅.
The proof will consist of an inductive process, in which we assume that f ∈
CR((M \ E)∪ Ed+1) and deduce that f ∈ CR((M \ E) ∪ Ed). Since by hypoth-
esis, f ∈ CR((M \ E) ∪ E2n−1) the proof will be completed in at most 2n − 1
iterations of this process.

For 0 ≤ d ≤ 2n−2, assume f ∈ CR((M \E)∪Ed+1), and let p ∈ Ed \Ed+1,
so that k(p) = d. We fix a neighbourhood U of p in Cn, with the following
properties:

(i) A(p)∩U can be “flattened” by a real analytic diffeomorphism (possible since
A(p) is locally a manifold),

(ii) U does not intersect any stratum of dimension less than d (possible by the
frontier condition),

(iii) U \M has exactly two components U± (possible since M is locally separat-
ing).

For convenience, let A = A(p), and let B(A, r) = {x ∈ Cn : dist(x,A) < r}.
It is easy to see that for r > 0 small, there is a cutoff function ψr supported in
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B(A, r), such that ψr ≡ 1 in B(A, r/2) and

|∂̄ψr | = O
(

1
r

)
.

Note that supp(∂̄ψ) ⊂ B(A, r) \ B(A, r/2).
We need to show the following: for every ϕ ∈ D(n,n−2)(U), we have∫

Mreg∩U
f ∂̄ϕ = 0,

whereMreg∩U is oriented as in equation (3.1). We writeϕ = (1−ψr)ϕ+ψrϕ.
Then (1 −ψr)ϕ is an (n,n − 2) form with support in U \ A. Since (U \ A) ∩
M ⊂ (M \ E) ∪ Ed+1, and by hypothesis f is CR on (M \ E) ∪ Ed+1, we have∫
Mreg

f ∂̄((1−ψr)ϕ) = 0. Therefore,

∫
Mreg∩U

f ∂̄ϕ =
∫
Mreg∩U

f ∂̄(ψrϕ)

=
∫
Mreg∩U

f ∂̄ψr ∧ϕ +
∫
Mreg∩U

fψr ∂̄ϕ.

Since ψr → 0 pointwise on Mreg and f ∈ L1
loc(M), it follows easily from the

dominated convergence theorem that the second term approaches 0 as r → 0+.
Therefore, it remains to show that the first term approaches 0 as r → 0+. Since
supp(∂̄ψr ) ⊂ B(A, r) \ B(A, r/2) and supp(ϕ) ⊂ U ,

∣∣∣∣∫
Mreg∩U

f ∂̄ψr ∧ϕ
∣∣∣∣

≤ C · ess. supH
z∈(B(A,r)\B(A,r/2))∩U

|f(z)| · 1
r
·H (B(A, r)∩Mreg)

≤ C
(

ess. supH
z∈(B(A,r)\B(A,r/2))∩U

|f(z)|
)1
r
r 2n−d−1 by Lemma 2.3

≤ CSf (A, r)r 2n−d−2.

Our result now follows from equation (3.2). ❐

Proof of Theorem 1.1.
(i) We fix some stratification of M compatible with E. Then for each p ∈ E

we have S(A(p), r) → 0 as r → 0. However, since k(p) ≤ 2n− 2 for each point
p ∈ E, we have 2n − k(p) − 2 ≥ 0. Therefore, (3.2) is satisfied, and the result
follows from Proposition 3.1.
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(ii) We first verify that f ∈ L1
loc(M) (this is true even if E has codimension

one in M). We fix a stratification of M compatible with E. Let p ∈ E, and let A
be the stratum of M through p. We define for ν ∈ N,

Kν = {z ∈ M : 2−(ν+1) < dist(z,A) ≤ 2−ν}.

By Lemma 2.3,

H (Kν) ≤H (B(A,2−ν)∩M)

= O((2−ν)2n−dimA−1)

= O(2−ν).

Note also that if z ∈ Kν , |f(z)| = O(2να). Therefore,∫
Mreg∩B(A,1)

|f(z)|dH (z) ≤ C
∞∑
ν=0

2να · 2−ν

= C
1− 2α−1 <∞.

To verify that f is CR, we note that for any p ∈ E, we have S(A(p), r) ≤
Cr−α and 2n − k(p) − 2 ≥ 1. Therefore, near p, S(A(p), r)r 2n−k(p)−2 ≤
Cr 1−α → 0 as r → 0+, and the result again follows from Proposition 3.1. ❐

Let M be a smooth hypersurface in Cn, minimal at a point p ∈ M. Let E be
a smooth real submanifold of Cn of codimension two, and E ⊂ M. Then, after
shrinking M, M \ E has two components M±. Let f be the function on M which
is 1 onM+ and 0 onM−. Then f ∈ L∞loc(M) ⊂ L1

loc(M), and f ∈ CR(M \E). We
claim that f is not CR. Indeed, if f were CR, it would extend holomorphically to
a one-sided neighbourhood of p by Trépreau’s theorem. Then the extension had
to be both identically 1 and identically 0, which is a contradiction. Therefore, f
is not CR, and singularities of codimension 1 are not in general removable for locally
bounded functions.

3.3. CR functions as boundary values of holomorphic functions. Let M
be a smooth real hypersurface in Cn. Let f be a bounded holomorphic function
defined on one side of M (more generally we may assume that f is of polynomial
growth near M). Then there is a well-defined CR distribution bv f on M acting
on a test function χ on M by

bvf(χ) = lim
t→0+

∫
M
f(z + tν(z))χ(z)dH ,

where ν is the unit normal vector to M with a suitable orientation. The distribu-
tion bvf is called the boundary value of f on M. In particular, if f is continuous
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up to M, then simply bvf = f |M . For more details, see [3] or [14]. Conversely,
given a distribution u on M, we say that u extends to a holomorphic function f
on one side of M, if bvf = u.

For a subanalytic hypersurface M and a one-sided connected neighbourhood
ω ofM we say that a holomorphic function F onω is the holomorphic extension
of a CR function f on M if f |Mreg is the boundary value of F on the smooth
hypersurface Mreg in the sense of the previous paragraph.

Just as for smooth hypersurfaces, continuous boundary values of holomor-
phic functions on subanalytic hypersurfaces are CR. More precisely, the following
holds.

Proposition 3.2. Let M be a subanalytic hypersurface in Cn and let Ω be a
domain in Cn such thatΩ\M has two componentsΩ+ andΩ−. Let f be a continuous
function on Ω+ ∪ (M ∩Ω) such that f |Ω+ is holomorphic. Then f |M∩Ω is CR.

Proof. By Theorem 1.1 (ii), we only need to consider the case when Msing

has codimension one in M. We fix a stratification of M compatible with Msing.
Thanks to Theorem 1.1 (ii) again, it is sufficient to show that f is CR near every
point p of any stratum A of dimension 2n − 2 contained in Msing. Fix p, and
shrink Ω around p so that Ω ∩M is the disjoint union of A ∩ Ω and Mreg ∩ Ω
(this is possible by the frontier condition). To prove that f |M∩Ω is CR we need to
show that

(3.3)
∫
Mreg∩Ω f ∂̄ϕ = 0

for any ϕ ∈ Dn,n−2(Ω).
By Sard’s theorem, we can find a sequence εj ↘ 0 such that the smooth hy-

persurfaces Aj = {z ∈ Ω : dist(z,A) = εj} meet Mreg transversely. We set
A+j = Aj ∩ Ω+, Mj = {z ∈ Mreg : dist(z,A) ≥ εj}, and M+j = Mj ∪ A+j . Note
that M+j divides Ω into two open sets (not necessarily connected)

Ω+j = {z ∈ Ω+ : dist(z,A) > εj}
and Ω−j = Ω \Ω+j .

We orient (M+j )
reg by declaring that at each point the normal into the setΩ+j is the positively directed normal. This allows us to define CR functions on

M+j in the usual way. Fixing j for now, we claim that f |M+j is CR. Indeed, since
Mj is smooth, the restriction of f to the interior of Mj is CR (boundary value
of a holomorphic function on a smooth boundary). Moreover, f |A+j is also CR
(restriction of a holomorphic function). Thus, it remains to show that f is CR
near any point q ∈ Aj∩Mj . For this we adapt the argument in [11, Proposition 4].
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It suffices to show that there exists a small neighbourhoodω of q in Cn such that
for any form ψ ∈ Dn,n−2(ω),

(3.4)
∫
(M+j ∩ω)reg

f ∂̄ψ =
∫

int(Mj)∩ω
f ∂̄ψ+

∫
int(A+j )∩ω

f ∂̄ψ = 0.

Letω be a small enough ball with centre at q in Cn, so that, by the Baouendi-
Tréves theorem [3, Theorem 2.4.1] the CR function f can be approximated uni-
formly onMreg∩ω by a sequence of holomorphic polynomials fν on Cn. Further,
by Sard’s theorem, after shrinkingω, we can assume that the sphere ∂ωmeetsMj
transversely, so that Stokes’ theorem applies to the domain int(Mj)∩ω. Then∫

int(Mj)∩ω
f ∂̄ψ = lim

ν→∞

∫
int(Mj)∩ω

fν ∂̄ψ(3.5)

= lim
ν→∞

∫
int(Mj)∩ω

d(fνψ)

=
∫
Mj∩Aj∩ω

fψ,

where the last equality holds by Stokes’ theorem.
Now we let {Vk} be an exhaustion of int(A+j ) ∩ ω by smoothly bounded

relatively compact subdomains. Note that f is actually holomorphic in a neigh-
bourhood of each Vk. A parallel computation gives∫

Vk
f ∂̄ψ =

∫
Vk
∂̄(fψ) =

∫
Vk

d(fψ) =
∫
∂Vk
fψ.

Letting k go to infinity, we obtain, using the continuity of f :

(3.6)
∫

int(A+j )∩ω
f ∂̄ψ =

∫
Mj∩Aj∩ω

fψ.

Since in equations (3.5) and (3.6) the integrals on the right are taken with the
opposite orientation, (3.4) follows. Hence, f is CR onM+j ∩ω, and therefore, on
M+j .

Since f ∈ CR(M+j ), it follows that for any ϕ ∈ Dn,n−2(Ω),∫
int(Mj)

f ∂̄ϕ = −
∫

int(Aj)
f ∂̄ϕ.

Therefore,∫
Mreg∩Ω f ∂̄ϕ = lim

j→∞

∫
int(Mj)

f ∂̄ϕ = − lim
j→∞

∫
int(Aj)

f ∂̄ϕ = 0,

since Vol(Aj)→ 0. This proves the proposition. ❐
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If in Proposition 3.2 we assume more about M, then we can relax the condition
that f is continuous up to the boundary. For example, Theorem 1.1 (ii) implies
that if Msing has codimension at least two, and f is a bounded holomorphic func-
tion on Ω+, then bvf is a CR function. This gives examples of non-continuous
CR functions on M as boundary values of holomorphic functions on Ω+.

3.4. Jump formula. We recall some facts regarding the jump representation
of CR functions, which in the smooth case goes back to the work of Andreotti-
Hill [1] and Chirka [5] (see also [14] for a detailed account). Let Ω be a domain
in Cn such that H0,1(Ω) = 0 (for example we can take Ω to be pseudoconvex).
LetM be a subanalytic hypersurface, which is closed in Ω such that Ω\M consists
of two connected components Ω±. Orient Mreg such that the positive normal
points into Ω+ at each point. Denote by [M] the current of integration of degree

one in Ω defined by [M]ϕ =
∫
Mreg

ϕ for compactly supported smooth (2n− 1)

forms ϕ in Ω (this is well defined since M has locally finite H -measure.) Let
[M] = [M]0,1 + [M]1,0 be the natural splitting of [M] into currents of bidegree
(0,1) and (1,0) respectively. Let f be a CR function on M. Then the fact that f
is CR (i.e., equation (3.1) holds) can be expressed in the language of currents by
the equation ∂̄(f [M]0,1) = 0.

Since H0,1(Ω) = 0, the equation

(3.7) ∂̄u = f[M]0,1

can be solved for a distribution u on Ω. We set f± = u|Ω± . Then f± are
holomorphic on Ω±, and a study of the local behavior of f± near Mreg using
the Bochner-Martinelli transform (see, e.g., [14]) shows that the following Jump
formula holds in the sense of distributions on Mreg:

(3.8) f = bvf+ − bvf−.

Since f ∈ L1
loc(M), we have, in fact, a stronger result that for every compact

K ⊂ Ω,

lim
ε→0+

∫
Mreg∩K

|f+(ζ + εν(ζ))− f−(ζ − εν(ζ))− f(ζ)|dH (ζ) = 0,

where ν(ζ) is the unit normal vector to Mreg at ζ ∈ M.

4. NON-EXTENDABLE CR FUNCTIONS: PROOF OF THEOREM 1.2

4.1. Preliminaries. In this section we give two sufficient conditions for
the existence of CR functions on a subanalytic hypersurface which do not admit
local holomorphic extensions to either side. The first condition is non-minimality
together with an additional topological assumption. The second situation when
non-extendable CR functions arise is due to two-sided support.
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Throughout the section µ will denote the multi-index µ = (µ1, . . . , µn),
where the µj are non-negative integers, and |µ| = µ1 + · · · + µn, further,

Dµ B
∂|µ|

∂xµ1
1 ∂x

µ2
2 · · · ∂xµnn

will denote the operator of partial differentiation of order µ. With this notation
the Leibniz formula takes the form

(4.1) Dµ(fg) =
∑
k≤µ

µ!
k!(µ − k)!D

kf dµ−kg,

where µ! = µ1!µ2! · · ·µn! and k ≤ µ means that kj ≤ µj for each j = 1, . . . , n.
For an open set Ω ⊂ Rn, and for an integer m ≥ 0, we denote as usual by

Cm(Ω) the space of functions on Ω whose partial derivatives of order ≤ m exist
and are continuous. By Cmb (Ω) we denote the subspace of Cm(Ω) consisting of
functions with bounded partial derivatives of order ≤ m. For f ∈ Cm(Ω) and
x ∈ Ω, let

|f(x)|Cm =
∑
|k|≤m

|Dkf(x)|.

Then, using the Leibniz rule, it is easy to prove by induction that for |µ| =m,

(4.2)

∣∣∣∣∣Dµ
(

1
g(x)

)∣∣∣∣∣ ≤ Cm (|g(x)|Cm)m|g(x)|1+m .

The following two lemmas will be used in the proof of Theorem 1.2.

Lemma 4.1. Let Ω ø Rn be a bounded domain, and E be a closed subset ofΩ. Let m ≥ 0. Suppose that f ∈ Cm(Ω \ E), and g ∈ Cmb (Ω) is such that
|g(x)| ≤ C dist(x, E) for some C > 0, and for every multi-index µ, |µ| ≤m, there
are constants Bµ > 0, p(µ) ≥ 0 such that

|Dµf(x)| ≤ Bµ dist(x, E)−p(µ).

Then there exists an integer L such that the function

(4.3) h =


fgL on Ω \ E,
0 on E,

is in Cmb (Ω).
Lemma 4.2. Let E1, E2 be closed subanalytic subsets of Rn, let Z = E1 ∩ E2 ,

∅ and let z ∈ Z. Then there exist a neighbourhood Ω of z in Cn, a function
χ ∈ C∞(Ω \ Z) with 0 ≤ χ ≤ 1, and a constant r > 0 such that:
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(1) χ ≡ 1 in a neighbourhood U1 of E1\Z in Ω\Z; and χ ≡ 0 in a neighbourhood
U2 of E2 \ Z in Ω \ Z.

(2) Neighbourhoods U1 and U2 can be chosen in such a way that there exists a
constant c such that if x is not in U1 (resp. U2), then

dist(x, E1) ≥ c dist(x,Z)r (resp. dist(x, E2) ≥ c dist(x,Z)r ).

(3) For every integer m ≥ 0, there is a constant C > 0 such that for any µ with
|µ| =m,

(4.4) |Dµ(χ(x))| ≤ C dist(x,Z)−rm
3
.

In order not to interrupt the flow of the proof, we postpone the proofs of
Lemmas 4.1 and 4.2 to Section 4.4.

4.2. Non-minimality. Recall that a subanalytic hypersurface M is said to be
non-minimal at a point p ∈ M, if there is a complex hypersurface A in a neigh-
bourhoodω of p ∈ Cn which passes through the point p and is contained in M.
In general, as shown by Theorem 1.3, unlike the smooth case, non-minimality
does not directly imply the existence of non-extendable CR functions. The fol-
lowing proposition proves Theorem 1.2 if condition (1) holds.

Proposition 4.3. Let M be a subanalytic hypersurface in Cn and p ∈ M. Sup-
pose there is a germ of a complex hypersurface Z ⊂ M such that p ∈ Z, Z divides
M locally into more than one component at p. Then, for every integer m ≥ 0 there
is a CR function on M near p, of class Cm, which does not extend as a holomorphic
function to either side.

Proof. Let Ω be a ball centred at p such that Ω is divided by M into two
components Ω±, and such that there exists ϕ ∈ O(Ω) with Z ∩ Ω = ϕ−1(0).
After shrinking Ω, we may assume that ω B Ω ∩M is divided by Z into more
than one component. We can therefore write ω \ Z as the disjoint union of two
non-empty open sets ω+ and ω−, which have Z as their common boundary. By
Lemma 4.2, after shrinking the ball Ω if required, there is a χ ∈ C∞(Ω \ Z) such
that χ ≡ 1 on ω− \ Z, and χ ≡ 0 on ω+ \ Z, and for some r > 0, we have
|Dµχ(z)| ≤ C dist(z, Z)−r |µ|3 . Therefore, by Lemma 4.1, for a fixed m, there is
an integer L ≥ 0, such that f =ϕLχ ∈ Cm(Ω).

We claim that f |ω is a CR function on M near p, and f does not extend
holomorphically near p to either Ω+ or Ω−. Indeed, onω the function f is given
by

f(z) =


0 for z ∈ω+ ∪ (Z ∩ω),

ϕ(z)L for z ∈ω−.

Since at each point onω\Z, f is the restriction of a holomorphic function defined
in a neighbourhood of that point, f is CR on ω \ Z, continuous, and vanishes
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on Z. Therefore, by Theorem 1.1 (i) it is CR on ω. Clearly, by the boundary
uniqueness theorem, f cannot extend as a holomorphic function to either of the
open sets Ω±. ❐

We remark here that it is well known that if M is a C∞-smooth hypersurface, then
near non-minimal points there are CR functions of class C∞ that do not extend
holomorphically to either side of M. Under precisely what hypotheses there exist
non-extendable C∞-smooth CR functions on (singular) subanalytic hypersurfaces
is an open question.

4.3. Proper two-sided support. We first recall a notion that was introduced
in [9].

Definition 4.4. Let M be a subanalytic hypersurface in Ω ⊂ Cn, and let
p ∈ M. We say that M has two-sided support at p if there are germs of complex
analytic hypersurfaces A± ⊂ Ω± which pass through p. We say that it has proper
two-sided support at p if A± may be taken to be different, and such that

(4.5) A+ ∩M = A− ∩M.

Note that according to this definition, non-minimality is a special case of
(non-proper) two-sided support, namely, when A+ and A− coincide. However,
unlike non-minimality, proper two-sided support cannot occur at smooth points:

Proposition 4.5. If a point p ∈M admits two-sided support by distinct complex
hypersurfaces on the two sides, then M cannot be represented in holomorphic coordi-
nates near p as a graph over a real hyperplane. Hence, A+ ∩A− ⊂ Msing.

Proof. Suppose that M is represented near p = 0 as a graph over a real hy-
perplane H, and let L be any complex two-dimensional linear subspace of Cn
transverse to H. Then, M ∩ L is represented as a graph over H ∩ L and has proper
two-sided support by A±∩L. Assume without loss of generality that A+ is situated
above the graph M and A− below it. Let v be a vector in L orthogonal to H ∩ L.
We set Bt = {z + tv : z ∈ A± ∩ L}. Then Bt is a complex curve in L, and for
t > 0, we have

(4.6) Bt ∩ C = ∅,

where C = A− ∩ L. On the other hand, B0 ∩ C contains the point 0 and as
t → 0+, Bt → B0. We claim that this situation is not possible. This can be
deduced from general properties of intersection of analytic varieties (see e.g. [6]),
but we give a simple proof. Let U be a neighbourhood of 0 in C2, and let ft be
a family of holomorphic functions on U , depending continuously on t such that
Bt ∩ U = f−1

t (0). Let ∆ be the unit disc in C, and let ϕ : ∆̄ → C ∩ U be a
Puiseux parametrization of C near 0 such that ϕ(0) = 0. Let gt = ft ◦ϕ. Then
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g0(0) = 0, and g0 is holomorphic on the closed unit disc. It follows that there
exists ε > 0 such that for |t| < ε, we have

1
2πi

∫
∂∆
gt ′(ζ)
gt(ζ)

dζ = 1
2πi

∫
∂∆
g′0(ζ)
g0(ζ)

dζ,

since the integral on the left assumes only integer values (the number of zeros of
gt in ∆) and depends continuously on t. Therefore, gt(z) = 0 for some z ∈ ∆,
and thus both Bt and C pass through ϕ(z), which contradicts (4.6). ❐

We note that two-sided support occurs frequently in nature. In fact, if A± are
distinct complex hypersurfaces in an open set Ω in Cn such that E = A+ ∩ A− is
non-empty with p ∈ E, and each of A± \ E is connected (this happens when A±
are irreducible), then

M = {z ∈ Ω : dist(z,A+) = dist(z,A−)}

has proper two-sided support at p. It is easy to verify that Ω± = {z ∈ Ω :
±(dist(z,A+)−dist(z,A−)) > 0} are connected, and it follows from [4, Remarks
3.11] that M is subanalytic (and real-analytic if A± are smooth.) If M is not
minimal at p, after a small perturbation, we get a hypersurface M̃ which has two-
sided support at p by A±, and which is minimal at p. In [9], the quadratic cones
(zero-sets of real quadratic forms in Cn) with two-sided support were classified.

We now prove the other half of Theorem 1.2.

Proposition 4.6. Let M be a subanalytic hypersurface in Cn and p ∈ M. Sup-
pose that M has proper two-sided support at p. Then, for every integer m ≥ 0 there is
a CR function onM near p of class Cm that does not extend as a holomorphic function
to either side.

Proof. Let A± be the two supports of M on the opposite sides at p. LetΩ be a neighbourhood of p in Cn such that Ω \ M has two components Ω±,
and A± ⊂ Ω±. After shrinking Ω, we may assume that there are holomorphic
functions ϕ± on Ω such that A± = ϕ−1± (0). We set Z = A+ ∩A−. It follows that
A+ ∩M = A− ∩M = Z.

We now construct a Cm-smooth CR function on M near p which does not
admit a local holomorphic extension to either of Ω±.

By Lemma 4.2, there exist a function χ ∈ C∞(Ω \ Z) such that χ ≡ 0 in a
neighbourhood U− of A− \ Z, χ ≡ 1 in a neighbourhood V of M \ Z, and r > 0
such that |Dµχ(z)| ≤ C dist(z, Z)−r |µ|3 for any multi-index µ. Further,

|ϕ−(z)| ≥ C dist(z,A−)s Łojasiewicz’s inequality (2.1)(4.7)

≥ C dist(z, Z)rs by conclusion (2) of Lemma 4.2.
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Define

g =


χ
ϕ−

on Ω \A−,
0 on A− \ Z.

Then g is smooth on Ω\Z and vanishes on U−. Therefore, using the Leibniz rule
and (4.2), we conclude that for any multi-index µ,

|Dµg(z)| ≤ C
∑
k≤µ
|Dkϕ−(z)−1| |Dµ−kχ(z)|

≤ C
∑
k≤µ
|ϕ−(z)−|k|−1| |Dµ−kχ(z)|

≤ C dist(z, Z)−2|µ|rs dist(z, Z)−r |µ|
3

≤ C dist(z, Z)−p(µ),

where the constants are independent of z (but may depend on ϕ−). For a fixed
m, by Lemma 4.1, there exists L ≥ 0 such that the function

h− =


ϕL+g on Ω \ Z,
0 on Z,

is Cm-smooth on Ω. By interchanging the role of ϕ+ and ϕ− we may construct
the same way a Cm-smooth function h+. Since the restriction of the function
h+ − h− to Mreg is CR, and the function vanishes on Msing, it follows from
Theorem 1.1 (i), that it is CR on M. By construction, h+ − h− cannot have
holomorphic extension to either side of M. Indeed, by the boundary uniqueness
theorem, such an extension must coincide with the meromorphic function

f̃ = ϕ
L+

ϕ−
− ϕ

L̃−
ϕ+

on Ω \ (A+ ∪A−) and therefore cannot be defined on a one-sided neighbourhood
of p on either side. ❐

4.4. Proofs of Lemma 4.1 and Lemma 4.2

Proof of Lemma 4.1. Suppose first that f ∈ Cmb (Ω \ E). Then fg becomes
continuous on Ω if it is extended by 0 on E, which proves the result for m = 0.
For m = 1, we can use the definition of partial derivatives to check that h = fg2

(again extended by 0 on E) is in C1(Ω). Form ≥ 2, we may take h = fgm+1; the
proof is an easy induction using the Leibniz formula.
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By the last paragraph, to prove the general case, it suffices to show that for a
given f ∈ Cm(Ω \ E), there is an L such that fgL ∈ Cmb (Ω \ E). Let q(m) =
max|µ|≤mp(µ). For everym, then there exists C such that

|Dµf | ≤ C dist(· , E)−q(m),
and q(m) is increasing in m. For a fixed m, we let L be an integer such that
L ≥ q(m)+m. If µ is any multi-index such that |µ| ≤m, then

|Dµ(gLf)| ≤ C
∑
k≤µ
|Dµ−kgL| |Dkf |

≤ C
∑
k≤µ
|g|L−|k| dist(· , E)−q(|k|)

≤ C dist(· , E)L−|µ| dist(· , E)−q(|µ|)

≤ C dist(· , E)L−m−q(m).

By the choice of L, we have fgL ∈ Cmb (Ω \ E). ❐

For the proof of Lemma 4.2, we will need to use the following fact regarding the
existence of a regularized distance function in Rn:

Result 4.7 ([18, Chapter VI, Theorem 2]). For any closed subset E ⊂ Rn, there
is a C∞ function δ on Rn \ E such that,

(1) C1 dist(x, E) ≤ δ(x) ≤ C2 dist(x, E), for x ∈ Rn \ E, and
(2) for every multi-index µ, we have

(4.8) |Dµδ(x)| ≤ Bµ
δ(x)|µ|−1 ,

where the constants C1, C2 and Bµ are independent of E.

Proof of Lemma 4.2. In this proof we denote by C any constant which is in-
dependent of the point x ∈ Rn \ Z.

Let λ be a C∞-smooth function on R with values in the interval [0,1] such
that

λ(t) =


1 if t ≤ 1

2 ,

0 if t ≥ 1.

For j = 1, 2, let δj be a regularization of dist(z, Ej) as given by the result
quoted above. We define χ ∈ C∞(Rn \ Z) by

χ(x) =


λ
(
δ1(x)
δ2(x)

)
if x ∉ E2,

0 if x ∈ E2 \ Z.
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Then conclusion (1) of the lemma holds for χ, if we take

U2 =
{
δ1(x)
δ2(x)

≥ 1
}

and U1 =
{
δ1(x)
δ2(x)

≤ 1
2

}
.

Therefore, we need to consider only x ∈ U , where

U =
{
x ∈ Rn \ Z :

1
2
<
δ1(x)
δ2(x)

< 1
}
.

Since E1 and E2 are regularly situated (see (2.2)), it follows that there exist a
bounded neighbourhood Ω of z in Cn and r > 0 such that for x ∈ Ω,

dist(x, E1)+ dist(x, E2) ≥ C dist(x,Z)r .

After shrinking Ω, we may assume that for x ∈ Ω, we have dist(x,Z) < 1,
δ1(x) < 1, δ2(x) < 1. Thanks to the comparability of δj and dist(x, Ej), we
have

δ1(x)+ δ2(x) ≥ C dist(x,Z)r .

If x ∉ U1, then δ1(x) > 1
2δ2(x), and therefore, δ1(x) ≥ C dist(x,Z)r . By

the comparability of δ1 with dist(· , E1), conclusion (2) follows. The estimate for
x ∉ U2 follows exactly the same way. Consequently, if x ∈ U ∩ Ω, then for
j = 1,2,

(4.9) δj(x) ≥ C dist(x,Z)r .

For the last conclusion, note that it holds for µ = 0 if C > 1. Now, for
x ∈ U1 ∪ U2, the function χ is locally constant. Therefore, we only need to
estimate Dµ(χ(x)) for x ∈ (U ∩Ω) \ Z.

First, for any multi-index k,

|Dk(δ2(x)−1)| ≤ C
δ2(x)|k|+1 · (|δ2(x)|C|k|)|k| from (4.2)(4.10)

≤ C
δ2(x)|k|+1 ·

(
1

δ2(x)|k|−1

)|k|
from (4.8)

= C
(δ2(x))|k|2+1

≤ C
dist(x,Z)r(|k|2+1) from (4.9).

By the Leibniz rule, for any multi-index µ,
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|Dµ(δ1(x)δ2(x)−1)|(4.11)

≤ C
∑
k≤µ
|Dµ−kδ1(x)| |Dk(δ2(x)−1)|

≤
∑
k≤µ

1
(dist(x,Z))r(|k|2−|k|+|µ|)

using (4.8), (4.9), (4.10)

≤ C
dist(x,Z)r |µ|2

Finally, by (4.2),

∣∣Dµχ∣∣ ≤ C∣∣λ∣∣Cm ∣∣δ1δ−1
2
∣∣mCm

≤ C
(

1
dist(· , Z)r |µ|2

)|µ|
by (4.11)

= C dist(· , Z)−r |µ|3 ,

which completes the proof of (4.4). ❐

4.5. Global non-extendable CR functions. While in this paper we confine
ourselves mainly to the question of local extension, we make a few observations
regarding global analogs of the constructions of non-extendable CR functions, i.e.,
we consider the question whether there can be a CR function on the boundary
∂Ω of a domain Ω that does not have holomorphic extension into a global one-
sided neighbourhood of M in Ω or its complement. If the ambient manifold is
Cn with n ≥ 2, or a Stein manifold of dimension at least 2, by the Bochner-
Hartogs Theorem, such non-extendable CR functions do not exist, as long as ∂Ω
is smooth and connected; in fact, every CR function on ∂Ω extends to all of Ω.
The analogous result continues to hold if Ω is a subanalytic domain in Cn. More
precisely, the following holds.

Proposition 4.8 (Bochner-Hartogs Theorem). Let Ω ø Cn, n ≥ 2, be a
bounded domain, such that M = ∂Ω is a connected subanalytic hypersurface. Let f
be a CR function on M, which is continuous on Mreg. Then there exists a function F
holomorphic on Ω which is a holomorphic extension of f , i.e., bvF = f on Mreg. If
for k ≥ 0, the function f is Ck-smooth on Mreg, then F extends as a Ck function to
Mreg.

Proof. By the Jump formula of Section 3.4, bvf+ − bvf− = f , where f+ is
holomorphic on Cn \ Ω̄ and f− on Ω such that on Mreg, equation (3.8) holds in
the sense of distributions. Since M = ∂Ω is connected, so is Cn \ Ω̄. Therefore,
by Hartogs’ theorem, f+ extends to an entire function f̃+ on Cn. We take F =
f̃+−f−. Then F has distributional boundary values f onMreg, and the statement
in the last sentence follows from [3, Theorem 7.2.6 and Theorem 7.5.1]. ❐
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Non-extendable CR functions cannot be constructed on boundaries of bounded
domains in Stein manifolds because Stein manifolds do not contain compact com-
plex hypersurfaces, and therefore global analogs of non-minimality and two-sided
support cannot occur.

We now consider an example (cf. Section 12 of [12], pointed out to us by
M.C. Shaw), where global non-minimality and global two-sided support lead to
the existence of non-extendable global CR functions. Let M ⊂ CP2 be the com-
pact connected real analytic hypersurface

M = {[z0, z1, z2] : |z1| = |z2|}.

M is smooth except at the point [1,0,0], and CP2 \M is the disjoint union of Ω+
and Ω−, where Ω± = {[z0, z1, z2] : ±(|z2| − |z1|) > 0},
are “Projective Hartogs Triangles”. The domains Ω± are biholomorphic to each
other and pseudoconvex.

M is both (globally) non-minimal and has proper (global) two-sided support
at the singular point [1,0,0]. This allows us to construct non-extendable CR
functions on M in two different ways, each showing that the Bochner-Hartogs
theorem does not hold for Ω±.

Non-minimality: note that M is Levi-flat (in the sense that the smooth part
is Levi-flat). It is “foliated” by projective lines {z1 = eiθz2}, θ ∈ R (although all
these “leaves” pass through the singular point [1 : 0 : 0]). Let Z be the union of
two of these leaves. For definiteness assume that

Z = {z1 = z2} ∪ {z1 = −z2} = {z2
1 − z2

2 = 0}.

Then M \ Z consists of two components:

M+ =
{
[z0, z1, z2] : z1 = eiθz2 for 0 < θ < π

}
M− =

{
[z0, z1, z2] : z1 = eiθz2 for π < θ < 2π

}
.

Let f be the function on M defined by f ≡ 1 on M+ and f ≡ 0 on M−.
We claim that f is a bounded CR function on M but f does not extend to eitherΩ+ or Ω−. Indeed, on Mreg, the function f is CR except along the complex
hypersurface Z which is tangent to the Cauchy-Riemann vector fields T 0,1(Mreg),
and therefore is removable for L1

loc CR functions on Mreg (see [15, Proposition
1]). It follows that f is CR on Mreg. Therefore, by Theorem 1.1 (ii), f is CR
on M. Clearly, f does not extend holomorphically to Ω+ or Ω−.

Two-sided support: M has global proper two-sided support. In effect,
{z2 = 0} ⊂ Ω+ and {z1 = 0} ⊂ Ω−. The function

g(z) = z1

z2
− z2

z1
,
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is bounded on M (each of the two terms has absolute value 1) and is CR on Mreg.
It follows from Theorem 1.1 (ii) that g is an L∞ CR function on M. However,
as in the proof of Proposition 4.6, g cannot extend to either of Ω±, since such
an extension must blow up along {z1 = 0} and {z2 = 0}. It follows that g is a
non-extendable CR function.

Note, however, that there are no non-constant continuous CR functions on
M. For any θ ∈ R, the restriction of any such function to the compact leaf
{z1 = eiθz2} ⊂ M is holomorphic, and therefore constant. Since these leaves all
pass through the point [1,0,0], the values of these constants are the same for all
leaves. This shows that the statement in Proposition 4.3 that we can construct CR
functions of arbitrary smoothness is purely local. On M there are non-extendable
bounded CR functions defined globally, but there are no continuous CR functions
that do not extend.

5. THE HYPERSURFACE M

5.1. Definition of M and precise statement of the extension result. First
we give a more precise form of Theorem 1.3, part (i). For a point z ∈ Cn, n ≥ 2,
we will write the coordinates as z = (z1, z2, z̃), where z1, z2 ∈ C and z̃ ∈ Cn−2

(where, as usual, if n = 2, C0 is taken to be the one-point space {0}). Let ` ≥ 2
be an integer, ` = ∞ or ` = ω. Let Ω be a neighbourhood of the origin in Cn,
and let γ be a C`-smooth subanalytic (i.e., its graph is a subanalytic set) function
on some neighbourhood of Ω̄ in C2. Assume that γ(0) , 0. We let

(5.1) ρ(z) = Re(z1z2)+ |z1|2γ(z),

and define

(5.2) M = {z ∈ Ω : ρ(z) = 0}.

Then M is a subanalytic hypersurface in the sense of Definition 2.1. After mak-
ing the linear change of variables (z1, z2, z̃) , (z1,−z2, z̃), if necessary, we will
further assume that γ(0) > 0.

Let γ`(z) = 1 + x`2 |x2|. Then γ`(z) is a subanalytic function which is C`-
smooth but not C`+1-smooth, and the same is true of ρ. Since ∇ρ(z) , 0 for
z ∈ M∗ = M \ {z1 = z2 = 0}, it follows from the implicit function theorem
that M∗ is a hypersurface of smoothness at least C`. Representing M∗ as a graph
over y2 , 0, we see that M∗ is C`-smooth but not C`+1-smooth. Since any
biholomorphic map near 0 sending M onto another M for a different γ` must
preserve the smoothness class of M∗, it follows that the M’s are in general not
biholomorphic for different γ’s.

Theorem 5.1. Let M be defined as in (5.2), and let U ⊂ Ω be a neighbour-
hood of the origin in Cn. Then there exists a neighbourhood V of the origin such
that any bounded CR function f on M ∩ U extends to a holomorphic function F in
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V− = {ρ < 0} ∩ V . Further, for k ≥ 0, if f is Ck-smooth on M, then F extends to a
Ck-smooth function on V− ∪ (M ∩ V), and F|M∩V = f .

Observe that {z1 = 0} ∩ Ω ⊂ M, so that M is non-minimal. For general `,
M∗ = M \{z1 = z2 = 0} is a C`-smooth hypersurface with a quadratic singularity
of codimension 3, in particular, the singularity is isolated if n = 2. Indeed, for
c > 0, denote by ρc the real quadratic form

(5.3) ρc(z) = Re(z1z2)+ c|z1|2

on Cn, and let

(5.4) Mc =
{
z ∈ Cn : ρc(z) = 0

}
.

Then the defining function ρ of M near 0 is of the form ρ = ργ(0) + h, where
ργ(0) is as in (5.3), and h(z) = |z1|2(γ(z)− γ(0)) = O(|z|3). If n = 2, the real
quadratic form ργ(0) is non-degenerate, and has two positive and two negative
eigenvalues. Therefore, by the Morse Lemma, there is a C`-diffeomorphism of a
neighbourhood of 0 onto another neighbourhood of 0 in C2 that maps M onto
the real quadratic cone Mγ(0). The latter is, in fact, the tangent cone of M at the
origin. If n ≥ 3, the quadratic form ργ(0) is degenerate, but still there is a C`-
diffeomorphism Φ in a neighbourhood of 0 in Cn which maps M onto the real
quadratic cone M1 = {ρ1 = 0}. The map Φ can be given explicitly by

(5.5) Φ(z) = (√γ(z)z1,
1√
γ(z)

z2, z̃
)
,

(valid also for n = 2). Observe that Φ maps the complex hypersurface {z1 = 0},
which makes M non-minimal, onto itself.

One can verify that the set M1 \ {z1 = 0} is connected, and therefore,
M \ {z1 = 0} is also connected. If γ(z) ≡ c, then Φ is a C-linear isomorphism
between Mc , given by (5.4), and M1. A simple computation shows that there is
a neighbourhood U ⊂ Ω of 0 such that the set U− = {z ∈ U : ρ(z) < 0} is
pseudoconvex. In fact the Levi form has one positive eigenvalue at each boundary
point in (M \ {z1 = 0})∩U (which is therefore strongly pseudoconvex if n = 2),
so the hypothesis of the Lewy extension theorem holds.

The proof of Theorem 5.1 can be outlined as follows. First we construct
explicitly a family of analytic discs attached toM1 and use the Kontinuitätssatz to
prove that holomorphic functions defined in some thin neighbourhoodω ofM1 \
{z1 = 0} extend analytically along any path in a bigger one-sided neighbourhood
of the origin, the size of which is independent of ω. This is done in Section 5.2.
Then we show in Section 5.3 that the analytic continuation from ω does not
yield multiple-valued functions. In the terminology of [16], this means that the
complex hypersurface {z1 = 0} is (locally) W -removable at the origin. Finally,
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in Section 5.4 we conclude the proof by showing that every CR function on
M \ {z1 = 0} near the origin extends to a holomorphic function on a one-sided
neighbourhood of the origin, and that the extension has the required boundary
regularity on M.

5.2. Construction of the extension.

Proposition 5.2. Let

M1 = {z ∈ Cn : ρ1(z) = 0},
where

ρ1(z) = Re(z1z2)+ |z1|2,

and let U be a neighbourhood of 0 in Cn. Let ω ⊂ U− B U ∩ {ρ1 < 0} be a
connected one-sided neighbourhood of

S1 = (M1 \ {z1 = 0})∩U.

Then there is a neighbourhood V of the origin in Cn, such that given any p ∈ V− B
V ∩ {ρ1 < 0}, there is a path τ ⊂ V− starting in ω ∩ V− and terminating at p,
along which any holomorphic function inω admits analytic continuation.

The proof of the proposition relies on the following lemma which will be also
used later.

Lemma 5.3. Let V = B(0, 1
3), and let V− = V ∩ {ρ1 < 0}. There exists a

continuous family of analytic discs {Dw}w∈V− in Cn, with the following properties.
(1) Dw ⊂ B(0,1).
(2) w ∈ Dw .
(3) ∂Dw ⊂ S1.
(4) Let p0 = ( 1

8 ,−
1
8 , 0̃) ∈ S1 ∩ V , where 0̃ ∈ Cn−2. Then the discs {Dw} shrink

to {p0} as V− 3 w → p0.

Proof. Given the point w = (w1,w2, w̃) ∈ Cn, let α = 1
2(w1 −w2). (We

suppress the dependence of α on w for notational clarity.) Consider the subset of
C given by

(5.6) Σw = {ζ ∈ C : |ζ −α|2 ≤ |α|2 − |w1|2
}
,

which, depending on the right hand side, may be a closed disc, a point, or empty.
If ρ1(w) < 0, it is easily verified that |w1 − α|2 < |α|2 − |w1|2. Therefore, if
w ∈ V−, the set Σw contains the point w1, and thus, it is a disc of positive radius√
|α|2 − |w1|2. It also follows from the definition of Σw that if w1 , 0, then

0 ∉ Σw .
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For w ∈ V−, we consider the map ϕ : Σw → Cn given by

ϕw : ζ ,
(
ζ,
|w1|2
ζ

− 2ᾱ, w̃
)
,

and let Dw = ϕw(Σw). Note that this is well defined since w1 , 0. A compu-
tation shows that ϕw(w1) = w, and ρ1(ϕw(ζ)) = 0 if ζ ∈ ∂Σw . Therefore,
Dw is an analytic disc contained in {ρ1 < 0}. It passes through point w, and its
boundary is attached to M1. Furthermore, Dw ⊂ B(0,1). Indeed, to see this, it is
sufficient to show that ∂Dw = ϕ(∂Σw) ⊂ B(0,1), and then apply the maximum
principle. If ζ ∈ ∂Σw , we have |ζ −α|2 = |α|2 − |w1|2, or

(5.7) |w1|2 = 2 Re ᾱζ − |ζ|2.

Now, with ζ as above, we have,

|ϕ(ζ)| =
|ζ|2 + ∣∣∣∣∣ |w1|2

ζ
− 2ᾱ

∣∣∣∣∣
2

+ |w̃|2
1/2

≤ |ζ| +
∣∣∣∣∣ |w1|2
ζ

− 2ᾱ

∣∣∣∣∣+ |w̃|
≤ |ζ| + 2 Re ᾱζ − |ζ|2

|ζ| + 2|α| + |w̃| (using (5.7))

= 2|α| + 2
Re ᾱζ
|ζ| + |w̃|

≤ 4|α| + |w̃| (using Cauchy-Schwarz)

≤ 2
(|w1| + |w2|

)+ |w̃|
≤ 3|w| (using Cauchy-Schwarz again)

< 1.

Also observe thatDw → {p0} asw → p0,w ∈ V−. This follows directly by taking
the limit in (5.6) and noting that Σw shrinks to a point as w → p0. ❐

Proof of Proposition 5.2. SinceM1 is invariant under dilations, we may assume
without loss of generality that U is the unit ball. Let V , V− and p0 be as in
Lemma 5.3. The continuous family of analytic discs Dw constructed in
Lemma 5.3 can be used to prove analytic continuation of holomorphic functions
from ω to V−. Indeed, since V− is connected, and p0 ∈ ∂V−, there is a path
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τ : [0,1] → C2, such that τ(0) = p0, τ(1) = p and τ((0,1]) ⊂ V−. There
exists η > 0 so small that τ−1(ω) contains the interval (0,2η), and such that the
interior of the disc Dτ(η) is completely contained in ω. Then the restriction of τ
to the interval [η,1] is a path which starts inω and ends at p. We claim that any
holomorphic function on ω admits a holomorphic extension along this path τ.
To see this observe that the discs Dτ(t) are attached to S, so after shrinking them
slightly, we obtain discs ∆t ⊂ Dτ(t) such that ∂∆t ⊂ ω for each t, η ≤ t ≤ 1.
Since ∆η ⊂ω, the result follows from the Kontinuitätssatz. ❐

5.3. Schlichtness of the envelope of holomorphy of ω. It follows from
Proposition 5.2 that every holomorphic function on ω extends to a possibly
multiple-valued holomorphic function on V−. The next proposition shows that
the extension is, in fact, single-valued.

Proposition 5.4. If in Proposition 5.2, the set U is a ball, the envelope of holo-
morphy E(ω) ofω is schlicht.

Proof. Without loss of generality, U is the unit ball. We first show that E(U+)
is schlicht. While it is possible to prove this using a direct monodromy argument,
we will deduce this from a general result due to Trapani. Suppose that Ω ⊂ D
are domains in a Stein manifold. Define a complex retraction of D into Ω to be a
homotopy Ft : D → D, 0 ≤ t ≤ 1, of holomorphic maps, such that

(1) F0 = ID,
(2) F1(D) ⊂ Ω,
(3) for each t, Ft(Ω) ⊂ Ω.

We then have the following result [19, Theorem 1]: Let D be a domain of holo-
morphy in a Stein manifold, and Ω ⊂ D. If there is a complex retraction of D
into Ω, then, Ω has a schlicht envelope of holomorphy. To apply this, we take
D = U \ {z1 = 0}, Ω = U+, and Ft(z) = (z1, (1 − t)z2, (1 − t)z̃). We
claim that Ft is a complex retraction of D into Ω. Condition (1) is clear. Since
F1(D) = {z ∈ Cn : 0 < |z1| < 1, z2 = 0, z̃ = 0} ⊂ Ω, condition (2) fol-
lows. For condition (3) we note that Ft(D) ⊂ D for each t, and if z ∈ Ω, we
have ρ1(Ft(z)) = (1 − t)Re(z1z2)+ |z1|2 = (1 − t)ρ1(z) + t|z1|2 > 0, so that
Ft(Ω) ⊂ Ω. This shows that the envelope of U+ is schlicht.

Now we deduce that E(ω) is schlicht. By the Lewy extension theorem, there
is a one-sided neighbourhood ω̃ of the hypersurface S1 (whose Levi form has one
positive eigenvalue) on the U− side to which every function in O(U+) extends
holomorphically. After shrinking ω̃ we may assume that ω̃ ⊂ ω. Set U] =
U+∪S1∪ω̃. Then the restriction map induces an isomorphismO(U]) � O(U+).
In particular, E(U]) = E(U+).

Seeking a contradiction, assume now that the envelope π : E(ω) → Cn is
multiple sheeted. Then there exist a function f ∈ O(ω), a point p ∈ C2 and two
paths τ1 and τ2, starting in ω and ending in p, along which f has holomorphic
extensions f1 and f2 such that f1(p) , f2(p). Note that U− is a pseudoconvex
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domain containingω, and therefore, τ1, τ2 ⊂ U− ⊂ π(E(ω)). Further, without
loss of generality, we can assume that the paths τ1 and τ2 start in ω̃.

Now let U1 = U \ {z1 = 0}. Then U1 is pseudoconvex. Note that U]∪U− =
U1 and U] ∩ U− = ω̃. It is possible to solve a Cousin Problem in U1 to obtain
functions F] ∈ O(U]) and F− ∈ O(U−) such that f |ω̃ = F] − F−.

For j = 1, 2, set Fj = F− + fj . Then Fj is a holomorphic function along the
path τj which extends the function F] ∈ O(U]). But then we have F1(p) , F2(p)
which contradicts the fact that E(U]) = E(U+) is schlicht. ❐

5.4. Proof of Theorem 5.1. First we note that Propositions 5.2 and 5.4 also
hold for M = {ρ = 0}, where the function ρ is as in Theorem 5.1. The crucial
observation is that for a small enough neighbourhood U of 0 in Cn, as in the
proof of Proposition 5.2, we can obtain discs ∆w which pass through any specified
point in U− = {z ∈ U : ρ < 0}, remain inside U , shrink as one approaches
certain boundary points, and whose boundaries are contained in the one-sided
neighbourhood ω of S = (M \ {z1 = 0}) ∩ U to which every CR function on S
admits the Lewy holomorphic extension. To see this, let c > 0 be such that γ > c
on U . As before, set Mc = {z ∈ Cn : ρc(z) = Re(z1z2) + c|z1|2 = 0}, and let
U−c = {z ∈ U : ρc(z) < 0}. Then U− ⊂ U−c , and Mc is biholomorphic to M1 by
a complex linear map. After applying the linear biholomorphism, and a dilation,
we may assume that U is the unit ball and c = 1. For w ∈ U−, we can clearly
choose ∆w to be a subset of a connected component of Dw ∩U− (where Dw is
as in Lemma 5.3) such that the properties claimed are verified. This provides the
generalization of Proposition 5.2 to general M. It is easy to verify that the proof
of Proposition 5.4 also carries over, mutatis mutandis, to this general case.

Suppose now that f is a CR function on S. As was observed in the previous
paragraph, by the Lewy extension theorem, f extends to a holomorphic function
f̃ on a one-sided neighbourhood ω ⊂ {ρ < 0}, and by the previous steps, f̃
extends further to a holomorphic function F on V−. The extension F assumes the
boundary values f on S in the same way in which the Lewy extension assumes the
value f on S. To complete the proof, we need to understand the behaviour of F
as one approaches {z1 = 0}.

First assume that f is in L∞. Then, by the paragraph above, F has distribu-
tional boundary values f on S ∩ V . We need to show that F has distributional
boundary values equal to f on Mreg ∩ V .

LetM∗ =M \{z1 = z2 = 0}. Then the fact that (5.5) is a C`-diffeomorphism
shows that M∗ is a C`-smooth hypersurface (where γ in (5.1) is C`-smooth.)
Clearly Mreg ⊂ M∗. We will show that F has distributional boundary values f on
M∗ ∩ V .

Let ν(z) denote the unit normal toM∗ directed towards {ρ < 0}. For t > 0,
define a function Ft on M∗ by Ft(z) = F(z + tν(z)). Since |F| ≤ supS |f |,
we have |Ft(z)| ≤ supS |f | for each t > 0 and z ∈ M∗. Moreover, thanks to
[14, Theorem 3.1], Ft(z) → f(z) at each Lebesgue point z of f |S , and since
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{z1 = 0} has measure 0, we have on M∗ ∩ V ,

lim
t→0+

Ft = f almost everywhere.

If χ ∈ C∞c (M∗ ∩ V), then by the dominated convergence theorem,

lim
t→0+

∫
M∗∩V

F(z + tν(z))χ(z)dH =
∫
M∗∩V

f (z)χ(z)dH .

It follows that f is the boundary value of F in the sense of distributions.
If f ∈ Ck(M), k ≥ 0, then the function F obtained above extends as a

Ck-smooth function to S ∩ V = (M \ {z1 = 0}) ∩ V , and has boundary values
equal to f . Since f is continuous on M∗ ∩ V , and F has distributional boundary
values f onM∗∩V , it follows from [3, Theorems 7.2.6 and 7.5.1] that F extends
as a Ck-smooth function to M∗ ∩ V .

It remains to prove that F extends as a Ck function also to

Σ = {z1 = z2 = 0} ∩ V .

First assume that k = 0. Let w ∈ Σ. We need to show that as z → w through
points in V−, we have that F(z) → f(w). Suppose that for each z ∈ V−, there
exists a disc ∆(z) in V− passing through z such that the boundary ∂∆(z) ⊂
M∗ ∩ V , and such that ∆(z) shrinks to the point w as V− 3 z → w. Applying
the maximum principle to the holomorphic function F(z) − f(w) on the disc∆(z), we have

|F(z)− f(w)| ≤ sup
ζ∈∂∆(z)

∣∣F(ζ)− f(w)∣∣
= sup
ζ∈∂∆(z)

∣∣f(ζ)− f(w)∣∣.
Since ∆(z) shrinks to w as z → w, it follows that

lim
V−3z→w

sup
ζ∈∂∆(z)

∣∣f(ζ)− f(w)∣∣ = 0.

To complete the proof, we specify the discs ∆(z). We can take, for example,

∆(z) = {ζ ∈ V− : ζ2 = z2, ζ̃ = z̃
}
.

For small z, both required properties are easily verified.
Now let k ≥ 1. By the previous paragraph, every partial derivative of F of

order k extends continuously to 0. It follows that F extends as a Ck-smooth
function to the origin.
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6. THE HYPERSURFACE N

6.1. Definition of N and precise statement. We now define N and state
the general form of Theorem 1.3 (ii). Let (z1, z2, z3, z̃) ∈ C3 × Cn−3 be the
coordinates in Cn, n ≥ 3. Let U be a neighbourhood of 0 in Cn, and let h be
a C`-smooth real-valued function on a neighbourhood of Ū such that h(0) = 0,
where ` ≥ 2. We let

σ(z) = Re(z1z2 + z1z3)+ |z1|2h(z),(6.1)

and set

N =
{
z ∈ U : σ(z) = 0

}
.(6.2)

As with M, we set U± = {z ∈ U : ±σ(z) > 0}.
Theorem 6.1. LetN be given as in (6.2). For any neighbourhood U of the origin,

there exists a neighbourhood V ⊂ Cn of 0 such that any bounded CR function f on
N ∩ U extends to a holomorphic function F on V with F|N∩V = f .

We note that the singularity of N is degenerate, i.e., the real Hessian of σ
at 0 is not invertible. In fact, the Hessian has two positive and two negative
eigenvalues, and the remaining eigenvalues vanish. Therefore, the Morse Lemma
does not apply. However, there is a diffeomorphism Ψ from a neighbourhood of
the origin in Cn into Cn, which maps N onto a neighbourhood 0 in the cone

(6.3) N1 =
{
z ∈ Cn : σ1(z) = Re(z1z2 + z1z̄3) = 0

}
.

If γ(z) = 1+ h(z), this map is given explicitly by

(6.4) Ψ(z) = (√γ(z)z1,
z2√
γ(z)

,
γ(z)− 1√
γ(z)

z1 + z3√
γ(z)

, z̃
)
.

Note that Ψ maps the hypersurface {z1 = 0} ⊂ N onto itself. A computation
shows that Nsing

1 = {z ∈ Cn : z1 = 0, z2 + z3 = 0}. It follows that N \ {z1 = 0}
is smooth.

The following notation will be used in the proof. For δ > 0, denote by
B(δ) = {z ∈ Cn : |z| < δ} the ball radius δ in Cn centred at 0, and set N±(δ) =
B(δ)∩ U±, where U± = {z ∈ U : ±σ(z) > 0} and σ is the defining function of
N as in (6.1). Note that N±(δ) are one-sided neighbourhoods of 0 with respect
to N. We use the notation N±1 (δ) for similarly defined one-sided neighbourhoods
of N1. The proof of Theorem 6.1 follows a similar pattern. After proving some
results concerning envelopes of one-sided neighbourhoods of 0 with respect to N,
in Proposition 6.3 we characterize local envelope of holomorphy of arbitrarily thin
neighbourhoods of N \ {z1 = 0} at 0.
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6.2. Envelope of one-sided neighbourhoods of N.

Proposition 6.2. Given any ε > 0, there is a δ > 0 such that every g ∈
O(N+(ε)) extends to a single-valued holomorphic function in B(δ) \ {z1 = 0}.

Proof. We first prove the proposition for N1. Let L = {z ∈ Cn : z1 = z3}.
Then

N1 ∩ L =
{

Re(z1z2)+ |z1|2 = 0, z1 = z3

}
.

Thus, N1 ∩ L (considered as a singular hypersurface in L � Cn−1) is equivalent to
the hypersurface M1 of the previous section. By Lemma 5.3, there exists a contin-
uous family of discs {Dw} attached to (N1∩L)\{z1 = 0} and passing throughw,
where w = (w1,w2,w1, w̃) ∈ L, and Re(w1w2)+ |w1|2 < 0. Further, the discs
Dw shrink to a point p1 = (a,−a,a, 0̃), as w → p1, where a > 0 is sufficiently
small.

Consider the translations

Tτ(z1, z2, z3, z̃) = (z1, z2 + τ, z3 − τ̄, z̃).

Note that N1 is invariant under Tτ , and Tτ({z1 = 0}) = {z1 = 0} for any
τ ∈ C. It follows that for any τ ∈ C, the discs Tτ(Dw) are also attached to
(N1 ∩ L) \ {z1 = 0}.

Let δ = 1
10 , and letw = (w1,w2,w3, w̃) be an arbitrary point in N−1 (δ). We

set τ = w̄1 − w̄3, and w′ = (w1,w2 − τ,w1, w̃). Note that w′ ∈ L, and

Re(w1(w2 − τ))+ |w1|2 = Re(w1w2 +w1w̄3) < 0.

Therefore, Tτ(Dw′) passes throughw and is attached to (N1∩L)\{z1 = 0}. The
disc Tτ(Dw′) can be given explicitly by

ϕw(ζ) =
(
ζ,
|w1|2
ζ

+w2 − w̄1, ζ − τ̄, w̃
)
,

where ζ belongs to the set Σ(w1,w2−τ) defined in (5.6). Further, repeating the
calculations of Lemma 5.3, for w ∈ N−(δ) we have

|ϕ(ζ)| <
√√√√|ζ|2 + ∣∣∣∣∣ |w1|2

ζ
− (w̄1 −w2)

∣∣∣∣∣+ |ζ|2 + |τ|2 < 2
√

2|w| + 3|w| < 1.

This shows that the discs are contained in the unit ball.
A computation shows that the Levi form of N1 has one positive eigenvalue at

each point of N1 \ {z1 = 0}. Therefore, by the Lewy extension theorem, every
holomorphic function on N+1 (1) extends to each point of (N1∩B(1))\{z1 = 0},
in particular, to the boundaries of the discs constructed above. As before, by the
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Kontinuitätssatz, any function holomorphic in N+1 (1) admits analytic continua-
tion along any path starting at p1 and ending at any point p in N−1 (δ).

Now we show that the extension so obtained is single-valued. For this it
is sufficient to show that any loop in B(δ) \ {z1 = 0} can be deformed into
a path in N+1 (δ). Let ϕ : [0, δ) → [0,∞) be a diffeomorphism. Then the
diffeomorphism z , ϕ(|z|)z maps B(δ) \ {z1 = 0} to Cn \ {z1 = 0} and
N+1 (δ) to N+1 = {z ∈ Cn : σ1(z) > 0}. It is therefore sufficient to show that
every path in Cn \ {z1 = 0} can be deformed to a path in N+1 .

For λ real, let

(6.5) N+λ =
{
z ∈ Cn : σ1(z)+ (λ− 1)|z1|2 > 0

}
.

Then ⋃
λ≥1

N+λ = Cn \ {z1 = 0}.

Hence, if α is any bounded path in Cn \ {z1 = 0}, then there exists a µ ≥ 1 such
that α ⊂ N+µ . Now as s increases from 1 to

√µ, a map given by

z ,
(
sz1,

1
s
z2,

(
s−1
s

)
z1 +

1
s
z3, z̃

)

continuously deforms N+µ into N+1 . (cf. equation (6.4).) This proves the proposi-
tion for N1.

For the general case of a hypersurface N, we shrink U such that there exists λ,
0 < λ < 1, with the property that h(z) ≥ (λ − 1) for z ∈ U . Then, N+λ (ε) ⊂
N+(ε) for every ε > 0. The linear biholomorphism of (6.4) with γ ≡ λ maps
N+λ onto N+1 while fixing {z1 = 0}. It follows that there is δ > 0 such that every
holomorphic function on N+λ (ε) extends to B(δ) \ {z1 = 0}. Thus, Proposi-
tion 6.2 follows by restricting g to N+λ (ε). ❐

6.3. Envelope of holomorphy of a neighbourhood of N \ {z1 = 0}. We
now deduce the following consequence of Proposition 6.2.

Proposition 6.3. Given a neighbourhood U of 0 in Cn, there is a neighbour-
hood V of 0 in Cn with the following property. If ω ⊂ U is a neighbourhood of
(N \ {z1 = 0})∩ U , the envelope E(ω) contains the set V \ {z1 = 0}.

Note that the neighbourhood ω can be arbitrarily thin.

Proof. Let ε > 0 be such that B(ε) ⊂ U . Note that the open set B(ε)\{z1 = 0}
is connected and pseudoconvex, and is divided into two connected components
N±(ε) by the smooth hypersurface (N ∩ B(ε)) \ {z1 = 0}. Moreover, shrinking
ε if required, we can assume that the Levi-form of (N ∩ B(ε)) \ {z1 = 0} has one
positive and one negative eigenvalue at each point.
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We set N] = N+(ε)∪ω and N[ = N−(ε)∪ω. Then

N] ∪N[ = B(ε) \ {z1 = 0} and N] ∩N[ =ω.

Now let f ∈ O(ω). Since B(ε) \ {z1 = 0} is pseudoconvex, after solving
the Cousin problem, we can write, f = f+ − f−, where f+ ∈ O(N]) and
f− ∈ O(N[). By Proposition 6.2 above, there is δ+ > 0 such that f+|N+(ε)
(and therefore, f+) extends to a holomorphic function f̃+ on B(δ+) \ {z1 = 0}.

The linear map (z1, z2, z3, z̃) , (−z1, z2, z3, z̃) maps N onto the singular
hypersurface Ñ = {z ∈ U : σ̃ (z) = 0}, where

σ̃ (z) = Re(z1z2 + z1z3)+ |z1|2h̃(z),

and h̃(z1, z2, z3, z̃) = −h(−z1, z2, z3, z̃). Since this map sends N±(ε) to Ñ∓(ε),
by Proposition 6.2 again, there is δ− > 0 such that f−|N−(ε) (and therefore, f−)
extends to a holomorphic function f̃− on B(δ−) \ {z1 = 0}.

We set δ = min(δ+, δ−), and

F = f̃+ − f̃−.

Then F is holomorphic on B(δ) \ {z1 = 0}, and F|ω = f . This completes the
proof with V = B(δ). ❐

We now complete the proof of Theorem 6.1. Let U be a neighbourhood of 0 in
Cn and let f ∈ CR(N ∩ U) be a bounded CR function. By the Lewy extension
theorem, f extends to a neighbourhood ω of (N \ {z1 = 0}) ∩ U . Then, by
Proposition 6.3, f extends to the set of the form V \ {z1 = 0}, where V is a
neighbourhood of 0. The constructed extension remains a bounded function on
the complement of {z1 = 0}, and therefore, by the removable singularity theorem,
it admits holomorphic extension to a neighbourhood of the origin. This completes
the proof.
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