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ABSTRACT. We study the analytic continuation problem for a
germ of a biholomorphic mapping from a nonminimal real hy-
persurface M ⊂ Cn into a real hyperquadric Q ⊂ CP

n, and
we prove that, under certain nondegeneracy conditions, any
such germ extends locally biholomorphically along any path
lying in the complement U \ X of the complex hypersurface
X contained in M for an appropriate neighbourhood U ⊃ X.
Using the monodromy representation for the multiple-valued
mapping obtained by the analytic continuation, we establish a
connection between nonminimal real hypersurfaces and singu-
lar complex ODEs.
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1. INTRODUCTION AND MAIN RESULTS

Let H(ζ, ζ̄) be a nondegenerate Hermitian form in Cn+1 with k+ 1 positive and
ℓ+1 negative eigenvalues, k+ℓ = n−1, 0 ≤ ℓ ≤ k ≤ n−1. We call a hypersurface
Q ⊂ CPn a (k, ℓ)-hyperquadric if it is given in homogeneous coordinates by

Q = {[ζ0, . . . , ζn] ∈ CPn | H(ζ, ζ̄) = 0}.

Clearly, Q ⊂ CPn is a compact smooth real algebraic Levi nondegenerate hyper-
surface with (k, ℓ) the signature of its Levi form. In particular, the unit sphere
S2n−1 ⊂ Cn is an (n− 1,0)-hyperquadric.

Let M be a connected smooth real analytic hypersurface in Cn, n > 1. It was
shown by S. Pinchuk for Q = S2n−1 [18], and by D. Hill and the second author
[12] for the general case, that if M is Levi nondegenerate, then a germ of a local
biholomorphic map f : M → Q extends locally biholomorphically along any path
on M with the extension sending M to Q. This leads to the following definition:
a Levi nondegenerate hypersurface M is called (k, ℓ)-spherical at a point p ∈ M
if there exists a germ at p of a biholomorphic map f sending the germ (M,p)
of M at p onto the germ of a (k, ℓ)-hyperquadric Q at f (p). It follows, then,
that a Levi nondegenerate hypersurface M is (k, ℓ)-spherical at one point if and
only if it has this property at all points, and we simply call M a (k, ℓ)-spherical
hypersurface. A similar extension result holds if, instead of Levi nondegeneracy,
one assumes that M is essentially finite, a condition on the so-called Segre map of
M generalizing Levi nondegeneracy (see [23] and [12]). Using arguments similar
to those in [12], one can further generalize Pinchuk’s theorem to the case when M
is merely minimal in the sense of Tumanov [26], that is, when M does not contain
any germs of complex hypersurfaces (see [22]).

In this paper, we study the analytic continuation phenomenon for biholo-
morphic maps from a nonminimal real-analytic hypersurface M , that is, when M
contains a complex hypersurface X. In this case, the Levi form of M vanishes
identically on X, and M is not essentially finite at points in X. Also note that non-
minimality is equivalent to the infinite-type condition in the sense of Kohn and
Bloom-Graham (see, e.g., [1]). In appropriate local coordinates (z,w) ∈ Cn−1×C
near the origin, a real-analytic nonminimal hypersurface M is given by

Imw = (Rew)mΦ(z, z̄,Rew),

where Φ(z, z̄,Rew) is a real-analytic function satisfying a certain reality condi-
tion, m ≥ 1 is an integer, and X = {w = 0} ⊂ M is the complex hypersurface.

Within the study of CR invariants of real hypersurfaces, the nonminimal case
is considered to be particularly difficult, and very little is known in this setting.
Some motivational examples and partial results concerning automorphism groups
were obtained by V. Beloshapka [3], P. Ebenfelt, B. Lamel and D. Zaitsev [10],
M. Kolar, and B. Lamel [14] (see also references therein). Further, in [14] the
authors give normal form in the so-called ruled case, that is, when the function
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Φ(z, z̄,Rew) is independent of Rew and m = 1. This is somewhat analogous
to the rigid case for finite-type hypersurfaces. However, in the general case, the
z- and the w-variables in the expansion of Φ(z, z̄,Rew) can mix, which prevents
the use of the Chern-Moser-type machinery for the construction of the normal
form. It becomes apparent that different methods should be employed for the
study of nonminimal hypersurfaces. In this paper, we use the approach of analytic
continuation as a tool for propagation of local CR invariants of real hypersurfaces
and determination of CR invariants at nonminimal points.

Our results show that the nonminimal case is quite different from the minimal
one, as new geometric phenomena occur. The following illuminating example
shows that the analytic continuation fails, in general, in the nonminimal case.
The hypersurfaceM log appeared first in 2001 in the work of V. Beloshapka and A.
Loboda as an example of an infinite-type hypersurface with a large automorphism
group.

Example 1.1. Consider the real-analytic hypersurface given by

M log = {(z,w = u+ iv) ∈ C2 | v = u tan |z|2, |z| < 1},

or by a global “complex defining equation” w = w̄e2izz̄. Note that M log contains
the complex hypersurface X = {w = 0}, but it is Levi nondegenerate at all other
points. The set X divides M log into two connected components: M+ given by
{u > 0}, and M− given by {u < 0}. It follows that

M \X =
{

arctan
v

u
= |z|2

}
,

and so, for u > 0, we have Im(lnw) = |z|2. This shows that the map F : {u >
0} → C2 given by

z∗ = z, w∗ = lnw, −π
2
< Argw <

π

2
,

maps M+ onto an open subset of the nondegenerate hyperquadric

Q = {(z∗,w∗) ∈ C2 | Imw∗ = |z∗|2}.

However, F clearly does not extend across X (neither holomorphically nor as a
holomorphic correspondence). In fact, the branch F− : {u < 0} → C2 of the
multiple-valued map z∗ = z, w∗ = lnw satisfying π/2 < Argw < 3π/2 sends
M− into an open subset of a different hyperquadric

Q̃ = {(z∗,w∗) ∈ C2 | Imw∗ −π = |z∗|2}.
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This, and examples given in [3], [10], and [14], as well as other examples given
later in this paper, suggest that, given a nonminimal hypersurface M containing a
complex hypersurface X, and a local map f from M into a hyperquadric Q, one
cannot expect in general that f extends holomorphically to X; moreover, since the
complement of X is not simply connected, the analytic continuation, if it exists,
can lead to a multiple-valued extension of f . Furthermore, since M \ X is not
connected, different components of M \ X can be mapped by different branches
of the multiple-valued extension into different hyperquadrics.

Our principal result establishes such a multiple-valued holomorphic extension
phenomenon. We call a real hypersurface M containing a complex hypersurface
X pseudospherical if at least one of the components ofM \X is (k, ℓ)-spherical for
some k+ ℓ = n− 1, 0 ≤ ℓ ≤ k ≤ n− 1.

Theorem 1. Let M ⊂ Cn be a connected smooth real-analytic hypersurface con-
taining a complex hypersurface X. Assume thatM \X is Levi nondegenerate, and that
M is pseudospherical. Then, we have the following:

(i) There exists an open neighbourhood U of X in Cn such that, for p ∈ (M \
X) ∩ U , any biholomorphic map f of (M,p) into a (k, ℓ)-hyperquadric
Q extends analytically along any path in U \ X as a locally biholomorphic
map into CPn. In particular, f extends to a possibly multiple-valued locally
biholomorphic analytic mapping U \X -→ CP

n in the sense of Weierstrass.
(ii) If one of the components of M \ X is (k, ℓ)-spherical, then the second compo-

nent is (k′, ℓ′)-spherical with, possibly, (k, ℓ) ≠ (k′, ℓ′).

Somewhat surprisingly, Example 6.2 of Section 6 gives a real hypersurface
M ⊂ C3 for which (k, ℓ) ≠ (k′, ℓ′) in part (ii) of Theorem 1. However, if f
extends to U \X as a single-valued map, then both components ofM \X have the
same signature of the Levi form as shown in Proposition 6.4.

The nature of multiplicity of the extension in the above theorem depends only
on the geometry of the hypersurface M , and does not depend on the choice of the
map f . In Section 7, we give a precise description of the monodromy of analytic
continuation of f about X by constructing explicitly the monodromy operator, in
analogy with the corresponding theory of singular ODEs. To suppress technical
details, we give a simplified formulation of our result below, and refer the reader
to Section 7 for further details.

Theorem 2. Under the conditions of Theorem 1, there exists a linear representa-
tion ϕ : π1(U \ X) -→ Aut(CPn) such that the analytic continuation f̃ of f along
a cycle γ ⊂ U \ X satisfies f̃ = ϕ(γ) ◦ f . The cyclic subgroup ϕ(π1(U \ X)) ⊂
Aut(CPn) is determined by M uniquely up to conjugation, and the conjugacy class is
a biholomorphic invariant of M .

Remark 1.2. Additional motivation for the study of mappings from nonmin-
imal hypersurfaces into quadrics comes from the fact that only the hypersurfaces
that are Levi nondegenerate and (k, ℓ)-spherical outside the complex locus X ad-
mit “large” automorphism groups. In particular, for n = 2, these are the only
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hypersurfaces that admit the estimate dim Aut(M,0) ≥ 5 for the local automor-
phism group (see [2] for details, and [14] for some examples).

The paper is organized as follows. In Section 2, we provide the necessary back-
ground about Segre varieties and the associated notion of Segre map, and prove
the local one-to-one property of the Segre map in U \ X for hypersurfaces under
consideration. In Section 3, we apply this property to study the behaviour of Segre
sets, and show that any point in the punctured neighbourhood U \ X can be con-
nected with q ∈ M \X by a chain of Segre varieties. We use this fact to construct
in Section 4 the desired analytic continuation along some specific paths by means
of extension along Segre varieties, in the spirit of K. Diederich and J. E. Fornæss
[7], K. Diederich and S. Pinchuk [8], and [23]. We also introduce the notion of
Q-Segre property for a map f and use it for appropriate understanding of the ex-
tension along (iterated) Segre varieties. Combining the results of Sections 3 and 4,
we prove a crucial corollary establishing analytic continuation of the initial germ
F0 to an arbitrary point r ∈ U \ X along some specific path. In Section 5, we
use this result to prove the continuation along an arbitrary path, using the global
nature of the (complexified) automorphism group of the target hyperquadric Q,
which gives the first part of our principal result. We also provide a number of
examples of analytic maps that extend germs of local biholomorphic mappings to
a hyperquadric. Most of these are certain blow-ups of the unit 3-sphere giving
both single-valued and multiple-valued maps. In Section 6, we prove the second
part of Theorem 1 and give an example of M that can be mapped to inequiva-
lent hyperquadrics. In Section 7, we describe the monodromy of the obtained
multiple-valued map showing that the monodromy can be expressed in terms
of a (scaled) element of GLn+1(C)—the monodromy matrix. We also establish
an intriguing connection between nonminimal pseudospherical hypersurfaces and
linear differential equations of order n with an isolated singular point by proving
the Monodromy formula for the multiple-valued mapping F . The hypersurface
X ⊂ M , playing the role of an isolated singularity for holomorphic maps under
consideration, becomes an analogue of a single point in CP1 as an isolated singu-
larity of linear differential equations. In Section 8, we consider separately the case
where M is algebraic, and prove that the multiple-valued mapping F in this case
extends to X, either holomorphically or as a holomorphic correspondence.

2. BACKGROUND: SEGRE VARIETIES

Let M be a smooth real analytic hypersurface in Cn, n ≥ 2, 0 ∈ M , and U a
neighbourhood of the origin. In what follows in this paper, we consider only
connected real hypersurfaces. If U is sufficiently small, then M ∩ U admits a real
analytic defining function ρ(Z, Z̄), where the function ρ(Z,W) is holomorphic
in U × Ū , and for every point ζ ∈ U , we can associate to M its so-called Segre
variety in U defined as

(2.1) Qζ = {Z ∈ U | ρ(Z, ζ̄) = 0}.
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Note that Segre varieties depend holomorphically on the variable ζ̄. In fact, we
may find a suitable pair of neighbourhoods U2 = Uz2 × Uw2 ⊂ Cn−1 × C and
U1 ⋐ U2 such that

(2.2) Qζ = {(z,w) ∈ Uz2 × Uw2 |w = h(z, ζ̄)}, ζ ∈ U1,

is a closed complex analytic subset. Here, h is a holomorphic function. Follow-
ing [8], we call U1, U2 a standard pair of neighbourhoods of the origin. From the
definition and the reality condition on the defining function, the following basic
properties of Segre varieties easily follow:

Z ∈ Qζ ⇔ ζ ∈ QZ , Z, ζ ∈ U1,

Z ∈ QZ ⇔ Z ∈ M, Z,ζ ∈ U1,

ζ ∈M ⇔ {Z ∈ U1 | Qζ = QZ} ⊂ M, ζ ∈ U1.

The set Iζ := {Z ∈ U1 | Qζ = QZ} is also a complex analytic subset of U1. If M
contains a complex hypersurface X, then, for any p ∈ X, we have Qp = X and
Qp ∩ X ≠∅⇔ p ∈ X, so Ip = X.

If f : U → U ′ is a holomorphic map sending a smooth real analytic hyper-
surface M ⊂ U into another such hypersurface M ′ ⊂ U ′, and U is as in (2.2),
then

(2.3) f (Z) = Z′ =⇒ f (QZ) ⊂ Q′Z ′ ,

for Z close to the origin. The invariance property of Segre varieties will play a
fundamental role in our arguments. For the proofs of these and other properties
of Segre varieties, see, for example, [7], [8], [9], or [1].

The space of Segre varieties {QZ : Z ∈ U1} can be identified with a subset of
CN for some N > 0 in such a way that the so-called Segre map λ : Z → QZ is
holomorphic (see [7]). Since we have Qp = X for any p ∈ X, the Segre map λ
sends the entire X to a unique point in CN , and, accordingly, λ is not even finite-
to-one near each p ∈ X (i.e., M is not essentially finite at points p ∈ X). On the
other hand, if M is Levi nondegenerate at a point p, then its Segre map is one-
to-one in a neighbourhood of p. In fact, the last property can be strengthened as
follows.

Proposition 2.1. LetM ⊂ Cn be a smooth real-analytic hypersurface, containing
a complex hypersurface X,0 ∈ X ⊂ M . Suppose that M \ X is Levi nondegenerate.
Then, a standard pair of neighbourhoods (U1, U2) for 0 ∈ M can be chosen in such a
way that the Segre map λ : U1 -→ CN is locally injective at any point p ∈ U1 \X.

Proof. Denote by Σ the set of points where the rank of the map λ is less than
n. Clearly, Σ is a complex-analytic subset of U1, and X ⊂ Σ. We will show that U1

can be taken sufficiently small so that Σ∩ U1 = X ∩ U1. Let Σ̃ be any irreducible
component of Σ of positive dimension such that 0 ∈ Σ̃. It follows from injectivity
of λ at Levi nondegenerate points that Σ̃∩M ⊂ X.
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Let U+ and U− be the two connected components of U1 \M . We claim that
either Σ̃ ⊂ U+ or Σ̃ ⊂ U−. Indeed, suppose that, on the contrary, Σ̃ ∩ U+ ≠ ∅
and Σ̃∩U− ≠∅. Let d := dim Σ̃. First, observe that Σ̃∩M 6⊂ Σ̃sing, for otherwise
the set Σ̃sing would divide Σ̃reg into a union of two open components (because M
divides U1, and therefore Σ̃∩M divides Σ̃). This is, however, impossible, because
for irreducible Σ̃, the set Σ̃reg is connected (see, e.g., [6]). It follows that Σ̃ ∩ M
contains regular points of Σ̃, and, considering a small neighbourhood of any such
point, we conclude that the dimension of the real-analytic set Σ̃∩M equals 2d−1
(since this set splits Σ̃reg). On the other hand, Σ̃ ∩ X ⊂ Σ̃ ∩M ⊂ Σ̃ ∩ X from the
above arguments, so Σ̃ ∩M = Σ̃ ∩ X, which shows that the dimension of Σ̃ ∩M
cannot be odd. That proves the claim.

Now if, for example, Σ̃ ⊂ U+, we can move Σ̃ along the normal direction
to M at 0 and get Σ̃ ∩ W ⊂ U+ for the perturbed set Σ̃ and a sufficiently small
neighbourhood W of the origin. This means that Σ̃ ∩ X ≠ ∅, though for the
perturbed set, Σ̃∩X = ∅—which is a contradiction, because dim Σ̃+ dimX ≥ n
and therefore their intersection is stable under small perturbations ([6]).

From the above, we conclude that all components of Σ, different from X, do
not intersect X. The zero-dimensional components of Σ do not accumulate at 0,
and therefore, we may choose the neighbourhood U1 so small that Σ = X ∩U1, as
required. ❐

Proposition 2.1 motivates the following definition.

Definition 2.2. A smooth real-analytic hypersurfaceM , containing a complex
hypersurface X ∋ 0, is called Segre-regular in a neighbourhood U of the origin, if the
Segre map λ of M is locally injective at each point p ∈ U \X.

We immediately conclude from Proposition 2.1 that, for a smooth real-analytic
hypersurface M , containing a complex hypersurface X ∋ 0 and Levi nondegenerate in
U \X, a standard pair of neighbourhoods U1, U2 of the origin can be chosen in such a
way that M is Segre-regular in U1.

The Segre-regularity will be the basic assumption for most of the statements
in this paper. We note, once again, that for a Segre-regular in a neighbourhood U
hypersurface, the image λ(X) consists of a unique point in CN , and near all points
p ∈ U \X, the map λ is one-to-one.

Finally, we describe the geometry of Segre varieties for the nondegenerate hy-
perquadric Q in the target domain. In this case, the Segre variety of a point
[ζ0, . . . , ζn] ∈ CPn is the projective hyperplane

Q′ζ = {[ξ0, . . . , ξn] ∈ CPn | H(ξ, ζ̄) = 0},

and the set {Q′ζ | ζ ∈ CPn} of all Segre varieties coincides with the space (CPn)∗

of all projective hyperplanes in CPn. The Segre map λ′ in this case is a global
natural one-to-one correspondence between CPn and the space (CPn)∗.
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3. EXHAUSTION OF A PUNCTURED NEIGHBOURHOOD BY SEGRE SETS

LetM,X,U1, U2 be as in Section 2. Following [1], we introduce the Segre sets ofM
in a neighbourhood of the origin. We choose q ∈ U1, and define the zero and the
first Segre sets S

q
0 , S

q
1 of q simply as S

q
0 := {q} and S

q
1 := Qq ∩ U1. Higher-order

Segre sets S
q
j , j ≥ 2 are defined by induction as

S
q
j :=

( ⋃

r∈Sqj−1

Qr
)
∩U1.

Finally, we define Sq∞ := ⋃j≥0 S
q
2j . For q ∈ X, we have Sqj = X∩U1 for any j ≥ 0.

As is shown in [1], Segre sets have the following properties:

(a) S
q
j ⊂ S

q
j+2 for q ∈ U1 and S

q
j ⊂ S

q
j+1 for q ∈ M ∩U1;

(b) r ∈ Sqj ⇔ q ∈ Srj , and so r ∈ Sq∞⇔ q ∈ Sr∞;

(c) S
q
j can be presented as π(σ

q
j ), where σ

q
j ⊂ CN is a complex submanifold

(N > n), and π : CN -→ Cn is a holomorphic projection.

In this section, we show that the open connected set U1 \ X can be exhausted by
the even Segre sets {Sp2j}j≥1 for any fixed p ∈ U \X.

Proposition 3.1. Let M ⊂ Cn be a smooth real-analytic hypersurface containing
a complex hypersurface X ∋ 0, and U1, U2 be the standard pair of neighbourhoods for
M at the origin. Suppose that M is Segre-regular in U1. Then, for any q ∈ U1 \X,

S
q
∞ = U1 \X.

Proof. Property (b) above shows that, for any two Segre sets Sq∞, Sr∞, q, r ∈ U1,
either S

q
∞ = Sr∞ or S

q
∞∩Sr∞ = ∅ holds. Thus U1\X can be represented as a disjoint

union of some S
q
∞, q ∈ U1 \ X (since each q ∈ Sq2 ). The proposition now asserts

that, in fact, this disjoint union consists of just one element Sq∞. We first claim
that every Sq2 , q ∈ U1 \ X, is open at any point r ∈ S

q
2 , sufficiently close to q

except, possibly, the point r = q. Indeed, let U(q) be a neighbourhood of q such
that the Segre map λ is one-to-one in U(q). Take any point r ∈ Sq2 so that r ≠ q
and r ∈ U(q). Then, r ∈ Qs , s ∈ Qq∩Qr , and in particular,Qr∩Qq ≠∅. The
injectivity of λ in U(q) implies that Qr ≠ Qq. A sufficiently small perturbation
of r does not change the properties Qr ≠ Qq (from the definition of U(q)) and
Qr ∩ Qq ≠ ∅ (as in the proof of Proposition 2.1, we use the fact that the sum
of the dimensions of these two analytic sets is at least n, and we refer to [6]). So,
for any r ′, sufficiently close to r , there exists a point s′ such that s′ ∈ Qq and
s′ ∈ Qr ′ , so that r ′ ∈ Qs′ and r ′ ∈ Sq2 , as required. This proves the claim.

Now, take any Sq∞, q ∈ U1 \X, and consider an interior point q′ ∈ Sq2 . Take a
ball B, centred at q′ and such that B ⊂ Sq2 . Then, for all r sufficiently close to q,
we have Sr2 ∩ B ≠ ∅ (this follows from the continuity of the map λ : z -→ Qz).
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Therefore, there exists r ′ ∈ B such that r ′ ∈ Sr2 . We get the inclusions r ∈ S2
r ′ ,

r ′ ∈ S2
q, which imply, by definition of Segre sets, the inclusion r ∈ Sq4 for all r

sufficiently close to q. This shows that q is an interior point of S
q
4 .

Taking a point s ∈ Sq2j for some j ≥ 0, we use a similar argument to conclude

from openness of S
q
4 at q that s is an interior point of S

q
2j+4. This finally shows

that all points of the set S
q
∞ are, in fact, its interior points, and so S

q
∞ is an open

set. The connectivity of U1 \X now implies that the decomposition of U1 \X into
Segre sets consists of a unique element, and U1 \ X = Sq∞ for any q ∈ U1 \ X, as
required. ❐

Example 3.2. For the hypersurfaceM log (see Introduction and Main Results),
we may choose U1 = U2 = C2 and p = (0,1) ∈ M . Then, M is Segre-regular in
U1, and simple computations show that

S
p
0 = p, S

p
1 = {w = 1}, S

p
2 = (C2 \X) \ {z = 0,w ≠ 1},

S
p
3 = S

p
4 = · · · = C2 \X.

It is also not difficult to see that taking U1 = {|z| < ε, |w| < ε} and p = (ε/2,0),
all points lying in the j-th Segre set Spj satisfy: |w| ≥ 1

2εe
−2jε2

. This inequality
shows that no Segre set of a fixed “depth” j can a priori exhaust the punctured
neighbourhood U1 \X for a nonminimal Segre-regular hypersurface M .

4. EXTENSION ALONG SEGRE VARIETIES

The result of the previous section, showing that iterated Segre varieties of a fixed
point p ∈ M \X exhaust the punctured neighbourhood U1 \X, suggests that the
desired continuation of a given local biholomorphic map F of M into a quadric
Q can be obtained by extending F along iterated Segre varieties of the point p.
The extension along Segre varieties is based on their invariance property (2.3) and
gives an effective way of holomorphic continuation for holomorphic maps of real
submanifolds in complex spaces (see [23], [12]).

Let M,X,U1, U2 be as in Section 2, with 0 ∈ X ⊂ M . Let p ∈ (M \X)∩U1.
We first introduce the following notation: by Qp0,p1,...,pj−1 , we denote the Segre

variety Qpj−1 , where p0 := p, pk ∈ Qpk−1 , k = 1,2, . . . , j − 1 so that pk ∈ Spk ,

k = 0,1,2, . . . , j − 1 and Qp0,p1,...,pj−1 ⊂ S
p
j . In this section, we show that a

local biholomorphic map F , sending the germ of M at a point p ∈ M \ X into
a hyperquadric, can be extended, in a certain sense, to a neighbourhood of any
Qp0,p1,...pj−1 . For j = 1, the Segre variety Qp0 contains p, and the extension
can be understood naturally, while for j ≥ 2 the meaning of extension will be
specified.

Let r ∈ U1 \ X, U(r) ⊂ U1 \ X be an open polydisc, centred at r , and
let F : U(r) -→ CP

n be a biholomorphic map onto its image. For q ∈ U(r)
and s ∈ Qq so that q ∈ Qs , we denote by (Qs)c the connected component of
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Qs ∩ U(r), containing q. We say that F has the Q-Segre property in U(r) if,
for any q ∈ U(r) and s ∈ Qq, the image F((Qs)c) is contained in a projective
hyperplane in CPn. The definition is motivated by the fact that quadrics are the
only hypersurfaces in CPn for which the Segre varieties are projective hyperplanes.

We now formulate the key claim for the main result of this paper.

Proposition 4.1. Let M ⊂ Cn be a smooth real-analytic hypersurface, X ⊂ Cn
be a complex hypersurface, 0 ∈ X ⊂ M , and (U1, U2) be a standard pair of neigh-
bourhoods at the origin. Suppose that M is Segre-regular in U1 and that, for some
point p ∈ M \X and a polydisc U(p) centred at p, there exists a biholomorphic map
F0 : U(p) -→ CP

n such that F0(M ∩U(p)) ⊂ Q, where Q ⊂ CPn is a nondegener-
ate real hyperquadric. Then, there exist connected neighbourhoods W1,W2, . . . ,Wj of
Qp0 ,Qp1 , . . . ,Qpj−1 , respectively, so that pk ∈ Wk, k = 0,1, . . . , j − 1, and locally
biholomorphic maps

F1, F2, . . . , Fj , Fk : Wk -→ CP
n, k = 1,2, . . . , j,

such that the following hold:
(i) The intersection U(p) ∩W1 contains a polydisc W0 centred at p0 such that

F1 is a holomorphic extension of F0|W0 ;
(ii) For each k = 2, . . . , j, the intersectionWk−2∩Wk contains a polydiscU(pk−2)

centred at pk−2 such that Fk is a holomorphic extension of Fk−2|U(pk−2).
(iii) For each r ∈ Qpk , k = 0,1, . . . , j − 1, there exists a polydisc U(r) ⊂ Wk+1

such that Fk+1|U(r) has the Q-Segre property in U(r).

Proof. We use the coordinate system in the preimage in the form (z,w) ∈
Cn−1 × C, and denote by Uz and Uw the projections of a polydisc U ⊂ U1 ⊂ Cn
onto the z-coordinate subspace and the w-axis, respectively. We also suppose
that, in these coordinates, Segre varieties of M are graphs of the form w = h(z),
h ∈ O(Uz), and X is given by {w = 0}. In the target domain, we denote by Q′ζ
the Segre varieties of points ζ ∈ CPn with respect to the hyperquadric Q.

Step 1. We first prove part (i) and (iii) for k = 0. We choose W0 ⊂ U(p) to
be a polydisc, centred at p and such that, for each Segre variety Qq, q ∈ Qp ∩U1,
the intersection Qq ∩ W0 is the graph of a function over W z

0 ; in particular, it is
connected (the existence of such a polydisc follows from the fact that p ∈ Qp,
p ∈ Qq for q ∈ Qp, and that the 1-jets of Segre varieties Qq, q ∈ Qp at p
are bounded in the intersection of Qp with the closed polydisc U1 ⊂ U2). Thus,
we can choose a connected neighbourhood W1 ⊃ Qp such that, for s ∈ W1, the
intersection Qs ∩W0 is also connected and nonempty.

We follow the strategy in [8] and [23], and consider the set

A1 = {(Z, ζ) ∈ W1 ×CPn | F0(QZ ∩W0) ⊂ Q′ζ}.

In the same way as in Proposition 3.1 in [23], one can show that A1 is a nonempty
closed complex-analytic subset in W1 × CPn of dimension n. But unlike the
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situation in [23], we do not need to exclude an analytically constructible set from
Qp, since the hypersurface in the target domain is the hyperquadricQ whose Segre
map is globally injective. If, for some Z ∈ W1, we have ζ1, ζ2 ∈ CPn and ζ1 ≠ ζ2,
then

(Z, ζ1), (Z, ζ2) ∈ A1 =⇒ F0(QZ ∩W0) ⊂ Qζ1 ∩Qζ2 ,

which is not possible since F0 is biholomorphic inW0, dimQζ1∩Qζ2 = n−2 while
QZ ∩W0 is of dimension n− 1. Thus A1 is, in fact, the graph of a holomorphic
map F1 : W1 -→ CP

n. To show that F1 is locally biholomorphic, we observe that
local injectivity of λ implies that, for distinct Z1, Z2 that are close to each other,
the intersection QZ1 ∩ QZ2 ∩ W0 has dimension at most n − 2, so by shrinking
W1, if necessary, we conclude that (Z1, ζ) ∈ A1 and (Z2, ζ) ∈ A1 forces Z1 = Z2,
so that F1 is locally one-to-one and hence biholomorphic. Also, the invariance
property of Segre varieties (2.3) implies that, for Z ∈ W1, sufficiently close to p,
F0(Z) = F1(Z), which proves (i).

For the proof of (iii) for k = 0, we consider the set V1 of points q ∈ U1 such
that Qq ∩W0 ≠∅. Clearly,

(4.1) V1 =
⋃

s∈W0

Qs .

Since W0 is open, V1 is also open, and because each Qs is path-connected and
W0 is open and path-connected, V1 is also connected. For points s ∈ U1, close
to p, F1 = F0 and the invariance property imply that F1 transfers Qs ∩ W0 to
an open subset of a projective hyperplane. Now, take a point a ⊂ W z

0 ⊂ Cn−1

and consider an open connected subset Va ⊂ V1 which consists of q ∈ U1 such
that ({a} × Ww

0 ) ∩ Qq ≠ ∅. Clearly, each Va is open, Va =
⋃
b∈Ww

0
Q(a,b) so

that Va is connected, and V1 =
⋃
a∈W z

0
Va. The set Va always contains points

sufficiently close to p, and we may consider on Va the holomorphic map which
assigns to q ∈ Va the k-jet, k ≥ 2, of Qq at the point a. The components of this
map, corresponsing to derivatives of order ≥ 2, vanish for points in Va, close to p
(since for such points F1(Qq ∩W0) is contained in a projective hyperplane), and
consequently vanish on entire Va; thus, for all q ∈ Va, F1 transfers the connected
component of Qq ∩W0 containing the point with z-coordinates equal to a to an
open subset of a projective hyperplane. From this and (4.1) it follows that the
desired Q-Segre property holds for F1 in W0.

Now, we take any r ∈ Qp and prove that the Q-Segre property for F1 is some
polydisc U(r). We choose U(r) ⊂ W1 and so that Qp ∩ U(r) is the graph of a
function over Uz(r), so that, for p∗ sufficiently close to p we have thatQp∩U(r)
is connected. Since W1 ⊃ Qp, for p∗, close to p we have that Qp∗ ⊂ W1, and
the Q-Segre property of F1 in W0 (as well as F1(Qp∗ ∩ U(r))) implies by the
uniqueness property that F1(Qp∗) is an open subset of a projective hyperplane.
Then, arguments analogous to those used above show the Q-Segre property for F1

in U(r), which completes Step 1.
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Step 2. We now prove (ii) and (iii) for j = 2. This will give us the base case for
a general induction argument. The proof for this case will be a small modification
of the one in the previous step.

From (i), W0 ⊂ W1 and F0|W0 = F1|W0 . We choose a polydisc U(p1) ⊂ W1

with theQ-Segre property for F1, and a connected neighbourhoodW2 ofQp1 such
that, for each Segre variety Qq, q ∈ W2, the intersection Qq ∩U(p1) is the graph
of a function over Uz(p1) (in particular, it is connected). Consider the set

A2 = {(Z, ζ) ∈ W2 ×CPn | F1(QZ ∩U(p1)) ⊂ Q′ζ}.
TheQ-Segre property of F1 and arguments similar to those in [23] show that A2 is
a nonempty complex analytic set in W1 × CPn, of dimension n. By shrinking W2

if needed, we obtain in a similar fashion that A2 defines a locally biholomorphic
mapping F2 : W2 -→ CP

n. Since Qp1 ∋ p, we conclude that p ∈ W2, and
for points p∗ ∈ W2, we have that, sufficiently close to p, Qp2 ⊂ W1, and the
intersection W0 ∩Wp∗ is connected. By the invariance property of F1 = F0 in W0,
we conclude that the point in A2 over p∗ must equal F1(p∗); that is, F2(p∗) =
F1(p∗) = F0(p∗), which proves (ii) for j = 2. The proof of (iii) for this case
follows the same pattern as in Step 1.

Step 3. We now perform the induction step by assuming that j > 2 and that,
for all smaller j, the proposition holds (i.e., for all k < j, the desired extensions
and polydiscs with the Q-Segre property have already been obtained). We treat
the case k = j.

In the same way as in Step 2, we obtain, using the Q-Segre property of Fj−1,
a polydisc U(pj−1), a neighbourhood Wj of Qpj−1 with Qq ∩U(pj−1) connected
for q ∈ Wj , and a locally biholomorphic map Fj : Wj -→ CP

n, corresponding to
the n-dimensional complex analytic set

Aj = {(Z, ζ) ∈ Wj ×CPn | Fj−1(QZ ∩U(pj−1)) ⊂ Qζ}.
To prove (ii), take now Z close to pj−2 so that QZ is contained in Wj−1. To
clarify what Fj(Z) equals, recall that, by assumption, the proposition is proved for
smaller j. Therefore,

Fj−1(QZ ∩U(pj−1)) = Fj−3(QZ ∩U(pj−1)) = Q′Fj−3(Z)
,

so, by the definition of Fj and Fj−2, we obtain that Fj(Z) = Fj−2(Z), and (ii) is
proved.

Finally, to prove (iii) for Fj, we take r ∈ Qpj−1 and a polydisc U(r) such that,
for p∗ close to pj−1, the intersection Qp∗ ∩ U(r) is connected. We also may
suppose that Qp∗ ⊂ Wj . Since Fj−2(Qp∗ ∩ U(pj−2)) is contained in a projective
hyperplane, and Fj−2 = Fj in U(pj−2) ⊂ Wj , we conclude that Fj(Qp∗) is con-
tained in a projective hyperplane. To obtain the entire Q-Segre property for Fj we
repeat the arguments from the proof in Step 1.

This completes the proof of the theorem. ❐



Analytic Continuation of Holomorphic Mappings 13

We now formulate the following corollary, which is a weaker form of our main
extension result, but is convenient for applications.

Corollary 4.2. Let M,X,p,U1, U2, F0 satisfy Proposition 4.1. Then, for each
point q ∈ U1 \ X, there exists a connected path γ : [0,1] -→ U1 \ X, γ(0) = p,
γ(1) = q such that F0 extends analytically along γ as a locally biholomorphic mapping
to CPn, and for any r ∈ γ, there exists a polydisc U(r), centred at r , such that the
mapping Fr has theQ-Segre property in U(r) here, Fr is the element of the analytically
continued germ F0 along γ at the point r .

Proof. Proposition 3.1 implies that there exist points p1, p2, . . . , p2j−1 ∈ U1 \
X such that q ∈ Qp0,p1,...,p2j−1 , j ≥ 1. We set p2j := q and choose connected
paths Γ0,2 ⊂ Qp1 , Γ2,4 ⊂ Qp3 , . . . , Γ2j−2,2j ⊂ Qp2j−1 such that

Γ0,2(0) = p0, Γ0,2(1) = p2, Γ2,4(0) = p2, Γ2,4(1) = p4, . . .

. . . , Γ2j−2,2j(0) = p2j−2, Γ2j−2,2j(1) = p2j = q.

Then, applying Proposition 4.1, we conclude that F2 is a local biholomorphic
extension of F0 along Γ0,2; F4 along Γ2,4;. . . ; F2j is a local biholomorphic extension
of F2j−2 along Γ2j−2,2j (of course, we use the connectivity and simple connectivity
of the Segre varieties as holomorphic graphs). Taking now γ to be the union of
the paths of Γ0,2, . . . , Γ2j−2,2j , we obtain the desired local biholomorphic extension
of F0. The Q-Segre property for Fr , r ∈ γ, now follows from Proposition 4.1. ❐

5. EXTENSION ALONG AN ARBITRARY PATH

In this section, we prove that F0 can be analytically continued along any path in
U1 \X. We begin with the following proposition.

Proposition 5.1. Let M,X,U1, U2 satisfy Proposition 2.1, r ∈ U1 \X, U(r) ⊂
U1 \X a polydisc centred at p, and let F,G be two biholomorphic mappings U(r) -→
CP

n with Q-Segre property in U(r). Then, there exists a linear automorphism τ of
CP

n such that G = τ ◦ F .

Proof. Let λ : U1 -→ CN and λ′ : CPn -→ (CPn)∗ be the Segre maps in the
preimage and the target domain, respectively, U ′ = F(U). We consider the map
τ := G ◦ F−1, which is a biholomorphic map U ′ -→ CP

n onto its image.
From the Q-Segre properties of F and G, we know that τ maps “many” (con-

nected components of ) intersections of projective hyperplanes with U ′ to open
subsets of projective hyperplanes, and want now to prove the same for the set of
hyperplanes intersecting a ball B in some coordinate chart in CPn. To do so, set
r ′ := F(r), and fix some coordinate ball B ⊂ U ′ centred at r ′. Let q ∈ Qr so that
r ∈ Sq. Choose a polydisc Ũ(r) with the following properties:

(i) Ũ(r) ⊂ U(r), F(Ũ(r)) ⊂ B;
(ii) Sq ∩ Ũ(r) is a graph over Ũz(r) (we use the notation from Proposi-
tion 4.1).
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According to property (ii), there exists a connected neighbourhood V(q) such
that, for each r̃ ∈ Ũ(r), there exists q̃ ∈ V(q) such that r̃ ∈ Qq̃ and Qq̃ ∩ Ũ(r)
is connected (we simply use the fact that Qr̃ is close to Qr ∋ q). Choosing Ũ(r)
small enough, we may suppose the Segre map λ is injective in V(q). Consider
now the following mapping: taking q̃ ∈ V(q), we associateQq̃ to it, then consider
F(Qq̃∩Ũ(r)) (an open subset of a projective hyperplane), and, using λ′, associate
a point in (CPn)∗ to it. This is an injective holomorphic map from V(q) to
(CPn)∗; denote its image by W ′. Consider also the set of projective hyperplanes
intersecting B, and denote this open connected set in (CPn)∗ by A′. Then, W ′ is
an open subset of A′ (by property (i)), and, by definition of τ, the map τ sends
ℓa ∩ B with ℓa ∈ W ′ (here, ℓa is a projective hyperplane that corresponds to
a ∈ CPn) to open subsets of projective hyperplanes. Considering, as in the proof
of Proposition 4.1, the high order jets of τ(ℓa ∩ B) as holomorphic mappings
of A′, we see that their components, corresponding to derivatives of order ≥ 2,
vanish for ℓa ∈ W , and so they must vanish for all ℓa ∈ A′. We thus obtain the
desired “hyperplane-to-hyperplane” property of τ for any hyperplane intersecting
B. As can be verified from many references (see, for example, [25], [24], or [16],
[17]), τ in this case must be a local biholomorphic symmetry of the system of flat
second-order complex differential equations

yxkxℓ = 0, k, ℓ = 1,2, . . . , n− 1.

Hence, it is a linear automorphism of CPn, and G = τ ◦ F , as required. ❐

We now can prove part (i) of Theorem 1, which we formulate in the following
theorem.

Theorem 5.2. Let M ⊂ Cn be a smooth real-analytic hypersurface, and X ⊂ Cn
a complex hypersurface, 0 ∈ X ⊂ M . Suppose that M is Levi nondegenerate in M \X
and pseudospherical. Then, there exists a neighbourhood U1 of the origin such that, for
each point p ∈ (M \X)∩U1, any local biholomorphic mapping F0 : (Cn, p) -→ CP

n

transferring (M,p) onto an open piece of a nondegenerate real hyperquadricQ ⊂ CPn
extends analytically along an arbitrary continuous path γ : [0,1] -→ U1 \X, γ(0) =
p, as a local biholomorphic mapping into CPn.

Proof. Let U1, U2 be a standard pair of neighbourhoods of the origin such that
M is Segre-regular in U1. Suppose, on the contrary, that the claim of the theorem
is false. Then, since for t close to 0 the extension with Q-Segre property already
exists, we can choose the smallest t0, 0 < t0 < 1, such that F0 does not extend
analytically to γ(t0) along the path γ|[0,t0] with the Q-Segre property in some
neighbourhood of each γ(t), 0 ≤ t ≤ t0 (t0 is simply the supremum of t such
that F0 extends to γ(t) along γ|[0,t] with the Q-Segre property at each point).
Applying Corollary 4.2, we obtain a polydisc U(r) centred at r = γ(t0), and a
mapping F̃r in U(r) with the Q-Segre property. We now take some t∗ close to t0
with t∗ < t0 and r∗ = γ(t∗) ∈ U(r), and denote the corresponding extension
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of F0 with the Q-Segre property at some polydisc U(r∗) by Fr∗ . Without loss of
generality, we may assume that U(r∗) ⊂ U(r). Then, applying Proposition 5.1
for the polydisc U(r∗) and mappings F̃r , Fr∗ in it, we get a linear automorphism
τ of CPn such that Fr∗ = τ ◦ F̃r in U(r∗). This equality clearly implies, by the
global nature of τ, that τ ◦ F̃r is a holomorphic extension of Fr∗ to U(r) ∋ r
with the Q-Segre property, which contradicts the definition of t0. ❐

Let Y,Y ′ be complex manifolds, and F0 : (Y ,p) -→ (Y ′, p′) be a local biholo-
morphic mapping between them. Suppose that the germ (F0, p) can be extended
analytically along any continuous path γ ⊂ Y , starting at p. By a (multiple-valued)
analytic mapping in the sense of Weierstrass we mean the collection {(Fq,γ, q)} of all
possible germs obtained by analytic extension of (F0, p) along all possible contin-
uous paths γ ⊂ Y , starting at p and ending at arbitrary points q ∈ Y (see, e.g.,
[20] for more details of this concept). If, for an arbitrary path γ ⊂ Y , the analytic
extension of (F0, p) along γ gives the same element (F0, p), then the (multiple-
valued) analytic mapping simply determines a holomorphic mapping Y -→ Y ′

(the Monodromy theorem). Note that if Y and Y ′ are domains in C, then this
notion simply gives an accurate set-up for a (multiple-valued) analytic function.
Putting now Y = U \X, Y ′ = CPn, we can formulate the following result.

Corollary 5.3. Let M,X,U1, F0, p satisfy Theorem 5.2. Then, the mapping
F0 : (Cn, p) -→ CP

n extends locally biholomorphically to a multiple-valued analytic
mapping F : U1 \ X -→ CP

n in the sense of Weierstrass. Moreover, each analytic
element (Fr , r ) of F at a point r ∈ U1 \X has the Q-Segre property.

The following examples, as well as Example 6.2 and the model example M log,
illustrate behaviour of the map F . A special case of Example 5.4 is considered in
[10] and [14], and Example 5.5 is borrowed from [10].

Example 5.4. Consider the standard hyperquadric

(5.1) Q = {(z∗,w∗) ∈ C2 | Imw∗ = |z∗|2},

and the (multiple-valued) locally biholomorphic mappings Fα : C× (C \ {0}) -→
CP

2 given as
z∗ = zwα, w∗ = w2α, α ∈ R \ {0}.

Then, it is not difficult to check, by plugging F into the defining equation of Q,
that F−1

α determined by −π/2 < Argw < π/2 maps (Q,p∗), p∗ = (0,1) ∈ Q
onto an open piece of the smooth real-analytic hypersurface

(5.2) Mα = {(z,w) ∈ C2 | w = w̄(
√

1− |z|4 + i|z|2)1/α, |z| < 1}.

All Mα are nonminimal, as they contain X = {w = 0}, and are Segre-regular in
|z| < 1. Fα turns out to be exactly the (multiple-valued) locally biholomorphic
mapping provided by Corollary 5.3. For α ∈ Z, the mapping Fα is single-valued
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and extends holomorphically to X = {w = 0}. Thu,s F−1
α performs a certain

blow-up of the 3-sphere in C2. For α rational, the multiple-valued mapping Fα
is finitely-valued, and extends to X as a holomorphic correspondence [21] (the
graph of Fα extends even to an algebraic subset of CP4 in this case). For irrational
α, the mapping Fα is infinitely-valued, and, furthermore, the graph of a germ of
Fα does not even extend to a closed complex-analytic subset of (U1 \X)×C2 (note
that such extension is possible for the model example M log).

Example 5.5. Consider the quadric Q defined by (5.1), and the blow-ups
Gm given by

z∗ = zwm, w∗ = w, m ∈ Z, m > 0.

The image of Q under Gm is the union of algebraic hypersurfaces given by

(5.3) Km = {Imw = |z|2 |w|2m}.

These are nonminimal with X = {w = 0}, and are Segre-regular in appropriate
polydiscs Um(0). Here, Gm are single-valued and extend to X holomorphically.

6. APPLICATION: TRANSFER OF SPHERICITY

The above continuation results imply the following remarkable fact on the geom-
etry of nonminimal real hypersurfaces. Throughout the section, we denote by M+

andM− the connected components ofM \X. The next theorem is a reformulation
of Theorem 1, part (ii).

Theorem 6.1. Let M ⊂ Cn be a smooth real-analytic hypersurface Levi nonde-
generate in M \X and containing a complex hypersurface X ⊂ Cn. Suppose that M is
pseudospherical with M+ being (k, ℓ)-spherical. Then, M− is (k′, ℓ′)-spherical with,
possibly, (k′, ℓ′) ≠ (k, ℓ).

Proof. We fix a standard pair of neighbourhoods U1, U2 such that M is Segre-
regular in U1, and choose points p+ ∈ M+ ∩ U1 and p− ∈ M− ∩ U1 and a local
biholomorphic map F0 : (Cn, p+) -→ CP

n with F+(M+) ⊂ Q for a nondegen-
erate hyperquadric Q ⊂ CPn of the signature (k, ℓ). Applying Corollary 4.2, we
can find a polydisc U(p−) and a local biholomorphic map F− : U(p−) -→ CP

n

with Q-Segre property. Set P := F−(M− ∩ U(p−)). Then, P ⊂ CPn is a smooth
real-analytic Levi nondegenerate hypersurface, biholomorphically equivalent to
M− ∩ U(p−). The Q-Segre property of F− and the holomorphic invariance
of Segre varieties imply that all Segre varieties of P, in some neighbourhood of
F−(p−), are open pieces of projective hyperplanes. Now choose some affine chart,
containing P, and make an invertible affine transformation such that, in the new
coordinates, P has the form

2 Rew′ = H(z′, z̄′)+O(2), z′ ∈ Cn−1, w ∈ C,
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where H(z′, z̄′) is a nondegenerate Hermitian form. Then, Segre varieties of P
have the form

w = −b̄′ +H(z, ā′)+ · · · .
This equation determines a hyperplane for all sufficiently small a and b, which
implies that all monomials in dots in fact vanish, and therefore, P is a nondegen-
erate real hyperquadric. ❐

The following example shows that, surprisingly, the equality (k, ℓ) = (k′, ℓ′)
does not hold in Theorem 6.1 even for algebraic nonminimal hypersurfaces in Cn,
n > 2 (in particular, M+ and M− may have different signature of the Levi form).

Example 6.2. Let Q = {Imw∗ = |z∗1 |2 + |z∗2 |2} ⊂ C3 be a real strictly
pseudoconvex hyperquadric. Consider the following “blow-up” map F :

z∗1 = z1
√
w, z∗2 = z2w, w∗ = w.

Choosing a connected neighbourhood D ⊂ Q of the point (0,0,1) ∈ Q, and the
single-valued biholomorphic branch of F given by −π/2 < Argw∗ < π/2, it
is straightforward to check that F−1 maps D onto an open piece of the smooth
real-analytic nonminimal hypersurface

M =




w = w̄

(i|z1|2 +
√

1− 2i|z2|2w̄ − |z1|4 )2

(1− 2i|z2|2w̄)2




,

satisfying Rew > 0 and z1, z2,w be small enough (one should rewrite the equa-
tion ofQ in the new coordinates). It is easy to verify that M is Levi nondegenerate
outside w = 0, and so M satisfies the conditions of Theorem 6.1; also, at the
point p+ ∈ M+, p+ = (0,0, ε), ε > 0, the Levi form is positive definite, though
at the point p− ∈ M−, p− = (0,0,−ε), ε > 0, the Levi form has eigenvalues of
different signs. Thus, M+ is (2,0)-spherical, though M− is (1,1)-spherical. In
fact, the single-valued biholomorphic branch of F given by π/2 < Argw < 3π/2
maps the negative half M− of M onto a domain on the indefinite hyperquadric
Q− = {Imw∗ = −|z∗1 |2 + |z∗2 |2}.

Unlike the case n ≥ 3, forn = 2 all hyperquadrics in CP2 are equivalent to the
3-sphere S3 ⊂ C2, and the phenomenon from Example 6.2 cannot hold. However,
it may still happen that the multiple-valued mapping obtained in Theorem 5.2
maps M+ and M− to different hyperquadrics in CP2, though these hyperquadrics
are equivalent by means of some τ ∈ Aut(CP2).

Example 6.3. Consider the hypersurface M log ⊂ C2 (for more details, see
Introduction and Main Results). Then, the multiple-valued map F : (z,w) -→
(z, lnw) maps the domain M+ ⊂ M , given by the condition u > 0, to the hyper-
quadrics

{Imw∗ + 2kπ = |z∗|2}, k ∈ Z,
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and the domain M− ⊂ M , given by u < 0, to the hyperquadrics

{Imw∗ + (2k+ 1)π = |z∗|2}, k ∈ Z.

Each of the hyperquadrics appears as τk(Q0), where Q0 is the standard hyper-
quadric {Imw∗ = |z∗|2}, and the element τ ∈ Aut(CP2) is the affine transfor-
mation (z,w) -→ (z,+πi).

As a small consolation for the paradoxical phenomenon (illustrated by Exam-
ples 6.2, 6.3), we show now that this does not happen if F is single-valued.

Proposition 6.4. Let M ⊂ Cn be a smooth real-analytic hypersurface Levi non-
degenerate in M \ X, and containing a complex hypersurface X ⊂ Cn. Suppose that
M is pseudospherical, with M+ being (k, ℓ)-spherical, and that the multiple-valued
analytic mapping F (obtained in Theorem 5.2) is single-valued. Then, the following
hold:

(i) M− is also (k, ℓ)-spherical;
(ii) F maps both components M+,M− to the same hyperquadric Q.

Proof. Choose U1, p+, p−, F0,Q as in the proof of Theorem 6.1, and apply
Propositions 3.1 and 4.1 to find a sequence p0 = p+, p1, . . . , p2j−1 such that
the point p− ∈ Qp2j−1 and such that the same is true for all the continuations
F1, . . . , F2j . Since F is single-valued, the continuations are simply restrictions of F
onto some domains in U1 \ X. By the definition of F2j , we have F2j−1(Qp−) ⊂
Q′F2j(p−) so that F(Qp−) ⊂ Q′F(p−). But p− ∈ M , and accordingly p− ∈ Qp− , and

so F(p−) ∈ Q′F(p−), which means that F(p−) ∈ Q. Since p− ∈ M− is arbitrary,
this shows that F(M−) ⊂ Q, and proves both (i) and (ii). ❐

Remark 6.5. We were informed by V. Beloshapka that an alternative proof
of Theorem 6.1 can be deduced from the differential equations characterizing
sphericity of a Levi nondegenerate hypersurface that were obtained by J. Merker
in [16], [17]. After this paper was accepted for publication, we received details of
the proof in private communication with J. Merker.

7. THE MONODROMY

In this section, we give a description of the multiple-valued extension obtained in
Theorem 5.2. It will allow us to find an interesting interaction between nonmini-
mal pseudospherical hypersurfaces in Cn and linear differential equations of order
n.

Let M,X,U1, p, F0 satisfy Theorem 5.2, and let F be the (multiple-valued)
analytic mapping obtained there. Consider a noncontractible cycle γ : [0,1] -→
U1 \ X, γ(0) = γ(1) = p, which is a generator of the fundamental group of
U1 \X. Let (F1, p) be the analytic continuation of the element (F0, p) of F along
γ to the point p. Applying the Q-Segre property of F0, F1, and using Proposition
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5.1, we obtain a mapping σ ∈ Aut(CPn) such that F1 = σ ◦ F0. General prop-
erties of analytic continuation and the global character of σ imply that the linear
automorphism σ is independent

(i) of the choice of a generator γ,
(ii) of the choice of an analytic element (q, Fq,0) of F at a point q ∈ U1 \X.

To show (ii), for example, we choose a path γq such that Fq,0 is an extension of
F0 along γq, and denote by Fq,1 the extension of Fq,0 along γ (we suppose, without
loss of generality, that q ∈ γ). Again, the Q-Segre property of the elements of F
and Proposition 5.1 show that there exists an element σ ′ ∈ Aut(CPn) such that
Fq,1 = σ ′ ◦ Fq,0. Note that Fq,1 is obviously the extension of F1 along γq. But
F1 = σ ◦ F0, so that the extension of F1 along γq equals (by the uniqueness)
σ ◦Fq,0, and we conclude that σ ◦Fq,0 = σ ′◦Fq,0 and finally σ = σ ′, as required.
The proof of (i) is analogous.

To see the dependence of σ on the choice of the initial local biholomorphic
mapping F0 of M onto a hyperquadric, choose some other local biholomorphic
mapping F̃0 of (M,p) to a possibly different hyperquadric Q̃, and denote the
continuation of F̃0 along γ by F̃1 and the corresponding linear automorphism
of CPn by σ̃ . Then, applying Proposition 5.1, we conclude that there exists
τ ∈ Aut(CPn) such that F̃0 = τ ◦ F0, and so the continuation of F̃0 along γ
equals τ ◦ F1 = τ ◦ σ ◦ F0. On the other hand, F̃1 = σ̃ ◦ F̃0 = σ̃ ◦ τ ◦ F0 so that
τ ◦σ ◦ F0 = σ̃ ◦ τ ◦ F0 and τ ◦σ = σ̃ ◦ τ. In fact, the linear automorphism τ is
a linear projective equivalence of Q and Q̃. We finally may express σ̃ as follows:

(7.1) σ̃ = τ ◦ σ ◦ τ−1.

Relation (7.1) shows that the monodromy matrix σ is defined up to matrix conju-
gation and scaling. We will call this conjugacy class the monodromy operator of M ,
and denote it by Σ. This term is used in analogy with the monodromy matrix of a
linear differential equation of order n at a singular point [13]. The monodromy
operator does not depend on the choice of the cycle γ, the point p ∈ U1 \ X,
the element Fp of F , the target hyperquadric Q, or the initial local biholomorphic
mapping F0 of M+ or M− into Q, and is only a characteristic of the holomor-
phic geometry of a nonminimal pseudospherical real-analytic hypersurface. This
geometry can be also characterized by, for example, the Jordan normal form of
Σ, defined up to scaling of its diagonal part, or, alternatively, by the cyclic sub-
group H = {σ k, k ∈ Z} ⊂ Aut(CPn) generated by σ , defined up to conjugation.
Note that the subgroup H exactly determines all possible elements of F at a point
p ∈ U1 \X, and all the elements have the form

Fp,k = σ k ◦ Fp,0, k ∈ Z,

where Fp,0 is some fixed element. Both the (scaled) Jordan normal form of Σ and
(the conjugacy class of ) the subgroup H ⊂ Aut(CPn) precisely characterize the
monodromy of F about X.
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The analogy with differential equations goes even further. Choose the local
coordinate system in such a way that X is given in U1 by the condition w = 0.
Consider the (n+ 1)× (n+ 1)-matrix σ (defined up to scaling). We set

A := 1
2πi

lnσ

(we may choose any of the matrix logarithms), and consider in a neighbourhood
U(p) of p the mapping

G0 : U(p) -→ CP
n, G0(z,w) := w−A · F0(z,w).

Here, we understand F0(z,w) as the column of its n + 1 homogeneous coordi-
nates, and by w−A we understand the functional matrix exponent e−A lnw . The
definition of G0 does not depend on the choice of the uncertain factor of σ , since
the uncertain factor clearly just scales the column, representing G0; and this does
not change the element G0(z) ∈ CP

n, z ∈ U(p). Then, G0 extends along an
arbitrary path in U1 \X because F0 and the matrix-valued mapping w−A do, and
determines a (multiple-valued) analytic mapping G. Since the monodromy of
w−A is given by w−A -→ σ−1w−A = w−Aσ−1, the monodromy of G is given by

G0 -→ w−A · σ−1 ·σ · F0 = w−A · F0 = G0.

Hence, by the monodromy theorem [20], G is a single-valued holomorphic map-
ping, and we obtain the following formula characterizing the multiple-valuedness
of F :

F = wA ·G (the monodromy formula),

where G is a holomorphic mapping U1 \ X -→ CP
n. Note that a very similar

formula holds for the monodromy of the fundamental matrix of solutions of a
linear differential equation of order n, [13]. The monodromy formula generalizes
Examples 1.1, ??, 5.4, and gives a local monodromy representation of an arbitrary
multiple-valued extension of a local biholomorphic mapping from a nonminimal
real hypersurface to a quadric.

We summarize our arguments in the following theorem, which is the ex-
panded formulation of Theorem 2.

Theorem 7.1. Let M,X,U1,Q satisfy Theorem 5.2, and F be the multiple-
valued analytic mapping obtained there. Then, there exists an element σ ∈ Aut(CPn)
such that the following hold:

(i) The monodromy of F with respect to a generator γ of the fundamental group
of U1 \X is given by

Fq -→ σ ◦ Fq,
where Fq is an arbitrary element of F at a point q ∈ U1 \ X. In particular,
the collection of all elements of F at a point q is given by the natural action of
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the cyclic subgroup of Aut(CPn), generated by σ , on a fixed analytic element
of F at q.

(ii) All possible changes of the target hyperquadric Q ⊂ CPn and the local biholo-
morphic map F0, transferring (M,p) toQ, transform the monodromy matrix
σ by the formula

σ -→ τ ◦σ ◦ τ−1

where τ ∈ Aut(CPn), and thus generate the monodromy operator Σ. The
correspondence M -→ J(M), where J(M) is the (scaled ) Jordan normal form
of Σ, is only characterized by the holomorphic geometry of M . In particular,
J(M) is a biholomorphic invariant of M .

(iii) If the local coordinates (z,w) at the origin are chosen in such a way that
X = {w = 0}, then there exists a single-valued holomorphic mapping G :
U1 \X -→ CP

n such that the following monodromy formula holds:

F = wA ·G,
where 2πiA is a complex logarithm of the monodromy matrix σ .

Remark 7.2. If σ is a scalar matrix (i.e., the monodromy operator Σ is the
identity), we conclude, by the monodromy theorem [20], that the multiple-valued
map F is, in fact, a single-valued locally biholomorphic mapping F : U1 \ X -→
CP

n.

Example 7.3. For the hypersurfaces Mα ⊂ C2 given by (5.2) with α ∈ Z

and the hypersurfaces Km ⊂ C2 given by (5.3), the monodromy operator is the
identity, and the map F is single valued. For the hypersurfaces Mα with α ∉ Z,
the monodromy operator has a diagonal Jordan normal form:

J(Mα) = diag{e2πiα, e4πiα,1}.
Thus, the monodromy representation becomes

F =



wα 0 0
0 w2α 0
0 0 1


 ·



z
1
1


 .

Finally, for the model exampleM log, the (appropriately scaled) Jordan normal form
is given by

J(M log) =




1 0 0
0 1 2πi
0 0 1


 .

Decomposing the matrix to the sum of a diagonal and a nilpotent matrix, and
computing the logarithm, we get

A =




0 0 0
0 0 1
0 0 0


 ,
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and so the monodromy representation takes the form

F = wA ·



z
0
1


 =




1 0 0
0 1 lnw
0 0 1


 ·



z
0
1


 .

8. THE ALGEBRAIC CASE

In this section, we show that if the nonminimal pseudospherical hypersurface M
in the preimage is algebraic, then the multiple-valued extension F (obtained by
Theorem 5.2) admits a certain holomorphic extension to X.

We start with preliminaries. Let M ⊂ Cn be a smooth real-analytic nonmini-
mal hypersurface Levi nondegenerate inM \X, containing a complex hypersurface
X. We choose local coordinates (z,w) ∈ Cn−1 × C at the origin in such a way
that the complex hypersurface contained in M is given by X = {w = 0}, and M is
given locally by the equation

Imw = (Rew)mΦ(z, z̄,Rew),

where Φ(z, z̄,Rew) is a real-analytic function in a neighbourhood of the origin
such that Φ(z, z̄,0) 6= 0 identically, Φ = O(2), and m is a positive integer (see [1]
for the existence of such coordinates). We may further consider the local ”complex
defining equation” (see [1], [17], [10]) of the form

w = w̄Θ(z, z̄, w̄),

where Θ = 1 + O(2) is real-analytic. Finally, we come to the following defining
equation for M :

w = w̄eiϕ(z,z̄,w̄),
where the complex-valued real-analytic function ϕ in a polydisc U ∋ 0 satisfies
the condition ϕ(z, z̄, w̄) = O(2) and also the reality condition

(8.1) ϕ(z, z̄,we−iϕ̄(z̄,z,w)) ≡ ϕ̄(z̄, z,w),

reflecting the fact that M is a real hypersurface. In what follows, we call (13) the
exponential defining equation for a nonminimal hypersurface M .

Generalizing the ideas in [14], consider in a sufficiently small polydisc Ũ ∋ 0
the real-analytic subset

M̃ = {(z∗,w∗) ∈ Ũ |w∗ = w̄∗ei/kϕ(z
∗ ,z̄∗,(w∗ )k)}

containing the complex hypersurface X̃ = {w∗ = 0}, where k ≥ 2 is an integer. It
follows from (8.1) that M̃ is, in fact, a smooth real-analytic hypersurface, and that
the mapping

z∗ = z, w∗ = k
√
w, −π

k
< Argw <

π

k
,
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sends the half of M satisfying Rew > 0 into the half of M̃ satisfying Rew∗ > 0.
The hypersurface M̃ is called the k-root of M . Since the inverse mapping

(8.2) ν : z = z∗, w = (w∗)k

is holomorphic in all of Ũ and locally biholomorphic in Ũ \ X̃, it maps the entire
M̃ into M , preserving the complex hypersurfaces. This means that M̃ \ X̃ is Levi
nondegenerate as well.

Theorem 8.1. Let M,X,U1, p, F0 satisfy Theorem 5.2. Suppose, in addition,
that M is real-algebraic, and let F : U1 \ X -→ CP

n be the (multiple-valued ) holo-
morphic extension obtained in Theorem 5.2. Then, the following hold:

(i) If the mapping F is single-valued, then it extends to X holomorphically and
F(M) ⊂ Q;

(ii) If the mapping F is multiple-valued, then it extends to X as a holomorphic
correspondence. Furthermore, if the coordinates (z,w) in U1 are chosen in
such a way that X ∩U1 = {w = 0}, then F admits the representation

F(z,w) = F̃(z, k√w ),

where F̃ : (Cn,0) -→ CP
n is a single-valued holomorphic mapping, and

k ≥ 2 is an integer;
(iii) Let D ⊂ U \X, X ⊂ ∂D be a domain where the multiple-valued mapping F

admits a single-valued branch. Then, F|D extends continuously to D ∪X.

Proof. Fix p ∈ M and F0 as in Theorem 5.2. By Webster’s theorem [27], the
graph of the local biholomorphic mapping F0 : U(p) -→ CP

n lies in a complex
algebraic set A ⊂ U1 × CPn of dimension n. Accordingly, the graph ΓF of the
extended mapping F lies in A as well. Let Ã be the irreducible component of A
containing ΓF , and let π : Ã -→ U1 and π ′ : Ã -→ CP

n be the natural projections.
Compactness of CPn implies that the projection π is proper, so by Remmert’s
theorem, π(Ã) is a complex-analytic subset in U1, and so π(Ã) = U1.

Consider now the set

E = {q ∈ U1 | dim(π−1(q)) > 0}.

Then, E is a complex-analytic subset in U1 (see, e.g., [15]), and dimE < n − 1
because otherwise π−1(E) becomes a complex-analytic subset in Ã of dimension
≥ n. Therefore, X Ð E, and we can find a point o ∈ X such that some polydisc
U(o) does not contain points from E. To prove (i) we suppose that F is single-
valued, and choose a projective hyperplane Π ⊂ CPn such that Π does not intersect
the finite set π ′(π−1(o)) ⊂ CPn. Choosing appropriate coordinates in CPn, we
may assume that Π = CP

n \ Cn, and accordingly, π ′(π−1(U(o))) ⋐ Cn. By
Riemann’s theorem, we conclude now that X is a removable singularity for F|U(o).
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Thus, F extends holomorphically to the complement of E. Since dimE ≤ n−2, it
follows that F extends holomorphically to all of U (see, e.g., [11]). The inclusion
F(M) ⊂ Q follows from the uniqueness.

To prove (ii), we note that, by algebraicity of F0, its multiple-valued extension
F is in fact finite-valued, which means that there exists an integer k ≥ 2 such that
the extension of the analytic element (F0, p) along the path γk, where γ is the
generator of π1(U1 \ X), does not change this element. Choose now the coordi-
nates (z,w) in U1 in such a way that X = {w = 0} and p ∈ M+, and consider
M̃—the k-root of M . It follows from the arguments above that M̃ satisfies all the
conditions for Theorem 5.2, and we may also consider the multiple-valued map-
ping F̃ corresponding to the pseudospherical hypersurface M̃. The map ν given
by (8.2) gives the relation between M and M̃, and thus shows that the monodromy
of F̃ with respect to the generator γ of π1(Ũ \X) is simply the identity, since the
monodromy of F with respect to γk is the identity. We conclude that the map
F̃ is single-valued, and from claim (i), F̃ extends to X̃ holomorphically, and the
explicit formula for ν now implies (ii).

For the proof of (iii) (only the multiple-valued case is not immediate), it is
easy to see from (ii) that, for each o = (z0,0) ∈ X,

lim
(z,w)→o

F|D(z,w) = F̃(z0,0),

which shows the continuity of the glued map in D ∪X. This completes the proof
of the theorem. ❐

Remark 8.2. When Q is strictly pseudoconvex and F is single valued, the set
F(X) in the above theorem becomes a connected locally analytic set in Q, which
implies that F(X) consists of one point. Using the k-root construction, it is easy to
verify from here that, in the multiple-valued case, the cluster set of X with respect
to any single-valued branch of F in a domain D ⊂ U \ X, X ⊂ ∂D consists of
exactly one point.
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