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ABSTRACT. It is proved that a germ of a real analytic CR map
from a smooth real-analytic minimal CR manifoldM to an essen-
tially finite real-algebraic generic submanifold M′ of PN of the
same CR-dimension extends as a holomorphic correspondence
alongM. Applications are given for pseudoconcave submanifolds
of Pn.

1. INTRODUCTION

One of the interesting phenomena in several complex variables is the analytic con-
tinuation of a germ of a biholomorphic map f : M → M′, defined at a point
p ∈ M, where M, M′ ⊂ Cn are real-analytic hypersurfaces. Already Poincaré [37]
observed that a biholomorphic map sending an open piece of a unit sphere in
C2 to another such open piece must be an automorphism of the unit ball. This
was proved for Cn in [44] and [1]. Clearly such an extension is possible only for
n > 1, thus showing the very special nature of CR maps between real-analytic CR
manifolds.

Pinchuk [33], [35] proved that the germ of a non-degenerate holomorphic
map from a real-analytic strictly pseudoconvex hypersurface M in Cn to a unit
sphere in CN , N ≥ n, extends as a holomorphic map along any path on M.
Webster [45] proved that the germ of a biholomorphic map between real-algebraic
Levi non-degenerate hypersurfaces in Cn extends as an algebraic map, and also
gave sufficient conditions for the map to be rational. In that paper he studied the
geometric properties of Segre varieties, which were originally introduced in [38].
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Much attention was devoted to the generalization of Webster’s theorem to the
case of different dimensions and higher codimensions. In this situation both M
andM′ are assumed to be real algebraic submanifolds or sets; that is, defined by the
zero locus of a system of real polynomials. Under certain conditions, it then turns
out that a locally defined holomorphic map between such objects must necessarily
be algebraic. See Baouendi, Ebenfelt and Rothschild [4], Huang [25], Sharipov
and Sukhov [41], Baouendi, Huang and Rothschild [6], Coupet, Meylan and
Sukhov [11], Zaitsev [46], Merker [28], and many additional references contained
therein. The special case of hyperquadrics was also considered in Tumanov [43],
Forstnerič [18], Sukhov [42], and other papers.

On the other hand, much less is known if at least one of the submanifolds
is not assumed to be real-algebraic. In this case the map need not be algebraic;
however, analytic continuation along a real-analytic hypersurface is also possible.
Pinchuk [34] proved that a germ of a biholomorphic map f from a strictly pseu-
doconvex, real-analytic, non-spherical hypersurface M to a compact, strictly pseu-
doconvex, real-analytic hypersurface M′ ⊂ Cn extends holomorphically along any
path on M. A similar result was shown in [39] for the case when M is essentially
finite, smooth, real-analytic and M′ ⊂ Cn is compact, real-algebraic and strictly
pseudoconvex. Levi non-degeneracy of the target hypersurface ensures that the ex-
tended map is single valued. If the target hypersurface is just assumed to be com-
pact and smooth real-algebraic, the extension in general will be multiple-valued as
was proved in [40]. This naturally leads to consideration of holomorphic corre-
spondences, a multiple-valued generalization of holomorphic mappings.

In this paper we study the analytic continuation of germs of holomorphic
mappings from smooth real-analytic CR submanifolds of arbitrary codimension
to compact smooth real-algebraic generic submanifolds in PN of general codimen-
sion. The continuation that we obtain is a holomorphic correspondence from a
neighborhood of the submanifold in the pre-image to PN . This is analogous to
the algebraicity of the map asserted in the case when both submanifolds are real-
algebraic. We also study some applications to maps between pseudoconcave CR
submanifolds in Pn. It is rather surprising that under certain conditions, a local
CR map between such objects turns out to be the restriction of a rational, or even
a linear map in Pn without the assumption of algebraicity of the submanifold in
the pre-image.

Our results generalize the extension property of a germ of a biholomorphic
mapping from a compact real-analytic hypersurface in Cn to a compact real-
algebraic hypersurface in Cn proved in [40]. We remark that the proofs of the
main results of this paper differ significantly from those utilized in [40], where the
main construction essentially uses the fact that the Segre varieties have codimen-
sion one.

In the next section we present the main results. In Section 3 we give some
background on CR manifolds, Segre varieties and holomorphic correspondences.
Section 4 contains the proof of the local extension of a holomorphic map as a
holomorphic correspondence. In Section 5 we prove the global extension. The
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last section contains applications of the main theorem to pseudoconcave CR sub-
manifolds in Pn.

The second author would like to acknowledge the support of the Max-Planck-
Institute for Mathematics in Bonn during the preparation of this paper. We would
also like to thank S. Popescu and S. Lu for a number of very helpful discussions.

2. STATEMENT OF RESULTS

2.1. Analytic Continuation. By a holomorphic correspondence we mean a
complex analytic subset A ⊂ X × X′, where X and X′ are complex manifolds,
such that (i) dimA ≡ dimX, and (ii) the projection π : A → X is proper. It is
natural to define a multiple valued map F = π ′ ◦ π−1 : X → X′ associated with
A. A holomorphic correspondence F is called a finite correspondence, if F(p) and
F−1(p′) are finite sets for any p ∈ X and p′ ∈ X′. We say that F splits at a point
q ∈ X if there exist a neighborhood Uq of q and an integer k such that F|Uq is just
the union of k holomorphic maps Fj : Uq → X′, j = 1, . . . , k.

Recall that if M is an abstract paracompact real analytic CR manifold of type
(m,d), then by [2] there exists a complex manifold X of dimension n = m + d
such that M can be generically embedded into X as a CR submanifold.

Consider the following situation: M is a smooth real-analytic minimal CR
manifold of type (m,d), m, d > 0; M′ ⊂ PN is a compact smooth real-algebraic
essentially finite generic submanifold of type (m,d′), d′ > 0. The main results of
the paper are the following.

Theorem 2.1. Suppose thatω ⊂M is a relatively compact connected open subset,
and f : ω → M′ is a real-analytic CR map such that df |Hp : HpM → Hf(p)M′

is an isomorphism between the holomorphic tangent spaces for almost all p ∈ ω. Let
q ∈ ∂ω. Then there exists a neighborhood Uq ⊂ X of q such that f extends to Uq as
a holomorphic correspondence F : Uq → PN with F(Uq ∩M) ⊂ M′.

We remark that in Theorem 2.1 we may assume that f : ω→ M′ is a smooth
CR mapping and the characteristic variety νz(f ) has dimension zero for z ∈ ω,
since by the result in [12], f is in fact real-analytic. Also note that we do not claim
that the extended correspondence near q is finite.

The Segre map associated with a real-analytic CR manifold M is defined by
λ : w → Qw , where Qw is the Segre variety of a point w. We say that λ is locally
injective at a point q ∈ M, if there exists a small neighborhood Uq of q such that
λ is an injective map from Uq onto its image. For details see Section 3.

Theorem 2.2. Assume in addition that M is essentially finite and d′ ≥ d. Let
p ∈ M, Up ⊂ X be a neighborhood of p, and let f : Up → PN be a holomorphic
mapping of maximal rank such that f(Up∩M) ⊂ M′. Suppose thatM1 is a relatively
compact simply-connected open subset of M containing p. Then
(1) There exists a neighborhood U ⊂ X ofM1 such that f extends as a finite holomor-

phic correspondence F : U → PN with F(M1) ⊂M′.
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(2) F splits into holomorphic mappings at every point q ∈ M1 \ F−1(Σ′), where Σ′ is
the set of points on M′ near which the Segre map is not locally injective.

We note that the assumption in Theorem 2.2, that the map f is of maximal
rank, ensures that the images of Segre varieties Qz under f and subsequent ana-
lytic continuations of f have the same dimension as Q′z′ . The essential finiteness
of M′ then guarantees that the constructed extensions of the map f are finitely-
valued.

To illustrate the conclusions of Theorem 2.2 we consider a simple example.
Let r and s be coprime positive integers, and M and M′ be the CR hypersurfaces
in Pn given in homogeneous coordinates by

M = {z ∈ Pn : |z0|2r + · · · + |zk|2r − |zk+1|2r − · · · − |zn|2r = 0},(2.1)

M′ = {z′ ∈ Pn : |z′0|2s + · · · + |z′k|2s − |z′k+1|2s − · · · − |z′n|2s = 0},(2.2)

with k < n. The finite holomorphic correspondence F(z) = (zr/s0 , . . . , zr/sn )
maps M to M′, is rn : sn valued, and F splits into sn holomorphic mappings
outside the branching locus of F . If we choose a point p ∈M outside the branch-
ing locus, and if at p we choose the germ of one of the sn branches of F , then
Theorem 2.2 reproduces the entire correspondence F .

Theorems 2.1 and 2.2 can be considered as a generalization of the results on
algebraicity of a local CR map between real-algebraic submanifolds. Non-algebraic
holomorphic correspondences can be easily constructed from the examples con-
sidered in [10].

Our proof of Theorems 2.1 and 2.2 is based on the technique of Segre vari-
eties. As it was mentioned in the introduction, Webster was the the first to use
Segre varieties in the context of holomorphic mappings. His ideas were further
developed in [17], [14], [15], [16], and other papers. Our main construction is
based on the technique of these papers. A somewhat different approach was de-
veloped in [7], [8],and [4]. We rely on the characterization of minimality in terms
of Segre sets proved in [4].

Let us briefly explain the idea of the main construction. Let p = 0 ∈ M,
and let U0 be a small neighborhood of the origin, where the map f is defined.
The first step is to show that f extends as a holomorphic correspondence F1 to a
neighborhood U1 of Q0, the Segre variety of the origin. This can be understood
as follows. If w ∈ Q0, then 0 ∈ Qw , and f(U0 ∩Qw) is a complex subvariety in
the target space which passes through f(0). If f(U0 ∩Qw) ⊂ Q′w′ for some w′,
then we set F1(w) = w′. For w close to the origin, f(Qw ∩ U0) ⊂ Q′f(w) by the
invariance property of Segre varieties, and thus the extension defined in this way
agrees with f on U0. For essentially finite manifolds, if w′ is sufficiently close to
M′, then there exists a finite number of points which have the same Segre variety
as w′. Therefore in general F1 may not be single valued. The graph of F1 can be
described as

(2.3) A1 = {(w,w′) ∈ U1 × PN | f(Qw ∩U0) ⊂ Q′w′}.
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The next step of the proof is to define inductively the analytic continuation
of f to bigger sets. This can be achieved using Segre sets (see the next section for
definitions). Briefly, once the analytic continuation of f as a correspondence F1 is
established, we can use a similar construction to define the extension of F1 along
the Segre varieties of points on Q0. Let

(2.4) A2 = {(w,w′) ∈ U2 × PN | F1(Qw ∩ U1) ⊂ Q′w′},

where U2 is a neighborhood ofQ2
0 =

⋃
w∈Q0

Qw . We note that for w′ close toM′

the condition for (w,w′) in (2.4) roughly speaking means that all branches of F1
map Qw into Q′w′ . We can repeat this process for A3, using the extension A2, etc.

Finally, the crucial observation is that after a certain number of iterations, we
obtain an extension of f to a neighborhood of the origin, which is independent of
the choice of U0, where f was originally defined. This follows from the minimality
ofM and the property of Segre sets proved in [4]. Furthermore, for compact min-
imal manifolds such neighborhoods can be chosen of uniform size for all points
on M, which allows us to extend f to any simply-connected relatively compact
subset of M.

The question remains open whether a similar continuation of f is possible
in the case when M′ is real-analytic. This is unknown even in the case when M
is a pseudoconvex hypersurface and M′ is a strictly pseudoconvex hypersurface in
Cn. Our method heavily relies on the fact that the Segre varieties associated with
M′ are globally defined in Pn, and therefore cannot be directly extended to the
real-analytic case.

2.2. Pseudoconcave CR manifolds. Our main application of Theorem 2.2
concerns pseudoconcave CR submanifolds embedded into projective spaces. We
recall that a CR manifold is called pseudoconcave, if at each point its Levi form
has at least one positive and at least one negative eigenvalue in every characteristic
conormal direction.

Theorem 2.3. Consider a connected C∞-smooth compact pseudoconcave CR sub-
manifold M of Pn, having type (m,d) with m, d > 0.

(a) Let f : M → PN be a continuous CR map. Then f is the restriction to M of a
rational map F : Pn → PN .

(b) Assume n =m + d, so that M is generic in Pn. Let f : M → Pn be a CR map
which is a local diffeomorphism onto f(M). Then f is the restriction of a linear
automorphism of Pn.

For a locally biholomorphic map from a compact smooth pseudoconcave hy-
persurface in Pn to Pn part (b) was first shown in [26]. Our proof of Theorem
2.3 is based on the result of [24], where it is shown that any CR meromorphic
function on M is necessarily rational.

Combining Theorem 2.3 with Theorem 2.2, we obtain the following results.
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Theorem 2.4. Let M ⊂ Pn (resp. M′ ⊂ PN) be a compact smooth real-analytic
pseudoconcave essentially finite CR submanifold of type (m,d) (resp. (m,d′)), m,
d, d′ > 0, and d′ ≥ d. Let M be simply connected and let M′ ⊂ PN be generic
real-algebraic, and such that the Segre map associated with M′ is locally injective. Let
p ∈ M, Up be a neighborhood of p in Pn, and let f : Up ∩M → M′ be a germ of a
smooth CR map of maximal rank. Then
(a) f is the restriction of a rational map F : Pn → PN ;
(b) If n = N =m+ d and the Segre map associated with M is locally injective, then

f is the restriction of a linear automorphism of Pn.

If M, M′ ⊂ Pn are both hypersurfaces, then f may be assumed to be just a lo-
cal CR homeomorphism, since in this case f extends smoothly to a neighborhood
of p, and by [21], the Jacobian of f does not vanish at p.

Corollary 2.5. If a real-analytic submanifold M, satisfying the conditions of
Theorem 2.4, is locally CR equivalent to a real-algebraic CR submanifoldM′ satisfying
Theorem 2.4, then M is necessarily real-algebraic.

Remark. The above results concerning pseudoconcave CR manifolds hold
also under a weaker assumption onM andM′, namely, instead of pseudoconcavity
it is enough to assume thatM andM′ satisfy the so-called Property E. For a generic
M this means that for each p ∈M every local CR function defined near p extends
to a holomorphic function in a full neighborhood of p in the ambient space. For
details see [24].

Furthermore, in the special case when M′ is a hyperquadric we obtain the
following result.

Theorem 2.6. Let M be a simply-connected compact smooth real-analytic Levi
non-degenerate CR manifold of type (n − 1,1), n > 1. Let M′ be the hyperquadric
in Pn, given in homogeneous coordinates by

(2.5) |z0|2 + |z1|2 + · · · + |zk|2 − |zk+1|2 − · · · − |zn|2 = 0.

Suppose that ω is a connected open set in M, and f : ω → M′ is a CR map that is a
local homeomorphism. ThenM andM′ are globally CR equivalent; henceM has a CR
embedding as a hypersurface in Pn. In the special case where 0 < k < n−1, andM is
apriori a hypersurface in Pn, then f is the restriction to M of a linear automorphism
of Pn.

Note that Theorem 2.6 includes both the case when M′ is a sphere in Cn,
which was proved before in [33], and the case when M′ is a compact pseudocon-
cave hyperquadric. For the sphere our method gives an alternative and indepen-
dent proof of this well known result.

IfM is not assumed to be simply-connected, then f in general may not extend
to a global map from M to M′ as examples in [10] show for the case when M′ is a
sphere.
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3. CR MANIFOLDS, SEGRE VARIETIES AND
HOLOMORPHIC CORRESPONDENCES

An abstract smooth CR manifold of type (m,d) consists of a connected smooth
paracompact manifoldM of dimension 2m+d, a smooth subbundle HM of TM
of rank 2m, which is called the holomorphic tangent space of M, and a smooth
complex structure J on the fibers of HM. Let T 0,1M be the complex subbundle of
the complexification CHM of HM, which corresponds to the −i eigenspace of J:

(3.1) T 0,1M = {Y + iJY | Y ∈ HM}.
We also require that the formal integrability condition

(3.2) [C∞(M,T 0,1M),C∞(M,T 0,1M)] ⊂ C∞(M,T 0,1M)

holds. We callm the CR dimension ofM and d the CR codimension. M is called
minimal at p ∈ M, if there exists no local CR manifold N ⊂ M passing through
p having CR dimension m, but strictly smaller real dimension.

The characteristic bundle H0M is defined to be the annihilator of HM in
T∗M. Its purpose is to parametrize the Levi form, which for every p ∈ M is
defined for v ∈ H0

pM and Y ∈ HpM by

(3.3) L(v;Y) = dṽ(Y , JY) = 〈v, [JỸ , Ỹ ]〉,
where ṽ ∈ C∞(M,H0M) and Ỹ ∈ (M,HM) are smooth extensions of v and Y .
For each fixed v it is a Hermitian quadratic form for the complex structure Jp
on HpM. A CR manifold M is said to be pseudoconcave if the Levi form L(v, ·)
has at least one negative and one positive eigenvalue for every p ∈ M and every
nonzero v ∈ H0

pM.
Let M and M′ be two abstract smooth CR manifolds, with holomorphic tan-

gent spaces HM and HM′. A smooth map f : M → M′ is CR if f∗(HM) ⊂ HM′,
and f∗(Jw) = J′f∗(w) for every w ∈ HM. A CR embedding of an abstract CR
manifold M into a complex manifold X is a CR map which is an embedding. We
say that the embedding is generic if the complex dimension of X is (m+ d).

If M is a real-analytic CR manifold of type (m,d), then by [3], M is locally
CR embeddable. Furthermore, by [2] there exists a complex manifold X such that
M can be globally generically embedded into X. Consider a connected open setω
on M. When M is real-analytic, and f is a real-analytic CR function in ω, then
there is a connected open set Ωf in X, with ω = M ∩ Ωf , and a holomorphic
extension f̃ of f to Ωf . When M is a generic C∞-smooth pseudoconcave CR
submanifold of X, then there exists a connected open setΩ in X, withω = M∩Ω,
such that any CR distribution inω has a unique holomorphic extension to Ω. See
[9], [32], [22], [23].

Most of our considerations of real-analytic CR manifolds will be local, and
therefore by the above mentioned results we can assume without loss of general-
ity that M is a generically embedded CR submanifold of some open set in Cn,
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where n = m + d. Note here that a compact pseudoconcave CR manifold can-
not be embedded (even non-generically) into any Stein manifold (see e.g. [20]).
Therefore, for application purposes the main theorem is formulated for the target
submanifold embedded into PN .

Let M be a generic smooth real-analytic submanifold of Cn and let p ∈ M.
Then in a sufficiently small neighborhood U of p, M is given by

(3.4) M = {z ∈ U | ρj(z, z̄) = 0, j = 1, . . . , d},

where each ρj is a real-valued real-analytic function and

(3.5) ∂̄ρ1 ∧ · · · ∧ ∂̄ρd 6= 0 on M ∩U.

We set ρ = (ρ1, ρ2, . . . , ρd). There exists a biholomorphic change of coordinates
near p, z = (ξ, ζ) ∈ Cm × Cd = Cn, such that in the new coordinates, p = 0,
and M is given by

(3.6) =ζ =ϕ(ξ, ξ̄,<ζ),

where ϕ is a vector-valued real-analytic function with ϕ(0) = 0 and dϕ(0) = 0.
If U is sufficiently small, to every point w ∈ U we can associate to M its

so-called Segre variety in U defined as

(3.7) Qw = {z ∈ U | ρj(z, w̄) = 0, j = 1, . . . , d},

where ρj(z, w̄) is the complexification of the defining functions of M. Another
important variety associated with the submanifold M and the neighborhood U is

(3.8) Iw = {z ∈ U | Qw = Qz}.

From the reality condition on the defining functions the following simple but
important properties of Segre varieties follow:

z ∈ Qw ⇐⇒ w ∈ Qz,(3.9)

z ∈ Qz ⇐⇒ z ∈ M,(3.10)

w ∈ M ⇐⇒ Iw ⊂M.(3.11)

If 0 ∈ M, then from (3.5) and the implicit mapping theorem, there exist a
local change of coordinates near the origin, and a pair of small neighborhoods U
and U0 of the origin, U ø U0, where U0 is given in the product form

(3.12) U0 = ′U0 × Ũ0, ′U0 ⊂ Cm, Ũ0 ⊂ Cd,
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such that for every w ∈ U , the set Qw ∩ U0 can be represented as the graph of a
holomorphic mapping. That is

(3.13) Qw ∩U0 = {z = (ξ, ζ) ∈ ′U0 × Ũ0 | ζ = h(ξ, w̄)},

where h(ξ, w̄) is holomorphic in ξ and w̄. Thus Qw is a complex submanifold
of U of complex codimension d.

The main use of Segre varieties comes from the fact that they are invariant
under biholomorphic mappings. More precisely, given a holomorphic map f :
U → U ′, sending a generic smooth real-analytic submanifold M to another such
submanifold M′, f(p) = p′ implies f(Qp ∩ U) ⊂ Q′p′ for p sufficiently close to
M. An analogous property holds also for holomorphic correspondences.

The proof of the basic properties of Segre varieties in higher codimensions is
similar to the hypersurface case and can be found in [5] or [29].

A real analytic submanifoldM is called essentially finite at p ∈ M, if Ip = {p}
in a small neighborhood of p. The Segre map is defined by λ : w → Qw . A man-
ifold M being essentially finite now means that the Segre map is finite near M. It
can be shown (see e.g. [29]) that any generic Levi non-degenerate CR submani-
fold of Cn is essentially finite. Moreover, if M is a compact generic submanifold
of Cn, then it is automatically essentially finite, since by [13], any compact real-
analytic subset of Cn does not contain any non-trivial germs of complex-analytic
varieties.

We say that λ is locally injective at a point q ∈ M, if there exists a small
neighborhood Uq of q such that λ is an injective map from Uq onto its image. It
is easy to see that, for any Levi non-degenerate hypersurface in Cn, the Segre map
is locally injective.

In [4] the authors introduced so-called Segre sets. We briefly recall this con-
struction here. LetM be a generic smooth real-analytic submanifold of Cn, 0 ∈M
and let Q0 = Q1

0 be the usual Segre variety of 0 as defined in (3.7). Define

(3.14) Qj0 =
⋃

z∈Qj−1
0

Qz, j > 1.

Then

(3.15) Q1
0 ⊂ Q2

0 ⊂ · · · ⊂ Qj0 ⊂ · · · .

Indeed, let k be the smallest integer such that Qk0 6⊂ Qk+1
0 . Clearly, k ≥ 2. If

z ∈ Qk0 \Qk+1
0 , then there exists w ∈ Qk−1

0 such that z ∈ Qw . By assumption,
Qk−1

0 ⊂ Qk0 . Therefore w ∈ Qk0 , and Qw ⊂ Qk+1
0 ; in particular z ∈ Qk+1

0 , which
is a contradiction.

According to [4] (see also [5] and [30] for a short proof of this fact), there
exists an integer j0, 0 < j0 < ∞, such that

⋃
j≤j0 Q

j
0 contains a neighborhood of
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the origin in Cn, provided that M is minimal at 0. We define

(3.16) Ω0 = {z | z ∈ Qj0, j ≤ j0}.

Moreover, if M is compact, or is a relatively compact open set of a bigger min-
imal submanifold, then there exists ε > 0 such that for any point p ∈ M, the
neighborhood Ωp, defined as in (3.16), contains a ball of radius ε centered at p.

Suppose now that the manifold M ⊂ Pn is connected and defined by real
polynomials. Then the Segre varieties associated with M can be defined globally
as projective algebraic varieties in Pn. Indeed, let M ∩Cn be given as a connected
component of the set defined by

(3.17) {z ∈ Cn | ρj(z, z̄) = 0, j = 1, . . . , d},

where ρj are real polynomials. We can projectivize each ρj to define M in Pn in
homogeneous coordinates

(3.18) ẑ = [ẑ0 : ẑ1 : · · · : ẑn], zk = ẑk
ẑ0
, k = 1, . . . , n,

as a connected component of the set defined by

(3.19) {ẑ ∈ Pn | ρ̂j(ẑ, ¯̂z) = 0}.

We may define now the polar of M as

(3.20) M̂c = {(ẑ, ζ̂) ∈ Pn × Pn | ρ̂j(ẑ, ζ̂) = 0, j = 1, . . . , d}.

Then M̂c is a complex algebraic variety in Pn × Pn. Given τ ∈ Pn, we set

(3.21) Q̂τ = M̂c ∩ {(ẑ, ζ̂) ∈ Pn × Pn | ζ̂ = τ̄}.

We define the projection of Q̂τ to the first coordinate to be the Segre variety of τ.
Alternatively, given (3.17) one can define the polar as

(3.22) Mc = {(z, ζ) ∈ Cn ×Cn | ρj(z, ζ) = 0, j = 1, . . . , d}.

The submanifold M ∩ Cn can be recovered by intersecting Mc with the totally
real subspace T = {(z, ζ) ∈ C2n | ζ = z̄} and taking an appropriate connected
component. Given w ∈ Cn, we define

(3.23) Qcw =Mc ∩ {(z, ζ) ∈ C2n | ζ = w̄}.

The standard Segre variety Qw can now be recovered by projecting Qcw to Cnz .
The algebraic varieties Mc and Qcw can be projectivized, which gives us objects
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geometrically equivalent to (3.20) and (3.21). Note that the closure T ⊂ P2n of
the set T is a smooth submanifold of P2n, and thus M can be identified with a
connected component of Mc ∩T .

We note that condition (3.5) implies that for w close to M, the Segre variety
Qw contains a connected component Q̃w of dimension m. However, in general
Qw may have other components, which apriori may even have different dimen-
sions (higher than m). For w ∈ M, w ∈ Q̃w , and for w close to M, Q̃w is the
component which near w is given by (3.13).

We will understand essential finiteness of a real algebraic submanifoldM ⊂ Pn
in the sense that for every w ∈ M, the set

(3.24) Ĩw := {z ∈ M | Q̃z = Q̃w}

is finite. In this case we can further show that generically the various Ĩw have the
same number of points. Note that the set Ĩw is a globally defined object in Pn.

Lemma 3.1. Let M be a compact smooth real-algebraic essentially finite generic
CR submanifold in Pn. Then there exist a neighborhood U ⊂ Pn of M and an integer
R ≥ 1 such that

(3.25) #Ĩw = #{z ∈ U | Q̃z = Q̃w} = R,

for almost all w ∈ U .

Proof. For each p ∈ M choose a product neighborhood Up as in (3.12). Let
U = ⋃

p∈M Up. We define the map λ from U to the set of all algebraic vari-
eties in Pn of dimension m by letting λ(w) := Q̃w . Then Q̃w depends anti-
holomorphically on w. Locally, near almost every w ∈ U , the varieties Q̃w have
the same algebraic degree. Since algebraic varieties of positive codimension do not
divide U , the Q̃w have fixed degree for almost all w in U . Algebraic varieties of
fixed dimension and degree are known to be parametrized by the so-called Chow
variety (see e.g. [19]), and the parametrization λ is an algebraic map between
algebraic varieties.

Let Y = λ(U). Then since M is essentially finite, dimY = n. It follows (see
e.g. [31]) that there exists an algebraic variety Z ⊂ Y such that for any q ∈ Y \Z,

(3.26) #λ−1(q) = deg(λ) := R,

where R is a positive integer. From (3.26) the assertion follows. ❐

Let X and X′ be complex manifolds and D ⊂ X, D′ ⊂ X′ be open sets. Recall
that if A ⊂ D ×D′ is a holomorphic correspondence, then π : A → D is proper.
A is called a proper holomorphic correspondence, if π ′ : A → D′ is also proper.
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Throughout the paper we will identify the multiple valued map F := π ′ ◦ π−1

with its graph A, so given a point p ∈ D,

(3.27) F(p) = {p′ ∈ D | π ′ ◦π−1(p)}

is a compact subset of D′. Given a complex analytic subset G′ ⊂ D′, F−1(G′) is
a complex analytic subset of D. Indeed π ′−1(G′) is clearly analytic, and since π
is proper, it follows from Remmert’s theorem that π(π ′−1(G)) is analytic in D.
F is called a finite-valued holomorphic correspondence if F(p) is a finite set for
any p ∈ D, and a finite correspondence if in addition F−1(p′) is finite for any
p′ ∈ X′. If X′ is a Stein manifold, then any proper holomorphic correspondence
F is automatically finite-valued. To see this observe that by the proper embedding
theorem, X′ can be viewed as a submanifold of Cn′ for some n′ > 1, and a
compact complex analytic set F(p) must be discrete. Similarly, if X and X′ are
both Stein, then any proper holomorphic correspondence is finite.

Given a finite-valued holomorphic correspondence A ⊂ D × D′, there exists
a complex subvariety S ⊂ D (possibly empty) such that for any point p ∈ D \ S,
there exists a neighborhood Up ⊂ D \ S, such that F splits into k holomorphic
maps Fj : Up → D′, j = 1, . . . , k, that represent F . The integer k is independent
of p, and the Fj are called the branches of F .

Given a locally complex analytic set A in X of pure dimension p, we say that
A extends analytically to an open set U ⊂ X, A ∩ U 6= �, if there exists a (closed)
complex-analytic set A∗ in U such that (i) dimA∗ ≡ p, (ii) A ∩ U ⊂ A∗, and
(iii) every irreducible component of A∗ has a nonempty intersection with A of
dimension p. By the uniqueness theorem for analytic sets such analytic continu-
ation of A is uniquely defined. From this we define the analytic continuation of
holomorphic correspondences as follows.

Definition 3.2. Let D ⊂ X and D′ ⊂ X′ be open sets and let A ⊂ D ×
D′ be a holomorphic correspondence. We say that A extends as a holomorphic
correspondence to an open set U ⊂ X, D ∩ U 6= �, if there exists an open set
U ′ ⊂ X′ such that A∩ (U ×U ′) 6= �, A extends analytically to a set A∗ ⊂ U ×U ′,
and π : A∗ → U is proper.

If A and A∗ are both finite-valued, then A∗ may have more branches in D∩U
than A. The following lemma gives a simple criterion for the extension to have
the same number of branches.

Lemma 3.3. Let A∗ ⊂ U × X′ be a finite-valued holomorphic correspondence
which is an analytic extension of a finite correspondence A ⊂ D×D′. Suppose that for
any z ∈ (D ∩U),

(3.28) #{π−1(z)} = #{π∗−1(z)},

where π : A → D and π∗ : A∗ → U are the projections. Then A ∪ A∗ is a
holomorphic correspondence in (D ∪ U)×X′.
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The proof is the same as in [40], Lemma 2.

4. LOCAL CONTINUATION AS A CORRESPONDENCE

In this section we prove Theorem 2.1. We may assume the following situation:
Ω ⊂ Cn is a connected open set, Ω∩M =ω, f : Ω→ PN is a holomorphic map,
and f(Ω ∩M) ⊂ M′. Let q ∈ ∂Ω ∩M and let U be a neighborhood of q such
that for any z ∈ U , the Segre variety Qz is defined in a strictly larger set, and can
be represented as in (3.13). We show that f extends to some neighborhood of q
as a holomorphic correspondence. We choose a point a ∈ ω such that df |HaM
is an isomorphism, and so close to q that q ∈ Ωa, where Ωa is defined as in
(3.16). Fix some neighborhood Ua ⊂ Ω of a. We will show that f |Ua extends as
a holomorphic correspondence to Ωa, in particular to a neighborhood of q.

Assume for simplicity that a = 0. Choose a small neighborhood U0 of the
origin and shrink Ua in such a way, that for any w ∈ U0, the set Qw ∩ Ua is
non-empty and connected. Let U ′ ⊂ PN be the neighborhood of M′ as in Lemma
3.1. Define

(4.1) A0 = {(w,w′) ∈ U0 ×U ′ | f(Qw ∩Ua) ⊂ Q′w′}.

Then A0 is a complex-analytic subset of U0 × U ′. In the case when M and M′ are
hypersurfaces, this was shown in [40], the proof in the general case is analogous
(see also similar constructions later in this section). Note that in (4.1),

(4.2) dimQw = dimQ′w′ = dimf(Qw ∩Ua) =m.

Indeed, since df |H0M is an isomorphism, dimQ0 = dimf(Q0 ∩ U0). Without
loss of generality we may assume that M near 0 and M′ near f(0) are chosen
as in (3.6). Let Jf (z) be the Jacobian matrix associated with the map f . Then
in the chosen coordinate systems, df |H0M being an isomorphism means that the
principal minor of Jf (0) of size m ×m has a non-zero determinant. The same
property also holds for points sufficiently close to the origin. Therefore, after
shrinking U0, (4.2) holds for all w in U0. After further shrinking U0 if necessary,
we may assume that if (w,w′) ∈ A0, then w′ ∈ Ĩ′f(w), which is a finite set by
the assumption on M′. It follows that dimA0 ≡ n. Finally, (3.11) implies that if
U0 is sufficiently small, then A0 has no limit points on U0 × ∂U ′, and therefore
the natural projection from A0 to the first coordinate is proper. This shows that
A0 defines a holomorphic correspondence. Denote the corresponding multiple
valued map by F0.

We shrink the neighborhood U0 of the origin, where F0 is defined, and choose
a “thin” neighborhood U1 of Q0 ∩ U such that for any w ∈ U1, the set Qw ∩ U0
is non-empty and connected. Note that from (3.9), 0 ∈ Qw for any w ∈ Q0.
Denote now by A0 the graph of F0 in U0 × PN . We define the set A1 as follows:

(4.3) A1 = {(w,w′) ∈ U1 × PN | F0(Qw ∩ U0) ⊂ Q′w′}.
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Then A1 is a complex-analytic subset of U1×PN . To verify this assertion we prove
the following:

(1) A1 6= �. Indeed, by the invariance property of Segre varieties, f(Qw ∩
U0) ⊂ Q′f(w) for w sufficiently close to the origin. Then

(4.4) F0(Qw ∩ U0) ⊂ Q′w′ ,

where w′ ∈ F0(w). To see this, suppose that z ∈ Qw ∩ U0 and z′ ∈ F0(z).
By construction, F0(Qz ∩ U0) ⊂ Q′z′ . If w is sufficiently close to the origin,
w ∈ Qz ∩ U0, and therefore w′ ∈ F0(w) ⊂ Q′z′ . This implies z′ ∈ Q′w′ . And
since z ∈ Qw ∩U0 was arbitrary, (4.4) holds. Moreover, F0(w) = Ĩ′w′ , and thus

(4.5) A0
∣∣
(U1∩U0)×PN ⊂ A1,

in particular A1 is non-empty.

(2) A1 is a complex-analytic set in a neighborhood of any of its points. Indeed,
let (w0,w′

0) ∈ A1, z0 ∈ Qw0 ∩ U0 be an arbitrary point, and let Uz0 ⊂ U0
be a small neighborhood of z0. Since Qw ∩ U0 is connected for all w ∈ U1,
F0(Qw ∩ Uz0) ⊂ Q′w′ implies F0(Qw ∩ U0) ⊂ Q′w′ . Therefore in (4.3) U0 can
be replaced with Uz0 . Choose Uw0 so small that Qw ∩ Uz0 6= � for all w ∈ Uw0 .
Since the pre-image of an analytic set under a holomorphic correspondence is an
analytic set, Sw′ := F−1

0 (Q′w′) is an analytic subset of U0. Let U ′w′
0

be so small that
Sw′ ∩Uz0 6= � for all w′ ∈ U ′w′

0
. Let Sw′ near z0 be given by

(4.6) Sw′ = {z ∈ Uz0 |ϕj(z, w̄′) = 0, j = 1, . . . , j̃},

where the ϕj depend holomorphically on w̄′. We may assume that Uz0 is chosen
as in (3.12), and therefore z ∈ Qw simply means z = (ξ, ζ) and ζ = h(ξ, w̄).
Then the condition F0(Qw ∩ Uz0) ⊂ Q′w′ is equivalent to

(4.7) ϕj((ξ,h(ξ, w̄)), w̄′) = 0, ξ ∈ ′Uz0 , j = 1, . . . , j̃.

This is an infinite system of holomorphic equations (after conjugation) which
defines A1 as an analytic set in Uw0 × U ′w′

0
.

(3) A1 is closed in U1 × PN . Indeed, suppose that (wj,w′j) → (w0,w′0), as
j → ∞, where (wj,w′j) ∈ A1 and (w0,w′0) ∈ U1 × PN . Since Qwj → Qw0 ,
and Q′w′j → Q′w′0 as j → ∞, by analyticity F0(Qw0 ∩ U0) ⊂ Q′w′0 , which implies
that (w0,w′0) ∈ A1 and thus A1 is a closed set.

It follows from (1)–(3) that A1 is a complex-analytic subset of U1 × PN . Let
π1 : A1 → U1 and π ′1 : A1 → PN be the coordinate projections. Since PN is
compact, π1 is proper. We consider only the irreducible components of A1 of
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dimension n which contain A0. The union of all such components we denote
again by A1. Thus A1 is an analytic continuation of A0 as a holomorphic corre-
spondence. Denoting U0 ∩ U1 again by U0, we may assume from the uniqueness
theorem for analytic sets that

(4.8) A1
∣∣
U0×PN = A0.

We set F1 := π ′1 ◦π−1
1 : U1 → PN .

By construction, if (w,w′) ∈ A1, then for any (z, z′) ∈ A1 such that
z ∈ Qw ∩ U0, we necessarily have z′ ∈ Q′w′ . In order to construct analytic
sets Aj which will extend A1, we wish to conclude the same for all z in Qw ∩U1.
The difficulty is that in general, Qw ∩ U1 may have more than one connected
component. To prove the assertion we argue by contradiction, and assume that
there exists a point (w0,w′0) ∈ A1 and (z, z′) ∈ A1, such that z ∈ Qw0 ∩ U1,
but z′ ∉ Q′w′0 . Connect w0 and the origin with a smooth path γ contained in
U1. We may assume that w0 is the first point on γ for which the desired property
does not hold. Without loss of generality we may also assume that for all p ∈ γ
between the origin and w0 (excluding w0) there exists a small neighborhood Up
such that whenever z ∈ Up, all components ofQz∩U1 are mapped by F1 into the
same Segre variety. For each point p ∈ γ between the origin andw0, we construct
the following set:

(4.9) Ap = {(w,w′) ∈ U(Qp)× PN | F1(Qw ∩ Up) ⊂ Q′w′},

where Up ⊂ U1 is a neighborhood of p and U(Qp) is a neighborhood of Qp ∩U ,
which are chosen in such a way that Up satisfies the property described above
and that for any w ∈ U(Qp), the set Qw ∩ Up is connected. Repeating the
argument that was used for A1, one can prove that each Ap is a complex analytic
set, which defines a holomorphic correspondence. For p = 0, this is just the set
A1. Moreover, for any p between the origin and w0 we have

(4.10) A1
∣∣
(U(Qp)∩U1)×PN ⊂ Ap

∣∣
(U(Qp)∩U1)×PN .

Indeed, suppose that w ∈ U(Qp)∩ U1 and (w,w′) ∈ A1. Let z ∈ Qw ∩ Up be
an arbitrary point, and z′ ∈ F1(z). Then F0(Qz∩U0) ⊂ Q′z′ . From (4.8) we have
F1(Qz ∩ U0) ⊂ Q′z′ . By the assumption on Up, F1(Qz ∩ U1) ⊂ Q′z′ , in particular
F1(w) ⊂ Q′z′ . Therefore, w′ ∈ Q′z′ , and z′ ∈ Q′w′ . Since z ∈ Qw ∩ Up was
arbitrary, it follows that F1(Qw ∩Up) ⊂ Q′w′ . But this means that (w,w′) ∈ Ap,
and thus (4.10) holds.

For any p, Qp ∩ U is a connected set in U(Qp) and therefore is mapped by
Ap into the same Segre variety. By continuity and from (4.10) we conclude that
F1(Qw0∩U1) ⊂ Q′w′

0
, which contradicts the assumption. Thus for any (w,w′) ∈

A1, if (z, z′) ∈ A1 and z ∈ Qw ∩U1, then z′ ∈ Q′w′ .
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We now define recursively for j > 1 the following sets:

(4.11) Aj = {(w,w′) ∈ Uj × PN | Fj−1(Qw ∩Uj−1) ⊂ Q′w′}.

Here the open set Uj is defined as follows. Suppose that the set Aj−1 ⊂ Uj−1×PN
is already defined and Uj−1 ⊂ U is some connected open set. We let Uj be the
set of points w in U such that Qw ∩ Uj−1 6= �. Furthermore, after shrinking at
each step, if necessary, the sets Uk for k < j, we may assume that Uk−1 ⊂ Uk for
1 ≤ k ≤ j. Note that it follows from the construction thatQk0 ⊂ Uk for 1 ≤ k ≤ j.

We claim that for all j > 0, Aj is a complex-analytic subset of Uj×PN , which
satisfies the following properties:

(i) Aj|Uj−1×PN = Aj−1;
(ii) Aj defines a holomorphic correspondence Fj : Uj → PN ;

(iii) for any (w,w′) ∈ Aj , if (z, z′) ∈ Aj and z ∈ Qw ∩Uj , then z′ ∈ Q′w′ .
Condition (iii) can be understood in the sense that the map Fj , associated withAj,
sends all connected components ofQw∩Uj intoQ′w′ provided that (w,w′) ∈ Aj.

Proof. The proof is by induction. The case j = 1 is already proved. Sup-
pose that Aj−1 is as claimed. We show that the set defined by (4.11) is also a
holomorphic correspondence satisfying properties (i)–(iii).

(i). Let w ∈ Uj−1, and (w,w′) ∈ Aj−1. Then by definition, Fj−2(Qw ∩
Uj−2) ⊂ Q′w′ . From property (i), which by the induction hypothesis holds for
Fj−1, the correspondences Fj−2 and Fj−1 agree in Uj−2, and therefore we have

(4.12) Fj−1(Qw ∩ Uj−2) ⊂ Q′w′ .

From (iii), Fj−1 maps all components of Qw ∩ Uj−1 into the same Segre variety.
Therefore (4.12) implies Fj−1(Qw∩Uj−1) ⊂ Q′w′ , which by definition means that
(w,w′) ∈ Aj . In particular, the set Aj is non-empty. Condition (i) for Aj will be
completely proved, once we know that Aj is a complex-analytic set, dimAj ≡ n,
and select only the irreducible components of Aj which have intersection with
Aj−1 of dimension n.

Proof of (ii). Let (w0,w′0) ∈ Aj. If Qw ∩ Uj−1 is connected for all w
sufficiently close tow0, then the proof of the fact that Aj is complex-analytic near
(w0,w′0) ∈ Aj is the same as for A1 in Step 2. Let Ũ be the largest connected
relatively open subset of Uj such that 0 ∈ Ũ and for all z ∈ Ũ , Fj−1 maps Qz ∩
Uj−1 into the same Segre variety. From property (iii) for Aj−1 we have Uj−1 ⊂ Ũ .
Then (4.11) defines a holomorphic correspondence Ã ⊂ Ũ ×PN . The proof is the
same as in Step 2 for A1. Denote by F̃ the multiple valued map associated with Ã.
By repeating the argument used for A1, we can show that for any w ∈ Ũ , F̃ maps
all connected components of Qw ∩ Ũ into the same Segre variety.
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For each point p ∈ Ũ we may define now the following set

(4.13) Ap = {(w,w′) ∈ U(Qp)× PN | F̃(Qw ∩ Up) ⊂ Q′w′},

where the neighborhoods U(Qp) ofQp and Up of p are chosen as in the construc-
tion of the set defined by (4.9). Let Fp be the map associated with Ap. Clearly,
Fp coincides with Fj−1 for p sufficiently close to the origin. We claim that the
map Fp agrees with Fj−1 in U(Qp) ∩ Uj−1 for all p ∈ Ũ . Indeed, suppose that
w ∈ U(Qp) ∩ Uj−1 and (w,w′) ∈ Aj−1. Then Fj−2(Qw ∩ Uj−2) ⊂ Q′w′ . To
prove the assertion we need to show that

(4.14) F̃(Qw ∩ Up) ⊂ Q′w′ .

Let z ∈ Qw ∩Up be an arbitrary point, and z′ ∈ F̃(z). Then Fj−1(Qz∩Uj−1) ⊂
Q′z′ . Since F̃ and Fj−1 agree in Uj−1, it follows that F̃(Qz ∩ Uj−1) ⊂ Q′z′ . For
z ∈ Ũ , F̃ maps different components of Qz ∩ Ũ into the same Segre varieties,
and therefore we have F̃(Qz ∩ Ũ) ⊂ Q′z′ . In particular, w′ ∈ Q′z′ , which implies
z′ ∈ Q′w′ . Since z was arbitrary, (4.14) holds.

By the construction, Fp maps Qp into the same Segre variety for all p ∈ Ũ .
By analyticity this means that for any point w in ∂Ũ ∩Uj , Fj−1 maps Qw ∩Uj−1

into the same Segre variety. Therefore, Ũ = Uj . We choose only irreducible
components of Aj of dimension n which contain Aj−1. This proves (ii) and also
completes the proof of (i).

Finally, property (iii) can be shown the same way as it was done for A1. ❐

By the construction, from minimality of M and from [4], for some j0 > 1, the set
Aj0 defines a holomorphic correspondence Fj0 in a neighborhood Ω0 ⊂ Uj0 of the
origin. Note that the size of this neighborhood depends only on the geometry of
M and is independent of U0, where f was originally defined. It remains to show
now that Fj0 satisfies

(4.15) Fj0(M ∩Ω0) ⊂ M′.

If (z, z′) ∈ Aj0 , then Fj0−1(Qz ∩ Uj0−1) ⊂ Q′z′ . From property (i), we have
Fj0(Qz ∩Uj0−1) ⊂ Q′z′ , and from (iii) it follows that

(4.16) Fj0(Qz ∩ Uj0) ⊂ Q′z′ .

Suppose now that for some z0 ∈ M ∩ Ω0, Fj0(z0) 6⊂ M′. Then there exists
z′ ∈ Fj0(z0) \M′. Note that Fj0(M ∩ U0) ⊂ M′, and therefore by continuity we
may find z0 and z′ such that z′ is close to M′. We have Fj0(Qz0 ∩ Uj0) ⊂ Q′z′
from (4.16). Since z0 ∈ Qz0 , we have Fj0(z0) ⊂ Q′z′ , in particular, z′ ∈ Q′z′ . But
from (3.10), z′ 6∈ Q′z′ , since z′ 6∈ M′. This contradiction proves (4.15).
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Theorem 2.1 is proved. Note that in general, Fj0 may not be finite-valued.
However, by the Cartan-Remmert theorem (see e.g. [27]) combined with Rem-
mert’s proper mapping theorem, the set of points

(4.17) Σ = {z ∈ Uj0 | dimπ−1(z) > 0}

is a complex subvariety of Uj0 . Since dimAj0 ≡ n, we have dimΣ < n; in par-
ticular, Σ does not divide Uj0 , and Aj0|(Uj0\Σ)×PN is a finite-valued holomorphic
correspondence.

5. EXTENSION AS A FINITE CORRESPONDENCE ALONG M

In this section we give the proof of Theorem 2.2. One difficulty in the proof
of analytic continuation of correspondences lies in the fact that the continued
correspondence may acquire additional branches. To deal with this we define the
notion of a complete correspondence as follows.

Definition 5.1. LetM ⊂ Cn be a smooth real-analytic essentially finite generic
CR submanifold, and let M′ ⊂ PN be a smooth compact real-algebraic essentially
finite generic submanifold. Let F : U → PN be a holomorphic correspondence
such that F(U ∩M) ⊂ M′. Then F is called complete if for every z ∈ M, we have
F(z) = Ĩ′z′ for some (and therefore for any) z′ ∈ F(z). Here Ĩ′z′ is defined as in
(3.24).

Note that since M′ is essentially finite, a complete correspondence is finite-
valued near M, but in general it may be reducible, even if defined on all of M.

Assume that M is locally, near p ∈ M, generically embedded into an open set
in Cn, so n = m + d. Let f be a holomorphic map defined in a neighborhood
Up ⊂ Cn of p ∈ M, of maximal rank and such that f(Up ∩M) ⊂ M′. We replace
f with a complete correspondence. For that we choose a small neighborhood U0
of p and shrink Up in such a way, that for any w ∈ U0, the set Qw ∩ Up is
non-empty and connected. We define A0 as in (4.1). Denote the corresponding
multiple valued map by F0. Then F0 is a complete holomorphic correspondence.
Indeed, since f is of maximal rank and d′ ≥ d, for z ∈ U0, dimf(Qz ∩ Up) =
dimQz = m. For z sufficiently close to p, f(z) is close to M′, and since M′ is
essentially finite, the only points whose Segre varieties can contain f(Qz ∩ Up)
are in I′f(z). Furthermore, F0 is a finite correspondence. To see this we observe
that if E ⊂ U0 is a positive dimensional set such that F0(E) is discrete, then by
the construction f(Qz ∩ Up) ⊂ Q′z′ for all z ∈ E. But since

⋃
z∈E Qz ∩ Up has

dimension bigger than m, this contradicts the fact that f is of maximal rank in
Up. Therefore the pre-image of any point under F0 is finite, and thus F0 is a finite
correspondence.

We now show that F0 extends as a finite correspondence along any path on
M1. Our construction of the analytic continuation of F0 will preserve complete-
ness, and therefore from Lemmas 3.1 and 3.3 we conclude that such analytic
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continuation will have the same number of branches near M1. The problem can
be localized as follows. Let γ : [0,1] → M1 be the given path, γ(0) = p, and
assume that for t0 ≤ 1, q = γ(t0) is the first point on γ to which F0 does not
extend as a finite correspondence. We choose t1 ∈ [0, t0) so close to t0, that for
a = γ(t1) we have q ∈ Ωa, where Ωa is defined as in (3.16). Then by Theorem
2.1, F0 extends as a holomorphic correspondence A ⊂ Ωa × Pn. Thus we only
need to show that after possibly shrinking the neighborhood Ωa, the set A is a fi-
nite correspondence. Let π : A→ Ωa and π ′ : A→ PN be the natural projections,
and set F := π ′ ◦π−1.

From (4.15) there exists a neighborhood Ũ ⊂ Ωa ofM∩Ωa such that F(Ũ) ⊂
U ′, where U ′ ⊂ PN is a neighborhood of M′ as in Lemma 3.1. We now repeat
the argument of analytic continuation of A0 along γ by constructing the sets
A∗j , j = 1, 2, . . . , with the only difference that the standard neighborhoods of the
form (3.12) are chosen so small that they are contained in Ũ . Since the new setΩa
may be smaller than Ũ , this continuation may require more than one step. More
precisely, we choose a sequence of points {aν}`ν=0 such that aν ∈ γ, a0 = a,
a` = q, and aν ∈ Ωaν−1 for 0 < ν ≤ `. For each aν starting with a0 we use
Theorem 2.1 to extend a finite correspondence Fν defined in a neighborhood of
aν to a holomorphic correspondence Fν+1 defined in Ωaν ⊂ Ũ . This time we
show in addition that at each step the extension is a finite correspondence. Since
aν+1 ∈ Ωaν , the process can be continued until we reach the point q.

Suppose that Fν+1 : Ωaν → PN is a holomorphic correspondence, which is
obtained from the finite correspondence Fν defined in a small neighborhood of
the point aν for some ν by the inductive construction of the sets A∗j ; that is

(5.1) A∗j = {(w,w′) ∈ U∗j × PN : F∗j−1(Qw ∩U∗j−1) ⊂ Q′w′},

where the Segre set Qjaν is contained in U∗j , the map Fν is associated with the set
A∗0 , and Fν+1 corresponds to the set A∗j0

with U∗j0
= Ωaν . Let F∗j be the map

associated with A∗j .
Clearly, the setsA∗j are contained in the set A, which defines a correspondence

F : Ũ → U ′. We claim that Fν+1 is a finite correspondence. To prove this assertion
we let k be the smallest integer such that F∗k is not a finite correspondence. By
assumption, k > 0. Suppose that there exists a point w′ ∈ U ′ such that the
analytic set F∗k

−1(w′) ⊂ U∗k has positive dimension. By the construction we have

(5.2) F∗k−1(Qz ∩U∗k−1) ⊂ Q′w′ , for all z ∈ F∗k
−1(w′).

Since M is essentially finite, there exists a subset E ⊂ F∗k
−1(w′) such that

dim
⋃
z∈E

Qz =m+ 1.
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It follows from (5.2) that dimF∗k−1(
⋃
z∈E Qz) ≤ m. But this contradicts the

induction hypothesis that F∗k−1 is finite.
Suppose now that there exists a pointw ∈ U∗k such that F∗k (w) is not discrete.

By the construction this means that F∗k−1(Qw ∩ U∗k−1) ⊂ Q′z′ , where z′ belongs
to the non-discrete set. Since F∗k−1 is finite, F∗k−1(Qw ∩ U∗k−1) has dimension m.
But then there can be only finitely many z′ whose Segre varieties can contain
F∗k−1(Qw ∩U∗k−1). Therefore F∗k is also finite for any k ≥ 0.

Hence, the obtained extension Fν+1 is a finite correspondence. We can repeat
the same argument for extending F0 along γ ∩ Ũ until we reach the point q.

Thus we have proved that F0 extends along any path on M1 as a finite cor-
respondence F . It follows from the construction that the number of branches of
F coincides with the number R defined in Lemma 3.1 for almost all points on
M1. It remains to observe now that, from the simple connectivity of M1 and the
monodromy theorem, the extension of F0 along homotopically equivalent paths
gives the same result. The version of the monodromy theorem for finite-valued
correspondences can be found in [40].

Part (2) of the statement of the theorem follows from the construction of the
extension F . Indeed, from the construction, if z ∈ M, and z′ ∈ F(z), then
F(z) = Ĩz′ . If λ′ is locally injective near z′, then F splits into R holomorphic
mappings near z.

The proof of Theorem 2.2 is now complete. ❐

6. PSEUDOCONCAVE SUBMANIFOLDS IN Pn

In this section we prove the rest of the results stated in Section 2.

Proof of Theorem 2.3.

(a). According to Theorem 5.2 of [24], there exists an m + d dimensional
irreducible algebraic subvariety Y of Pn such that M is a generic CR submanifold
of the regular part of Y , regY . Because of the pseudoconcavity ofM (or because of
Property E), the continuous CR map f is smooth and has a unique holomorphic
extension to an open neighborhood Ω of M in regY . Thus f can be regarded
as a holomorphic map from Ω to PN . This means that f may be given by N
meromorphic functions f1, f2, . . . , fN in Ω. To see this, we choose homogeneous
coordinates [z0 : z1 : · · · : zN] in PN such that the hyperplane {z0 = 0} is
in general position with respect to f(Ω), and set Ωj = f−1(Vj), where Vj =
PN \ {zj = 0}, j = 0, 1, . . . , N. The Ωj give an open cover of Ω, in each Vj we
have the inhomogeneous coordinates (w1j,w2j, . . . ,wNj), where wij = zi/zj,
and f |Ωj is given by holomorphic functions

(6.1) Ωj 3 t → (w1j(t),w2j(t), . . . ,wNj(t)).

We define the meromorphic functions f1, f2, . . . , fN by fk(t) = wk0(t) in Ω0,
and by fk(t) = wkj(t)/w0j(t) in Ωj for j, k = 1, 2, . . . , N. Note that these
definitions are consistent on the overlaps.
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By Theorem 5.2 of [24], each fk is the restriction to M of a rational function
on Y , and hence can be regarded as a rational function on Pn. This gives the
desired rational map from Pn to PN .

(b). Since M is generic in Pn, and since f is a local CR diffeomorphism, the
Jacobian detJf of the extension of f to Pn is not identically zero. Hence, the set
Σ = {z ∈ Pn | detJf (z) = 0} if non-empty, is a subvariety of Pn \Λ of complex
codimension one, where Λ is the indeterminacy locus of f . Suppose Σ 6= �. Then,
since f is locally biholomorphic near any point on M, M ∩ Σ = �. On the other
hand, by the Remmert-Stein theorem, the closure of Σ is a subvariety of Pn of
codimension one. It is well known that its complement in Pn is therefore a Stein
manifold. But a pseudoconcave M (or an M satisfying Property E) has no CR
embedding into a Stein manifold (see [20] and [24]). Thus Σ = �.

Let F : Cn+1 → Cn+1 be a polynomial map such that f ◦ π = π ◦ F , where
π : Cn+1 → Pn is the canonical projection. Without loss of generality assume that
the components of F are homogeneous polynomials of degree k without common
factors. We claim that det JF(z) 6= 0 for any point z ∈ Cn+1. Indeed, suppose on
the contrary that

(6.2) E = {z ∈ Cn+1 | det JF(z) = 0}

is a non-empty subvariety of complex codimension one. Then F(E) 6= {0}, and
therefore there exists a point p ∈ E such that F(p) 6= 0. For z ∈ Cn+1, let
Lz := {λz | λ ∈ C} be the complex line passing through the point z and the
origin. Since the Jacobian of f does not vanish outside the indeterminacy locus,
and F(Lp) 6= {0}, there exists a small neighborhood U of p such that for all z and
w in U , z 6= w,

(6.3) F(Lz)∩ F(Lw) = {0}.

Furthermore, F|U∩Lz = λkz, and after shrinking U if necessary, we may assume
that F|U∩Lz is an injective function for all z ∈ U . From this and (6.3) we conclude
that F is injective in U, which contradicts the assumption that p ∈ E. Thus
det JF 6= 0 and therefore is a constant.

Finally, observe that det JF(z) is a homogeneous polynomial of degree
(k − 1)(n + 1), and being constant means that k = 1, i.e., F is a linear auto-
morphism. ❐

Proof of Theorem 2.4 and Corollary 2.5. We may regard M as being a gener-
ic CR submanifold of a complex manifold X. Note that the pseudoconcavity of
M (or Property E) implies that M is minimal, because minimality is well-known
to be equivalent to wedge extendability. There is a neighborhood Vp of p in X
such that f extends to a holomorphic mapping f : Vp → PN . It is easy to check
that, by possibly shrinking Vp, the extended map f has maximal rank in Vp.
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Hence we may conclude from Theorem 2.2 that f extends to a finite holomorphic
correspondence F : V → PN , where V ⊂ X is some neighborhood of M.

Since the Segre map associated with M′ is injective, F splits at every point of
M, and every map Fj of the splitting is a CR map from M to M′. One of them,
say F1, is the extension of f . By Theorem 2.3(a), F1 extends to a rational map
from Pn to PN . Moreover, if n = N and M is generic in Pn, then F1 is locally
biholomorphic, because the Segre map associated with M is injective. Thus by
Theorem 2.3(b) F1 extends to a linear automorphism of Pn. Rationality of F1

implies that M must also be algebraic, which proves Corollary 2.5. ❐

Proof of Theorem 2.6. Since M and M′ are Levi non-degenerate, the associ-
ated Segre maps are locally injective, and M and M′ satisfy the conditions of The-
orem 2.2. If M and M′ are strictly pseudoconvex, then f extends as a locally
biholomorphic map to a neighborhood of p by [36]. If M is pseudoconcave, the
result follows from [21]. Therefore the map f defined near p also satisfies the
conditions of Theorem 2.2. Thus f extends as a finite correspondence along M.
Since the set Σ′, where the Segre map associated with M′ branches, is empty, the
extended correspondence is single-valued. Since the Segre map associated with M
is injective, the extension f : M → M′ is a locally biholomorphic map.

We now show that the extension is globally biholomorphic in a neighborhood
ofM. For that we note thatM′ is simply connected. Indeed, if k = n−1 or k = 0,
then M′ = S2n−1, which is simply connected. If 0 < k < n − 1, then we choose
an affine patch V ′n in Pn where z′n 6= 0. Then

(6.4) M′ ∩ V ′n = {|w′
0|2 + · · · + |w′

k|2 − |w′
k+1|2 − · · · − |w′

n−1|2 = 1},

where w′
j = z′j/z′n.

Let π be the projection from M′ to the coordinates (w′
k+1, . . . ,w

′
n−1). Then

π is onto, and for any w = (w′
k+1, . . . ,w

′
n−1), π−1(w) � S2k+1, which is simply

connected. Therefore, M′ is also simply connected. Because of that, the germ of
a map f−1 extends holomorphically along any path on M′ to a holomorphic map
f−1 : M′ → M. Thus f |M maps M one-to-one and onto M′, and f is globally
biholomorphic.

IfM′ is pseudoconcave, then by the invariance of the Levi form, so isM. Thus
by Theorem 2.3(b) f extends to a linear automorphism of Pn. ❐
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