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Dicritical singularities and laminar currents
on Levi-flat hypersurfaces

S. I. Pinchuk, R. G. Shafikov, and A. B. Sukhov

Abstract. We establish an effective criterion for a dicritical singularity

of a real analytic Levi-flat hypersurface. The criterion is stated in terms of

Segre varieties. As an application, we obtain a structure theorem for a cer-

tain class of currents in the non-dicritical case.
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§ 1. Introduction

The study of Levi-flat hypersurfaces arises naturally in several areas of complex
geometry. Our approach is inspired by the theory of holomorphic foliations. This
aspect of Levi-flat geometry has been considered by several authors [1]–[9]. By
a classical theorem of E. Cartan, a non-singular real analytic Levi-flat hypersurface
is locally biholomorphic to a real hyperplane. The present paper studies local
properties of Levi-flat hypersurfaces near singular points.

Our main result (Theorem 3.1) gives a complete effective characterization of
dicritical singular points of a Levi-flat real analytic hypersurface in terms of the
geometry of its Segre varieties. This answers a question communicated to the second
and third authors by Jiri Lebl (see also [8]). As an application, we prove a structure
theorem for currents supported on non-dicritical hypersurfaces (Proposition 4.2).

This paper was written while the third author was visiting Indiana University
(Bloomington) during the spring semester of 2016. He expresses his gratitude for
the excellent working conditions there.

§ 2. Real analytic Levi-flat hypersurfaces in CCCCCCCn

2.1. Real analytic sets and their complexifications. Let Ω⊂Rn be a domain.
A real analytic set Γ ⊂ Ω is a closed set locally defined as the zero locus of a finite
collection of real analytic functions. In fact, we can always take just one function
as locally defining any real analytic set. We say that Γ is irreducible in Ω if it
cannot be represented as the union Γ = Γ1 ∪ Γ2 of two real analytic sets Γj in Ω
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with Γj \ (Γ1 ∩ Γ2) 6= ∅, j = 1, 2 (this is geometric irreducibility). Γ is called
a real hypersurface if there is a point q ∈ Γ such that, near q, Γ is a real analytic
submanifold of dimension n − 1. Such points q are called regular points of the
real hypersurface Γ. The set of all regular points is called the regular locus and is
denoted by Γ∗. Its complement Γsing := Γ \ Γ∗ is called the singular locus of Γ.
Note that our convention is different from the usual definition of a regular point in
semianalytic or subanalytic geometry, where a similar notion is less restrictive and
a real analytic set is allowed to be a submanifold of some dimension near a regular
point. By our definition, those points of Γ, where Γ is a submanifold of dimension
smaller than n − 1, belong to the singular locus. Therefore Γ∗ need not be dense
in Γ, and this can happen even for irreducible Γ (the so-called umbrellas). Note
that Γsing is a closed semianalytic subset of Γ (possibly empty) of real dimension
at most n− 2.

In local questions, we are interested in the geometry of a real hypersurface Γ in an
arbitrarily small neighbourhood of a given point a ∈ Γ, that is, the geometry of the
germ of Γ at a. If the germ is irreducible at a, we may consider a sufficiently small
neighbourhood U of a and the representative of the germ which is irreducible at a

(see [10] for details). In what follows we will not distinguish between the germ of Γ
at a given point a and its particular representative in a suitable neighbourhood of a.

Let Γ ⊂ Rn
x be the germ of a real analytic set at the origin. We denote by ΓC

the complexification of Γ, that is, a complex analytic germ at the origin in Cn
z =

Rn
x + iRn

y , z = x + iy, with the property that every holomorphic function that
vanishes on Γ, necessarily vanishes on ΓC. Equivalently, ΓC is the smallest complex
analytic germ in Cn that contains Γ. It is well known that the dimension of Γ
equals the complex dimension of ΓC and that the germ of ΓC is irreducible at the
origin whenever the germ of Γ is irreducible (see Narasimhan’s book [10] for further
details and proofs). Also, given a real analytic germ

∑
|j|>0 aj xj , aj ∈ R, x ∈ Rn,

we define its complexification to be the complex analytic germ
∑

ajz
j .

While the complexification of a germ of a real analytic set is canonical and is
independent of the choice of the defining function, the following lemma gives a con-
venient way of constructing the complexification of a real analytic hypersurface
using a suitably chosen defining function. We will need the following notion of
a minimal defining function for a complex hypersurface. Given a complex hyper-
surface A = {z ∈ Ω: f(z) = 0} in a domain Ω ⊂ Cn, f is said to be minimal if,
for every open subset U ⊂ Ω and every holomorphic function g on U such that
g = 0 on A ∩ U , there is a holomorphic function h on U such that g = hf . If f

is a minimal defining function, then the singular locus of A coincides with the set
f = df = 0. Locally, every irreducible complex hypersurface admits a minimal
defining function (see the book by Chirka [11]).

Lemma 2.1. Let Γ ⊂ Rn be an irreducible germ of a real analytic hypersurface at
the origin. Then there is a defining function ρ(x) of the germ of Γ at the origin
such that its complexification ρ̂(z) is a minimal defining function of the complexi-
fication ΓC.
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Proof. Since the germ of Γ is irreducible, the complexification ΓC is an irreducible
germ of a complex hypersurface in Cn. It admits a minimal defining function at
the origin, F (z) =

∑
|j|>0 cjz

j . Let cj = aj + ibj , aj , bj ∈ R. Let f̂(z) =
∑

ajz
j ,

ĝ(z) =
∑

bjz
j , so that F = f̂ + iĝ. Then f̂ and ĝ are the complexifications of

the real analytic germs f(x) =
∑

ajx
j and g(x) =

∑
bjxj respectively. Moreover,

since F (z)
∣∣
Rn

x
= f + ig and F (x) vanishes on Γ, we conclude that both f and g

vanish on Γ and, therefore, f̂ and ĝ vanish on ΓC. Since F is a minimal defining
function for ΓC, there are unique holomorphic germs h1 and h2 such that f̂ = h1F

and ĝ = h2F . But then F = (h1 + ih2)F , that is, h1 + ih2 = 1 identically. Hence
at least one of these functions, say h1, does not vanish at the origin. It follows that
F = h1

−1f̂ , that is, f̂ is also a minimal defining function of ΓC. Thus ρ = f is the
desired choice of a defining function of Γ. �

2.2. Levi-flat hypersurfaces. Let z = (z1, . . . , zn), zj = xj + iyj , be the stan-
dard coordinates on Cn. Let Γ be an irreducible germ of a real analytic hypersurface
at the origin defined by a function ρ provided by Lemma 2.1. In a (connected) suf-
ficiently small neighbourhood Ω ⊂ Cn of the origin, the hypersurface Γ is a closed
irreducible real analytic subset of Ω of dimension 2n− 1.

For q ∈ Γ∗ consider the complex tangent space Hq(Γ) := Tq(Γ) ∩ JTq(Γ). The
Levi form of Γ is a Hermitian quadratic form defined on Hq(Γ) by the formula

Lq(v) =
∑
k,j

ρzkzj (q)vkvj

for all v ∈ Hq(Γ). A real analytic hypersurface Γ is said to be Levi-flat is its Levi
form vanishes on Hq(Γ) for every regular point q of Γ. By a classical result of Elie
Cartan, for every point q ∈ Γ∗ there is a local biholomorphic change of coordinates
centred at q such that, in the new coordinates, Γ has the form {z ∈ U : zn +zn = 0}
in some neighbourhood U of the point q = 0. Hence, Γ ∩ U is locally foliated by
complex hyperplanes {zn = c, c ∈ i R}. This foliation is called the Levi foliation
of Γ∗ and will be denoted by L. We denote by Lq the leaf of the Levi foliation
through q. Note that, by definition, it is a connected complex hypersurface and is
closed in Γ∗.

Let 0 ∈ Γ∗. We choose a neighbourhood Ω of the origin in the form of a polydisc
∆(ε) = {z ∈ Cn : |zj | < ε} of radius ε > 0. Then, for ε small enough, the function ρ

admits the convergent Taylor expansion in U :

ρ(z, z) =
∑
IJ

cIJzIzJ , cIJ ∈ C, I, J ∈ Nn. (1)

The coefficients cIJ satisfy the condition

cIJ = cJI (2)

because the function ρ is real-valued. Note that in local questions we may further
shrink Ω if necessary.
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For real analytic sets in complex manifolds, it is more convenient to define the
complexification as follows. Denote by J the standard complex structure on Cn

z

and define J ′ on Cn
w by the formula J ′w = −iw. We equip C2n = Cn

z × Cn
w with

the complex structure J ⊗ J ′. Then the map ι : Cn → Cn ×Cn given by z → (z, z)
is a totally real embedding of Cn in (C2n, J⊗J ′). We define the complexification of
a real analytic germ Γ ⊂ Cn to be the smallest complex analytic germ in C2n that
contains ι(Γ). This construction is equivalent to the definition given above. Hence
all the properties of the standard complexification are preserved. Now, given a real
analytic germ ρ as in (1), we define its complexification as

ρ(z, w) =
∑
IJ

cIJzIwJ , (3)

that is, we replace the variable z by an independent variable w. Let ε > 0 be chosen
so small that the series (3) converges for all (z, w) ∈ ∆(ε)×∆(ε). Note that ρ(z, w)
is a holomorphic function of (z, w) by the choice of the complex structure on C2n.
If the reader prefers to work with the standard structure on C2n, then w should be
replaced by w where appropriate.

By Lemma 2.1, the choice of the defining function ρ guarantees that the com-
plexification of (the germ of) Γ is given by

ΓC =
{
(z, w) ∈ Cn × Cn : ρ(z, w) = 0

}
. (4)

The hypersurface Γ lifts canonically to ΓC by the formula

Γ̂ = ΓC ∩ {w = z}.

In what follows we write ΓC
sing for the singular locus of ΓC.

2.3. Segre varieties. Our key tool is the family of Segre varieties associated
with a real analytic hypersurface Γ. For w ∈ ∆(ε) consider the complex analytic
hypersurface given by

Qw =
{
z ∈ ∆(ε) : ρ(z, w) = 0

}
. (5)

It is called the Segre variety of the point w. This definition uses the defining
function ρ of Γ in a neighbourhood of the origin which appears in (4). We always
consider the case when the germ of Γ at the origin is irreducible. Throughout the
paper, we use the defining function provided by Lemma 2.1 in a neighbourhood of
the origin (the same convention is used in [9]). In general, the Segre varieties Qw

also depend on the choice of ε (some irreducible components of Qw may disappear
when we shrink ε). Throughout the paper, we consider only the Segre varieties Qw

defined by means of the complexification at the origin. The reader should keep this
in mind. We also note that if 0 is a regular point of Γ, then the notion of the Segre
variety Qw is independent of the choice of a defining function ρ with non-vanishing
gradient when w is close enough to the origin.

The following properties of Segre varieties are immediate.
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Lemma 2.2. Let Γ be a germ of an irreducible real analytic hypersurface in Cn,
n > 1. Then the following assertions hold.

a) z ∈ Qz if and only if z ∈ Γ.
b) z ∈ Qw if and only if w ∈ Qz .

We also recall the property of local biholomorphic invariance of some distin-
guished components of Segre varieties near regular points. Since we are working
near a singularity, we state this property in detail using the notation introduced
above. Consider a regular point a ∈ Γ∗ ∩ ∆(ε) and fix α > 0 small enough with
respect to ε. Let ρa be any real analytic function on the polydisc ∆(a, α) =
{|zj − aj | < α, j = 1, . . . , n} such that Γ ∩ ∆(a, α) = ρ−1

a (0) and the gradient
of ρa does not vanish on ∆(a, α). Then for w ∈ ∆(a, α) we can define the Segre
variety aQw (‘the Segre variety with respect to the regular point a’) as

aQw =
{
z ∈ ∆(a, α) : ρa(z, w) = 0

}
(we use the Taylor series of ρa at a to define the complexification). For α small
enough, aQw is a connected non-singular complex submanifold of dimension n− 1
in ∆(a, α). This definition is independent of the choice of the local defining func-
tion ρa satisfying the properties above. We have the inclusion aQw ⊂ Qw. Note that
in general Qw can have irreducible components in ∆(ε) which do not contain aQw.

Lemma 2.3 (invariance property). Suppose that Γ, Γ′ are irreducible germs of real
analytic hypersurfaces, a ∈ Γ∗, a′ ∈ (Γ′)∗, and ∆(a, α), ∆(a′, α′) are small poly-
discs. Let f : ∆(a, α) → ∆(a′, α′) be a holomorphic map such that f(Γ∩∆(a, α)) ⊂
Γ′ ∩∆(a′, α′) and f(a) = a′. Then

f(aQw) ⊂ a′
Q′

f(w)

for all w ∈ ∆(a, α) close enough to a. In particular, if f : ∆(a, α) → ∆(a′, α′)
is biholomorphic, then f(aQw) = a′

Q′
f(w). Here aQw and a′

Q′
f(w) are the Segre

varieties associated with Γ and Γ′ at the points a and a′ respectively.

For a proof see, for example, [12]. As a simple consequence of Lemma 2.2, we
have the following corollary.

Corollary 2.4. Let Γ ⊂ Cn be an irreducible germ of a real analytic Levi-flat
hypersurface at the origin. Let a ∈ Γ∗. Then the following assertions hold.

a) There is a unique irreducible component Sa of Qa containing the leaf La.
It is also the unique complex hypersurface through a which is contained in Γ.

b) For every a, b ∈ Γ∗ we have b ∈ Sa ⇐⇒ Sa = Sb.
c) Suppose that a ∈ Γ∗ and La touches a point q ∈ Γ such that dimC Qq = n−1

(the point q may be singular). Then Qq contains Sa as an irreducible component.

A proof is contained in [9]. We again emphasize that Corollary 2.4 concerns
‘global’ Segre varieties, that is, those defined by (5) using complexification at the
origin.
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§ 3. Characterization of dicritical singularities
of Levi-flat hypersurfaces

Let Γ be an irreducible germ of a real analytic Levi-flat hypersurface in Cn

at 0 ∈ Γ∗. Fix a local defining function ρ chosen in accordance with Lemma 2.1,
so that the complexification ΓC is an irreducible germ of the complex hypersurface
in C2n given as the zero locus of the complexification of ρ. As already mentioned,
all Segre varieties considered are defined by means of this complexification at the
origin.

We also fix a sufficiently small ε > 0. All considerations are in the polydisc ∆(ε)
centred at the origin. A point q ∈ Γ∗ ∩∆(ε) is called a dicritical singularity if q

belongs to the closures of infinitely many geometrically distinct leaves La. Singular
points in Γ∗ which are not dicritical are said to be non-dicritical.

A singular point q is said to be Segre degenerate if dim Qq = n. We recall that
the Segre degenerate points form a complex analytic subset of ∆(ε) of complex
dimension at most n − 2. In particular, it is a discrete set if n = 2. For a proof,
see [7], [9]. The main result of this paper is the following theorem.

Theorem 3.1. Let Γ = ρ−1(0) be an irreducible germ of a real analytic Levi-flat
hypersurface at the origin of Cn and 0 ∈ Γ∗. Then 0 is a dicritical point if and
only if it is Segre degenerate.

Proof. A dicritical point is Segre degenerate; this follows from Corollary 2.4, c).
We now prove that if the origin is a Segre degenerate point, then it is dicritical.
The proof is divided into four steps.

Step 1. Canonical Segre varieties. Consider the canonical projection

π : ΓC → Cn, π : (z, w) 7→ w.

Then Qw = π−1(w) for every w. Denote by Qc
w the union of all irreducible com-

ponents of Qw containing the origin. We call this set the canonical Segre variety
of w. Note that for all w in a neighbourhood of the origin in Cn, the canoni-
cal Segre variety Qc

w is a non-empty complex analytic hypersurface. Indeed, since
0 is a Segre degenerate singularity, it follows that w ∈ Q0 = Cn and we obtain
by Lemma 2.2, b) that 0 ∈ Qw.

Consider the set
Σ =

{
(z, w) ∈ ΓC : z /∈ Qc

w

}
.

If Σ is empty, then for every point w in a neighbourhood of the origin, the Segre
variety Qw coincides with the canonical Segre variety Qc

w, that is, all the compo-
nents of Qw contain the origin. But for a regular point w of Γ, the closure of its
Levi leaf is a component of Qw. Hence the origin is contained in the closure of
every Levi leaf and, therefore, is a dicritical point. Our goal is to prove that Σ is
empty. Arguing by contradiction, we assume that Σ is non-empty. Observe that Σ
is open in ΓC. This follows immediately from the fact that the defining function of
the complex hypersurface Qw depends continuously on the parameter w.
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To prove the theorem, we are going to show that the boundary of Σ is contained
in a proper complex analytic subset of ΓC. To do this we define the set

X =
{
(z, w) ∈ ΓC : dim Qw = n

}
.

As shown in [7], [9], the set X is contained in a complex analytic subset of ΓC of
dimension at most 2n− 2.

Let (zk, wk) be a sequence of points in Σ converging to some point (z0, w0).
Without loss of generality we may assume that (z0, w0) ∈ ΓC \ (ΓC

sing ∪X) and that
(z0, w0) does not belong to Σ. Since (z0, w0) does not belong to X, we conclude
that w0 is not a dicritical singularity. Then Qw0 is a complex hypersurface (in
general reducible) passing through the origin, and z0 ∈ Qc

w0
.

Step 2. Analytic representation of Segre varieties. We use the notation
z = (z′, zn) = (z1, . . . , zn−1, zn). Performing a complex linear change of coordi-
nates in Cn

z if necessary, we can assume that the intersection of Qw0 with the zn-
coordinate complex line (0′, C) is a discrete set. Then the intersection of ΓC with
the complex line {(0′, C, w0)} is also discrete. Let

π̃(z′, zn, w) = (z′, w)

be the coordinate projection. Choose a neighbourhood U of the origin in Cn
z and

a neighbourhood V of w0 in Cn
w with the following properties.

i) U = U ′× δD, where U ′ is a neighbourhood of the origin in Cn−1
z′ , and D is the

unit disc in C. Choose δ > 0 so small that

{|zn| < δ} ∩ ΓC ∩ π̃−1(0′, w0) = {(0, w0)}.

ii) The projection π̃ : ΓC ∩ (U × V ) 7→ U ′ × V is proper.
We apply the Weierstrass preparation theorem to the equation (4) on the neigh-

bourhood U × V of the point (0, w0) ∈ ΓC to obtain

ΓC = {(z, w) ∈ U × V :

P (z′, w)(zn) := zd
n + ad−1(z′, w)zd−1

n + · · ·+ a0(z′, w) = 0}, (6)

where the coefficients aj(z′, w) are holomorphic in U ′ × V . Note that a0(0′, w) = 0
for all w because every Segre variety contains the origin. The Segre varieties are
then obtained by fixing w in the above equation:

Qw ∩ U =
{
z ∈ U : P (z′, w)(zn) = 0

}
, w ∈ V. (7)

Step 3. Boundary points of Σ. We noted in Step 1 that Σ is open in ΓC. Here
we shall show that, in a neighbourhood of (z0, w0), the boundary of Σ is contained
in a proper analytic subset of ΓC.

We need an analytic representation of ΓC similar to (6) but in a neighbourhood
of the point (z0, w0). Performing a linear change of coordinates (arbitrarily close to
the identity map) in Cn

z , we can assume that Step 2 holds and also the intersection
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of Qw0 and the complex line (z0
1 , . . . , z0

n−1, C) is discrete. As in Step 2, there is
a neighbourhood O′ of (z0

1 , . . . , z0
n−1) in Cn−1 and a δ′ > 0 such that ΓC ∩ (O× V )

is the zero set of some Weierstrass polynomial P̃ (z′, w)(zn−z0
n). Here O = O′×δ′D

and V is the same neighbourhood of w0 as in Step 2 (this can be achieved by
shrinking V if necessary). The polynomial P̃ has an expansion similar to (6) with
(zn − z0

n) instead of zn, and its coefficients are holomorphic in O′ × V . For the
Segre varieties Qw, w ∈ V , we have

Qw ∩O =
{
z ∈ O : P̃ (z′, w)(zn − z0

n) = 0
}
. (8)

We now consider the discriminant R(z′, w) of the polynomial P̃ , that is, the
resultant of P̃ and its derivative with respect to zn (see, for example, [11]). The
function R is holomorphic in O′ × V . We define the discriminant set as

Y =
{
(z, w) ∈ ΓC ∩ (O × V ) : R(z′, w) = 0

}
. (9)

The projection of the set Y to Cn−1
z′ ×Cn

w is formed by the points (z′, w) such that
the polynomial P̃ (z′, w) has multiple roots. The set Y is a complex analytic subset
of codimension 1 in ΓC ∩ (O × V ). We have the inclusion ΓC

sing ∩ (O × V ) ⊂ Y . In
general, this inclusion is strict (see, for example, [11]).

We now use again the neighbourhood U of the origin in Cn
z and the neighbour-

hood V of w0 defined in Step 2, so that the conditions i), ii) of Step 2 hold. In
particular, Qw ∩ U is given by (7) for all w ∈ V . Set z′ = 0 in (7). This defines an
algebroid d-valued function of w ∈ V , that is, an algebraic element over the com-
mutative integral domain of functions holomorphic on V . More precisely, consider
the pairs (ζ, w) ∈ C× V satisfying the equation

ζd + ad−1(0′, w)ζd−1 + · · ·+ a0(0′, w) = 0, (10)

where aj are the coefficients of the polynomial P in (6). This equation defines
an algebroid (d-valued) function w 7→ ζ(w) (in other words, ζ is a holomorphic
correspondence defined on V and with values in C). The complex hypersurface
determined by the equation (10) in C× V is a branched analytic covering over V ,
and we can define branches of the algebroid function ζ in the standard way as
holomorphic functions on an arbitrary simply connected subdomain in V disjoint
from the branch locus; see [11].

Furthermore, with every point w ∈ V the algebroid function ζ associates the set
ζ(w) = (ζ1(w), . . . , ζs(w)), s = s(w) 6 d, of all (distinct) roots of the equation (10);
we refer to them as the values of ζ at w. Since a0(0′, w) vanishes identically in w

(recall that every Segre variety Qw contains the origin), one of the branches of ζ

is identically equal to zero. In particular, the polynomial (10) is reducible. On the
other hand, the function ζ has branches which are not identically equal to zero.
Indeed, (zk, wk) ∈ Σ, so that the irreducible components of Qwk containing zk do
not contain the origin. Therefore the equation (10) has non-zero solutions when
w = wk. In particular, ai(0′, wk) 6= 0 for at least one i. Let j be the smallest
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non-negative integer such that the coefficient aj(0′, w) does not vanish identically.
Dividing the equation (10) by ζj , we obtain

ζd−j + ad−1(0′, w) ζd−j−1 + · · ·+ aj(0′, w) = 0. (11)

Thus, all the non-zero values of the algebroid function ζ at w are solutions of this
equation.

Note that 0 is one of the roots of the equation (11) for some w if and only
if aj(0′, w) = 0. Define the set

A =
{
(z, w) ∈ ΓC : aj(0′, w) = 0

}
. (12)

This is a complex analytic subset of codimension 1 in ΓC.

Lemma 3.2. The boundary of Σ in a neighbourhood of (z0, w0) is contained in
the union A ∪X ∪ Y .

Proof. It suffices to consider the case when the point (z0, w0) does not belong
to X ∪Y . We use the neighbourhoods O 3 z0 and V 3 w0 defined at the beginning
of Step 3. We also use the representation (8) for Qw ∩O with w ∈ V .

Since the point (z0, w0) is not in Y , the polynomial P̃ ((z0)′, w 0)(zn − z0
n) in (8)

has no multiple roots. It follows that this point is regular for ΓC and that z0 is
a regular point of the Segre variety Qw0 . The points (zk, wk) also do not belong
to Y for sufficiently large k and are regular points for ΓC and for Qwk .

Let K1(w), . . . ,Km(w) be the irreducible components of Qw, w ∈ V . The point
(z0, w0) belongs to exactly one of these components, say, to K1(w0). Since Qw0

has the maximal number of branches over the point (z0)′, no distinct components
Kν(wk), ν = 1, . . . ,m, of Qwk can glue together as wk tends to w0. Therefore,
K1(w0)∩O is an irreducible component of the limit set (in the Hausdorff distance)
of exactly one of these components as wk → w0. By the uniqueness theorem for
irreducible complex analytic sets, this property holds globally (not only in O).
In particular, it holds in a neighbourhood of the origin in Cn. We denote this
component by K1(wk). Note that K1(wk) is the unique component containing zk

for k big enough.
It follows from the representations (6) and (7) that for every w = wk or w = w0,

the fibre π̃−1(0′, w)∩K1(w) is a finite set. We write it in the form {p1(w), . . . , pl(w)},
l = l(k) 6 d. Since K1(wk) is a component of Qwk , each pµ

n(wk) is a value of the
algebroid function ζ at wk, that is, it belongs to the set ζ(wk). We recall that
(zk, wk) ∈ Σ, and the component K1(wk) does not contain the origin. It follows
that pµ

n(wk) 6= 0 for all µ = 1, . . . , l. Hence all the values pµ
n(wk) satisfy the

equation (11) with w = wk. By the choice of K1(wk), the set (p1
n(w0), . . . , pl

n(w0))
is contained in the limit set of the sequence (p1

n(wk), . . . , pl
n(wk)) as wk → w0.

Therefore, every pµ
n(w0) satisfies the equation (11) with w = w0. But the point

(z0, w0) does not belong to Σ and the component K1(w0) necessarily contains the
origin. This means that pµ

n(w0) = 0 for at least one µ. We obtain that aj(0′, w 0) = 0
and (z0, w0) ∈ A. �
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By the Remmert–Stein removable singularity theorem, the closure Σ of Σ coin-
cides with an irreducible component of ΓC. Since ΓC is irreducible, we obtain that
Σ coincides with ΓC.

Step 4. The complement of Σ has non-empty interior. We begin by choos-
ing a suitable point ŵ. First assume that (ẑ, ŵ) is a regular point of ΓC and (ẑ, ŵ)
is not in X. Fix a sufficiently small neighbourhood W of ŵ. Then for all Segre
varieties Qw, w ∈ W , the number of their irreducible components is bounded above
uniformly in w. Let m be the maximal number of components of Qw for w ∈ W .
Slightly perturbing ŵ (and ẑ), one can assume that Q bw has exactly m geometri-
cally distinct components. Then there is a neighbourhood V of ŵ such that Qw

has exactly m components for all w ∈ V . Let K1(ŵ), . . . ,Km(ŵ) be the irreducible
components of Q bw. Note that the components Kj(w) depend continuously on w

in V .
Consider the sets Fj = {w ∈ V : 0 ∈ Kj(w)}. Every set Fj is closed in V . Since

0 ∈ Qw for all w, we have
⋃

j Fj = V . Therefore one of these sets, say F1, has
non-empty interior. This means that there is a small ball B centred at some point
w̃ such that K1(w) contains 0 for all w ∈ B. Choose a regular point z̃ in K1(w̃)
close to the origin. Then for every (z, w) ∈ ΓC close to (z̃, w̃), we have z ∈ K1(w),
that is, (z, w) /∈ Σ. Hence the complement of Σ has non-empty interior. But this
contradicts the conclusion of Step 3 that Σ = ΓC, and the proof is complete. �

§ 4. Uniformly laminar currents near non-dicritical singularities

We say that the Segre variety Qw defined by (8) is minimal if the holomorphic
function z 7→ ρ(z, w) is minimal. We have the following proposition.

Proposition 4.1. Let Γ be a real analytic Levi-flat hypersurface in Cn with irre-
ducible germ at the origin. Assume that 0 is a non-dicritical singularity for Γ.
Then for every sufficiently small neighbourhood Ω of the origin there is a complex
linear map L : C → Cn with the following properties.

i) L(C) ∩Q0 = {0}.
ii) No component of the one-dimensional real analytic set γ = L(C) ∩ Γ is con-

tained in Γsing.
iii) For every q ∈ Γ∗∩Ω there is a point w ∈ γ such that Lq is contained in Qw .
iv) If in addition the Segre variety Q0 is irreducible and minimal, then such

a point w is unique.

Parts i), ii), iii) are proved in [9] (Proposition 4.1) under the assumption that 0 is
a Segre non-degenerate singularity. Theorem 3.1 enables us to apply this result in
the non-dicritical case. Note that if Q0 is irreducible and minimal, then the Segre
varieties Qw with w close enough to the origin enjoy the same properties. This
implies iv).

A one-dimensional real analytic set γ constructed as in Proposition 4.1 is called
a transverse for the Levi-flat hypersurface Γ at a non-dicritical singularity. In
general, γ can be reducible, that is, be a finite union of real analytic curves. The
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existence of a transverse shows that the structure of a Levi-flat hypersurface near
a non-dicritical singularity is similar to that of a non-singular foliation. In [9],
Proposition 4.1 was used to extend a non-dicritical Levi foliation as a holomorphic
web in a full neighbourhood of a singularity in Cn. Here we give another application.

We use the standard terminology and notation of the theory of currents (see [11],
[13]). Denote by D′

p,q(Ω) the space of currents of bidimension (p, q) (or simply
(p, q)-currents) in a domain Ω of Cn. If A is a complex analytic subset of Ω of pure
dimension p, then [A] ∈ D′

p,p(Ω) stands for the current of integration over A.
The main result of this section is the following assertion.

Proposition 4.2. Let Γ = ρ−1(0) be a real analytic Levi-flat hypersurface in Cn

with irreducible germ at the origin. Suppose that 0 is a non-dicritical singularity,
and a one-dimensional real analytic subset γ of Γ is a transverse containing the
origin. Assume that the Segre variety Q0 is irreducible and minimal. Furthermore,
suppose that the sets Qs \ Γsing, s ∈ γ, are connected.

Then there is a neighbourhood Ω of the origin in Cn with the following property.
Every closed positive current T ∈ D′

n−1,n−1(Ω) of order (of singularity) 0 with
support in Γ∗ can be written in the form

T =
∫

s∈γ

[Qs] dµ(s) (13)

with a unique positive measure µ.

In the smooth case (for C1 Levi-flat CR-manifolds without singularities), this
result is due to Demailly [14]. Proposition 4.2 shows that every current T satisfying
the assumptions of the theorem is a so-called uniformly laminar current. These
currents play an important role in dynamical systems and foliation theory (see [15],
[16]). Note that in many cases compact Levi-flat hypersurfaces in complex mani-
folds necessarily have singular points. This is our motivation for Proposition 4.2.

We need some known results on currents, which we recall for the convenience
of the reader. Proofs are contained in [13]. Recall that a current T is said to be
normal if both T and dT are currents of order zero.

Proposition 4.3 (first theorem on supports). Let T ∈ D′
p,p(Ω) be a normal current

on a domain Ω in Cn. If the support of T is contained in a real manifold M

of CR-dimension < p, then T = 0.

Let M be a Levi-flat smooth hypersurface in Ω and let I be an (open) smooth real
curve. Assume that there is a submersion σ : M → I such that the set Lt = σ−1(t)
is a connected complex hypersurface (a Levi leaf) in M for every t ∈ I. Our second
tool is the following proposition.

Proposition 4.4 (second theorem on supports). Every closed current T ∈
D′

n−1,n−1(Ω) of order zero with support contained in M can be written in the form

T =
∫

I

[Lt] dµ(t)
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for a unique complex measure µ on I . Moreover, T is positive if and only if µ is
positive.

Let A be an irreducible complex p-dimensional analytic set in Ω, and let T be
a closed positive current of bidimension (p, p) in Ω. The generic Lelong number
of T along A is defined as

m(A) := inf{ν(T, a) | a ∈ A}.

Here ν(T, a) stands for the Lelong number of T at a, which is defined as

ν(T, a) = lim
r→0+

r−2p

∫
|z−a|<r

T ∧
(

1
2

d dc|z|2
)p

.

We need the following preparation result for Siu’s semicontinuity theorem. Write
1A for the characteristic function of a set A.

Proposition 4.5. Let T be a closed positive current of bidimension (p, p) in Ω, and
let A be an irreducible p-dimensional analytic subset of Ω. Then 1AT = m(A)[A].

Proof of Proposition 4.2. This is a simple consequence of the existence of a trans-
verse γ as given by Proposition 4.1 and the above-mentioned properties of currents.

Since Q0 is an irreducible hypersurface with a minimal defining function, every
Qs, s ∈ γ, is an irreducible complex hypersurface for s close enough to 0 and is
contained in Γ. The set of regular points of every Qs is connected. If a regular point
of Qs belongs to Γ∗, then Qs coincides with some leaf of the Levi foliation near this
point. However, a regular point of Qs can in general be a singular point of Γ. For
this reason, we impose the condition that the sets Qs \ Γsing are connected.

We define a set γ0 ⊂ γ as follows. First, it contains the singular points of γ (this
is a finite set since γ is real analytic). Second, we include in γ0 the points which are
singular for Γ (this is again a finite set since γ is not contained in Γsing). Further-
more, γ0 contains the points s such that the Segre variety Qs is contained in Γsing.
Note that γ0 is non-empty since it contains 0. Recall that Γsing is a semianalytic
set of dimension at most 2n − 2 and can be stratified into a finite union of real
analytic manifolds. In particular, it contains only a finite number of Segre vari-
eties. Considering a small enough neighbourhood Ω of the origin, we can assume
that γ0 = {0}. This is the reason why we treat Q0 in a special way in the following
argument. We do not assume, however, that Q0 is contained in Γsing.

Denote by I one of the components of γ \{0}. Consider the domains Ω′ = Ω\Q0

and Ω′′ = Ω′ \ Γsing. The subset

X =
(⋃

s∈I

Qs

)
\ Γsing

is a closed smooth (without singularities) Levi-flat real analytic hypersurface in Ω′′.
Furthermore, X coincides with a component of Γ∗ ∩ Ω′.

The positive current 1XT is closed in Ω′′. By Proposition 4.4 we conclude that

1XT =
∫

I

[Qs] dµ(s) (14)
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for a unique positive measure µ on I. Recall that dim Γsing 6 2n−2. By the choice
of the neighbourhood of the origin, the only complex hypersurface that Γsing may
contain is Q0. Therefore, Γsing ∩ Ω′ can be stratified into a finite union of smooth
real analytic CR-manifolds of CR-dimension < n− 1. The current

T
∣∣
Ω′ −

∫
I

[Qs] dµ(s)

is closed in Ω′, is of order 0, and its support is contained in Γsing. By Proposition 4.3,
this current must vanish. Hence, (14) holds on Ω′. Repeating this argument for
other components of γ \ {0}, we extend µ to γ \ {0}.

In order to extend µ to the origin, we use Proposition 4.5, which yields

1Q0T = m(Q0)[Q0].

We set µ(0) = m(Q0). Then µ is defined on γ and (13) holds. �

The Segre varieties Qs are defined quite explicitly as the zero sets of the functions
z 7→ ρ(z, s). In combination with the Poincaré–Lelong formula [11], [13], this gives
the following assertion.

Corollary 4.6. Under the hypotheses of Proposition 4.2 we have

T =
i

π

∫
s∈γ

∂∂ log |ρ(z, s)| dµ(s). (15)

One can view (15) as a ‘foliated’ Poincaré–Lelong formula for non-dicritical singu-
larities. Hence, non-dicritical singularities are not ‘detected’ at the level of currents:
the structure is the same as in the smooth case. Only dicritical singularities are
essential from this point of view.
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