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By Rasul Shafikov and Kaushal Verma 

ABSTRACT. Let f : 79 ~ 79f be a proper holamorphic mapping between bounded domains 79, 79~ in 

C 2. Let M, M ~ be open pieces on 079, OD/, respectively that are smooth, real analytic and offinite type. 

Suppose that the cluster set of M under f is contained in M ~. It is shown that f extends holomorphically 

across M. This can be viewed as a local version of the Diederich-Pinchuk extension result for proper 

mappings in C 2. 

1. Introduction 

Let 79, 79' be smoothly bounded, real analytic domains in C 2. With no further assumptions 
on the domains such as pseudoconvexity, Diederich and Pinchuk (see [9]) show that any proper 

holomorphic mapping f : 79 --+ 79' extends holomorphically across each point of  079. The 
purpose of  this article is to propose and prove the following local version of their result. 

T h e o r e m  1.1. Let 79, 79' be bounded domains in C 2 and let f : 79 -+ 79' be a proper 
holomorphic mapping,. Suppose that M, M' are open pieces of  079, 079', respectively such that 

(i) 079, (respectively 079') is smooth, real analytic and of  finite type (in the sense of  

D'Angelo) in an open neighborhood of  M, (respectwely M ), 

(ii) the cluster set clf  (M) C M'. 

Then f extends holomorphically across each point on M. 

Some remarks are in order. First, there is no assumption on the cluster set of M'  under f -  I. 
In particular, it is possible that the cluster set of  some z' c M'  contains points near which 079 
may have no regularity at all. Nothing can then be said about extending f 1 across z'. The main 
theorem in [22] can be considered as a weaker version of Theorem 1.1 since it was proved with an 
additional assumption on the cluster set of M'  under f - 1 .  Second, f is not assumed to possess 
any a priori regularity, such as continuity, near M. Third, a recent result of  Diederich-Pinchuk 
(cf. [1 1]), which is valid for n > 2, assumes that f is continuous up to M but not a priori proper. 
Theorem 1.1 on the other hand assumes properness but not the continuity of  f on M. 
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Let us briefly recall the salient features of the proof in [9]. There are two main steps: first, 
to extend f as a proper correspondence and second, to show that extendability as a proper corre- 
spondence implies holomorphic extendability. In step one, extension as a proper correspondence 
is shown first for all strongly pseudoconvex points on 079. Building on this they construct proper 
correspondences, in a step by step approach, that extend f across weakly pseudoconvex points 
and even the exceptional points in the 'border' (the set M \ (M + U M - )  defined below). More- 
over, during all these constructions, it is essential to do the analogous steps for the (multivalued 
inverse) f - 1 .  This is the main reason why the local version of this result cannot be directly 
derived from [9]. As mentioned above the cluster set of M I may contain points of 079 with no 
regularity, and therefore, without additional assumptions on the cluster set of M r under f - l ,  no 
regularity of f - 1  near M / can be established. 

Many local results on the extendability of holomorphic mappings and correspondences have 
been obtained by different authors and without mentioning the entire list we refer to [2, 3] and [ 1 3] 
as examples to illustrate the flavor of the techniques used. One common feature in all these results 
is a 'convexity' assumption, either geometric or of a function theoretic nature, on M, Mq For 
example, this could be in form of the existence of local plurisubharmonic barriers at points of 
M, M I. So one possible approach to Theorem 1.1 would be to show the existence of such barrier 
functions at points of the one dimensional strata of the 'border.' This seems to be unknown as 
yet. Thus a somewhat different approach has to be used to prove Theorem 1.1. 

Let T be the set of points on M where its Levi form vanishes. Then T can be stratified as T = 
To U Tl U T2, where Tk is a locally finite union of smooth real-analytic submanifolds of dimension 
k = 0, 1, 2. Denote by M~ the set of strongly pseudoconvex (resp. strongly pseudoconcave) 
points on M. Let M + be the relative interior, taken with respect to the relative topology on M, 

of M~. Then M + is the set of weakly pseudoconvex (resp. weakly pseudoconcave) points of M 
and the border M \ (M + U M - )  clearly separates M + and M - .  It was shown in [8] and [9] that 
the stratification T = To U T1 U T2 can be refined in such a way that the two dimensional strata 
become maximally totally real manifolds. Let us retain the same notation Tk, k = 0, 1, 2 for the 
various strata in the refined stratification. Further, let T + = M + A Tk for all k. Then T + is the 
maximally totally real strata near which M is weakly pseudoconvex. The set 

Me = (M \ (M + U M-))  n (T, U To) (1.1) 

is the exceptional set. It was shown in [6] that 

(M \ (M + U M-) )  n T2 C M n 7}, (1.2) 

where 79 denotes the holomorphic hull of the domain 79. 

Observe that Me to T~  tO T~  is a locally finite collection of real analytic arcs and points. A 
similar decomposition exists for M 1. Let us note two facts with the hypotheses of Theorem 1.1. 
First, f clearly extends across points in M n 73. Second, it was shown in [22] that f also extends 
across Ms + U T + .  Thus the verification of Theorem 1.1 will follow once f is shown to extend 
across Me U T + U T +. 

Removability of real analytic arcs and points was also considered in [8] with the assumption 
that f : 79 --~ 79/is biholomorphic and has an extension that is continuous up to M. A related 
result was obtained in C n, n > 2, (see [14]) with the assumption that M, M ~ are pseudoconvex 
and f is continuous up to M. 

To conclude let us note one consequence of Theorem 1.1. 

T h e o r e m  1.2. With the hypothesis o f  Theorem 1.I, the extended mapping f : M -+ M I 

,* s(r  +) S(T+Uro +) ' *  T;* satisfiestheadditionalproperties: f ( M  +) C M s , C C M s U U 
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T~ +, f (Me) C M~e and f (M N f)) C M' 71 ~' .  Moreover, i f  zo ~ T~ is an isolated point o fT ,  

then f (zo) c T~ + is also an isolated point ofT ' .  

The conclusion f (T + U T +) C M~s + U T[ + U T~ + cannot be strengthened to f (T +) C T( + as 

the following example shows. Consider the pseudoconvex domain f2 = {(z, w) : Izl 2 + [w[ 4 < 
1} and the proper mapping 0(z, w) : f2 ~ /32 from f2 to/32 the unit ball in C 2 defined as 
rl(Z, w) = (z, we). Clearly T + C 0f2 is defined by the real analytic arc {(e iO, 0)} and such points 
are mapped by 17 to strongly pseudoconvex points. 

2. Notation and preliminaries 

The notion of  finite type will be in the sense of  D'Angelo which means that none of  M, M t 
can contain positive dimensional germs of complex analytic sets. There are other notions such as 
finite type in the sense of Bloom-Graham and essential finiteness. The reader is referred to [1] 
for definitions and details. However, all these notions are equivalent in C 2. 

Segre varieties have played an important role in the study of  boundary regularity of  analytic 
sets and mappings when the obstructions are real analytic. The word 'analytic' will always mean 
complex analytic unless stated otherwise. Here are a few of their properties that will be used in 
this article. For a more detailed discussion and complete proofs the reader is referred to [7, 12] 
and [1]. Let us restrict ourselves to C 2 as the case for n > 2 is no different. We will write 
Z = (Zl ,  Z2) E C • C for a point z 6 C 2. 

Pick ~ E M and move it to the origin after a translation of coordinates. Let r = r (z, 2) be the 
defining function of  M in a neighborhood of  the origin, say U, and suppose that Or/Oz2(O) ~ O. 
If U is small enough, the complexification r(z, ~ )  of r is well defined by means of  a convergent 
power series in U • U. Note that r(z, u  is holomorphic in z and antiholomorphic in w. For any 
w 6 U, the associated Segre variety is defined as 

aw -- {z E U :  r (z ,w)  = 0} .  (2.1) 

By the implicit function theorem Qw can be written as a graph. In fact, it is possible to 
choose neighborhoods U1 ~ U2 of the origin such that for any w ~ U1, Qw is a closed, complex 
hypersurface in U2 and 

Qw = {z = (Zl, z2) E u2 : z2 = h (Zl, W) } , (2.2) 

where h(zl,  ~ )  is holomorphic in z and antiholomorphic in w. Such neighborhoods will be called 
a standard pair of neighborhoods and they can be chosen to be polydisks centered at the origin. 
Note that Qw is independent of  the choice o f r .  For ~ E Qw, the germ of Qw at ~ will be denoted 
by r Qw. Let S :=  {Qw : w ~ Ut} be the set of  all Segre varieties, and let )~ : w w-~ Qw be the 
so-called Segre map. Then S admits the structure of  a complex analytic set on a finite dimensional 
complex manifold. Consider the complex analytic set 

Iw :=  ,k-l(~,(w)) = {z : Qz = Qw} . (2.3) 

If  w 6 M, then Iw C M and the finite type assumption on M forces Iw to be a finite collection 
of  points. Thus )~ is a proper map in a small neighborhood of  each point on M. Also, note that 
z 6 Qw < ~ w e  Qzandz  E Q~ ,'. .~ z r M .  Wesha l l a l sohaveoccas ion touse theno t i on  
of the symmetric point that was introduced in [9]. This is defined as follows: for w close enough 
to M, the complex line lw containing the real line through w and orthogonal to M intersects Qw 
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at a unique point. This is the symmetric point of  w and is denoted by Sw. It can be checked that 
for w outside 7), the symmetric point Sw ~ D and vice-versa. Moreover, for w c M, Sw = w. 

For z 6 0D, the cluster set cl$(z) is defined as: 

clf(z)---- { w ~ C  2" there exis ts (z j )~= l C D ,  Zj--+ Z, such that f ( z j ) - -~  w} (2.4) 

If  K C OD, then clf  (K) is defined to be the union of the cluster sets of  all possible z c K. 

For all the notions and terminology introduced here, we simply add a prime to consider the 
corresponding notions in the target space. For example, M~ + is the set of all strongly pseudoconvex 
points in M '  and for w r close to M ~, Q~, is the corresponding Segre variety. 

Finally, we recall that for an analytic set A C U • U'  C C 2 x C 2 of pure dimension two with 
proper projection to the first component U, there exists a system of canonical defining functions 

* , ( z , z ' ) =  ~ qSlj(Z)Z'J, ] I I = m ,  (z, z Z ) ~ U •  2. (2.5) 
IJl<m 

Here (otj(z) c O(U) and A is precisely the set of common zeros of the functions (I)/(Z, zt). 
For details see e.g., [4]. Analytic set A with such properties is usually called a holomorphic 
correspondence. The set A is called a proper holomorphic correspondence if both coordinate 
projections are proper. 

3. Strategy for the proof of Theorem 1.1 

As noted earlier, f extends across M \ (Me U T + U To+). We will first consider the one 

dimensional components of (Me U Tl+). So let y be a connected, real analytic arc in Me U T + 
and suppose 0 6 y.  Let 0 c Ul ~ U2 be a standard pair of  neighborhoods small enough so that 
f extends across (M N U2) \ y. This is possible due to the fact that Me U T + U To+ is a locally 
finite union of connected components. Consider 

C:----{w E UI : y N U I  C Qw}, (3.1) 

which is a finite set (see Lemma 2.3 in [8]). Indeed, g N UI C Qw implies that Qw is the unique 
complexification of  }, N UI. The Segre map )~ is locally proper near the origin and hence the 
finiteness follows. 

We need to show that f extends: (i) across (g N U1) \ C and (ii) across the discrete set }, n C. 
The latter case will follow immediately from the former. Indeed, for z c C choose a smooth, real 
analytic arc }~ C M containing z such that ~ is transverse to Qz n M at z. Then the (unique) 
complexification of ~ is distinct from Qz. Therefore the argument of  case (i) can be applied to 
prove (ii). Thus without loss of  generality we may assume that 0 ~ C. To show that f extends 
across the zero dimensional strata of  Me U T + U T + it suffices to invoke the argument of case (ii), 
which in turn depends on case (i). All the above reductions of the problem can be summarized 
as follows. 

G e n e r a l  S i t u a t i o n .  Thesety isaonedimensionalstratumofMeUT + andO E y. Neighbor- 
hoods UI and U2 are chosen in such a way that lbr  all z ~ y N U2, z ~ O, we have Qz ~ Qo and 
z 9~ Qo, and therefore, (Qo \ {0}) n M N U2 C M \ (Me U T~). Let U' be an open neighborhood 

- - !  ! 
in C 2 such that M' C U ~ and U ~ is small enough so that for w' ~ U ~ \ D ,  Qw' is well defined. 
Does f extend to a neighborhood of  the origin ? 
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The setup of the General Situation will be henceforth assumed, unless otherwise stated. 
Following [9] define: 

Defini t ion3.1.  V - -{(w,w ' )  ~ (UI \ ~ )  • ( U ' \ D ' ) : f ( Q w N 7 3 )  D~w, Qtw,} 

and for all (w, w') c V consider 

S ! E :  {z E 7 3 N U 2 N Q w  : / ( Z ) :  w ,  f ( z Q w )  D~w, Qtw,} �9 (3.2) 

Lemma 12.2 of [9] can be applied since f extends across Q0 \ {0} c M \ (Me U T +) to 

conclude that V is a closed, complex analytic set in (U1 \ D) • (U t \ D') and dim V = 2. 
Furthermore, V has no limit points on (U1 \ D) • OU ~. Following [9] the goal willbe to show 
that V is contained in a closed, complex analytic set ~" C (U1 \ D) • U ~ with no limit points 
on (U1 \ D) • OU ~. Then ~' will define a correspondence that extends f across the origin and 
thus we have holomorphic extension as well. What are the possible obstructions in this strategy? 
Clearly, the only difficulty is that V may have limit points on (U1 \ 73) • M ~. So suppose that 
(w0, w6) ~ V n ((UI \ 73) • M ~) and let (w j, w~) ~ V be a sequence of points converging to 

(w0, w6). Pick(j  E QwjNUzN73suchthat f ( ( j )  = Sw~. Since w~ ~ W~o ~ s w,j _.~ stotO = WO 

the properness of f implies that (j  converges to OD. By Lemma 12.2 of [9], E G U2 and hence 
(j --+ (0 6 M n U2, after perhaps passing to a subsequence. The following cases arise: 

Select z j C U 2 \ 73 close to (0 (a) If (0 ~ Y N U2, then f extends across (0 and f ( (0)  = w 0. 
= t and Zj ~ (0. The invariance property shows that such that f ( z j )  w j  

for all j .  Since (w j, w~) 6 V, 

,f (Qzj N 79) D ,~w~ Q~w~ 

f (Qwj n 73) D ~w~ Q~w~ 

for all j .  Combining these Qwj = Qzj and passing to the limit gives Qwo = Qr and this is a 
contradiction since Ir C M. 

(b) If w~ 6 M' N D', then Lemma 3.1 in [9] shows that (0 ~ M N 7~ and therefore f extends 
across (0- The same argument as in case (a) yields a contradiction. 

(c) If (0 ~ Y n U2, then f is not a priori known to extend to a neighborhood of (0. The following 
possibilities may occur: 

(i) clf((o) n M~ + • ~, 

(ii) there exists W~o ~ cl f ((o)  n (T~ + U T( + U T~ + U M~) 

To prove Theorem 1.1 it is enough to consider case (c). Section 5 contains the proof of the 
following proposition. 

Proposition 3.2. LetO E ( F N U l )  \ C andsupposethatOZ E clf(O) '+ N M s . Then f extends 
holomorphically to a neighborhood of  the origin and f (O) = 0 z. 

By this proposition, it follows that f will extend across (o in case (c) (i) and therefore the 
argument used in case (a) applies again. Hence V cannot have any limit points on (U1 \D)  • M-s t+. 

After that the only remaining possibility is (o ~ Y n U2 and w' o ~ cIf((o) N (T~ + U T( + U 

Td + u Me~). Suppose that w~ 6 T~ +. Observe that (j 6 Qwj for all j and hence (0 6 Qwo in the 
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limit. Therefore w0 ~ Qr where t0 ~ F n/-/2. This motivates the consideration of 

s = U (Qz N U1) (3.3) 
ZEFMU1 

which is a real analytic set in U1 of real dimension 3. s is locally foliated by open pieces of Segre 
varieties at all of its regular points. Note that s n M has real dimension at most two since M is 
of finite type. Section 6 studies the limit points of V on s x T~ + and shows that all of them are 
removable. More precisely, we show: 

Proposition3.3. Let(p,  p~) E s x T~ + be a limitpoint for V. Then V is analytic near(p, p'). 

Finally, as in [9], Bishop's lemma can be applied to handle the case when w~ e M e' U T( + U 

T~ + . 

Proposition 3.4. Let (p, p') ~ s x (M e U T{ + U T~ +) be a limit point for V. Then V is 
analytic near (p, p'). As a consequence, f holomorphically extends across the origin. 

Thus the proof of Theorem 1.1 is complete once Propositions 3.2-3.4 are proved. Theo- 
rem 1.2 is proved in Section 7. 

4. Properties of the set V 

In this section we prove some technical results concerning clf(O) and derive additional 
properties of the set V. These results will be used in the subsequent sections. 

Proposition 4.1. Assume the conditions described in the general situation, and let w' 
cl f (O) n M'. Then there exists a sequence {wj} ~ M \ F, wj --~ 0 such that f (w j )  ~ w t. In 
particular, we may choose the sequence {w j} ~ M \ (s  n M). 

Proof.  Fix arbitrarily small neighborhoods 0 ~ U and w' E U' and consider the non-empty 
locally complex analytic set A := F f  O (U x U'). Without loss of generality, 0 ~ M n 79. If the 
proposition were false, the properness of f implies that (A \ A) n (U x U') c (F n U) x (M' n U'). 
Clearly (y n U) x (M' o U') is a smooth, real analytic manifold with CR dimension 1. A result 
of Sibony (cf. Theorem 3.1 and Corollary 3.2 in [19]; see [20] also) shows that A has locally 
finite volume in U x U'. Let y c  be the (local) complexification of y. Shrink U if necessary to 
ensure that y c  is a closed analytic set in U. Then A \ (yc  x U') is a non-empty analytic set in 
(U x U') \ (F c x U') with locally finite volume. Now F c x U' is pluripolar and hence Bishop's 
theorem (see Section 18.3 in ef. [4]) shows that all the limit points of A \ (yc  x U') are removable 
singularities. Thus A is analytic in U x U' and A C (U O 79) x (U' O 79'). 

Next we show that (0, 0') is in the envelope of holomorphy of (U O 79) x U' (cf. [17]). 
Let zr : A ~ U be the natural projection. Then there are points z ~ zr(A) such that zr-l(z) is 
discrete. Indeed, if not, then each fiber n - l ( z )  is at least 1 dimensional for all z ~ zr(A) and 
hence by Theorem 2 in Section V.3.2 of [15] it follows that 

dim A >  l + d i m  z r ~  , 

- -  m 

and this implies that dim zr(A) < 1. This is a contradiction since A contains I ' f  over a non-empty 
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subset of U. For (z, z') E A, let (Jr -1 (z))(z,z') denote the germ of the fiber rr -1 (z) at (z, zl). Let 

S = { ( z , z ' ) ' d i m  (rc- l (z ) ) (z , z , )>l}  �9 

By a theorem of Cartan-Remmert, S is known to be analytic and the above reasoning shows 
that dim S < 1. Without loss of generality (0, 0 t) 6 S as otherwise Jr : A --+ U defines a 
correspondence near (0, 0 I) and by Theorem 7.4 in [9] f would extend across 0. Select L C A, 
an analytic subset in U • U ~ with the following properties: it contains (0, 0/), has pure dimension 
1 and is distinct from S. Note that L C U N D • U ~. If L O ((M O U) • U/) is discrete, then the 
continuity principle forces (0, 0 ~) to be in the envelope of holomorphy of (U N D) • U/. Since 
M is assumed to be of finite type and since L # S, no open subset of L can be contained in 
L N ((M n U) • U'). The strong disk theorem in [23] shows that (0, 0') is again in the envelope 
of holomorphy of (U n D) x U t. 

To conclude, given an arbitrary g ~ O(U N 79), we may regard g ~ O((U N 79) x UI), i.e., 
independent of the z I variables. Then g extends across (0, 0 I) and the uniqueness theorem shows 
that the extension of g, say ~, is also independent of z ~. Thus g extends across O. In particular, f 
extends across 0 and this is a contradiction. 

Finally, we can choose {t0j} E M \ (s n M) because E N M is nowhere dense in M. [ ]  

Remarks. 

. 

. 

First, the cluster set of the origin may be defined in two possible ways. One way 
is considered in Section 2, where the approaching sequence {z j} C D. The other 
possibility is to consider {z j} C M \ (Me U T+). This is well defined since f extends 
across M \ (Me U T+). Clearly, the former set contains the latter in general. However, 
in the special case of the General Situation of Section 3, Proposition 4.1 shows that these 
two notions of the cluster set coincide. 

If w t in Proposition 4.1 is also known to belong to Mj +, then each point in the sequence 
{wj } can be chosen from M +. Indeed, two cases have to be considered. First, if y C T +, 
then for a small enough neighborhood 0 ~ U it follows that M + N U is dense in MO U and 
hence the sequence {wj } can be chosen to belong to M +. Second, if y C Me, then every 

neighborhood 0 ~ U contains points from both M + and M O 7). It follows that for large 
j ,  wj must be strongly pseudoconvex since f ( w j )  is SO; tOj cannot belong to any other 
strata of M as otherwise it will be possible to choose a strongly pseudoconcave point 
near the origin that is mapped locally biholomorphically to a strongly pseudoconvex 
point and this violates the invariance of the Levi form. 

With V as in Definition 3.1 and 0' ~ c l f  (0) t + n Mj , pick a standard pair of neighborhoods 
0 e UI �9 U2 and 0' ~ U~ ~ U~ so that M' n U~ is strongly pseudoconvex. Choose another 

neighborhood U t, 0' E U t ~ U( ~ U~ which has the additional property that for all w' c U' \ ~ t ,  

Q~, n M' ~ U~. To see this, combine the fact that locally Q~, ND' = {0'} with the holomorphic 
dependence of Q~w' on w'. Shrink U~, U~ so that for all w' ~ M' n U', Q~o' n M' = w'. 
Proposition 4.1 shows the existence of (w0, wr) E ((M \ y) O U1) x (M t O U I) such that 

! w o = f(wo).  The invariance property 

f (Ow ND) D sw, Q~w, 

- -  1 - - f  holds for all (w, w') ~ (U1 \D)  x (U \ D  ) close to (w0, w~) and hence VN((U1 \ 9 )  x U 1) r 0. 

Now V n ((U1 \ D) x U ~) may have several irreducible components but we retain only those that 
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contain the extension of F f  across points in (M N U1) • (M' N U'). Take the union of all such 

components and call the resulting analytic set Vloc C (UI \ D) • (U' \ ~ ' ) .  

Proposition 4.2. Vloc consists of those points (w, w') c (U 1 \ ~) • (U' \ ~') that satisfy: 

f (QwN79) D.,w'Q'u,, and f (.'wQw) c Q~/N79'. 

Proof. We only need to show that for (w, w') e V the second inclusion holds. Define 

Pick ((o, f ( (o) )  c ( (M \ y) n Ul) x (M'  N U'). Then for all (w, w') ~ (Ul \ ~ )  x (U' \ D') 
close to ((o, f ( (o) )  

f (~wQw) c Qw' n D' 

holds true. Thus W is non-empty. Denote the irreducible component of Vloc which contains the 
extension of FU near ((0, f ( (0))  by 13. It will suffice to show that V C W. 

A similar argument as in [18], Proposition 3.2 shows that W is locally analytic in (U1 \ 79) • 

(U' \ D ' )  and dim W - 2. To show that W is closed, pick a sequence (w j, w~) ~ W converging 

to (w0, w~) c (Ul \ D) x (U' \ D'). Then 

s (. wj Q c n 79' 

' N 79' we may pass to ' N M ' ~  ' a n d s i n c e f ( S w j )  c Qw~ holds for all j .  By construction Qw) U1 

the limit to get 

s (s,,oQwo) c n79'. 

Clearly 17' C W locally near ((0, f ( (0))  and hence it follows that ~" C W. []  

Remarks. First, without a priori regularity of f near 0, such as continuity, it seems difficult to 
control the images f(.~w Qw) as w moves in Ul \ 79, In particular, they may escape from U~. Thus 
W may not be closed in general. Second, the two conditions specified in the above proposition 
are not the same since Qw N 79 may have many components in general. 

P ropos i t ion  4.3. The set Vloc satisfies the following properties: 

(i) Vloc has no limit points on (M N Ui) x (U' \ D'), 

(ii) Vloc has no limit points on (Ul \ D) x (M' N U'), 

(iii) forwo ~ (M \ F) N U1, #zr-l(w0) N (Vloc \ Vloc) N ((M \ F) • (M'N U')) < 1. 

Proof. (i) Suppose that (w0, w~) c (MAUl )  x (U' \ D') is a limit point for Vlo~. There are 
two cases to consider. 

Case (a): Let (w0, w~) c ((M \ y) A U1) x (U' \ D') and choose a sequence (wj, w~) ~ Vloc 

converging to (w0, w6). Then 

s e j) c n 79' 
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holds for all j .  Note that t o j  ~ tO o :=ff s to. = 1 N 79i and .1 -* Swo too. Since f(Swj) C Qw~ 
' n M' ' Q'u/~ M' 1 Qw~ �9 U 1 , it follows that f(Swj) ~ ~'~ ~ n N U 1 after perhaps passing to a 

subsequence. Also, f extends across too and f(wo) = ~ .  By the invariance property applied 
near (tOo, ~ )  we get 

for all j .  Combining these inclusions gives Q,$(wj) = Q1w) for all j and hence Q I  = Q1w, ~ in the 

limit. This is a contradiction to I~  C M I. 

Case (b): Let (w0, w~) c ( ? /NUp  x (UI\D I) and choose a sequence (w j, w)) ~ Vloc converging 

to (w0, w~). Then 

s n 79) D sin, e ' ,  
J 

s I I I �9 holds for all j .  Select ~j C Qwi n 79 such that f(~j) = stojl and f(r Qwj) D ~.~ Q~.j 

Lemma 1 2.2 in [9] shows that {(j } C U2 and hence ( j  ~ ~0 G Qwo after passing to a subsequence. 
By continuity 

f (coQwo) D .woQuo. 

Note that if0 6 79 since s w~ 6 79/and f is proper. 

Let us show that (w0, w~) is isolated in zr -1 (w0) n (Vloc \ Vloc), where Jr is the projection 

to U1. Suppose not. Then there exist infinitely many {tb)} such that (w0, tb~) 6 Vloc \ Vtoc and 

I - i  i.e., selecting ~O,j C Qwo tb 1.J --~ w 0. The same argument as above can be repeated for each to j ,  

etc., so that in the limit we have 

s Q,,0) D s ,j e ; ) .  (4.1) 

for all j .  Note that Qu,o n U2 will have only finitely many components, after perhaps shrinking 
U2 slightly, while (4.1) shows that at least one component of Qw0 n D must be mapped onto 
infinitely many Q'~,. This contradicts the properness of the Segre map )J : U I --+ S '  and the 

J 

claim follows. 

Without loss of generality, we may assume that w0 r M n 7) as otherwise the same argument 
in case (a) applies to yield a contradiction. Since w~ is isolated in the fiber of Vloc \ Vloc over w0; 

i respectively and of radius E > 0 so it is possible to choose small balls B~, B/~ centered at w0, w o, 
that the projection 

�9 Vloc n n (v \ 8e n (v \ v )  (4.2) 

is proper, and hence a finite branched covering. The canonical defining pseudo-polynomials of  this 
cover defined as in (2.5) are monic in Zll , z~ with coefficients that are holomorphic in Be N (U \ D ) .  

Since w0 r M n 79, Trepreau's theorem (cf. [21]) shows that all the coefficients extend to all of 
BE, with a slightly smaller e perhaps. Hence there exists an analytic set V ext C Be x B~ that 
contains Vloc near (w0, w6). Note that the projection 

Yr " V ext ---> Be (4.3) 
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is still proper. Let (wv, w~v) ~ Vtoc be a sequence that converges to (~, t~ I) ~ V ext where 
tb ~ (M \ y) N U1. Such a choice exists by (4.2) and (4.3). But this is precisely the situation of 
case (a) and the same arguments there lead to a contradiction. 

(ii) Suppose that (w0, w6) ~ (U1 \ 79) x (M / n U') is a limit point for Vloc. Select (w j, w}) ~ Vloc 
converging to (w0, w6). Then 

s c n 791 

holds for all j .  Observe that {S(Swj)} ~ U~ n 79' since f is proper. On the other hand, 
' J n 79' Q,% 79I / is a strongly i n 79' and as j ~ c~, Qw', f ( S w j  ) ~ Qw~ ~ o = 0 since w 0 

pseudoconvex point. This is a contradiction. 

(iii) Finally, suppose that (w0, w~. 1) ~ (Vloc \ Vloc) O ((M \ y) x (M' n U')). Using the same 
argument as in case (a), it can be seen that f (wo)  = w0,1 . I  If (w0, w~. 2) a ((M \ y) x (M I n UI)) 

is another limit point for Vloe, then the same argument would show that f (wo)  = w0, 2 '  and this is 
a contradiction. []  

Remark .  Vloc c (Ul \ D) • (U' \ D1) can now be regarded as an analytic set in U1 •  

5. f extendsif cl f(~o) n M~ + # 

In this section we prove Proposition 3.2. For that we will consider the sequence of points 
pj ~ O, f ( p j )  ~ 0', whose existence is guaranteed by Proposition 4.1 and study a certain 
family of analytic sets {Cpj } associated with {pj }. The goal is to derive some properties of the 
limit set of Cpj. We prove several preparation lemmas first. 

For any z ~ M O U1, Qz • ( UI \ 9 ' )  is analytic in U1 x (U I \ 9 I) of pure dimension 3. Since 
~]oc contains the extension of the graph of f across some points close to (0, 0f), it follows that 
Vloc n (Qz • ( U / \  ~i))  is either empty or analytic of pure dimension 1. By Proposition 4.1, pick 
a ~ M N U1, a strongly pseudoconvex point across which f extends such that f ( a )  ~ M f O U I. 
Shifting a slightly, if needed, ensures that a ~ 12 n M. By the invariance property 

/ 

f(aQa) C f(a)Qf(a) . 

Since both a, f ( a )  are strongly pseudoconvex, the germs a Oa, ' are f(a) Q f(a) contained outside 
79 and 79/, respectively. For simplicity we consider representatives of the germs of o Qa and 

I f(a) Qf(a), that satisfy the above properties. Choose b ~ a Qa \ 79 where f is defined, so that 

f ( b )  ~ f(a)Q'f(a) \ 9 ' .  Consider the graph of the extension of f o v e r  bQa. This is a pure 1 

dimensional germ contained in Vloc O (Qa • (U t \ ~i)).  Let 

Ca C Vlocn (aa • ( U t \ ~ ' ) )  (5.1) 

be the irreducible component of dimension 1 that contains this germ. Note that Ca is analytic in 

U1 • (U' \ 9 ' ) .  Also, the invariance property shows that 

C a C V l o c O ( U I x ( Q : f ( a ) \ { f ( a > } ) )  �9 (5.2) 

Lemma 5.1. Ca is analytic & Ul • U'. 
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Proof. By Proposition 4.3, all the limit points of Ca are contained in (Qa n M n U1 ) • { f (a)}. 
Since a ~ s N M, it follows that Oa O M C M \ y and thus f extends to a neighborhood of 
Qa n M. Suppose that (w0, f (a))  ~ -Ca \ Ca. Now exactly the same arguments used in case (a) of 
Proposition 4.3 show that f (wo) = f(a).  The global correspondence f - 1  : 79, __+ 79 has finite 
multiplicity and hence there can be only finitely many w0 so that (w0, f (a))  is a limit point for 
Ca. Since dim Ca -= 1, the Remmert-Stein theorem shows that Ca is analytic in U1 • U t. [ ]  

Remarks.  First, itisclearthatadifferentchoiceofb e a Qa will give rise to the same component 
Ca. Second, it follows by construction that (a, f (a))  ~ "Ca and Ca C Qa • Qff(a). 

We will now focus on clg (0 I) near 0, where g = f -  1 is a proper holomorphic correspondence. 
If 0 e clg (0 t) is not isolated, it must be a continuum near 0. Note that there can only be finitely 
many z e clg(O') n (M \ 2/) n U1 since g has finite multiplicity. Hence we may assume that 

clg (0 I) O y is a continuum in U1 containing 0 and that no point in it belongs to M n # .  Fix 
p ~ clg(O') n (M \ y) n U1 and a sequence {pj} C M + \ f~ converging to p such that f ( p j )  

converges to 0'. Associated with each pj is the analytic set Cpj c U1 x (U I \ ~ ')  constructed as 

above such that -Cpj C U1 x U I is analytic. The goal will be to associate a pure 1 dimensional 
analytic set, say Cp, to the chosen point p by considering the sequence Cpj. 

L e m m a  5.2. Fix p E clg (0') n y n U1 and consider the sequence of  analytic sets {Cpj }. Then 

the limit set of  this sequence of  analytic sets is non-empty in U1 • (U I \ ~i). 

Proof. Without loss of generality we may assume that p = 0. The following observations can 
be made. First, 0 Q0 \ {0} intersects both U1 O 7) and U1 \ 79 or else is contained in U1 \ 79, as 
otherwise the continuity principle forces 0 e M n / ) .  Thus it is possible to fix a ball BE around 
the origin so that (Q0 n 0BE) \ 79 ~ 0. Since Qz depends smoothly on z, the same will then be 
true with Qz for z e M close to 0. Second, fix a polydisk A 2 ~ U t centered at 0 / with its sides 

parallel to those of U ~. Then Q~, n 0A 2 �9 U I \ ~ / a n d  the same will be true for QIz,, z ~ ~ M I 

close to 0 I. Consider the non-empty analytic sets -Cpj n (B E x A 2) and examine the projection 

rr :Cpj n (BE x A 2) ~ BE. (5.3) 

Case (a): If Jr is proper for all j ,  then the image zr(Cpj n (BE x A2)) is analytic and by the 

remark after Lemma 5.1, it follows that 7~(-Cpj N (n~ X A2)) ~ Qpj n Be. Fix a smaller ball 

B~/2 around 0, choose w o e  (Q0 N OB~/2) \ 79 and let wj ~ (Qpj n OBE/2) \ 79 converge to 

wo, as j ~ c~. Since Jr is proper, it is possible to choose (w j, w~) ~ -Cpj n (Be • A2). After 

passing to a subsequence, (w j, w~) -* (w0, w~). Since w0 ~ Ut \ 79, Proposition 4.3 shows that 

W~o ~ U' \ ~1. Thus (w0, w~) ~ (Ut \ ~ )  x (U 1 \ ~1) is a limit point for the sequence of analytic 
sets {Cp j }. 

Case (b): For some subsequence, still indexed by j ,  zr in (5.3) is not proper. Then it is possible 
, / N 0A 2 ~ U / \ ~ t .  By Proposition 4.3, to choose (w j, w~) E -Cpj n (BE • A 2) with wj E Q f(pj) 

wj E U1 \ ~ for all j .  Passing to a subsequence w~ -* w~ ~ Q~, N 0A 2 ~ U' \ ~ '  and wj 

w0 ~ B~. Thanks to Proposition 4.3 again, w0 ~ U1 \ ~ .  Thus (w0, w~) ~ (U1 \ ~ )  x (U I \ ~1) 
is a limit point for the sequence of analytic sets {Cpi }. [ ]  

From (2.1) it follows that r (z, p j)  is the defining function for Qpj in U1. Regard r (Z, p j )  E 
O(U1 x UI), i.e., independent of the z t variables and to emphasize this point, we will write it as 
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r(z,  z ~, ~ j).  This way r(z, z ~, -f j )  is the defining function for Qpj • (U l \ ~i )  in U1 x (U ' \ D') 

and denote Zpj = {(z, z ~) : r(z,  z', ~ j )  = 0}. Now note that Vloc fq (Qpj x (U' \ D~)) is a pure 
1 dimensional analytic set. This has two consequences. 

First, it follows that (for example, see Section 16.3 in [4]) log Ir(z, z ~, ~j)[ is locally 
absolutely integrable on Vloc. Hence it defines a current, denoted by log [r(z, z ~, if j)[ - [Vloc] in 
the following way: 

(log Ir (z, z', ~j)l" Vloc, q~)= f ,  log [r (z, z', Pj)I *,  (5.4) 
~ , v  I oc  

where ~b 6 D(4)(U1 x (U' \ D')), the space of all smooth, complex valued differential forms of 

total degree 4 with compact support in U1 x (U' \ D'). 

Second, let {CJ}m_>0 be the various components of ~oc n (Qpj x (U' \ D')), and let k j be 

the corresponding (positive) intersection multiplicities which are constant along CJm. Note that 
for a fixed j ,  Cpj = CJm for some m. The wedge product 

= kmCm (5.5) V A Zpj Z j J 
m>_O 

is thus well defined as an intersection multiplicity chain. By the generalized PoincarE-Lelong 
formula (cf. [4]) 

1 dd c (log Ir (z, z', ~ j ) l  tV, o~l) (5.6) Vlo~ A Zp, = 2~ 

in the sense of currents for all j .  

L e m m a  5.3. Fix p ~ clg (Or) A y (-] U1. Let  {Cp2 } be the sequence as in Lemma 5.2. Then 

there exists a subsequence {Cpj k } converging to an analytic set Cp c U1 x (U' \ D') .  Moreover, 

Cp C U1 • U ~ is also analytic. 

Proof .  By Lemma 5.2 Cp is not empty. We now show that the sequence {Cpj } has locally 

uniformly bounded volume in U1 • (U ~ \ D').  

Fix K �9 U1 x (U' \ D'). Choose a test function ~p in U~ • (U' \ ~ ' ) ,  0 < ~p < 1 such that 
~p -- 1 on K. Let o~ be the standard fundamental form on C 4. Then 

Vol ((Vloc A Zpj)  r~ K) 
ocAZpj )AK 

f < ~ p w = - -  log I r ( z , z ' , ~ j ) l  ddC(~)  
.Vlo c A Zpj ) 2zr oc 

Since r(z,  z', -~) is antiholomorphic in w, it follows that log [r(z, z', Pj)I ~ log Ir(z, z', P)I in 

L~o c and hence 

fv, ' f log Ir(z,z',-f)l d d C ( ~ , o ) : = c ( g , ~ ) < ~  2zr oc log Ir(z,z',-~j)l ddC(~) <~ ~ JV, oc 

by the dominated convergence theorem. As noted earlier Cpj = C j for some m and hence the 
assertion follows. 
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By Bishop's theorem (cf. [4]), {dpj } has a subsequence that converges to an analytic set 

Cp c U1 • (U I \ ~1) locally uniformly. Cp has pure dimension 1 and will be reducible in general. 
By Proposition 4.3, it is known that all the limit points OfCpj C (Qpj n M N U1) x {f(pj)} and 

hence in the limit Cp \ Cp C (Qp n M N UI) x {0I}. But (Qp n M N UI) x {0 I} is a smooth, 
real analytic arc that is also pluripolar. Sibony's result combined with Bishop's theorem applied 
exactly as before shows that dp C U1 • U t is analytic of pure dimension 1. [ ]  

Note that (p, 0') ~ r e. The association of each p c clg(O 1) n ), n U1 with an analytic set is 
thus complete. Moreover, by (5.2) we have 

for all such p. 

c vloc n (v, • (o; ,  \ 10'/)) (5.7) 

L e m m a  5.4. Letpl,  p2 bethepointsinclg(OI)NyNU1 such thatpl r lp2. Thendim (Cpa n 

Cp2) < 1. 

Proof  It may a priori happen that for pl  y~ P2 E clg(OZ) nFNU1, Qpl = Qp2. Butthe se tof  
such points is at most countable since )~ : U1 -+ S is proper. Thus the content of this proposition 
lies in the assertion that for most points in clg (0 I) n F N U1, the associated analytic sets are also 
distinct. 

Arguing by contradiction assume that C c CeI N de2 is an irreducible component of dimen- 
sion 1. Since dpi lies over Qpi for i = 1, 2 it follows that ;rr(G) C Qpl n Qp2" By hypothesis, 
Qpl n Qp2 is discrete and the irreducibility of C implies that 7r(C) is a point, say w E Qp, n Qp2. 
By (5.7) it follows that C C {w} x Q~, and thus 

C = {w} x Q~,. (5.8) 

There are two cases to consider. First, if w ~ M, then (5.8) would force Vloc to have limit points 

on (M N U1) • (U' \ ~ / )  and this contradicts Proposition 4.3. Second, if w 6 U1 D, then (5.8) 
shows that 

f ( Q w  ND)  D ,w'Q~, 

for all w I 6 Q~, \ {0'}. This contradicts the injectivity of U �9 U / --+ S I. [] 

L e m m a  S.S. Vloc n (U1 • (Q~), \ {01})) is analytic in U1 x U I of pure dimension one. 

Proof  By (5.7) Vloc N (U, x (Q~, \ {0'/)) is a non-empty analytic set of pure dimension 
one. Proposition 4.3 says that all of its limit points are contained in (M N U1) • {0'}. Let 
(w, 0') 6 ((M \ y)  n U1) • {0'} be a limit point for Vloc. The same argument as in case (a) of 
Proposition 4.3 shows that f (w)  = 0q Since g : D I ~ 7;) has finite multiplicity, it follows that 
there are only finitely many w c M \ F such that (w, 0 I) is a limit point for Vloc N (U1 • (Q~, \ {01})). 
Each of these is removable by the Remmert-Stein theorem. The remaining limit points are 
contained in (y N U1) x {0~}. Sibony's result combined with Bishop's theorem as before show 
that they are also removable. [ ]  

Proof  o f  Proposition 3.2. The first step is to show that 0 is an isolated point in Clg (0') n }1 N U1. 
If not, let ot > 0 be the Hausdorffdimension of the continuum g : =  clg(O') N }' n U1. Each p E C 
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is associated with a pure 1 dimensional analytic set Cp C U1 • Uq By (5.7) it follows that 

U CP C Vloc n (Ul x (Q;, \ {0'})). (5.9) 
p~S 

By Lemma 5.4, the Hausdorff dimension of the left side in (5.9) is at least c~ + 2, while the right 
side has Hausdorff dimension 2 by Lemma 5.5. Thus ot = 0 and that is a contradiction. Hence 
0 ~ g is isolated. 

By shrinking the neighborhoods U1, U2, U I if needed, it is possible to peel off a local 
correspondence gl : U I n 791 ~ U1 M 7) from the global inverse g : 7)t __+ 7). Note that 
clg, (0 I) = 0 and clg, (M I n U I) c M n u1 after shrinking U I even further perhaps. The analytic 

set Vloc C U1 x (U I \7))  defined in Section 4 contains the graph of the extension o fg  / across points 

near 0 I. Also, V~oc does not have limit points on 0 U1 x (U I \ 9 / )  because clg, (M ~ n U t) c M M U1. 
Thus 

1 U I zr : V~oc ~ \ 91 

is proper. The canonical pseudo-polynomials defining this cover are monic with coefficients that 

are holomorphic in U I \ 9 ' .  All of  them clearly extend to U I, after perhaps shrinking U t and this 
shows that gl extends as a correspondence. Theorem 4.1 in [22] shows that f also extends as a 
correspondence near (0, 0 I) and this is enough to conclude that f extends holomorphically across 
the origin by Theorem 7.4 in [9]. [ ]  

Recall the strategy of the proof of  Theorem 1.1 outlined in Section 3. Let (0 be as before 
and c l f  (~0) f-) Mrs + ~ ~. Then by Proposition 3.2, f extends holomorphically to a neighborhood 
of ~o and therefore the argument used in case (a) can be applied to obtain a contradiction. Thus 

i t q -  

the global analytic set V as in Definition 3.1 has no limit points on (Ut \ 7)) x M s . 

'+ (Me t U T~ + U T~ +) and the extendability of f 6. Removability of s • T~ , E • 

We will now focus on the global analytic set V C (U1 \ 9 )  x (U'  \ 9 ' )  defined in Section 3. 
Note that the neighborhoods Ul, U I are chosen as described in the general situation. The results 

- -  t +  of Section 5 show that V has no limit points on (U1 \ 7)) x M s . The goal of this section is to 
/ I +  t+  t+  study the limit points of  V on E x (M e U T~ U T~ U T~ ) and to show that they are all removable 

t+  singularities. We begin with the limit points on E x T~ . 

To start with, note that s = Uzc• (Qz N U1 ) is defined by a single real analytic equation. 
Indeed, y can be 'straightened' by a change of variables so that in the new coordinate system 
it becomes the xl-axis. This may destroy all previous normalizations of the defining function 
r(z, 7). But nevertheless, it is clear that 

E = {r(z, xl) ---- 0} . 

By the theorems of Cartan-Bruhat (see Proposition 14 and 18 in [16]), it follows that/~sng is 
contained in a real analytic set of  dimension at most two and is defined in U1 by finitely many 
real analytic equations. 

Proof  o f  Proposition 3.3. Suppose that p ~ / ~ r e g  and choose neighborhoods p E Up, pt E 
l ! Up, so that s x T~ + is smooth, real analytic in Up x Up,. Since E is locally foliated by open 

pieces of  Segre varieties, it follows that the CR dimension of E x T~ + is 1 near (p, pl). Note that 
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(V \ V) n (Up x U~p,) C /2 x T~ +. As dim V -- 2, it follows by Theorem 20.5 in [4] that V 

has analytic continuation, say V ext C Up • U t that is a closed analytic set, after shrinking these p~ 
neighborhoods. Let rr : V ext ~ Up and zr t : V ext ~ U t be the projections and p/ 

S = {(Z, Z t) �9 vex t :  dim (z,z')(re') -1 (z') > 1 ] 

just as in Proposition 4.1. The condition 

for (w, w 1) �9 V forces 

f (Qw N79) D ~w'Q~, 

o • - ,  

l to be locally proper. Thus zr~(V N (Up x UI.,)) contains an open subset of Up,. By the same 
reasoning used in Proposition 4.1, it follows t[aat dim S < 1. 

Suppose that (a, a') �9 (V \ V) \ S C/2 x T~ +. It is then possible to choose neighborhoods 
Ua, U ~ so that a r 

7 r t : v e x t n ( U a x U ; , ) - - - > f ~ ,  (6.1) 

is proper. Since (V \ V) C/2 x T~ +, (6.1) shows that zr1(V n (Ua x Uat,)) contains a one sided 

neighborhood of a', say fY C U ' \ ~ .  Clearly, O f2' contains points from Ms ~ + and this contradicts 
- -  t +  the fact that V has no limit points on (U1 \ 79) x M s . Thus V \ V C S. But the three dimensional 

Hausdorff measure of S is zero and by Shiffman's theorem (cf. [4]), it follows that V itself is 
analytic in Up x Up,. Therefore V ext = V. 

This argument works if p �9 /2reg. AS observed above,/2sng is contained in a real analytic set 
of dimension at most 2 that is defined by finitely many equations. Thus it is possible to proceed 
by downward induction to conclude that/2 x T~ + is removable. [ ]  

As a consequence V is analytic in ( ( g l  \ ~ )  x g ' )  \ (/2 x (Me t U T; + U r~-]-)). 

Proof of  Proposition 3.4. Consider the global analytic set V C (U1 \ ~ )  x (U' \ ~ ' )  of 
Definition 3.1. We will show that even the bigger set (U1 \ D) x (Met U T[ + U T~ +) is removable 

for V. As observed in Section 3, 

is proper. Note that Me ~ U/'1I + U Td + is a locally finite union of real analytic arcs and points 
and is thus a locally pluripolar set. But such sets are also globally pluripolar by Josefson's 
theorem. Hence it is possible to choose a plurisubharmonic function on C 4, say ~b, such that 
(U1 \ ~ )  X (Me t U Tit + U Td +) c {~b = -oo}. Also, choose a �9 M \ g across which f is known 

to extend. Fix a small ball B ~ (U1 \ 7)) \ / 2  close to a so that f is well defined in B. Then 
V \  (/2 x (Met U T[ + U T~+)) has no limit points on B x Mq Indeed, suppose (w0, w;) �9 B x M' 

is such a limit point, and let (w j, w}) �9 V \ (/2 x (Me t U T1 ~+ U T~+)) be a sequence converging 

to (w0, w~). Then 

s (owj nv) Dsw, o', 
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holds for all j .  Choose ffj E Qwj n 79 so that f (~ j )  = Sw~. After passing to a subsequence, 

' Since B (q 12 = 0 and ~0 c Qw0, it follows that ffj --+ ~0 E M n U 2 a n d S w ~  ~ Sw~ = w 0. 
~0 r F. A contradiction can now be obtained exactly as in case (a) of Section 3. The non-empty 
analytic set (V \ (12 x (M~ U T1 '+ U T~+))) \ {4~ = -oo} thus satisfies all the hypotheses of 

Bishop's lemma (cf. Section 18.2 in [4]). Hence V is analytic in (U1 \ 79) x U'. The projection 

L m 

7r " V ~ U1\  79 

D 

is still proper and thus V defines a correspondence in (UI \ D) x U'. The_canonical defining 
equations of this correspondence have coefficients that are holomorphic in U1 \79. Since 0 ~ 79, by 
Trepreau's theorem all the coefficients extend to UI, perhaps after shrinking U1 �9 Thus V extends 
as a correspondence to Ux x U' and this provides a multivalued extension of f .  Theorem 7.4 
in [9] now shows that f extends holomorphically across the origin. [ ]  

7. Proof of Theorem 1.2 

By Theorem 1.1, f extends across each point of M. Let us begin by observing the following: 
Let z0 E M + and consider f (zo) .  Suppose that {p~} C M'  is a sequence of points converging 

to f (zo)  such that each p} is a strongly pseudoconcave point. By the invariance property of 
Segre varieties (see Theorems 4.1 and 5.1 in [9]) it is possible to choose small neighborhoods 
z0 c U and f ( zo)  c U' so that the global inverse correspondence g : 79' --+ 79 extends as a 
correspondence, say ~ and 

~,:U'  ~ U  

is proper. Let a '  C U' be the branching locus of ~. Fix PJo E U' for some large j0. By shifting 

' O - '  ' slightly we may assume that it is still strongly pseudoconcave but PJo r U f ( T  M U), P Jo 
where T is the set of Levi flat points on M .  Let gl be a branch of ~ that is well defined near 

! 
PJo as a locally biholomorphic map. Then gl (P)0) is clearly strongly pseudoconvex and this 
contradicts the invariance of the Levi form. This shows that f (zo)  cannot belong to the border 
between the pseudoconvex and pseudoconcave points on M' nor can M'  be pseudoconcave near 
it. Thus f (zo) ~ M '+. 

Case (a): If zo 6 M +, then combining the observation above with Theorem 1.1 in [5] shows that 
f ( zo)  c Mj +. Thus f ( M  +) C M~ +. 

Case (b): Let z0 c T + .  We know that M'  must be pseudoconvex near f (zo) .  Suppose that 

f ( zo)  c M~ +. Let r, r '  be the defining functions of M, M' near z0, f(z0),  respectively. By the 
Hopf lemma, r '  o f is a defining function for M near z0 and hence, for z close to z0, the Levi 
determinant A transforms as 

A/of(Z)  = I J f ( z ) 1 2 A / ( f ( z ) ) ,  

where Jf  is the Jacobian determinant of f .  Since f (zo)  ~ M~ +, it follows that Ar ' ( f ( z ) )  7 h O. 
Thus the zero sets of Ar,of(Z ) and J f  coincide near z0. But Ar,of(Z ) vanishes precisely on 
T + and hence J f  is zero on a maximally totally real manifold. Thus Jf  -- 0 near z0 and this 
contradicts the properness of f .  

If  f ( zo)  E 7"( + U T~ +, then we may argue in the following manner. Choose small neighbor- 
hoods zo ~ U, f (zo) ~ U' so that 

f " U--+ U' 
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is proper. Then E := f - l  ((7-1,+ U T~ +) G U') N U has real dimension 1 and hence there exists 

6 (T + N U) \ E. Clearly then f(~)  c M~ +. This is not possible by the discussion above. Thus 

f(T2 +) C Tj +. 

Case(c): Letz0 c T1 + u T  + and suppose that f (zo)  6 Tj +. Letz0 c g , f ( z 0 )  E g ' b e  

small neighborhoods as before so that f : U --+ U' is proper. Then E := f - 1  (T~+) N U has 
real dimension 2 and hence it is possible to choose a E E \ ( T f  U TO+). Note that a E M +. 

Thus a strongly pseudoconvex point is mapped into T~ + and this contradicts case (a). Thus 

f ( T l  + U T(+) C M~I, + U T1 t+ U V~ + . 

Case (d): Let z0 c T + be an isolated point of T and suppose that f (z0)  6 M~ +. Then Jf(s : 0 
as otherwise f would locally biholomorphically map z0, which is a weakly pseudoconvex point 
to f(z0) ~ M~ +. This contradicts the invariance of the Levi form. Choose small neighborhoods 
z0 E U, f(z0)  6 U' so that 

f :U--+ U' 

is proper. Call Z f  : {Z C U : J f ( z , )  : 0}, the branching locus of f .  We claim that Z f  intersects 

both U \ 7) and U N D. Indeed, firstly ZT fs U N 7) as otherwise the continuity principle would 

force z0 c M N 7) which is not possible. Secondly, an open piece of ZT cannot lie in M due to the 
finite type condition and hence Z f N M has real dimension at most one. Finally, let us show that 
Z f  N 7) # 0. If not, then observe that by the invariance property of Segre varieties (cf. [9]), f 

maps U N 79 to U' n 7)', U \ 7) to U' \ 7)' and M to M'. That is, f preserves the 'sides' of M. The 
same is also true for f - l  : U' --+ U. Now choose some branch of f - l ,  say gl that maps a fixed 
but arbitrary a '  6 U' n 7)' to a := gl (a') c U N 7). Since ZS does not enter 7) by assumption, it 
is possible to analytically continue gl along all paths in U' N 7)' to get a well defined mapping, 
still denoted by gl and gl : U' N 7)' --+ U N 7). The analytic set  F f  C U • U '  extends gl as a 
correspondence and by Theorem 7.4 in [9], it follows that gl extends as a holomorphic mapping 
to all of U', after perhaps shrinking U' slightly and gl : U' --+ U. This shows that f has a well 
defined holomorphic inverse and hence it must be a biholomorphic mapping. Hence Z f  = 0 
which is not possible as z0 6 ZU. Thus Z f  must intersect both sides of M near z0. 

Choose a E (Zf  n M) \ {z0} and note that a 6 M +. Thus f is a proper mapping between 
strongly pseudoconvex hypersurfaces near (a, f (a) )  that branches at a. This is not possible 
since the Segre maps of both M, M' are injective and this forces f to be locally biholomorphic. 
Cases (a) and (b) also rule out the possibility that f (z0)  E T~ + U T( +. Thus f(z0)  E T~ + is also 
an isolated point of T'. 

Case (e): If z0 ~ Me, then M' cannot be pseudoconvex near f(z0) as otherwise there would exist a 
strongly pseudoconcave point close to z0 that is mapped to a strongly pseudoconvex point close to 
f(z0).  For the same reason M' cannot be pseudoconcave near f(z0).  Also, f (zo) cannot belong 
to the two dimensional strata of the border since it is known to be in the envelope of holomorphy 
(cf. [6]). Thus f (Me)  C M~e �9 

To conclude, the arguments used in Lemma 3.1 in [9] show that f ( M  N f)) C M' N fY. 
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