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Abstract
This survey paper, aimed at nonexperts in the field, explores various proofs of nonex-
istence of real analytic Levi-flat hypersurfaces in CP

n , n > 2. Some generalizations
and other related results are also discussed.

Keywords Levi-flat hypersurface · Holomorphic foliation · Projective space · Stein
manifold
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An intriguing open problem in complex geometry is to construct an example or prove
the nonexistence of a real analytic (or smooth), closed (i.e, compactwithout boundary),
Levi-flat hypersurface in the complex projective plane CP

2. This question appeared
in the context of a more general problem of the existence of nontrivial minimal sets,
see Sect. 1 for details. Nonexistence of such Levi-flats in CP

n for n > 2 was proven
by several authors, with many generalizations to a more general class of complex
manifolds of dimension at least 3. The open problem in CP

2 is particularly interesting
because it has a natural formulation from many different points of view: in the theory
of holomorphic foliations as a hypothetical nontrivial minimal set, in several complex
variables as a common boundary of two Stein manifolds, and in symplectic geometry,
for example, as a limit of Stein fillings of two contact structures corresponding to
opposite orientations on the same manifold. The purpose of this survey is to collect
all relevant information concerning Levi-flat hypersurfaces in projective spaces, some
of which exists only as folklore, and outline three (mostly) self-contained proofs of
the nonexistence results in CP

n , n > 2. Two of the three proofs are due to Lins
Neto [38]; the third one is due to Siu [58]. These proofs are genuinely different, and
it is remarkable that all of them fail for n = 2 for different reasons.

Although the question makes sense in the smooth category, the emphasis will be
on the real analytic case, as it is the most natural formulation from the point of view of
the holomorphic foliation theory and less technical. The survey is intended for mathe-
maticians from different areas of mathematics, so we include some basic foundational
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material. For a comprehensive overview of the theory of Levi-flat hypersurfaces in
complex geometry see a more technical survey by Ohsawa [48].

In the first section we discuss generalities of singular holomorphic foliations on
projective spaces. In Sect. 2 we discuss Levi-flat hypersurfaces, followed by the proofs
of nonexistence in Sect. 3. In the last section we compile some generalizations.

1 Holomorphic Foliations

Classical theory of foliations can be found in [13], a comprehensive reference is [17,
18]. For an in-depth discussion of important results and open problems in foliation
theory until 1974, see [39]. In this section we give general background material on
(singular) holomorphic foliations that will be needed for the proofs.

Loosely speaking, a foliation F of dimension k (or codimension n − k) on an n-
dimensional manifold X is a decomposition of X into connected manifolds Lν , ν ∈ �,
of dimension k, called the leaves of F , such that in a coordinate chart (U , φ) of X ,
φ(U ) = Dk × Dn−k ⊂ R

k × R
n−k , each Lν ∩U is an at most countable union of the

sets of the form Dk × {x}, x ∈ Dn−k . The sets φ−1(Dk × {x}) are called the plaques
of U . On the overlaps the requirement is that the transition map has the form

h(x, y) = (h1(x, y), h2(y)), (x, y) ∈ R
k × R

n−k . (1)

The smoothness of h determines the smoothness of the foliation: Ck-, C∞-smooth, or
real analytic. Holomorphic foliations are defined in a similar way.

For codimension 1 foliations, the local representation in a coordinate chart gives
rise to a local first integral: a nonconstant smooth function that is constant on the leaves
(plaques) of the foliation. If the foliation is holomorphic (resp. real analytic), then the
first integral can be chosen to be holomorphic (resp. real analytic).

For an open setU ⊂ C
n , n > 1, denote by �1(U ) the space holomorphic 1-forms,

i.e, ω ∈ �1(U ) if ω = ∑n
k=1 ak(z)dzk with ak(z) ∈ O(U ). Let ω ∈ �1(U ) and

Y = {ω = 0} = {z ∈ U : a1(z) = · · · = an(z) = 0}.

Then kerω(z) ⊂ TzU defines a distribution of complex hyperplanes onU \ Y . If ω is
integrable, i.e., if ω ∧ dω = 0, then the distribution kerω(z) is involutive, and so by
the Frobenius theorem U \ Y is foliated by submanifolds that are tangent to kerω(z)
at every point. By the Levi-Civita theorem, the leaves of the foliation are complex
manifolds of dimension n − 1. If dim Y = n − 1, we may divide all ak(z) by an
appropriate function vanishing on Y , and so wemay assume that dim Y < n−1. Thus,
we obtain onU a singular holomorphic foliationF whose singular locus SingF := Y
has (complex) codimension at least 2.

Let now X be a complex manifold, dim X > 1, with an open cover ∪ j∈JU j = X
by open sets. Suppose that for every Uj there is an integrable 1-form ω j ∈ �1(Uj ),
codim {ωj = 0} ≥ 2, such that if Uj ∩ Uk 	= ∅, then ω j = g jkωk in Uj ∩ Uk and
g jk ∈ O∗(Uj ∩Uk) (nonvanishing holomorphic function). The local foliations in Uj

and their singularities glue together and we obtain a singular holomorphic foliation
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F on X of codimension 1 with a singular locus of codimension at least 2. Note that
closed leaves of F and SingF are (closed) complex subvarieties of X . The cocycle
{g jk} ⊂ O∗(Uj ∩Uk) defines a line bundle on X , called the normal bundle of F and
denoted by NF .

A holomorphic foliation of codimension 1 can be defined via a holomorphic sub-
mersion into a Riemann surface; the leaves of the foliation are then the level sets of
the submersion. In dimension 2 a foliation can also be defined by integral curves of
(locally defined, singular) holomorphic vector fields. This is equivalent to the descrip-
tion by 1-forms, indeed, a foliation defined in local coordinates by a holomorphic form
ω = P(z)dz2−Q(z)dz1 can also be defined by a vector field V = P(z) ∂

∂z1
+Q(z) ∂

∂z2
.

Consider now a special case of a singular holomorphic foliation F on the complex
projective space CP

n . If π : C
n+1 → CP

n is the natural projection, then π∗(F) = F̃
is a foliation on C

n+1. It is known (e.g., [22, p. 577]) that F̃ is defined by just one
integrable holomorphic 1-form on C

n+1

ω̃ =
n∑

j=0

a j (z)dz j ,

where a j (z) are homogeneous polynomials of the same degree d + 1 that in addition
satisfy the so-called Euler condition

n∑

j=0

z j a j (z) ≡ 0.

The integer d ≥ 0 is called the degree ofF . One can show that d is equal to the number
of points (counting with multiplicity) where a generic CP

1 ⊂ CP
n is tangent to the

leaves of F . For a specific example, consider the union of all complex lines in C
2

passing through the origin. This gives a foliation on CP
2 singular at the origin in C

2.
The corresponding 1-form ω̃ in C

3 is z1dz2 − z2dz1 in coordinates (z0, z1, z2). Thus,
the degree of this foliation is 0. In general, foliations of degree 0 and 1 always contain
algebraic leaves, but for any d > 2 there exist foliations that contain no algebraic
leaves and every leaf is dense in CP

n , see [36].
A holomorphic foliation F on CP

2 can be given both in terms of holomorphic
1-forms and holomorphic vector fields and has at most a finite set of singular points.
Let p ∈ SingF and let V be a holomorphic vector field in a neighbourhood of p that
definesF there. Let A = DV (p) be the linear part of V at p, and assume that DV (p)
is nondegenerate. Then the Baum–Bott index of F at p is a complex number defined
as

BB(F , p) = (trace A)2

detA
.

As a basic example consider a vector field V in C
2 such that V (0) = 0 and DV (0)

is nondegenerate. Assume in addition that the foliation F generated by V admits
a holomorphic first integral f , which means that V ( f ) = 0, and also assume that
d f (0) = 0, and (D2 f )(0), the matrix of second order derivatives, is nondegenerate.
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Such singularities ofF are calledMorse-type. Then, by the holomorphicMorse lemma
(see, e.g., [61]), there exists a holomorphic coordinate system z = (z1, z2) such that
f (z) = z1z2. If V (z) = P(z) ∂

∂z1
+ Q(z) ∂

∂z2
, then V ( f ) = z2P(z) + z1Q(z) ≡ 0,

which implies

V (z) = f̃ (z)

(

z1
∂

∂z1
− z2

∂

∂z2

)

, f̃ (0) 	= 0.

In particular, this means that BB(F , 0) = 0.
The following result for holomorphic foliations in projective spaces is a conse-

quence of a general result of Baum–Bott [5].

Proposition 1 (Baum–Bott Index formula) LetF be a holomorphic foliation of degree
d on CP

2. Then ∑

p∈SingF
BB(F , p) = (d + 2)2. (2)

The proof can be found in LinsNeto [37]. For further connections of the Baum–Bott
index and other indices see Brunella [8].

In particular, since the right-hand side in (2) is always positive, it immediately fol-
lows that there do not exist nonsingular holomorphic foliations on CP

2. Furthermore,
the following holds.

Proposition 2 (Lins Neto [38]) For any holomorphic foliation on CP
n, n > 1, the

singular locus SingF contains an irreducible component of codimension 2.

Proof The result holds for n = 2 as observed above. Suppose that n > 2 and F is
a holomorphic foliation on CP

n with codim SingF > 2. Then there exists a generic
2-plane E = CP

2 ⊂ CP
n such that E ∩SingF = ∅, E is not contained in any leaf of

the foliation F , and the set of tangencies of E with the leaves of F has codimension
2 in E . In fact, one can show (see [15] or [42]) that the set of E with these properties
is dense in the Grassmannian GrC(3, n + 1). The inclusion map ι : E ⊂ CP

n induces
a holomorphic foliation G = ι∗(F) on E .

The foliation G is singular at points where E is tangent toF , and so by the assump-
tion on E , SingG is a finite set. Let p ∈ SingG. Since p is a regular point of F ,
the foliation F admits a local first integral, say f , and therefore, g = f ◦ ι is a first
integral for G. But since p is a singular point of G, dg(p) = 0. After an additional
small perturbation of E we may assume that D2g(p) is nondegenerate, and therefore,
p is a Morse-type singularity of G. This implies that BB(G, p) = 0, and we obtain a
contradiction with the index formula (2). ��

Recall that a smooth real-valued function ρ on a complex manifold X is called
strictly plurisubharmonic if i∂∂ ρ is a positive-definite (1, 1)-form. This is equivalent
to the condition that the complex Hessian defined by (3) is positive-definite for all
p ∈ X and w ∈ TpX\{0}. A complex manifold X is called Stein if one of the
following equivalent conditions hold:

(i) X is holomorphically convex and holomorphically separable (see, e.g., [26] for
relevant definitions);
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(ii) X admits a strictly plurisubharmonic exhaustion function ρ, i.e., ρ(−∞, c] is
compact for any c ∈ R;

(iii) X admits a proper holomorphic embedding into C
N for some N > 0.

For our purposes only properties (ii) and (iii) will be relevant. A domain D ⊂ C
n is

called locally Stein if for any point p ∈ bD there is a neighbourhood Up such that
Up ∩ D is Stein. The solution of the Levi problem for domains in C

n implies that if
an (open) domain D ⊂ C

n is locally Stein, then it is Stein.
We conclude this section with a brief discussion of minimal sets. Given a (smooth)

foliation F on a (smooth) manifold X , a subset Y of X is called invariant or saturated
with respect to F if for every point p ∈ Y we have L p ⊂ Y , where L p is the leaf
of F passing through p. A set Y ⊂ X is called minimal if Y is nonempty, closed,
invariant with respect to F , and satisfies the following property: if Y ′ ⊂ Y is closed
and invariant, then either Y ′ = ∅ or Y ′ = Y . For example, a closed leaf is a minimal
set. The closure of a (nonclosed) leaf is an invariant set but may not be minimal. It is
not hard to see that if a minimal set Y contains an open subset of X , then Y = X , and
if X is compact, then any foliation F on X has a nontrivial minimal set. In general,
the geometry of a minimal set can be complicated, for example, one may construct an
example of a minimal set Y of a codimension 1 foliation F with the property that if
γ is a real arc transverse to F such that γ has a nonempty intersection with Y , then
Y ∩ γ is homeomorphic to the Cantor set.

In the context of singular holomorphic foliations one can impose an additional
condition: a minimal set Y of a singular holomorphic foliations F is called nontrivial
if Y ∩ SingF = ∅. Clearly, a nontrivial minimal set exists iff there exists a leaf of the
foliation whose closure does not contain any singular point of F . Camacho et al. [14]
studied nontrivial minimal sets for singular holomorphic foliations on CP

2 and, in
particular, proved the following.

Theorem 3 Let F be a singular holomorphic foliation on CP
2. Suppose that a

nontrivial minimal set Y exists. Then

(i) Y is unique;
(ii) every one dimensional algebraic variety in CP

2 intersects Y .
(iii) if L is a leaf of F such that L ∩ SingF = ∅, then L accumulates at Y , i.e.,

L \ L = Y .

Proof Since Y is an invariant set of F , every point p ∈ Y belongs to Y together with
the leaf of F passing through p. This means that CP

2 \ Y is locally Stein at every
boundary point, and so by the result of Fujita [27] and Takeuchi [59], CP

2 \ Y is a
Stein manifold. From this, part (ii) immediately follows because Stein manifolds do
not admit compact subvarieties of positive dimension. Suppose now that Y ′ is another
nontrivial minimal set, Y 	= Y ′. Then Y ∩Y ′ = ∅, as otherwise the intersection would
be an invariant set, contradicting minimality of Y and Y ′. Therefore, Y ′ is a compact
subset of CP

2 \ Y . Consider a proper holomorphic embedding φ : CP
2 \ Y ↪→ C

N ,
which exists since CP

2 \ Y is Stein. There exists a large ball B(0, R) in C
N that

contains φ(Y ′). By shrinking the radius of the ball we obtain R0 ∈ R such that the
sphere bB(0, R0) touches φ(Y ′) at some point q. Then the function |z|2 on C

N , when
restricted to the leaf of the foliation passing through q, attains a maximum, but this
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contradicts theMaximumprinciple for plurisubharmonic functions. This contradiction
shows that Y is unique. A similar argument can be used to prove part (iii). ��

Camacho et al. [14] also proved that in the space of singular holomorphic foliations
onCP

2 the subset of foliations without a nontrivial minimal set is open and nonempty.
In fact, there are no known examples of nontrivial minimal sets. Theorem 3 holds for
all n > 1, however, Lins Neto [38] proved that there are no nontrivial minimal sets
for any holomorphic foliation in CP

n for n > 2, see Sect. 3.1. We will also see in that
section that the existence of a real analytic Levi-flat hypersurface M ⊂ CP

n implies
the existence of a singular holomorphic foliation on CP

n for which M is an invariant
subset, and therefore M contains a nontrivial minimal set. We discuss Levi-flats next.

2 Levi-Flat Hypersurfaces

A smooth (resp. real analytic) hypersurface M in a complex manifold X , dim X =
n > 1, is locally defined as the zero locus of a real-valued smooth (resp. real analytic)
function ρ with the nonvanishing gradient. An important biholomorphic invariant of
M is its Levi-formwhich locally can be defined as follows. SupposeM∩U = {ρ = 0},
where ρ is a smooth or real analytic function in an open neighbourhood U of a point
p ∈ M , and ∇ρ 	= 0. Consider the Hermitian quadratic form defined by

Lρ(p, w) =
n∑

j,k=1

∂2ρ

∂z j∂zk
(p) w jwk, p ∈ M, w ∈ C

n ∼= TpX . (3)

Recall that the complex tangent space HpM at a point p ∈ M is defined as HpM =
TpM ∩ JTpM , where J is the standard almost complex structure on X ; it is the
(n − 1)-dimensional complex linear subspace of TpM . The restriction of Lρ(p) to
Hp(M) (i.e., by restricting w ∈ HpM) is called the Levi-form of M at p. One can
show that the signature of the Levi form is independent of the choice of the defining
function ρ and is invariant under biholomorphic mappings.

A real hypersurface M locally divides the ambient manifold into 2 connected
open components: U+ = {ρ > 0} and U− = {ρ < 0}. We say that U− is Levi-
pseudoconvex at a point p ∈ M if the Levi form of M at p is positive-semidefinite,
i.e., Lρ(p, w) ≥ 0 for all w ∈ HpM . This is equivalent to saying that all the
eigenvalues of the Levi form are nonnegative. For domains with smooth boundary
Levi-pseudoconvexity of the boundary is equivalent to the domain being locally Stein.

Definition 4 A C2-smooth real hypersurface M ⊂ X is called Levi-flat if one of the
following equivalent conditions hold:

(i) M is foliated by complex hypersurfaces;
(ii) The Levi-form of M vanishes identically;
(iii) The distribution of complex tangents {HpM, p ∈ M} is involutive (in the sense

of Frobenius);
(iv) M locally divides X into two locally Stein domains.
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The implication (ii) ⇔ (iv) follows from the general theory of pseudoconvex
domains; (i) ⇔ (iii) is the Frobenius theorem; and (ii) ⇔ (iii) can be proved by a
direct computation. Using conditions (i) and (iv) it is possible to define Levi-flatness
for hypersurfaces of class C1 or even locally Lipschitz graphs.

The foliation of M by complex hypersurfaces is called the Levi foliation of M
and will be denoted by L. Note that if the hypersurface M is real analytic, then L is
a real analytic foliation on M of real codimension 1. Simple examples of Levi-flat
hypersurfaces are {xn = 0} ⊂ C

n with coordinates z = (z1, . . . , zn = xn + iyn);
if f ∈ O(X) and d f 	= 0, then {Re f = const} is a Levi-flat hypersurface. For
compact examples, consider M = CP

1 × γ , where γ is a simple smooth closed curve
in CP

1. Then M is foliated by CP
1 × {p}, p ∈ γ , and therefore it is a closed Levi-flat

hypersurface in CP
1 × CP

1.
The following proposition is due to Cartan [20].

Proposition 5 If p ∈ M ⊂ C
n is a real analytic Levi flat hypersurface, then there

exists a neighbourhood U of p in C
n and a biholomorphic map f : U → U ′ such

that
f (M ∩U ) = {xn = 0} ∩U ′,

where z = (z1, . . . , zn = xn + iyn) is a holomorphic coordinate system on U ′.

Proof We write z = (z′, zn). Then, after a translation and rotation, and using the
Implicit Function theorem, we can arrange p = 0, and

M = {
yn = r(z′, z′, xn), r(0) = 0, dr(0) = 0

}
,

where r(z′, z′,Re zn) is a real-valued real analytic function near the origin. Let f be
a purely imaginary-valued real analytic first integral of the Levi foliation L on M ,
defined in a neighbourhood of 0. We may further assume that ∂ f

∂xn
(0) 	= 0. Then f

is constant on the leaves of L, and therefore it is a CR-function on M . It is well-
known that any real analytic CR function f extends as a holomorphic function F
to a neighbourhood of M , see [60]. Then (z′, z) �→ (z′, F(z)) has nondegenerate
differential at 0 and so it is the required change of coordinates. ��

The following proposition is essentially a consequence of the previous result. It was
first proved by Rea [52] in a more general setting of Levi-flats of general codimension.

Proposition 6 If M is a nonsingular real analytic Levi-flat hypersurface in a complex
manifold X, then there exists a neighbourhood V of M in X such that the Levi foliation
L extends to a holomorphic foliation F on V .

Proof By Proposition 5, for every point p ∈ M there exists a neighbourhood U and a
biholomorphic map f : U → U ′ that sends M ∩ U onto M ′ = {xn = 0} ∩ U ′. The
holomorphic foliation on U ′ given by complex hyperplanes zn = c, c ∈ C, extends
the Levi foliation on M ′, and therefore, the pullback of this foliation under f gives an
extension of the Levi foliation on M ∩U to a holomorphic foliation on U .

Now choose an open cover {Uj } of M by such open sets, so that on each M ∩ Uj

the Levi foliation extends to a holomorphic foliation via a local biholomorphism
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f j : Uj ∩ M → U ′
j ∩ {xn = 0}. It remains to show that these extensions agree on the

overlaps. This can be seen as follows: if Uj ∩Uk 	= ∅, the map

h = fk ◦ f −1
j : f j (Uj ∩Uk) → fk(Uj ∩Uk)

is a biholomorphism that sends complex hyperplanes in Uj ∩ {xn = 0} to complex
hyperplanes in Uk ∩ {xn = 0}. Writing h = (h1, . . . , hn), the above condition means
that Re hn(z′, c) ≡ const for all fixed c ∈ R, which implies that hn(z′, c) ≡ const.
This implies that hn is independent of z′, and therefore,

h(z′, z) = (h′(z), hn(zn)).

This is a holomorphic version of (1), which proves the required statement. ��
For some C∞-smooth but not real analytic Levi-flats, the Levi foliation may still

extend holomorphically to a neighbourhood of the Levi-flat, for example, consider a
hypersurface yn = f (xn), for a smooth but not analytic f . But in general, the Levi
foliation on a smooth but not analytic Levi-flat M does not extend as a holomorphic
foliation to any neighbourhood of M , for a specific example see [52]. More generally,
one may consider singular real analytic Levi-flat hypersurfaces, these are real analytic
sets of dimension 2n − 1 whose regular locus of dimension 2n − 1 is foliated by
complex hypersurfaces. It turns out that near singular points, the Levi foliation may
not extend to the ambient neighbourhood even as a singular holomorphic foliation, but
under some general conditions there is an extension as a singular holomorphic web,
see [9, 55].

Another immediate consequence of Proposition 5 is that a real analytic Levi-flat
hypersurface M is locally defined as a zero locus of a pluriharmonic function. Further,
Barrett [4] showed that a global pluriharmonic defining function exists iff the holo-
morphic foliation in a neighbourhood of M that extends the Levi foliation on M is
defined by a nonvanishing real analytic closed 1-form.

Next we discuss some topological properties of Levi-flats. Any real hypersurface
locally divides the ambientmanifold into two connected components. The global result
is the following.

Proposition 7 Let M be a smooth connected closed real hypersurface in CP
n, n ≥ 1.

Then M is orientable and divides CP
n into two connected components.

The topological version of this on R
2 is known as the Jordan curve theorem, and

for hypersurfaces in R
n as the Jordan–Brouwer Separation theorem.

Proof The proof below is based on Samelson [53], see also Mishchenko [41]. We first
show orientability. Arguing by contradiction, suppose that M is not orientable. Then
there exists a closed path τ on M starting and terminating at a point p ∈ M such
that a normal unit vector to M at p when transported along the curve τ returns to p
pointing in the opposite direction. By taking a point p′ on the initial normal to M at p,
sufficiently close to p, and moving p′ on the normal along the curve τ upon the return
to pwe obtain a point p′′ on the normal toM but on the other side ofM . This gives us a
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curve starting at p′ and terminating at p′′ that does not intersectM . We now connect p′
and p′′ with a segment of a straight line in the normal to M at p. After smoothing near
p′ and p′′, we obtain a smooth closed curve γ in CP

n which transversely intersects
M at exactly one point p. Since CP

n is simply-connected, there exists a smooth map
h : D2 → CP

n such that h(bD2) = γ . Note that in a neighbourhood of γ the map h
is transverse to M , and therefore, by the Transversality theorem (see, e.g., [31, Ch.3])
there exists a small C2-perturbation of h, preserving h near the boundary of D2, such
that h is transverse to M . Then by transversality, h−1(M) is a union of closed smooth
curves in D2; these are either compact curves in D2 or have 2 terminal points on bD2.
But note that the curve in h−1(M) with the end point h−1(p) does not have the other
end on bD2 because by construction γ intersects M only at p. This contradiction
proves that M is orientable.

Next we show that M divides CP
n into 2 connected components. Since M is

orientable and connected, there is a neighbourhood U of M such that M divides U
into exactly 2 connected components, say, U ′ and U ′′. Suppose that p′ ∈ U ′ and
p′′ ∈ U ′′ are two points on the opposite side of the normal line to M at some point p.
The same argument as above shows that p′ and p′′ cannot be connected by a smooth
curve in CP

n \M . Thus, CP
n \M consists of at least two path connected components:

X ′ containingU ′ and X ′′ containingU ′′. Since CP
n is connected, it is easy to see that

CP
n\M = X ′ ∪ X ′′. ��
Let M be a closed smooth Levi-flat hypersurface in CP

n , n ≥ 2. Then by Propo-
sition 7, M divides CP

n into two connected complex manifolds X1 and X2, both are
locally Stein near every boundary point. In general, it is not true that a relatively com-
pact domain of a complex manifold that is locally Stein near every boundary point is
a Stein manifold. But for domains in CP

n , Fujita [27] and Takeuchi [59] proved that
a domain with nonempty locally Stein boundary is Stein. To summarize, we obtained
the following.

Proposition 8 A smooth closed Levi-flat manifold divides the ambient CP
n into two

Stein manifolds.

The proof of nonexistence of Levi-flats in CP
n , n > 2, essentially boils down to

showing that this is impossible. Without the assumption of smoothness, it is easy to
divide the projective space into two Stein manifolds, for example, one can take the
closure inCP

2 of {x2 = 0} ⊂ C
2. Further, there are examples of compact complex sur-

faces which can be divided into Stein parts by smooth Levi-flats. Indeed, Ohsawa [45]
constructed an example of a Levi-flat hypersurface in the product of CP

1 and an ellip-
tic curve such that the complement of the Levi-flat is the union of two Stein manifolds.
Further, Nemirovski [43] constructed a family of examples of compact algebraic and
nonalgebraic (Hopf surfaces) complex surfaces that admit closed smooth Levi-flat
hypersurfaces. In these examples a Levi-flat also divides the complex surface into two
Stein manifolds.

On the other hand, nonexistence of smooth Levi-flats in Stein manifolds is
elementary.

Proposition 9 There does not exist a closed smooth Levi-flat hypersurface in a Stein
manifold of dimension ≥ 2.
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Proof Any Stein manifold X can be properly embedded into C
N for some N > 0.

Under such an embedding, the image of a closed Levi-flat M is a compact subset of
C

N , in particular, is contained in some large ball B(0, R), R > 0. We may decrease R
until for some R0 > 0 the sphere bB(0, R0) touches M at some point p. At this point
the restriction of the function |z|2 to the leaf through p of the Levi foliation on M
attains a maximum, which contradicts the Maximum principle for plurisubharmonic
functions. ��

As a consequence we also obtain that a Levi-flat hypersurface in CP
n cannot be

globally defined by a pluriharmonic function. Indeed, if M = ρ−1(0) for some pluri-
harmonic function ρ in a neighbourhood of M , then for small c 	= 0, the hypersurface
Mc = {ρ−1(c)} is also Levi-flat. But then, by Proposition 8, Mc is contained in a Stein
manifold, which is impossible by Proposition 9.

In the remaining part of this section we collect some general facts about Levi-flat
hypersurfaces in CP

n . By nonexistence, these results are (potentially) nontrivial only
for n = 2, and describe the empty set for n > 2. Nevertheless, we formulate the results
for a general n.

Some topological properties of Levi-flat hypersurfaces can be deduced from the
result of Hill–Nacinovich [30]. Their result holds for a general class of weakly q-
concave projective CR manifolds of general CR dimension and codimension, which,
in particular, includes Levi-flat hypersurfaces, but for simplicity we formulate it for
Levi-flats only. This result can be considered as an analogue of the classical Lefschetz
Hyperplane theorem.

Theorem 10 [30] Let M ⊂ CP
n be a closed smooth Levi-flat hypersurface, n > 1.

Let P0 ∼= CP
n−1 be a complex hyperplane, and M0 = M ∩ P0 be the hyperplane

section. Then the natural homomorphism

H j (M, Z) �→ H j (M0, Z)

is an isomorphism for j < n − 2 and injective for j = n − 2. Further, the natural
homomorphism

Hj (M0, Z) �→ Hj (M, Z)

is an isomorphism for j < n − 2 and is surjective for j = n − 2. Finally,

π j (M, M0) = 0, j < n − 1,

and
π j (M0) �→ π j (M)

is an isomorphism for j < n − 2 and injective for j = n − 2.

Similar results were obtained in [38], and [44]. Another application of Proposition 7
is the following result.

Proposition 11 A smooth Levi-flat hypersurface M ⊂ CP
n, n ≥ 2, cannot contain a

compact leaf.
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Proof We follow Mishchenko [41]. Without loss of generality assume that n = 2.
Suppose that S ⊂ M is a compact leaf, hence a smooth projective curve. Since M
is orientable, we may consider a small perturbation of S by translating it along the
positive normal direction to M . The perturbed S̃ ⊂ CP

2 is a smooth real surface with
S ∩ S̃ = ∅. But this contradicts the fact that any complex projective curve in CP

2 has
positive self-intersection index. ��

A hypersurface in C
n is called real algebraic if it can be defined as a zero locus of

a real polynomial. The closure of such a hypersurface is a real algebraic hypersurface
in CP

n , possibly singular at infinity.

Proposition 12 There does not exist smooth real algebraic Levi-flat hypersurface in
CP

n.

Proof Arguing by contradiction, suppose such M exists and is given by a real poly-
nomial P(z, z). We complexify P by replacing z with an independent variable w.
For every fixed w ∈ C

n the algebraic hypersurface Qw = {z ∈ C
n : P(z, w) = 0}

is called the Segre variety of w associated with M . The family of Segre varieties
is, in fact, a biholomorphic invariant of M , see, e.g., [50]. Further, if w ∈ M , then
w ∈ Qw ⊂ M , and Qw agrees with the leaf of the Levi foliation passing through p,
see [55]. This means that M contains a closed leaf, which contradicts Proposition 11.
Another way to reach a contradiction is simply to observe that the leaves of M are
projective varieties that must have a nonempty intersection, which implies thatM must
have singularities. ��

Segre varieties can be defined locally near any point on any real analytic hyper-
surface, including singular points. If M is Levi-flat and is tangent to a holomorphic
foliation, then near the singularities the family of Segre varieties can be used to study
the singularities of foliations, for example existence of a germ of a Levi-flat tangent
to a holomorphic foliation is equivalent to the existence of a local meromorphic first
integral, see [11, 12, 23].

Let us now draw the connection between Levi-flat hypersurfaces and nontrivial
minimal sets. Roughly speaking, the holonomy of a leaf L of a foliation is a map
π1(L, p) → Diff(�, p), p ∈ L , from the fundamental group of L into the group
of germs of diffeomorphisms of the transverse section � at p to the foliation, see,
e.g., [13] or [17] for a precise definition. Cerveau [21] proved the following.

Theorem 13 Suppose that F is a holomorphic foliation on CP
n, n ≥ 2, and M is a

nonempty nontrivial minimal set. Then there exists a point p ∈ M such that the leaf
L p of F has hyperbolic holonomy, i.e., its holonomy group contains a map f with
| f ′(0)| < 1. Further, the following dichotomy holds: either

(1) M is a real-analytic Levi-flat hypersurface, or
(2) Hol : π1(L p, p) �→ Diff(C, 0) is a linearizable abelian group.

It is this result that prompted the interest in Levi-flat hypersurfaces on projective
spaces. By Lins Neto [38] (see the end of Sect. 3.1), nontrivial minimal sets in CP

n do
not exist for n > 2, and so Theorem 13 is (hypothetically) nontrivial only for n = 2.
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3 Nonexistence of Levi-Flats in CP
n, n ≥ 3.

Theorem 14 There does not exist a closed nonsingular real analytic Levi-flat hyper-
surface in CP

n for n ≥ 3.

There are several published papers with the proofs for n = 2, but all of them are
believed to contain serious gaps. In this section we outline three different proofs for
n ≥ 3. Two of them are due to Lins Neto [38]. The third proof presented here is due
to Siu [58]. Siu’s result applies to smooth Levi-flat hypersurfaces, which is a much
more difficult problem, but in the real analytic category Siu’s proof can be simplified.

3.1 Lins Neto 1

Arguing by contradiction, suppose thatM ⊂ CP
n , n > 2, is a closed real analytic Levi-

flat hypersurface. ByProposition 6 theLevi foliationL onM extends to a (nonsingular)
holomorphic foliationF in an open neighbourhoodU of M in CP

n . By Proposition 8,
M divides CP

n into two Stein manifolds, call them X1 and X2. The principal step of
the proof is to show that F extends as a singular holomorphic foliation on each X j .
This effectively gives an extension ofF toCP

n as a singular holomorphic foliation F̃ .
By Proposition 2, F̃ necessarily contains a component Y ⊂ Sing F̃ of codimension 2.
Since a Stein manifold cannot contain a compact complex analytic variety of positive
dimension, for n > 2 we conclude that Y cannot be contained in X1∪X2. On the other
hand, near M the foliation F̃ agrees withF and is nonsingular. This is a contradiction
that shows that M does not exist. Note that if n = 2, then the singularities of F̃ are
isolated points, and there is no contradiction.

It remains to show that F extends to X j , j = 1, 2. Note that X j \ U is a compact
subset of X j , and the extension result for foliations can be considered as a version of the
Hartogs theorem (Kugelsatz) on removability of compact singularities for holomorphic
functions. Lins Neto offers the following extension argument.

Let X be one of the connected components of CP
n \ M , and f : X → R be a

strictly plurisubharmonic exhaustion function. After a small C2-perturbation we may
further assume that f is also a Morse function. Let Xt = {z ∈ X : f (z) ≤ t}, these
are strictly pseudoconvex bounded subdomains of X for almost all t ∈ R. Then the
foliation F is defined on X \ Xt0 for some t0 >> 1. The idea is to show that if F is
a holomorphic foliation on X \ Xt1 for some t1 ∈ R, then there exists t2 ∈ R such
that t2 < t1 and F extends as a holomorphic foliation to X\Xt2 . This will prove the
assertion.

Since the level sets { f = t} are compact for all t ∈ R, it suffices to show that for
any point p ∈ { f = t1} there exists ε > 0 such that the foliation extends to B(p, ε),
the ball centred at p of radius ε. This can be proved using Hartogs pseudoconvexity,
see, e.g., [51] for relevant results. Recall that a Hartogs figure in C

n is defined as

Hst =
{
z = (z′, zn) ∈ C

n−1 × C : |z′| < r ′, |zn| < 1} ∪ {|z′| < 1, rn < |zn| < 1
}

,
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where z = (z′, zn), and |z′| < r ′ means |z j | < r j , j = 1, . . . , n − 1, r ′ =
(r1, . . . , rn−1); 0 < r j < 1, j = 1, . . . , n. By the Hartogs Extension theorem,
any holomorphic function on Hst extends holomorphically to the whole polydisc
� = {|z j | < 1, j = 1, . . . , n}, which is the envelope of holomorphy of Hst . A
stronger result, known as the Levi Extension theorem, is that any meromorphic func-
tion on Hst extends to �, see, e.g., Siu [57]. This is a special case of a general result
stating that the envelope of meromorphy of a domain on a Stein manifold agrees with
the envelope of holomorphy. Now, a domain H ⊂ X is called a Hartogs domain if
it is a biholomorphic image of Hst . If H = φ(Hst ) for some biholomorphic map
φ : Hst → H , then φ extends holomorphically to �, and the set Ĥ = φ(�) is the
envelope of holomorphy of H , i.e., every function holomorphic (resp. meromorphic)
on H extends holomorphically (resp. meromorphically) to Ĥ .

If p is a strictly pseudoconvex point of { f = t}, there exists a local biholomorphic
change of coordinates such that near p the set Xt is strictly geometrically convex.
Then one can directly construct a Hartogs domain H contained in { f > t} with the
property that p ∈ Ĥ . This can be used for the extension of F as follows. In the local
coordinates near p, suppose that {Uj } is an open cover of H and on each Uj the
foliation F is defined by a holomorphic 1-form

ω j =
n∑

k=1

g j
k dzk, g j

k ∈ O(Uj ). (4)

Let h jk ∈ O∗(Uj ∩Uk) be the compatibility functions so that we have

g j
k = h jl g

l
k, k = 1, . . . , n. (5)

Without loss of generality suppose that g j
n 	≡ 0, so that f jk := g j

k /g
j
n is meromorphic

in Uj . Then (5) implies that if Uj,l 	= ∅, then f jk = flk on Uj,l , so for each
k = 1, . . . , n−1, there exists ameromorphic function Fk on H such that Fk |Uj = f jk .
By the Levi Extension theorem, Fk can be extended to a meromorphic function on Ĥ ,
which contains the point p. Consider now a meromorphic 1-form on Ĥ given by

η = dzn +
n−1∑

k=1

Fkdzk .

There exists h ∈ O(Ĥ) and a holomorphic 1-form ω on Ĥ such that η = 1
hω. It

follows that for all j we have ω|Uj = g jω j for some g j ∈ O∗(Uj ). The form ω

remains integrable and defines a foliation on Ĥ . This gives the required extension of
F to a neighbourhood of p.

The above argument does not discuss the possibility of a multiple-valued extension
in case the extension procedure gives overlapping domains. This nontrivial technical
issue can be resolved, see Canales González [16] for a detailed step-by-step argument
for n = 2, and Merker–Porten [40] for a further in-depth discussion.
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Alternatively, one can argue as follows. A codimension one holomorphic foliation
on a complex manifold X of dimension n is uniquely determined by an involutive
distribution of complex hyperplanes in T X . For each p ∈ X , a choice of a hyperplane
Hp ⊂ TpX defines a point in the GrassmannianGrC(n−1, n) ∼= CP

n−1, which can be
identified with the projectivization of TpX . Therefore, a holomorphic foliation gives
rise to a holomorphic section s of the projectivized tangent bundle of X . When X is
Stein, then through a proper holomorphic embedding of X ↪→ C

N we can represent
the tangent bundle as a subbundle of the trivial bundle over C

N , and so we can view
the section s as a holomorphic map into CP

N−1 with the values in the projectivized
tangent bundle. In local coordinates the map s is given by the components g j

k in (4).
This is well-defined as seen from (5).

Therefore, the extension problem of the foliation F from X j ∩ U to all of X j

can be considered as a problem of extending the holomorphic map s from X j ∩ U
into CP

N−1 meromorphically to all of X j . A general result of this type is proved
by Ivashkovish [35]: a meromorphic map from a domain in a Stein manifold into a
compact Kähler manifold extends meromorphically to the envelope of holomorphy
of the domain. It is based on the previous work of Shiffman [56], who, in particular,
gave a sheaf-theoretic proof of nonbranching of the extended map. The envelope of
holomorphy of X j ∩ U is all of X j and the result follows. It should also be noted,
that the meromorphic extension results are considerably simpler when the target is a
projective space.

The same argument as above shows, in fact, that no holomorphic foliation F on
CP

n , n > 2, admits a nontrivial minimal set. Indeed, if K is such a set, then since K
is invariant, for any point p ∈ K there exists a germ of complex hypersurface passing
through p and contained in K . This, and the result of Fujita [27] and Takeuchi [59]
implies that CP

n \ K is the union of Stein manifolds. As above, we obtain a contra-
diction by showing that the restriction of F to a connected component of CP

n \ K
contains a singularity of dimension at least 1.

3.2 Lins Neto 2

The second proof of nonexistence of Levi-flats inCP
n , n > 2, given by Lins Neto [38],

has two steps: first show that the Levi-flat M ⊂ CP
n is simply-connected and then

apply Haefliger’s theorem. The application of Haefliger’s theorem is straightforward,
so the main technical step is to prove that a closed (smooth) Levi-flat hypersurface
M ⊂ CP

n is simply-connected when n > 2. The argument for that, which originates
in Bott’s [6] proof of the Lefschetz Hyperplane theorem, is as follows.

Denote by X1 and X2 the two connected components of CP
n\M , these are Stein

manifolds. As such they admit strictly plurisubharmonic exhaustion Morse functions,
say, ψ1 and ψ2. It follows from strict plurisubharmonicity that any critical point of ψ j

has index at most n, see [26, Lemma 3.10.1]. Consider the flow φ j : R × X j → X j ,
given by the gradient flow of ψ j , and let Vj be the corresponding vector field on X j ,
j = 1, 2. Then the singularities of Vj are points where dψ j = 0, i.e., the Morse
singularities of ψ j , and ψ j is strictly increasing along the nonsingular orbits of the
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flow. Each singular point p of Vj is hyperbolic, and the stable manifold of p, defined
by

Ws(p) =
{

q ∈ X j : lim
t→+∞ φ j (t, q) = p

}

,

has dimension that is equal to the Morse index of p, in particular, does not exceed n.
Note that since X j have smooth boundary M , there are only finitely many singular
points of Vj . Let U be a tubular neighbourhood of M that does not contain any
singularities of Vj . Then for a singular point p ∈ X j we may assume that Ws(p) ⊂
X j \U . After a cutoff wemay assume that the flows φ j are stationary in Ũ ∩X j , where
Ũ ⊂ U is a smaller tubular neighbourhood of M . This gives a flow φ on CP

n . Let W
be the union of all stable manifolds of the flow φ, this is a finite union of manifolds of
dimension at most n.

Consider now a loop γ : S1 → M , which we may assume, without loss of gen-
erality, to be smooth. Since Ũ is a deformation retract of M , for the proof of simple
connectivity of M it suffices to show that γ is contractible in Ũ . Since CP

n is simply-
connected, γ is contractible inCP

n , and therefore, there exists a smooth disk D ⊂ CP
n

with boundary γ . When n > 2, we have

dim D + dimW ≤ 2 + n < 2n = dimR CP
n .

Therefore, by the Transversality theorem (see, e.g., [31, Chapter 3]), we may assume
that D is chosen in such a way that D ∩ W = ∅. We now deform the disc D along
the flow φ constructed above. Since D avoids all stable manifolds, and the exhaustion
functions φ j are increasing along φ, a deformation of D will be contained in Ũ , and
this shows that M is simply-connected. Note that the proof fails when n = 2 because
the transversality does not imply that D can be chosen to be disjoint from W .

To complete the proof of nonexistence, one can now applyHaefliger’s theorem [29].
It states that a codimension one smooth real foliation with a null-homotopic closed
transversal necessarily has a leaf with one-sided holonomy, in other words, the holon-
omy group contains a map which is the identity on one side of the transversal, but not
on the other. This cannot happen, in particular, if the map is real-analytic, which is the
case if the foliation is real analytic. Now suppose that M is a closed real analytic Levi
flat hypersurface in CP

n , n > 2. Then M is simply connected, and the Levi foliation
on M by complex hypersurfaces is real analytic. Any codimension one foliation on a
compact manifold has a closed transversal (see, e.g., [13]), which is null-homotopic
by simple connectivity of M . But this contradicts Haefliger’s theorem, and so such M
does not exist.

3.3 Siu

The proof of Siu [58] is technicallymore involved and applies to the case ofM ⊂ CP
n ,

n > 2, with finite smoothness. However, whenM is real analytic, certain steps of Siu’s
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argument automatically hold. The proof below is a simplified version of the argument
given by Brunella [10].

Let M ⊂ CP
n be a closed real analytic Levi-flat hypersurface, n > 2. By Propo-

sition 6, the Levi foliation on M extends to a nonsingular holomorphic foliation F
in a neighbourhood of M . Let NF be the normal bundle to F . Then NF |M is topo-
logically trivial because it has a nonvanishing section—the unit normal to M (recall
that M is orientable by Proposition 7). It is well-known that T 1,0

CP
n , equipped with

the Fubini–Study metric, is Griffiths positive, therefore, NF , as a quotient bundle of
T 1,0

CP
n , inherits a hermitianmetric with positive curvature (see Demailly [24, Chap-

ter VII, §6]). Let ω be the real closed (1, 1)-form corresponding to the curvature, it is
exact on M , and therefore on its small neighbourhood U . Then we can write

ω|U = dβ = (∂ + ∂)(β0,1 + β1,0) = ∂β0,1 + ∂β1,0.

Since ω is real (i.e., ω = ω), we may assume that β1,0 = β0,1, so that

ω = ∂β0,1 + ∂β0,1. (6)

Further, dβ = (dβ)1,1 implies
∂β0,1 = 0.

The crucial observation is that on a Stein manifold X of dimension n > 2 the second
cohomology group with coefficients in O and with compact support vanishes, i.e.,

H2
cpt(X ,O) = 0. (7)

Indeed, by Serre’s duality (e.g., [24, Chapter VI, §7]), this group is isomorphic to
Hn−2(X , KX ), which is trivial by Cartan’s theorem B (e.g., [51, Chapter VI, Sect.
6.7]) when X is Stein and n > 2. Here KX is the canonical bundle. Now, given a
∂-closed form β0,1 onU we can extend it smoothly to each connected component X j ,
j = 1, 2, of CP

n\M to obtain a (0, 1)-form on CP
n , not necessarily ∂-closed. Denote

by β j the restriction of this extension to each X j . The form ∂β j has compact support
in X j , and so by (7) there exists compactly supported h j satisfying ∂h j = ∂β j . Then
β j −h j is a ∂-closed (0, 1)-form in X j that agrees with β0,1 near M . This gives us a ∂-
closed extension ofβ0,1 to all ofCP

n , call it β̃. Since H0,1
∂

(CP
n) = H0(CP

n,�1) = 0
(see, e.g., [28, Sect. 0.3, pp. 48–49]), there exists a smooth function φ on CP

n such
that ∂φ = β̃. Then, setting ψ = i(φ − φ) and using (6), we have

ω|U = ∂∂ φ + ∂∂ φ = ∂∂(φ − φ) = i ∂∂ ψ.

By the positivity of ω on M , it follows that ψ is a strictly plurisubharmonic function
on M . Since M is compact, ψ attains a maximum at some point p ∈ M . Considering
the restriction of ψ to the leaf of the Levi foliation passing through p, we obtain
a contradiction with the Maximum principle for plurisubharmonic functions. This
proves that M does not exist.
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We see again, that for n = 2 this proof fails because (7) does not hold for a general
Stein manifold X .

4 Some Generalizations

There is vast literature with various generalizations of the nonexistence result by
considering a wider class of complex manifolds or by lowering the regularity of M .
In this section we discuss only some of these results, primarily those that are directly
related to the nonexistence problem discussed in this paper. We begin with the work
of Ni–Wolfson [44].

Theorem 15 [44] Let V be an irreducible compact Kähler manifold of complex dimen-
sion n with nonnegative holomorphic bisectional curvature of complex positivity �.
Then there are no real analytic Levi flat submanifolds of dimension m in V when
m ≥ 2(n + 1) − �.

The complex positivity � is defined as follows. The symmetric bilinear form
HY (W , Z) = 〈R(Y , JY )W , J Z〉, where Y ,W , Z ∈ T V , is positive-semidefinite
for Y 	= 0. Let NY be its null-space and n(Y ) be its dimension. Then the complex
positivity of V is � := infY 	=0(n − n(Y )). In particular, for V = CP

n , � = n, and
we obtain m ≥ n + 2, which for n > 2 covers the case of real hypersurfaces, but for
n = 2 gives no information. The idea of the proof is similar to that of [38]: show that
M is simply-connected and then use Haefliger’s theorem.

In [58]Siugives the proof of nonexistenceof smoothLevi-flat hypersurfaces inCP
n ,

n > 2. Siu’s original proof works for C12-smooth M , but further improvements of
the regularity of M are possible, for example, Cao–Shaw [19] proved that there does
not exist Lipschitz Levi-flat hypersurfaces in CP

n , n > 2, and Iordan–Matthey [33]
proved nonexistence for M of class Sobolev Ws , for s > 9/2.

To generalize the class of ambient manifolds, Ohsawa [46] considered the case
of compact Kähler manifolds. Using ∂-methods and Hodge theory, he proved the
following.

Theorem 16 Let X be a compact Kähler manifold of dimension n ≥ 3 and let M be
a real analytic Levi-flat in X. Then, X \ M does not admit any C2 plurisubharmonic
exhaustion function whose Levi form has at least 3 positive eigenvalues outside a
compact subset of X \ M. In particular, X \ M is not a Stein manifold.

This, in particular, implies that the examples of Ohsawa [45] and Nemirovski [43]
of Levi-flats with Stein complement cannot exist on compact Kähler manifolds of
dimension ≥ 3.

Another generalization was obtained by Brinkschulte [7].

Theorem 17 [7] Let X be a complex manifold of dimension n ≥ 3. Then there does
not exist a smooth compact Levi-flat real hypersurface M in X such that the normal
bundle to the Levi foliation admits a Hermitian metric with positive curvature along
the leaves.
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This result is based on the earlier work of Brunella [10], who was the first to
emphasize the crucial role of the positivity of the normal bundle of the foliation,
and Ohsawa [47], who conjectured this result in [49, Sect. 5.1.1]. If in Theorem 17
we take X = CP

n and M a Levi-flat with the Levi foliation L, then since CP
n

admits a hermitian metric of positive curvature, we obtain a positive metric on NL.
This contradicts the theorem, and therefore such M does not exist. Thus, this result
generalizes the nonexistence of Levi-flats in CP

n , n > 2, in the smooth category. It
should be also noted that Brunella [10, Example 4.2], see also Ohsawa [49], gave an
example showing that Theorem 17 cannot hold for n = 2 even when X is compact
Kähler. It was proved in [34] (the appendix is written jointly by Iordan and Lempert)
that the Levi-flats arising in this example cannot be embedded into CP

n .
In a different direction, an interesting generalization of nonexistence result in CP

n

was obtained by Sargsyan [54].

Theorem 18 [54] There exists no smooth real hypersurface inCP
n, n ≥ 3, whose Levi

form has constant signature and satisfies one of the following conditions:

(i) the Levi form has at least two zero eigenvalues;
(ii) the Levi form has at least one zero eigenvalue and two eigenvalues of opposite

signs.

Concerning minimal sets, Adachi and Brinkschulte [3] proved the following result,
which confirms a conjecture by Brunella [10]. This result, in particular, implies that
the foliation F does not admit any nontrivial minimal sets.

Theorem 19 [3] Let X be a compact complex manifold of dimension ≥ 3. Let F be
a codimension one holomorphic foliation on X with ample normal bundleNF . Then
every leaf of F accumulates to SingF .

Note that the theoremabove is a generalization of LinsNeto’s result on nonexistence
of minimal sets in CP

n , since there the normal bundle of a holomorphic foliation is
automatically positive. The approach in [3] and the follow-up paper by Adachi, Biard
and Brinkschulte [1] combines Ohsawa’s and Siu’s ideas. The first step is to produce
a holomorphic connection on the normal bundle (this was implicit in [46]), and then
to obtain a contradiction similar to Siu by solving the ∂∂-problem for the difference
of the curvatures of the Chern connection and the holomorphic connection.

While the problem of nonexistence of Levi-flats M in CP
2 remains open, there

are some partial answers to the question. For example, Adachi–Brinkschulte [2] gave
restrictionon the totally realRicci curvature ofM ,Mishchenko [42] proved that a hypo-
thetical Levi-flat cannot have a commutative first fundamental groupπ1(M), and Inaba
andMishchenko [32] showed thatπ1(M) cannot have nonexponential growth. Finally,
Deroin and Dupont [25] investigated Levi-flat hypersurfaces in complex surfaces.
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