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Abstract
The following generalization of a result of Nemirovski (Russ Math. Surv 63(2):381–382,
2008) is proved: if X is either a projective or a Stein manifold and K ⊂ X is a compact
sublevel set of a strictly plurisubharmonic function ϕ defined in a neighborhood of K , then
X\K is a union of positive divisors if and only if ddcϕ extends to a Hodge form on X . For
an arbitrary compact subset K � X , this gives that X\K is a union of positive divisors if
and only if K admits a neighbourhood basis of sublevel sets of strictly plurisubharmonic
functions with the ddc-extension property.

1 Introduction

A compact set K in Cn is called rationally convex if for any point z ∈ Cn\K , there exists
a complex (algebraic) hypersurface that passes through z and avoids K . It is generally a
difficult problem to determine whether a given compact set is rationally convex. A striking
characterization for totally real submanifolds was obtained by Duval–Sibony [8]: a compact
totally real submanifold M ⊂ Cn is rationally convex if and only if there exists a Kähler form
ω on Cn with respect to which M is isotropic (Lagrangian if dim M = n), i.e., ι∗Mω = 0,
where ιM : M → Cn is the inclusion map. A variation of this was proved by Nemirovski
[15]: if a compact set K ⊂ Cn is given as a sublevel set of a strictly plurisubharmonic
function ϕ defined on a neighborhood of K , then K is rationally convex if and only if there
exists a Kähler form ω on Cn such that ω agrees with ddcϕ on some neighborhood of K . In
particular, this characterization can be applied to closures of bounded strongly pseudoconvex
domains in Cn .

Rational convexity can be generalized to general complex manifolds in different ways.
Following Guedj [11], we say that a compact set K on a projective manifold X is rationally
convex if for any point p ∈ X\K , there exists a positive divisor (see Sect. 2) passing though
p and avoiding K . When X is a Stein manifold, we consider two competing notions of
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convexity. We say that a compact set K ⊂ X is convex with respect to hypersurfaces if for
any p ∈ X\K , there exists a complex hypersurface� that passes through p but avoids K . We
say that K is is convexwith respect to principal hypersurfaces if� can be given as the zero set
of an entire function on X . See Sect. 2 for further discussion of various notions of convexity
on complex manifolds. The goal of this paper is to generalize Nemirovski’s characterization
of convexity to projective and to Stein manifolds.

Theorem 1.1 Let X be a projective manifold and ϕ be a smooth strictly plurisubharmonic
function on an open set U ⊆ X. The compact set K = {z ∈ U : ϕ(z) ≤ 0} is rationally
convex if and only if ddcϕ extends off a neighborhood of K to a Hodge form on X.

Theorem 1.2 Let X be a Stein manifold and ϕ be a smooth strictly plurisubharmonic function
on an open set U ⊆ X. The compact set K = {z ∈ U : ϕ(z) ≤ 0} is convex with respect to
(principal) hypersurfaces if and only if ddcϕ extends off a neighborhood of K to a (trivial)
Hodge form on X.

The assumption in the above theorems that K is a sublevel set of a strictly plurisubharmonic
function may seem quite strong. However, it can be used to give a characterization of all
compact sets that are convex with respect to (principal) hypersurfaces, as our next result
shows.

Theorem 1.3 Let X be a Stein manifold, and K ⊂ X be a compact set. Then K is convex
with respect to (principal) hypersurfaces if and only if there exists a neighborhood basis of
K such that every element of the basis is of the form � = {ρ < 0}, where ρ is a strictly
plurisubharmonic function in a neighborhood of �, and ddcρ extends off a neighborhood of
� to a (trivial) Hodge form on X. The same characterization holds for rational convexity of
proper compact subsets of a projective manifold.

The connection between rational convexity and Kähler forms was already established
by Duval–Sibony [8]. The above characterization in Cn was mentioned as a remark by
Nemirovski [15]. The crux of the matter is that a rationally convex set admits a fundamental
system of Stein neighborhoods, each of which has rationally convex closure in the ambient
space. This can then be combinedwithTheorems1.1 and1.2 to, in fact, produce a fundamental
system of strongly pseudoconvex neighborhoods with rationally convex closures.

Historically, the interest in rational convexity stems from an approximation result known
as the Oka–Weil theorem. We have the following version of this theorem for projective
manifolds. In the case of CPn we recover a result of Hirschowitz [12, Theorem 5]. For
Oka–Weil-type theorems in Stein manifolds, see [17], [12] and [2].

Theorem 1.4 Let X be a complex projective manifold and K ⊂ X be a rationally convex
compact set. Then every holomorphic function in a neighborhood of K is the uniform limit
on K of a sequence of meromorphic functions on X of the form f /g, where f , g are global
holomorphic sections of a positive line bundle on X, with poles off K .

Recently rational convexity has attracted attention in symplectic geometry and topology.
It was shown by Eliashberg [9] and Eliashberg–Cieliebak [3] that, for the closure W of a
smoothly bounded domain in Cn , n ≥ 3, the following conditions are equivalent.

(a) W admits a defining Morse function having no critical points of index greater than n.
(b) W is smoothly isotopic to the closure of a strongly pseudoconvex domain in Cn .
(c) W is smoothly isotopic to a “rationally convex domain”, i.e., a rationally convex set

which is the closure of a strongly pseudoconvex domain in Cn .
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(d) W is isotopic to a Weinstein domain symplectically embedded in (R2n, ωstd).

When n = 2, the question is more delicate as demonstrated by Nemirovski and Siegel
[16] who produce examples of disk bundles over surfaces that admit embeddings in C2 as
closures of strongly pseudoconvex domains, but not as rationally convex domains. In [10],
Gompf considered the case of domains with trivial topology, and produced examples of
homology spheres that embed in C2 as boundaries of contractible strongly pseudoconvex
domains. He conjectured that no Brieskorn homology sphere is realizable as the boundary
of a strongly pseudoconvex domain in C2. While Gompf’s conjecture is still open, Mark and
Tosun [14] show that no Brieskorn homology sphere is orientation-preserving diffeomorphic
to the boundary of a rationally convex domain in C2. Their proof goes via the the following
observation. By Nemirovski’s aforementioned theorem, the boundary of a smooth rationally
convex domain is a hypersurface of contact type with respect to the symplectic form ω

granted by the theorem. However, ω can be chosen to be ωstd outside a large ball, and thus,
by a result of Gromov, ω is symplectomorphic to ωstd . It follows that the boundary of a
smooth rationally convex domain in C2 is diffeomorphic to a hypersurface of contact type
in (R4, ωstd). They then show that there are obstructions to realizing Brieskorn spheres as
hypersurfaces of contact type in (R4, ωstd). We expect that the results of this paper could be
used to obtain further results in this direction.

2 Convexity on projective and Steinmanifolds

In analogy with Cn , we say that a compact set K in a complex manifold X is convex with
respect to complex hypersurfaces, or simply, hypersurface convex if for every p ∈ X\K ,
there is a complex hypersurface (or effective divisor) that passes through p and avoids K .

In the case when X is a projective manifold, we follow Guedj [11] and consider a stronger
notion of convexity in this paper: a compact set K in a projective manifold X is said to be
rationally convex if for any point p in X\K there exists a positive divisor (i.e., the zero
locus of a global holomorphic section of a positive line bundle on X ) passing through p and
avoiding K . In general, the rationally convex hull of a compact set K is the set

r(K ) = {z ∈ X : every positive divisor passing through z intersects K }.
The advantage of working with convexity with respect to positive divisors is the availability
of Hörmander’s L2-methods. Using this notion, Guedj [11] generalized several results of
Duval and Sibony to projective manifolds, including the aforementioned characterization
of rationally convex totally real submanifolds, and an approximation theorem for positive
closed (1, 1)-currents.

It is worth distinguishing the two notions of convexity described above.While all effective
divisors are positive on CPn , there are projective manifolds on which rational convexity is a
genuinely stronger notion. For example, the compact set K = CP1×{p} in X = CP1×CP1

is hypersurface convex, but any positive divisor on X necessarily intersects K . In fact, the
following is true: if K is hypersurface convex on a projective manifold X , but not rationally
convex, then the rationally convex hull of K is all of X . Indeed, suppose K is convex with
respect to hypersurfaces and that there is a section s1 of a positive line bundle L1 whose zero
set avoids K . Choose a point p ∈ X\K . There is a line bundle L2 with a section s2 that passes
through p and avoids K . Then consider the section s = s M

1 s2 for some positive integer M .
This is a section of L M

1 ⊗ L2 whose zero set passes through p and still avoids K , and by
choosing M large enough the line bundle L M

1 ⊗ L2 can be made positive. This shows that K
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is rationally convex, which proves our claim. Therefore, in Theorems 1.1 and 1.4 one may
assume that K is hypersurface convex, and the rationally convex hull is not all of X . We also
note that, in functional terms, rational convexity in X is stronger than convexity with respect
to rational (or meromorphic) functions on X , as demonstrated by the example of CP1 × {p}
in CP1 × CP1. See [11, Lemma 2.2] for a functional description of rational convexity in
projective manifolds.

Now, let X be aSteinmanifold. Since every effective divisor is positive on aSteinmanifold,
the two notions described above coincide, and we simply refer to it as hypersurface convexity
in this case. (In Guedj [11], this notion still bears the name “rational convexity”.) However,
owing to the presence of entire functions, one may define a stronger notion of convexity as
follows:we say that K is convex with respect to principal hypersurfaces if through every point
in X\K , there exists a principal hypersurface, i.e., the zero locus of an entire function, that
avoids K . These definitions are inequivalent precisely when Hom (H2(X , Z), Z) 
= 0, see
Colţoiu [4]. If X is a properly embedded submanifold ofCN , it can be shown (seeBoudreaux–
Shafikov [2]) that a compact K ⊂ X is convex with respect to principal hypersurfaces in X
if and only if K is rationally convex in CN .

One may also consider convexity with respect to positive closed currents of bidegree
(1, 1). For X = Cn , Duval and Sibony show that this notion is equivalent to hypersurface
convexity. An analogous statement also holds for a general Stein manifold X : a compact set
K ⊆ X is hypersurface convex if and only if for every x ∈ X\K , there is a positive closed
continuous current T of bidegree (1, 1) with [T ] ∈ H2(X , Z) such that x ∈ supp T and
K ∩ supp T = ∅. This follows from Proposition 3.2(i) below and Theorem 5.7 in Guedj
[11].

3 Technical preliminaries

Let X be a complex manifold. We say that a cohomology class in H p(X , R), p ≥ 0, is
an integral class if it lies in the image of the morphism H p(X , Z) → H p(X , R) induced
by the containment Z ↪→ R. Given a closed p-form or p-current T , this is abbreviated as
[T ] ∈ H p(X , Z). A Hodge form is a Kähler form whose cohomology class is an integral
class. A trivial Hodge form is a Kähler form whose cohomology class is trivial.

For the proof of Theorems 1.1 and 1.2 we will need some technical results that we collect
in this section. Although the proof techniques are already present in [8] and [11], we provide
the proofs here for the sake of completeness.

Lemma 3.1 Let V ⊂ X be an open set, where X is either a projective manifold or a Stein
manifold. Let L be a positive holomorphic line bundle on X, and ϕ be a positive continuous
metric of L on X. Let s be a holomorphic section of L|V . Suppose K = {z ∈ V : ‖s(z)‖ϕ ≥ 1}
is compact. Then, for every a /∈ K , there is an integer M > 0 and a global holomorphic
section S of L M such that S(a) = 0 and K ∩ S−1(0) = ∅.

In the above statement, L|V denotes the pull-back bundle ι∗(L), where ι : V ↪→ X is the
inclusion map, and ‖s(z)‖ϕ denotes |s(z)|e−ϕ(z).

Proof When X is projective, the result is proved in Guedj [11, Lemma 2.4]. We provide a
similar argument for the case of Stein manifolds.

Suppose X is an n-dimensional Stein manifold. Fix a Kähler formω = ddcρ, where ρ is a
strictly plurisubharmonic function on X . Fix a point a ∈ X\K . Using Hörmander’s theorem
for the ∂̄-problem for bundle-valued forms (see [6, Theorem 3.1]), we will construct a global
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holomorphic section S of L M , for some integer M > 0 to be determined later, such that
S(a) = 0 but S is nonvanishing on K .

Let χ ∈ C∞
0 (X) be such that supp χ ⊆ V \{a}, 0 ≤ χ ≤ 1, and χ ≡ 1 in a neighborhood

of K . Set v = ∂̄
(
χs M

) = ∂̄χ · s M . This is can be viewed as a smooth ∂̄-closed (0, 1)-form
with values in L M , or alternatively, as a smooth ∂̄-closed (n, 1)-formwith values in L M ⊗K ∗

X ,
where K ∗

X is the dual of the canonical bundle K X .
Since X is Stein, there exist h1, . . . , hn ∈ O(X) such that h j (a) = 0 and

⋂n
j=1{h j = 0} =

{a}. Let ρ be a strictly plurisubharmonic function on X , and σ be a smooth positive metric on

K ∗
X . Then ψ = Mϕ + σ + n log

(∑n
j=1 |h j |2

)
+ ρ is a singular metric on L M ⊗ K ∗

X that is

continuous on X\{a}, has a logarithmic singularity of order n at a, and satisfies ddcψ ≥ ω =
ddcρ. Since v is compactly supported away from a, v ∈ L2

(n,1)(X , L M ⊗ K ∗
X , e−ψ). Thus,

by [6, Theorem 3.1], there is an (n, 0)-form u with values in L M ⊗ K ∗
X such that ∂̄u = v

and
∫

X
|u|2e−2ψωn ≤ C

∫

X
|v|2e−2ψωn,

for some constant C > 0. Since the integral on the right converges, it must be that u(a) = 0.
Viewing u as a section of L M , we have that S = χs M − u is a holomorphic section of L M

such that S(a) = 0.
We now show that for sufficiently large M , S is nonvanishing on K . Since ∂̄χ ≡ 0 on a

neighborhood of K , there is an α ∈ (0, 1) such that |s|e−ϕ ≤ α < 1 on supp ∂̄χ . Let β > 0
such that αeβ < 1. For each y ∈ K , let B(y, r) denote the pull-back under a coordinate chart
of a Euclidean ball of radius r centered at y. Choose r small enough so that a /∈ B(y, 2r),
B(y, 2r) ⊂ X\supp (∂̄χ) for all y ∈ K , and |ψ(y) − ψ(z)| < Mβ for all z ∈ B(y, 2r).
Since u is holomorphic on B(y, 2r) and ψ − Mϕ is continuous on supp ∂̄χ ,

|u(y)|2 �
∫

B(y,r)

|u|2ωn � e2(ψ(y)+Mβ)

∫

B(y,r)

|u|2e−2ψωn

� e2Mϕ(y)e2Mβ

∫

supp ∂̄χ

|v|2e−2Mϕωn

� e2Mϕ(y)e2Mβ

∫

supp ∂̄χ

|s M |2e−2Mϕωn

� e2Mϕ(y)
(
αeβ

)2M
,

where the omitted constants are independent of y and M . Thus, supK |u(y)|e−Mϕ(y) → 0
as M → ∞. On the other hand, |s|M e−Mϕ ≥ 1 on K . Thus, for large M , S = χs M − u is
nonvanishing on K . ��

Proposition 3.2 Let X be either a projective manifold equipped with a Kähler metric ω, or a
Stein manifold equipped with a Kähler metric ω = ddcρ for some strictly plurisubharmonic
ρ ∈ C∞(X). Let K ⊂ X be a compact that is rationally convex if X is projective, or
hypersurface convex if X is Stein.

(i) For every z /∈ K , there exists a positive closed current T of bidegree (1, 1) on X which
admits a continuous potential ψ (i.e., ddcψ = T in the sense of distributions for some
continuous metric ψ of some line bundle), is smooth and strictly positive at z, vanishes
in a neighborhood of K , and [T ] ∈ H2(X , Z). If K is convex with respect to principal
hypersurfaces, then [T ] = 0.
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(ii) For every ε > 0 and relatively compact neighbourhood V of K , there exists a smooth
closed (1, 1)-form ωε which satisfies the following properties:

(a) ωε ≥ ω on X\V ,
(b) ωε ≡ 0 in a neighborhood of K ,
(c) ωε ≥ −εω in V ,
(d) [ωε] ∈ H2(X , Z). If K is convex with respect to principal hypersurfaces, then [ωε] =

0.

In the case when X is a projective manifold, the above result is Proposition 2.7 in [11].
The proof of (ii) presented in [11] is terse, and merely refers to Richberg’s regularization
technique. Although this technique appears in various forms in the literature, it is difficult
to locate a precise result that grants (ii). For the sake of completeness, we provide a detailed
proof of (ii) via a regularization result in the spirit of Lemma 2.15 in [5] and Theorem 2 in
[1].

Recall that a function φ : X → R ∪ {−∞} on a complex manifold X is said to be quasi-
plurisubharmonic (qpsh) if it is locally the sum of a smooth function and a plurisubharmonic
function. Given a continuous (1, 1)-form α on V , φ is said to be α-plurisubharmonic (α-psh)
if φ is qpsh and α + ddcφ ≥ 0 in the weak sense of currents. The class of α-psh functions
on X is denoted by P SH(X , α). Given ϕ1, . . . , ϕp ∈ P SH(X , α), a regularized maximum
of ϕ1, . . . , ϕp is a function of the form z �→ Mη(ϕ1(z), . . . , ϕp(z)), z ∈ X , where

Mη(t1, . . . , tp) =
∫

Rp
max{t1 + η1s1, . . . , tp + ηpsp}

p∏

j=1

θ(s j )ds1 . . . dsp.

for some η = (η1, . . . , ηp) ∈ (0,∞)p , and nonnegative θ ∈ C∞(R) with support in [−1, 1],∫
R

θ(h) = 1 and
∫
R

hθ(h)dh = 0. It is easy to check that

(a) when p = 1, Mη(t) = t ,
(b) max{t1, . . . , tp} ≤ Mη(t1, . . . , tp) ≤ max{t1 + η1, . . . , tp + ηp}.
The following result provides a sufficient condition for patching up smooth α-psh functions.

Lemma 3.3 ([7, Corollary 5.19]) Let X be a complex manifold, α be a continuous (1, 1)-form
on X, and {� j } j∈N be a locally finite open covering of X consisting of compactly contained
open sets. Let ϕ j ∈ C∞(� j ) ∩ P SH(� j , α) and η j > 0, j ∈ N, be such that

(i) ϕk(z) < max j :� j �z{ϕ j (z)},
(ii) ϕk(z) + ηk ≤ max j :� j �z{ϕ j (z) − η j },
for all k ∈ N and z ∈ b�k . Then the function

ϕ̃(z) = M(η j )(ϕ j (z)), j such that z ∈ � j , (3.1)

is smooth and α-psh on X.

The following result is a minor variation of [5, Lemma 2.15] and [1, Theorem 2].

Lemma 3.4 Let X be a complex manifold and α be a continuous (1, 1)-form on X. Let ϕ be a
continuous α-psh function on X such that ϕ is smooth on some open set U ⊂ X. Then, for any
Hermitian metric ω on X, δ > 0, and open subset U ′ � U, there is a smooth (α + 2δω)-psh
function ϕ̃ such that ϕ = ϕ̃ on U ′ and ϕ ≤ ϕ̃ ≤ ϕ + 2δ on X.
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Proof Let �0 = U and u0 = ϕ|U . Let {� j } j∈N+ be a locally finite open cover of X\U such
that, for each j ∈ N+, there is a coordinate patch (U j , � j ) so that � j � U j and � j (� j ) is
the standard unit ball Bn in Cn . Let 0 < r < s < 1, �′′

j = �−1
j (rBn) and �′

j = �−1
j (sBn),

j = 1, . . . , k. By the argument provided in [5, §2, pg. 9], {� j } j∈N+ can be chosen so that

(i) X\U ⊂ ⋃
j∈N+ �′′

j ⊂ ⋃
j∈N+ � j ⊂ X\U ′,

(ii) the set { j ∈ N+ : bU ∩ �′′
j 
= ∅} is finite, and

(iii) there exist f j ∈ C∞(� j ) such that α ≤ ddc f j ≤ α + δω in a neighborhood of � j .

We now produce ϕ j ∈ C∞(� j )∩ P SH(� j , α+δω) satisfying the conditions of Lemma 3.3.
Let {ρε}ε>0 be a family of smoothing kernels onCn . It is known, see, e.g., [13, Theorem2.9.2]
that if � ⊂ Cn is open, u ∈ P SH(�), ε > 0, and �ε = {z ∈ � : dist(z, b�) > ε} 
= ∅,
then {u ∗ ρε}ε>0 ⊂ C∞ ∩ P SH(�ε) monotonically decreases to u locally uniformly as
ε → 0. It follows then from (iii) that

u j = ϕ + f j ∈ C(� j ) ∩ P SH(� j ).

Let u j,ε be the regularization of u j given by

u j,ε =
[(

u j ◦ �−1
j

)
∗ ρε

]
◦ � j ,

for sufficiently small ε. Then, {u j,ε − f j }ε>0 is a decreasing family of smooth functions in
P SH(� j , α + δω) that converges uniformly to u j − f j = ϕ on � j as ε → 0. For j ∈ N+,
let

ϕ j (z) = u j,ε j (z) − f j (z) + δ j (s
2 − |� j (z)|2), z ∈ � j ,

for ε j and δ j small enough so that ϕ j ≤ ϕ + δ and α + ddcϕ j ≥ −2δω. Let

η j =
{

δ j min
{
(s2 − r2)/2, (1 − s2)/4

}
, if j ∈ N+,

min{η j : bU ∩ �′′
j 
= ∅, j ≥ 1}, if j = 0.

Further shrink δ j and ε j so that for all j ∈ N+, η j < δ, and u j,ε j < u j + 2η j on � j , i.e.,

ϕ = u j − f j ≤ u j,ε j − f j < u j − f j + 2η j = ϕ + 2η j on � j .

Since δ j (s2 − |� j (z)|2) ≤ −4η j on b� j and δ j (s2 − |� j (z)|2) > 2η j on �′′
j , we have

that

ϕ j < ϕ − 2η j on b� j , (3.2)

ϕ j > ϕ + 2η j on �′′
j . (3.3)

Thus, if z /∈ �0 = U , then Condition (ii) of Lemma 3.3 is satisfied.
If z ∈ b�0 = bU , then by (3.3), ϕ0(z) + η0 = ϕ(z) + η0 < ϕ j (z) − η j for any j such

that z ∈ �′′
j . On the other hand, if z ∈ �0 and z ∈ b� j for some j > 0, then by (3.2),

ϕ j (z) + η j < ϕ(z) − η j ≤ ϕ0(z) − η0. Thus, the collection {� j , ϕ j , η j } j∈N+ satisfies the
hypothesis of Lemma 3.3 for the continuous (1, 1)-form α + 2δω, and ϕ̃(z) as given in (3.1)
is smooth and (α + 2δω)-psh on X . By property (a) of regularized maxima, and the fact that
U ′ ∩ � j = ∅ for all j 
= 0, we have that ϕ̃ = ϕ on U ′. By property (b) of regularized
maxima, and the fact that ϕ(z) ≤ max j :� j �z ϕ j (z) and max j :� j �z(ϕ j (z)+ η j ) ≤ ϕ(z)+ 2δ,
we have that ϕ ≤ ϕ̃ ≤ ϕ + 2δ. ��
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Proof of Proposition 3.2. (i) Let z /∈ K . Then there is a positive holomorphic line bundle L , an
s ∈ �(X , L), and a smooth positive metric G of L on X such that s(z) = 0, K ∩ s−1(0) = ∅

and |s|e−G > 1 on K . Set ψ = max{log |s|, G}. Then T = ddcψ is the desired current.
When K is convex with respect to principal hypersurfaces, L can be chosen to be the trivial
bundle, and hence [T ] = 0.

(ii) Fix an ε > 0 and some relatively compact neighborhood V of K . Let W be an
open neighborhood of K such that W � V . When X is Stein, let �1 � �2 be relatively
compact open subsets of X such that V � �1. Let B j = � j , j = 1, 2. When X is a
projective manifold, let B1 = B2 = X . Since B2\W is compact, Part (i) gives finitely many
nonnegative closed currents T1, . . . , Tk of bidegree (1, 1) that admit continuous potentials,
vanish on a neighborhood of K , have integral cohomology class, and have sum which is
strictly positive on B2\W . Let T = ∑k

j=1 Tj . Note that T is a closed (1, 1) current with the
following properties:

(1) T ≥ 0 on X ,
(2) T is strictly positive on B2\W , i.e., MT ≥ ω on B2\W , for some positive integer M ,
(3) T admits a local continuous potential everywhere on X ,
(4) T ≡ 0 on some neighborhood U � V of K .

Let χ ∈ C∞
0 (X) be such that 0 ≤ χ ≤ 1, χ ≡ 1 on B1\V and χ ≡ 0 on W ∪ (X\B2). Then,

γ = χω is a smooth (1, 1)-form on X , and

MT ≥ γ on X . (3.4)

Since the Bott–Chern cohomology of X can be computed either via currents or via smooth
forms [7, Remarks after Lemma VI.12.2], there is a smooth (1, 1)-form β on X such that
[MT ]BC = [β]BC , i.e.,

MT = β + ddcϕ on X ,

for some (0, 0)-current ϕ. From (1)-(4) and (3.4), it follows that

(i) ϕ is a continuous function on X ,
(ii) ϕ is (β − γ )-psh, i.e., β + ddcϕ ≥ γ on X ,
(iii) ϕ is smooth on U .

Let δ > 0 such that 2δ
1−2δ < ε < 1. Then, by Lemma 3.4, there exists a smooth function

ϕ̃ ∈ P SH(X , β − γ + 2δω) such that ϕ̃ = ϕ on some neighborhood U ′ � U of K , and

β + ddcϕ̃ ≥ γ − 2δω = (χ − 2δ)ω on X .

Let N ∈ N such that N > 1
1−2δ , and

ω̃ε = N (β + ddcϕ̃) on X .

Suppose X is projective. Let ωε = ω̃ε. Then, (a) holds because N (β + ddcϕ̃) ≥ 1
1−2δ (ω −

2δω) = ω on X\V . Since ωε = N MT ≡ 0 on U ′, (b) holds. Claim (c) holds because, in V ,
N (β+ddcϕ̃) ≥ − 2δ

1−2δ ω > −εω. Lastly, (d) holds sinceωε = Nβ = N M[T ] ∈ H2(X , Z).

Suppose X is Stein. Then ω̃ε ≥ 1
1−2δ (ω−2δω) = ω on B1\V .We obtainωε bymodifying

ω̃ε outside B1. Let λ ∈ C∞
0 (X) be such that supp(λ) ⊆ B1, 0 ≤ λ ≤ 1, and λ ≡ 1 on some

neighborhood of V . Then, for sufficiently small ε′ > 0,

ωε = ω̃ε + ddc(ε′(1 − λ)ψ)

satisfies (a)-(d) since ωε = ω̃ε on some neighborhood of V . If, furthermore, K is convex
with respect to principal hypersurfaces, then [ωε] = 0 since [T ] = 0 in (i). ��
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4 Proofs of Theorems 1.1 and 1.2

Let X be either a projective or a Stein manifold. Suppose there is an open neighborhood
V � U of K and a Hodge form ω on X such that ω = ddcϕ on V . By Sard’s theorem, there
exist 0 < ε′ < ε so that Dε = {z ∈ U : ϕ(z) < ε} � V , and both Dε′ and Dε are smoothly
boundedStein domains. Since Dε is smooth, Hp(Dε, Z) and H p(Dε, Z) arefinitely generated
for all p, and the kernel of the morphism H2(Dε, Z) → H2(Dε, R) ∼= H2(Dε, Z) ⊗ R

given by a �→ a ⊗ 1 is the torsion subgroup of H2(Dε, Z). Moreover, since Dε is Stein,
Pic(Dε) ∼= H2(Dε, Z) via L �→ c1(L).

Let (L, σ ) be a positiveHermitian line bundle on X such that ddcσ = ω, and thus, c1(L) =
[ω]; see [7, Theorem V.13.9]. Since c1(L|Dε ) = [ι∗Dε

ω] = [ddcϕ] = 0 in H2(Dε, R), there

is some M ∈ N so that Mc1(L|Dε ) = c1(L M |Dε ) = 0 in H2(Dε, Z). Thus, L M |Dε is trivial,
and the restriction of the metric ψ = Mσ to Dε may be identified with a function, also
denoted by ψ , via a trivialization of L M over Dε . Since the curvature form of a metric is
independent of the choice of trivializations, the function h = ψ − Mϕ ∈ PH(Dε), the space
of pluriharmonic functions on Dε .

Let {γ1, . . . , γp} be a Z-basis of H1(Dε, Z), and {ν1, . . . , νp} ⊂ H1(Dε, R) be the dual
basis, i.e., νk(γ j ) = δ jk , 1 ≤ j, k ≤ p, where δ jk denotes the Kronecker symbol. By
[11, Lemma 1.4], there is a surjective map � : P H(Dε) → H1(Dε, R) such that for
g ∈ P H(Dε),

g = log |s| for some s ∈ O∗(Dε) if and only if �(g)(γ j ) ∈ Z for all j = 1, . . . , p. (4.1)

By the surjectivity of�, there existh1, . . . h p ∈ PH(Dε) such that�(h j ) = ν j , j = 1, . . . , p.
Thus, there is a dense set � of vectors (λ1, . . . , λp) ∈ Rp such that

�(h + λ1h1 + · · · + λph p)(γ j ) ∈ Q, ∀ j = 1, . . . , p. (4.2)

Let χ ∈ C∞
0 (Dε) be such that χ ≡ 1 on Dε′ . Let (λ1, . . . , λp) ∈ � be so small in norm so

that the function
ψ̃ = ψ + χ

(
λ1h1 + . . . + λph p

)

is strictly plurisubharmonic on Dε . Since ψ̃ coincides with ψ outside a compact subset of
Dε , ψ̃ extends to a positive Hermitian metric on L M , also denoted by ψ̃ . The proof will be
completed by applying Lemma 3.1 to

(
L N , N ψ̃

)
for sufficiently large N ∈ N.

For this, observe that by (4.2) and (4.1), there exists an N ∈ N and s ∈ O∗(Dε) such that
|s| = eN (h+λ1h1+···+λph p) on Dε . Now, s can be viewed as a holomorphic section of L M N |Dε

via the N th power of the same trivialization of L M as considered earlier. Thus, we have that

K = {z ∈ Dε′ : ϕ(z) ≤ 0}
= {z ∈ Dε′ : eMϕ(z) ≤ 1}
=

{
z ∈ Dε′ : eψ(z) ≤ eh(z)

}

=
{

z ∈ Dε′ : eN (ψ(z)+λ1h1(z)+···+λph p(z)) ≤ eN (h(z)+λ1h1(z)+···+λph p(z))
}

=
{

z ∈ Dε′ : eN ψ̃(z) ≤ |s(z)|
}

=
{

z ∈ Dε′ : ‖s(z)‖−N ψ̃ ≥ 1
}

.

Thus, by Lemma 3.1, K is rationally (resp. hypersurface) convex in X . In the case when
[ω] = 0, L is the trivial bundle. Thus, by Lemma 3.1, for every a /∈ K , there is a holomorphic
function f on X whose zero locus separates a from K . Thus, K is convex with respect to
principal hypersurfaces.
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Conversely, suppose K is a rationally or hypersurface convex compact. Fix aKählermetric
ω on X , and a neighborhood V of K such that V � U . If X is Stein, in addition choose
ω = ddcρ for some strictly plurisubharmonic function ρ on X . Let χ ∈ C∞

0 (U ) be such that
χ ≡ 1 on V . Then χϕ extends to a smooth function on X , which we also denote by χϕ.
Since ϕ is strictly plurisubharmonic on U and supp χ is compact, there is an M ∈ N large
enough so that ddc(χϕ) = ddcϕ ≥ 1

M ω on V and ddc (χϕ) ≥ −Mω on X\V .

Let ε = − 1
4M2 . By Proposition 3.2, there is a smooth (1, 1)-form ωε on X such that

(a) ωε ≥ ω on X\V ,
(b) ωε ≡ 0 in a neighborhood of K ,
(c) ωε ≥ − 1

4M2 · ω in V ,

(d) [ωε] ∈ H2(X , Z).

Define ω̃(z) = ddc (χϕ) + 2Mωε. On a neighborhood of K , ω̃ = ddcϕ. When z ∈ X\V ,
ω̃ = ddc (χϕ) + 2Mωε ≥ Mω > 0. When z ∈ V , ω̃ = ddcϕ + 2Mωε ≥ 1

2M ω > 0. Thus,
ω̃ is a Kähler form. Lastly, note that [ω̃] = [Mωε] ∈ H2(X , Z), and is 0 if K is convex with
respect to principal hypersurfaces. Thus, ω̃ is the desired Hodge form on X . This completes
the proof of Theorems 1.1 and 1.2.

5 Proof of Theorem 1.4

Lemma 5.1 Let s be a holomorphic section of a positive line bundle on a complex projective
manifold X. Then every function holomorphic on X\s−1(0) is the uniform limit on compacts
of meromorphic functions with poles on s−1(0).

Proof Write H = s−1(0) and let f ∈ O(X\H). Since L is positive, the Kodaira embedding
theorem gives a k ∈ N and a basis (s0 = sk, s1, . . . , sN ) of �(X , Lk) so that the map
� : X → CPN given by

x �→ [s0(x) : . . . : sN (x)]
defines a holomorphic embedding of X onto a subvariety V of CPN with L = �∗(O(1)|V ).
It follows that X\H maps into CN ∼= CPN \{z0 = 0}. Therefore f ◦ �−1 is a holomorphic
function on a subvariety of CN and hence by the Oka–Cartan extension theorem, there
exists an F ∈ O(CN ) which restricts to f ◦ �−1 on V . Expanding F into a power series
and precomposing its Taylor polynomials by � gives the desired sequence of meromorphic
functions. ��

Proof of Theorem 1.4 Suppose that K is rationally convex and let U denote a neighborhood
of K on which f is defined. By the rational convexity of K , for every p /∈ K , there exists
a section s of a positive line bundle L with zero set h such that p ∈ h and K ∩ h =
∅. Since X\h is a Stein manifold which contains K as a compact subset, it follows that
K̂O(X\h) (the holomorphically convex hull of K in the Stein manifold X\h) is a compact
set of X\h, and hence there is a neighborhood V of p that is disjoint from K̂O(X\h). By
compactness we can cover X\U by finitely many neighborhoods V1, . . . , Vk with associated
hypersurfaces h1, . . . hk coming from global sections s1, . . . , sk of positive holomorphic line
bundles L1, . . . , Lk . Therefore,

K̂O(X\h1) ∩ . . . ∩ K̂O(X\hk ) ⊂ U .
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Set s∗ = s1 · · · sk ∈ �(X , L1 ⊗ · · · ⊗ Lk). The zero set of s∗ is h∗ = h1 ∪ . . . ∪ hk , and
furthermore

K̂O(X\h∗) ⊆ K̂O(X\h1) ∩ . . . ∩ K̂O(X\hk ).

The given function f is holomorphic on a neighborhood of K̂O(X\h∗), so the classical Oka–
Weil theorem for Stein manifolds shows that it is the uniform limit on K of a sequence of
functions in O(X\h∗). Via Lemma 5.1 above, elements of O(X\h∗) can be approximated
uniformly on compacts by meromorphic functions on X with poles in h∗. This completes the
proof. ��

6 Proof of Theorem 1.3

In this section, we use the fact that, for compact subsets of Stein manifolds, convexity with
respect to (principal) hypersurfaces is equivalent to (strong) meromorphic convexity; see
[2, Definition 1.1 & Proposition 1.2]. For the sake of convenience, we refer to convexity
with respect to (principal) hypersurfaces as (strong) meromorphic convexity throughout this
section. By [11, Lemma2.2], a similar functional characterization holds for rational convexity
in a projective manifold X , where the appropriate class of meromorphic functions is

M+(X) =
{

f

g
: f , g ∈ �(X , L) for some positive L ∈ Pic(X)

}
.

In all three cases, we also need the following generalization of Corollary 1.5.4. in [18]. The
proof is identical to that of Corollary 1.5.4 in [18], and relies on the Oka–Weil theorem
for (strongly) meromorphically convex sets in Stein manifolds and rationally convex sets
in projective manifolds, see [2, Theorem 2.1], [17, Theorem 3.4], [12, Theorem 2], and
Theorem 1.4.

Lemma 6.1 Let X be a Stein manifold, and K ⊂ X be a compact subset that is convex with
respect to (principal) hypersurfaces. Suppose K is the disjoint union of compact sets L and
M. Then L and M are convex with respect to (principal) hypersurfaces. The same result
holds for a rationally convex compact subset of a projective manifold.

Proof of Theorem 1.3 Let X be a Steinmanifold, and K ⊂ X be a (strongly)meromorphically
convex compact set. Let U ⊂ X be a relatively compact open set that contains K . By the
(strong) meromorphic convexity of K and the compactness of bU , there exist finitely many
(strongly) meromorphic functions R1, . . . , Rm on X and an ε > 0 so that, for each p ∈ bU ,
there exists a j ∈ {1, . . . , m} such that R j is well-defined on K ∪ {p} and satisfies

|R j (p)| > ‖R j‖K + 2ε, (6.1)

where ‖R‖K = supz∈K |R(z)|. Given ε′ ∈ (0, ε], let
�ε′ = {

z ∈ U : R j is well-defined on z and |R j (z)| < ‖R j‖K + ε′, ∀ j = 1, . . . , m
}
.

Then, owing to (6.1),�ε′ is a union of connected components of a (strongly)meromorphically
convex compact set in X . By Lemma 6.1, �ε′ is itself a (strongly) meromorphically convex
compact in X . It is clear that K ⊂ �ε′ for all ε′ ∈ (0, ε]. Moreover, given any compact set
L ⊂ �ε , there exists an ε′ ∈ (0, ε) such that L ⊂ �ε′ � �ε .
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Since �ε is an analytic polyhedron, it is Stein. Thus, it admits a strictly plurisubharmonic
exhaustion function, say ρ. Choose c ∈ R so that

D = {z ∈ �ε : ρ(z) < c}
is strongly pseudoconvex, and K ⊂ D. Since D is compact, there exist 0 < ε′′ < ε′ < ε

such that �′′ = �ε′′ and �′ = �ε′ satisfy

K ⊂ D ⊂ �′′ � �′ � �ε.

Let χ ∈ C∞
0 (X) be such that supp(χ) ⊂ �ε, 0 ≤ χ ≤ 1, and χ ≡ 1 on�′. Let ω be a Kähler

form on X (in the case of strong meromorphic convexity, assume that ω = ddch, where h is
a strongly psh function on X ) such that after scaling ω if necessary, we have

ω + ddc(χρ) > 0 on X .

Let δ > 0 so that −δω > −ddcρ on �′. Then, since �′′ is (strongly) meromorphically
convex, by Proposition 3.2, there exists a smooth closed (1, 1)-form ω̃ such that ω̃ ≡ 0
on a neighborhood of �′′, ω̃ ≥ −δω on �′, ω̃ ≥ ω on X\�′, and ω̃ has (trivial) integer
cohomology class. Then,

ddc(χρ) + ω̃ ≥
{

ddcρ − δω > 0, on �′

ddc(χρ) + ω > 0, on X\�′.

Thus, ddc(χρ)+ω̃ is a (trivial) Hodge form on X that coincideswith ddcρ on a neighborhood
of D. Since U was an arbitrary open neighborhood of K , we obtain a neighborhood basis
with the desired property.

The other direction of the claim follows from the fact that the intersection of an arbitrary
family of (strongly) meromorphically convex sets is (strongly) meromorphically convex.

The case when X is a projective manifold can be argued similarly, with the exception that
R1, . . . , Rm belong to M+(X). ��
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