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Abstract. We show that a proper holomorphic mappifig D — D’ from
a domainD e C™ with real-analytic boundary to a domal € C" with
real-algebraic boundary extends holomorphically to a neighborhodt of

1. Introduction and the main result

The problem of boundary regularity of proper holomorphic mappings be-
tween bounded domains ", n > 2, has been studied for a long time.
This problem seems to be completely solved for strictly pseudoconvex do-
mains. Positive answers have been also obtained for pseudoconvex domains
of finite type withC'* boundary. For a survey on the subject until 1989 see
[F].

The question remains open for non pseudoconvex domains even in the
case when both domains have smooth real-analytic boundary. The goal of
this paper is to present the following result.

Theorem 1. Let D, D’ be bounded domains 6", n > 2, let 9D, the
boundary ofD, be smooth real-analytic an@D’ be smooth real-algebraic.
Let f : D — D’ be a proper holomorphic mapping. The¢rextends holo-
morphically to a neighborhood db.

Analogous theorems for bounded pseudoconvex domaids®imith
smooth real-analytic boundaries were proved in [DF2] and [BR]. For ar-
bitrary bounded domains with smooth real-analytic boundarieSZithe
result was proved in [DP1].

By areal-algebraic boundary we mean areal hypersurface giobally
defined by a polynomial equatia®(z,z) = 0. Our proof of Theorem 1 is
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based on the idea of analytic continuation of holomorphic mappings along
hypersurfaces. We first show thatextends to some open setdD and
then continuef holomorphically alonggD. Note that we do not require
pseudoconvexity oD or D’, and we do not assunapriori any regularity
of f on the boundary.

The following corollary generalizes a well-known theorem of H. Alexan-
der [A] stating that any proper holomorphic self-map of a unit ball is bi-
holomorphic.

Corollary 1. Let f be a proper holomorphic self-map of a bounded do-
main D C C", n > 1 with smooth real-algebraic boundary. Thehnis
biholomorphic.

Proof. By the result of [HP]f is biholomorphic if f extends smoothly to
dD. By Theorem 1f extends holomorphically to a neighborhood /of
O

In Sect. 2 we give basic definitions of Segre varieties and holomorphic
correspondences. In Section 3 we prove analytic continuation of germs of
holomorphic mappings along Segre varieties. The proof of Theorem 1 is
contained in Section 4.

2. Notation and preliminaries

Let I" be an arbitrary smooth real-analytic hypersurface with a defining
functionp(z,z) and letz" € I'. In a suitable neighborhodd > 2" to every
pointw € U we can associate its so-called Segre variety defined as

Qu ={z€ U :p(z,w) =0}. 1)
We can find neighborhoods; € U, of 2°, where
Uy="Uyx"Uyc CV' x C,,, (2)

such that for anyw € Uy, Q,, is a closed smooth complex-analytic hyper-
surface in/,. Herez = ('z, z, ). Furthermore, a Segre variety can be written
as a graph of a holomorphic function,

Qu={(z2,) € (Uy x"U3) : 2, =h(zw)}, 3

whereh(-, w) is holomorphic ifU,. U; andU; are usually called standard
pair of neighborhoods of’. A detailed discussion of Segre varieties can be
found in [DW], [DF2] or [DP1].
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A real-analytic hypersurfacE is calledessentially finitet a pointz® ¢
I ifthe Segremap) : z — Q. is finite-to-one in some neighborhood <,
or equivalently, if the set

Iw:{ZGUl:Qz:Qw} (4)

is finite for everyw nearz°. I is said to be essentially finite if it is essentially
finite at every point. Throughout the paper we assume that a standard pair of
neighborhood$/; € U, of any point onl” is always chosen in such a way
thatl,, is finite for anyw € U;. For further discussion of essential finiteness

of real-analytic hypersurfaces see [BJT] or [DF2].

Definition 1. A holomorphic correspondence between two domairad
D’inC"™isacomplex-analyticset C D x D’ which satisfies: (iflim¢c A =
n and (ii) the natural projectionr : A — D is proper.

We use the right prime to denote the objects in the target domain. The
setA can also be treated as a graph of the multiple valued mapping defined
by F := 7’ o 7~1, wherer’ : A — D’ is the natural projection.

Definition 2. Let U andU’ be open sets i©™ and letf : U — U’ be a
holomorphic mapping. We say thakxtends as a holomorphic correspon-
dence to an open sét D U, if there exist an open sét’ ¢ C™ and a
holomorphic correspondencé C V' x V' such thatl'y C A, wherely is
the graph of the mapping.

Remark 1.1f f extends tol” as a correspondence, theéh can always be
chosen to b&".

3. Extension as a correspondence

The next proposition is the main tool in propagation of analyticity of holo-
morphic mappings along real-analytic hypersurfaces.

Proposition 1. Let I ¢ C™ be a smooth real-analytic essentially finite
hypersurface and € I'. LetU; € U, be a standard pair of neighborhoods
of a. Let f : U, — C™ be a biholomorphic mapping;(U, N I") C I",
whereU, is an arbitrarily small neighborhood af, U, ¢ U; andI” € C"

is a compact smooth real-algebraic hypersurface. Then forbaay(Q,, N

Ui)\ 4, whered C (Q,NU) is an analytic set of dimension at mest- 2,
there exists a neighborhodd’ of a connected component@f N I"' N Uy
containinga, such thatf|y, i extends as a holomorphic correspondence
toWw.
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Let us clarify the statement of Proposition 1. Consider a pointQ), N
U:. From the properties of Segre varieties (see e.g. [DW]E Q5. In
general@,NI"NU; may contain several connected components. We choose
the component af), N "N U; which containg.. Then the proposition claims
that f extends as a holomorphic correspondence to a neighborhood of that
component for almost arlye Q, N Us.

Proof. The idea of the proof is similar to that of [S], Proposition 5.1. For
completeness we give a proof here, emphasizing the changes that should be
applied when” is not strictly pseudoconvex. The proof of the proposition
consists of several steps:

Step 1:Construct a correspondenéé in a neighborhood/, of a point
beQq \ A.

Step 2:Construct a multiple valued mappitg* in a neighborhoodV of a
connected component 6f, N I

Step 3:Show thatF™* containsf as a branch in some neighborhood:of

Step 4:Show thatV in Step 2 can be chosen in such a way that the multiple
valued mappind™ is a holomorphic correspondence.

Step 1Let us choose a thin neighborho®dof the set), N U; and shrink
the neighborhood/, so that for anyw € V the setQ,, N U, is nonempty
and connected. Define

A={(w,w') eV xC": f(QuNUa) C Qu}- (5)

It is shown in [S], Proposition 3.1 that is an analytic set iV’ x C™,
Further, from the algebraicity af” it follows that the equations defining
A are algebraic inv’ (for details see [S], Proposition 3.1; similar argument
is used in Step 2 of the proof of this proposition). Thiextends to an
analytic set in x P™ which we denote for simplicity by.

Let 2 C (U, N V) be a small open set containingBy the invariance
property of Segre varieties under biholomorphic mappingsyfer {2

f(Qw N Ua) C Q/f(w) (6)

Thereforel'y, C AandA # @. Let (w,w') € AN (2 x f(£2)) be an
arbitrary point. Thery (Q., N U,) C Q.. In view of (6) we conclude that

w' e I}(w). (7)

By [DF1], any compact real-analytic hypersurface(h is of finite type
(in the sense of D’Angelo), in particular it is essentially finite. Therefore by
shrinking {2 if necessary, we may assume tlii?(tw) is a finite set inf({2).

This implies thatlime A N (2 x f(2)) =n.



On boundary regularity of proper holomorphic mappings 521

We consider only the irreducible componentfthat containgy|,,.
Denote this component again bly
Letr: A — V andn’ : A — P" be the natural projections. Define

A={weV:dim(x '(w)nA) >1}. (8)

By Cartan-Remmert's theorem (see e.g. [J:l]bs an analytic set, and it was
shown in [S], Proposition 3.3, thdim~ A<n—2 Wesetd = Qa N A
From [S], Proposition 3.1 and Lemma 5.4, for anye (QaNU\ A

one can find a simply connected 3t V \ A with a,b € V; such that
after possibly a linear fractional transformation of the target coordinates
w', which is holomorphic o™, the setd N (V3 x C™) is a holomorphic
correspondence extenditfdy; v, -

Consider the restriction of the extended correspondence to some neigh-
borhood, > b, U, C V1, and letF' : U, — C™ be a corresponding multiple
valued mapping, that iB = 7’ o7~ !|y;, . We mention some important prop-
erties ofF. Letz’ € F(U,). Thenforany: € F~1(2), f(Q.NU,) C Q...
Sincef is biholomorphic inU,,

QaiNU,=Q.2NU,, V2' 22 F (). (9)

Therefore sincéd” is essentially finite['~! (') is finite for anyz’ € F(Uy).
It follows that

dmF(Q.NUy) =2n—2, if z€ Uy andQ, NU, # 2. (20)
This in particular implies that if’ € F(w), then

F(w) C I,. (11)

Step 2LetW be a neighborhood of the connected compone@,of I'NU;
that containg. We chooséV and shrink/, so thatforallz: €¢ W, Q.NU,
is nonempty and connected. Let

Y = {z € Uy : 7 is not locally biholomorphic near 7~ ()} (12)
be the singular locus df' and let
E={zeW:(Q,NnUy) C X}. (13)
Define

A = {(ww) € (W\E)x C": F(QuNUy) C QY.  (14)
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Let (w,w’) € A*. Consider an open simply connected get- (U, \ X)
such that),, N 2 # @. Then the branches @ are correctly defined i,
andF(Q, NUp) C Q' is equivalent to

F(QuN2) C Qyy (15)

for all branched” of F. Such neighborhoog® exists for anyw € (W \ E).

The inclusion (15) can be written as a system of holomorphic equations as
follows. Let P(2’, %) be the defining polynomial of”. Then (15) can be
expressed as

P'(F(2),@w') =0, forany z € Q, N . (16)

Choosingf? as in (2) and using (3) we obtain
P (F(’z, h(’z,w)),m) —0,V'2e'0, (17)

which is an infinite system of equations holomorphiaimnd algebraic in
w'. Thus locally (14) is given by a system of equations holomorphic in some
neighborhood ofw, w’). To prove thatdA* is a complex analytic set ifi? \
E) x C™ it remains to show thad* is closed. Supposge”, z*’) — (29, 2%")
asv — oo, (2¥,2”') € A*andz’ € (W \ E). ThenF(Q.» NUp) C Q...
SinceQ.» — Q.0 andQ’,,, — Q' ,,, we deduce thak’'(Q.o N U,) C @',
(29,2%") € A*, andA* is closed.

In view of essential finiteness @f, the setE is finite. Letp € E. Then

An({pt xC) c{pt x {F €U : F(Qy) CQ.}.  (18)

Notice that ifw’ € F(Q,) C Q.,, thenz’ € Q. ,. Hence the sefz’ € U’ :
F(Qp) C Q.,} has dimension at mo&t — 2. Therefored* N (E x C")
has Hausdorf2n-measure zero, and by Bishop’s theorem (see e.qg. [C]), it
is a removable singularity fod*, and A* is an analytic set ifV x C”".
The multiple valued mag* is now defined byF* = 7’ o 7!, where
7w : A* — W andrn’ : A* — C" are the natural projections.

Step 3.To simplify notations we denoté* by A* andW NU, NV by U,.
To show thatl’y),, C A* itis enough to prove the following lemma.

Lemmal. A*N (U, x C") =AnN (U, x C").

Proof. Let us first show that the following three inclusions are equivalent
forz e U, andQ, NU, # @:

I) f(Qz N Ua) C Q;’
iy F(Q.NU,) C QL (19)
i) F(Q.NU,) C Q.
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Indeed, supposg(Q.NU,) C Q.. Then by the invariance property of
the Segre varieties; € I ). Letw € Q. N U, andw’ € F(w). It follows
from the definition ofF that f(Q., N U,) C Q.,, andz € @, implies
f(z) € Q.,. Thereforew’ e Q’f(z). Since (w,w') € A was arbitrary,
F(Q.NnU,) C Q}(Z) = Q.. Thus i)=ii).

Suppose ii) holds. From (7) we hagée I}(Z). Letw € @, N U, and
w’ € F(w). Then by the definition of, f(Q., NU,) C Q. in particular,
f(z) € Q., asz € Q, N U,. But thenw' € Q}(Z). Since (w,w’) was
arbitrary, F'(Q- N Uy) C Q) = Q.,, and ii) = iii).

Finally, supposé’(Q.NU,) C Q. Letw € Q. NU, andw’ € F(w).
Thenw' € Q’,. On the other hand, by the definition % f(Q., N U,) C
Q.. in particular, f(z) € Q!, and thereforew’ € Q’f(z). Thusw' €
QLNQ ) Sincedim F(Q. NU,) = 2n — 2, we conclude that’ € I}(Z).
This proves that iii}= i).

Now the assertion of the lemma easily follows. [etz') € A* N (U, x
C™). ThenF(Q. NU;) C Q., and therefore by (19)/(Q. NU,) C Q.
But this meangz, 2’) € A. Conversely, if(z,2") € An (U, x C"), then
f(Q.NU,) C @, and therefore by (19)F(Q. N Uy) C Q.. But then
(z,7') € A*. Lemma 1 is proved. O

Step 4Consider the irreducible component4f which coincides with4 in
U, x C". For simplicity denote it byd*. To finish the proof of Proposition
1 we need to show that we can chod$eand a neighborhoo@d’ of I
such thatd* N (W x U’) is a holomorphic correspondence. L&t be a
neighborhood of ” such that the Segre may : 2’ — @', is finite-to-one
inU’. Letr : A* — W andn’ : A* — U’ be the natural projections.

We first show that forangy ¢ I'N' W

F*(z)=n"on l(2) c I'. (20)

Indeed, consider the set ! (I'NW) C A*. This is a real-analytic subset of
A* of dimensiorgn — 1. Let S = 7/~ (I). If (z,2') € A* N (U, x C"),
andz € I', then by Lemma 1 and (7); € I(.y. By [DW], forany 2’ € I",
I, C I, and therefore

N IrnU,) C8S. (21)

Hence the whole irreducible componentwof! (I'N W) containingr ! (a)
is contained inS. From (11) and the fact thdt, C I’ for anyz’ € I", the
assertion follows.

Now let us show thall can be chosen so small that

A N (W xoU") = @. (22)
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If not, thenthere exists asequerteg, 2"/ ) € A*suchthat?! — 20 € I'NW
andz’ — 2/° € 9U’ asj — o0o. Then(z, %) € A* andz° ¢ I (recall
thatl” is compact and/’ O I"). But this contradicts (20).

Since the change of coordinates performed earlier, is holomorphic
nearl”, (22) also holds for the original coordinate system. From that equa-
tionm : A* — Wisproper,and by Lemmadim¢ A* = nandl’y, C A*.
ThusA* N (W x U’) is the desired holomorphic correspondence. 0O

4. Proof of the main result

Proposition 1 allows us to extend a germ of a holomorphic mapping defined
at a point on the hypersurface along certain Segre varieties. This will be the
main tool in the proof of Theorem 1. To apply Proposition 1 we need to
connect different points 08D by Segre varieties. The proposition below
provides some information on the existence of such Segre varieties.

Let I" ¢ C™ be a smooth real-analytic hypersurface andletI” be a
strictly pseudoconvex point. By [CM] there exists a biholomorphic change
of coordinates near the origin such that in a new coordinate system the
defining function ofl" has the form

n—1
p(22) =20, + 3 P+ S prrw) (XD (23)
k=1 K], |L|>2

Proposition 2. Supposd” is a smooth real-analytic hypersurface with the
defining function given as {{23). LetU; , U, be a standard pair of neighbor-
hoods of the origin. Then there exists> 0 such that foranyw € Uy N I,

w = ("w, uy + ivy, ), satisfying

lon| < 8/'w], |w| <6, (24)
we can find a point € (U1 N Qo N Qu)-
Proof. Letw € I" satisfy (24). Then

n—1
Zn — W
Qu = zn+wn+zzkwk+ Z pKL( n>/ K LZO .

21
k=1 |K|,|L|>2
(25)

z € Qo implies z,, = 0, and therefore satisfies

Wy + szwk + Z PKL < wn) IZKIEL =0. (26)

|K,L|=2
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Sincew € I,
2un +|w>+ D prr(vn)(w)*(m)" =0. (27)
|K],|L>2
From (26) and (27) we obtain
n—1

. 1 _
vy, — 5\’111\2 + ; zrwy + D'z, 'w,vn) =0, (28)

whered('z,'w, v, ) is holomorphicinz and®(’z,"w, v,) = o(|'z|>+|w|?).

Let’z = tﬂ‘, t € C. Then from (28),

|w
1y,
"l

If |t] =€, e > 0, w satisfies (24) and is sufficiently small, then

1 .
- 5]’111] +t+ d(t,"w,v,) = 0. (29)

. 1 )
% - 5’/“]’ +&(t,"w,vy,)| < e (30)
Therefore, by Roudkis theorem equation (28) has a solutian= tw

w]”?

where|t| < e. Finally, If ¢ is chosen small enough, there U;. 0

Now letL = {z € Uy : 'z = x,, = 0} and let fix some: = ('0, iy,) €
L. Thenthere exists > 0 suchthatforanw € U1NI",w = ('w, up+ivy,),
satisfying

lyn — val < 8", |z —w| <6, (31)

one can find a poirg € (U; N Q. N Q). For that it is sufficient to perform
a translation shifting: to the origin and apply Proposition 2. Moreovér,
can be chosen uniformly for all € L in a small neighborhood of the origin.

Remark 2.If ¢ € (U1 N Q. N Qy), then there exists a path @ N I" N
U; which connects andw. Indeed, it is well known that if" is strictly
pseudoconvex; is close tol’, andp(¢,() > 0, thenQ N {z € Uy :
p(z,Z) < 0} is connected, and’ and(Q). intersect in general position.

For further reference define
!2275:{w€U1ﬂF: [Yn — vn| < 8]'w)|, |2 — w| <5}, (32)
wherez € L andd > 0.

Proof of Theorem 1We use the following notationt” = 9D, I’ = 0D'.
Let I'* be the strictly pseudoconvex partBf I'~ be the set of points off
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where the Levi form of the defining function éf has at least one negative
eigenvalue, and lef® = "'\ ('t u I'™).

In view of the result of [DF2] and [BR] it is enough to consider the
case when both domains are not pseudoconvex. It is well-known that any
holomorphic function inD extends pasf’—. Let us show thalf extends

holomorphically to a neighborhood of a dense open subset ef '\ '+,

wherel '+ is the interior of the sef'+. Observe thal/ is a semi-analytic set
which admits stratificatiod/ = U, M;,, whereM}, is a locally finite union
of smooth real-analytic manifolds of dimensiénk = 0,1,...,2n — 2.
For details see [BM].

Supposé € M, U is a neighborhood of the origid/ N U is a smooth
connected generic submanifold Bfanddim(M NU) = 2n — 2. ThenM
dividesI" N U into two connected components which we denote\lhy
and M~. Let M~ be the component which is contained fitt, and we
may assume that is holomorphic onM . Letb € Qo N U andS, be the
connected component ¢f, N ' N U that containg.

Lemma 2. We can choose pointsc Qo N U anda € Sy, such that
(ae M~

(ii) J¢(a) # 0

(iii) if A is the set from Proposition 1, théne (Q, NU) \ A4

Proof. Proposition 4.1 of [S] can be reformulated as follows. There exists
an open seb C Qo N U such that for any € w, M~ N S is a nonempty
real-analytic subset a¥/ ~ of dimension2n — 3. Thus we can choodec

w such thatJ; # 0 on M~ N S,, whereJy(z) is the Jacobian of the
mappingf. Leta € M~ NS, with J¢(a) # 0. Notice thath € wN @, and
dimgQ, Nw=n—-2.1fbe A, butwnNQ, ¢ A, we replace by another
point from(w N Q,) \ A. If (wN Q) C A we can slightly change the point

a € S, N M~ such that/;(a) # 0 still holds butw N Q, ¢ A, as the sefl
defined in Proposition 1 does not dependioAfter that we can find a new
be (QaNuw)\ A 0

By Proposition 1, for a small neighborho@d, > a, f|y, extends as
a holomorphic correspondence to a neighborhood;ofTherefore there
exists a neighborhoot, of the origin such thaf|y,np extends td/, as a
holomorphic correspondence. By [DPZ2], if a proper holomorphic rhap
D — D’ extends as a holomorphic correspondence to some neighborhood
of a point0 € 9D, thenf in fact extends as a holomorphic mapping.

Note thatM is generic at almost any point where the dimensiofviois
2n—2.I1f M NU is asubmanifold andim M < 2n—2, then we can always
find a generic submanifold ifi of dimensior2n — 2 which contains\/ NU.
By repeating the argument that we used for extension to generic points of
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M we now extend’ to a dense open subsetidf. Denote byY' C I" the set
of points of holomorphic extendability gf. Thus we proved the following
lemma.

Lemma 3. (I'” U M;) C ¥, where)M; is a dense open subset/uf.

From the above consideratiords jntersects every connected component
of I't. Our next goal is to show thdt* c X. Letz € ¥ N 't and let
w® € I't be an arbitrary point in the same component’of as z°. We
connectz’ andw® by a pathr : [0,1] — I'*.

Lemma 4. If ty € (0,1] and f extends holomorphically te(t) c I'* for
any0 < t < tg, thenf extends holomorphically to a neighborhood-¢f).

Proof. Without loss of generality assume thafts) = 0 and is real-
analytic nearty. First suppose that is tangent toZ({(I"), the complex
tangent plane t@" at the origin. After an appropriate change of coordinates
we may assume that for afy> 0 there exists. € (7N {2y s5), where(2 5 is
defined as in (32). By Proposition 2, there exists a pointa neighborhood
U of the origin such thai € @, N U and0 € Q3. Furthermore, by Remark
2 for a andb sufficiently close to the origing, N I' N U is connected.
Again, if necessary we can slightly move poihtanda in such a way that
be Qq\AandJy(a) # 0. Then Proposition 1 applies, arf¢t;, extends as
a correspondence to a neighborhoo@ef I" N U, and thereforg extends
as a correspondence to the origin. By [DF2gxtends as a holomorphic
mapping.

Now suppose that the angle between the tangent vecteffand
Tf(t)(l“) is bounded below from zero d@s— ty. By the result of [CM]
there exists a local biholomorphic change of variables such that the defining
function of I" near the origin is given in the form (23) andontains the set

L={ze€U: " "2=12,=0; y, >0}
By Proposition 2 we can find > 0 andw € L, such that
QusN s # S (33)

Leta € §2,,5 N 2 5. Applying Proposition 1 and [DP2] we first continue
f holomorphically fromw to a neighborhood of along the Segre variety
connecting these points. Then similarly we extgritblomorphically along
the Segre variety connecting poimand the origin. O

It follows from Lemma 4 thatl'* c Y. The remaining part of the
hypersurface, to whiclf does not extend holomorphically, is contained in
I'°. By repeating the arguments which we used for extension across the
setM, we can show that extends holomorphically to a neighborhood of
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every regular point of I'°. Note that the set of points df whereT,(I"")
is contained if’¢(I") is a subvariety of dimension at mast — 3.

According to [N], the singular part of a real-analytic set defined by a
finite system of equations is contained in some real-analytic set of lower
dimension. Thus we can use an inductive procedure to exteidevery
pointonI'. Theorem 1 is proved. O

AcknowledgementsThe author would like to thank Prof. S. Pinchuk for many valuable
suggestions and comments on this paper.

References

[A] H. Alexander: Holomorphic mappings from the ball and polydisc. Math 208,
249-256 (1974)

[BM] E. Bierstone, P. Milman: Semianalytic and subanalytic sets. Inst. Hautes Etudes
Sci.67, 5-42 (1988)

[BJT] M. Baouendi, H. Jacobowitz, F. Treves: On the analyticity of CR mappings. Ann.
Math. 122, 481-500 (1985)

[BR] M.Baouendi, L. Rothschild: Germs of CR maps between real analytic hypersurfaces.
Invent.Math.93, 481-500 (1988)

[CM] S. Chern, J. Moser: Real hypersurfaces in complex manifolds. Acta M&3).
219-271 (1974)

[C] E. Chirka: Complex analytic sets. Kluwer, Dordrecht, 1989

[DF1] K. Diederich, J. Forngess: Pseudoconvex domains with real-analytic boundaries.
Ann. of Math (2)107, 371-384 (1978)

[DF2] K. Diederich, J. Fornaess: Proper holomorphic mapping between real-analytic pseu-
doconvex domains i€". Math. Ann.282, 681-700 (1988)

[DP1] K.Diederich, S.Pinchuk: Proper Holomorphic Mapsin Dimension 2 Extend. Indiana
Univ. Math.44, 1089-1126 (1995)

[DP2] K. Diederich, S. Pinchuk: Reflection Principle in Higher Dimensions. Doc.Math.
extra volume ICM, 703-712 (1998)

[DW] K. Diederich, S. Webster: A reflection principle for degenerate real hypersurfaces.
Duke Math. J47, 835-845 (1980)

[F] F. Forstneric: A survey on proper holomorphic mapping. Proceedings of the Special
Year in SCV's at the Mittag-Leffler Institute (Princeton, NJ), Math notes, Vol. 38,
Princeton University Press

[HP] X. Huang, Y. Pan: Proper holomorphic mappings between real analytic domains in
C". Duke Math. J82no. 2, 437-446 (1996)

[L] S. Lojasiewicz: Introduction to complex analytic geometry. Bigkiser, Basel, 1991

[N] R. Narasimhan: Introduction to the theory of analytic spaces. Lecture Notes in Math.
25, Springer-Verlag, New York, 1966

[S] R. Shafikov: Analytic Continuation of Germs of Holomorphic Mappings between
Real Hypersurfaces i@". Mich.Math.J.47, 2000



