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Abstract If R is a real analytic set in C
n (viewed as R

2n), then for any point p ∈ R
there is a uniquely defined germ Xp of the smallest complex analytic variety which
contains Rp, the germ of R at p. It is shown that if R is irreducible of constant dimen-
sion, then the function p → dim Xp is constant on a dense open subset of R. As an
application it is proved that a continuous map from a real analytic CR manifold M
into C

N which is CR on some open subset of M and whose graph is a real analytic set
in M × C

N is necessarily CR everywhere on M.

1 Introduction

Given a real analytic set R in C
n (we may identify C

n with R
2n), n > 1, we consider

the germ Rp of R at a point p ∈ R and define Xp to be the germ at p of the smallest
(with respect to inclusion) complex analytic set in C

n which contains Rp. Then Xp
exists and unique for each p ∈ R, with C

n being such a set for a generic R. It is natural
to ask how the dimension of Xp varies with p ∈ R. Consider the following example
(Cartan’s umbrella, see [3])

R =
{
(z1, z2) = (x1 + iy1, x2 + iy2) ∈ C

2 : x2(x2
1 + y2

1)− x3
1 = 0; y2 = 0

}
. (1)

At a point p = (0, x2) ∈ C
2, x2 �= 0, the complex analytic set Xp = {z1 = 0} contains

Rp, but at the origin X0 = C
2.

The set in (1) is irreducible but has different dimension at different points. In
particular, this set is not coherent (see Sect. 2 for definitions). Our main result is that
under the assumption that R is irreducible and has constant dimension, the dimension
of Xp is constant on a dense open subset of R. More precisely, the following result
holds.
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Theorem 1.1 Let � be a domain in C
n, n > 1, and R be an irreducible real analytic

subset of � of constant positive dimension. Then

(i) There exists an integer d > 0 and a closed nowhere dense subset S of R (possibly
empty) such that for any point p ∈ R\S, dim Xp = d.

(ii) If R is in addition coherent, then there exists a complex analytic set X, defined
in a neighbourhood of R\S such that for any point p ∈ R\S, the germ Xp is the
smallest complex analytic set which contains the germ Rp.

The function d(p) = dim Xp is upper semicontinuous on R, and therefore, dim Xp ≥
d for p ∈ S. We do not know any examples where R has constant dimension and S
is nonempty, and it would be interesting to obtain further information about this set.
The set S is empty in the case when the germ of R is complex analytic at some point.

Corollary 1.2 If R ⊂ � is an irreducible real analytic set of constant dimension, which
is complex analytic near some point p ∈ R, then R is a complex analytic subset of �.

Again, Cartan’s example {x2(x2
1 + y2

1) = x3
1} ⊂ C

2 provides an irreducible real ana-
lytic set, not of constant dimension, which is complex analytic only on some part of
it. Our main application concerns CR-continuation of continuous maps whose graphs
are real analytic.

Theorem 1.3 Let M be a real analytic CR manifold. Let f : M → C
N be a continuous

map whose graph �f is a real analytic subset of M × C
N , N ≥ 1. Suppose that f is CR

on a non-empty open subset of M. Then f is a CR map.

Note that the real analytic set �f is not assumed to be non-singular, and there-
fore the map f need not be smooth. In this case the condition for a continuous
function to be CR is understood in the sense of distributions. Further, even if �f is

smooth, the map f may still be non-smooth, for example f = x1/3
2 is a CR function on

M = {(z1, x2 + iy2) ∈ C
2 : y2 = 0}, its graph is a smooth real analytic set, but f is not

differentiable at {x2 = 0}.

2 Real analytic and subanalytic sets

In this section, we briefly review basic facts about real analytic sets. A real analytic set
R in an open set� ⊂ R

n is locally (i.e. in a neighbourhood of each point in�) defined
as the zero locus of finitely many real analytic functions. R is called irreducible if it
cannot be represented as a union of two real analytic sets each not equal to R. The
germ Rp of a real analytic set R at a point p ∈ R has a naturally defined complexifica-
tion Rc

p. If R
n is viewed as as subset of C

n, then Rc
p ⊂ C

n is the complex analytic germ
at p characterized by the property that any holomorphic germ at p which vanishes on
Rp necessarily vanishes on Rc

p. Thus, Rc
p is the germ of a complex analytic set of real

dimension twice that of R at p. To define complexification of real analytic sets in C
n it

is convenient to introduce the following construction.
Let d : C

n
ζ → C

2n
(z,w) be the map defined by d(ζ ) = (ζ , ζ ). Then D := d(Cn) is a

totally real embedding of C
n into C

2n. Suppose R is a real analytic set of dimension
d > 0, p ∈ R, U ⊂ C

n is some neighbourhood of p, and

R ∩ U = {
ϕj(Reζ , Imζ ) = ϕj(ζ , ζ ) = 0, j = 1, . . . , k

}
,
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where ϕj(ζ , ζ ) are real analytic in U. Then the complexification Rc
p of Rp can be

defined as the germ at d(p) in C
2n of the smallest complex analytic set which contains

the germ of d(R) at d(p). When U and ϕj are suitably chosen, the complexification
may simply be given by a representative

{
(z, w) ∈ U′ : ϕj(z, w) = 0

}
,

where U′ ⊂ C
2n is some neighbourhood of d(p). Thus, Rc

p is the germ of a complex
analytic set of complex dimension d such that Rc

p ∩ D = d(Rp). If Rp is irreducible,
then so is Rc

p. The following proposition allows to replace germs of analytic sets with
their representatives. The proof can be found in [11].

Proposition 2.1 Let R ⊂ � be a real analytic set. Then for every point p ∈ R there is
a neighbourhood U of p such that if Q is a real analytic set in � and Rp ⊂ Qp, then
R ∩ U ⊂ Q ∩ U.

It follows from Proposition 2.1 that the function d(p) = dim Xp is upper semi-
continuous on R. For R ⊂ � real analytic denote by OR(�) the sheaf of germs of
real analytic functions, and by I(R) the ideal in OR(�) of germs of real analytic
functions that vanish on R (the so-called sheaf of ideals of R). Then R is called
coherent if I(R) is a coherent sheaf of OR-modules. In fact, it follows from Oka’s
theorem (which also holds in the real analytic category) that R is coherent if the
sheaf I(R) is locally finitely generated. The latter means that for every point a ∈ R
there exists an open neighbourhood U ⊂ � and a finite number of functions ϕj,
real analytic in U and vanishing on R, such that for any point b ∈ U, the germs of
ϕj at b generate the ideal I(Rb). Note that the corresponding statement for com-
plex analytic sets always holds by Cartan’s theorem, i.e. every complex analytic set is
coherent.

Proposition 2.2 Let � ⊂ C
n be an open set, and let R ⊂ � be an irreducible real

analytic set of constant positive dimension d. Suppose Rc
a = Ad(a), where Ad(a) is a

germ at point d(a) of some irreducible complex analytic set A defined in some open set
in C

2n. Then for any point b ∈ R sufficiently close to a,

(i) Rc
b ⊂ Ad(b), where Ad(b) is the germ of A at d(b). Further, dim Rc

b = dim Ad(b),
and thus Rc

b is the union of certain irreducible components of Ad(b).
(ii) If R is coherent, then Rc

b = Ad(b).

Proof (i) Let A be an irreducible complex analytic subset of some open set U′ ⊂ C
2n,

d(a) ∈ U′, such that Ad(a) = Rc
a. It follows from Proposition 2.1 that if U′ is sufficiently

small, then d(R) ∩ U′ ⊂ A. In particular, if b ∈ R is close to a, then d(Rb) ⊂ A, and
therefore, Rc

b ⊂ A. Now, since A and Rc
b both have dimension d and contain d(Rb),

which is a totally real subset of real dimension d, it follows that Rc
b must coincide with

the union of some irreducible components of Ad(b).
(ii) Since R is coherent, there exist functions ϕ1(ζ , ζ ), . . . ,ϕk(ζ , ζ ) real analytic in

some open set U ⊂ C
n containing a, such that the germs of these functions at any point

b ∈ U generate the ideal I(Rb). Then Rc
b is defined by the equations ϕj(z, w) = 0. By

the uniqueness theorem for complex analytic sets, Rc
b = Ab. �	

In Proposition 2.2(ii) the assumption that R is coherent cannot be in general
replaced by the assumption that R has constant dimension. Indeed, consider the
set (cf. [3])

R = {x ∈ R
3 : x3(x2

1 + x2
2)(x1 + x2) = x4

1}. (2)
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This is an irreducible real analytic set of constant dimension which is not coherent at
the origin. We may naturally identify R

3 with the set C
3 ∩ {y1 = y2 = y3 = 0}. Then

the set
X = {z = x + iy ∈ C

3 : z3(z2
1 + z2

2)(z1 + z2) = z4
1}

can be viewed as the complexification of R at the origin. However, at any point
p = (0, 0, x3), x3 �= 0, the germ Xp is reducible, and only one of its components is
the complexification of Rp, which is irreducible. The set R in (2) (viewed as a subset
of C

3) is also an example of an irreducible non-coherent real analytic set which has
constant dimension and such that there is no globally defined X such that Xp is the
smallest complex analytic germ containing Rp for all p ∈ R.

In the proof of Theorem 1.3 we will use some results concerning subanalytic sets.
A subset R of a real analytic manifold M is called semianalytic if for any point p ∈ M
there exist a neighbourhood U and a finite number of functions ϕjk and ψjk real
analytic in U such that

R ∩ U = ∪j{ζ ∈ U : ϕjk(ζ ) = 0, ψjk(ζ ) > 0, k = 1, . . . , l}.
In particular, a real analytic set is semianalytic. A subset S of a real analytic manifold
M is called subanalytic if for any point in M there exists a neighbourhood U such that
S ∩ U is a projection of a relatively compact semianalytic set, that is there exists a real
analytic manifold N and a relatively compact semianalytic subset R of M × N such
that S ∩ U = π(R), where π : M × N → M is the projection.

The main reason for introducing the class of subanalytic sets comes from the fact
that the images of semianalytic (in particular real analytic) sets under real analytic
maps are subanalytic. Semi- and subanalytic sets enjoy many properties of real analytic
sets, for example, a finite union, intersection and set-theoretic complement of such
sets is again in the same class. Further, semi- and subanalytic sets admit stratifications
satisfying certain properties.

Given a subanalytic set S, we call a point p ∈ S regular if near p the set S is just a real
analytic manifold of dimension equal to that of S (i.e. maximal possible). Denote by
reg(S) the set of all regular points. Points which are not regular form the set of singular
points, sing(S). We will use the following result due to Tamm [12], Theorem 1.2.2(v).

Proposition 2.3 ([12]) If S is a subanalytic set, then reg(S) and sing(S) of S are both
subanalytic. Moreover, dim sing(S) ≤ dim S − 1, unless S = ∅.

For more about semianalytic and subanalytic sets see e.g. [2] or [8]. A detailed
discussion of real analytic sets can be found in [3,10] or [11].

3 Pre-images of projections of analytic sets

Let R ⊂ C
n be a real analytic set, 0 ∈ R, and R irreducible at the origin. Let A ⊂ C

2n

be a representative of Rc
0, the complexification of the germ R0, and let d : C

n
ζ → C

2n
(z,w)

be the totally real embedding. After rescaling we may assume that A is an irreducible
complex analytic subset of the unit polydisc�2n = {(z, w) ∈ C

n × C
n : |zj| < 1, |wj| <

1, j = 1, . . . , n}, and d(R) ∩�2n ⊂ A. Let

π : �2n
(z,w) → �n

z (3)
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be the coordinate projection onto z-subspace. For the proof of Theorem 1.1 we will
need the following result.

Lemma 3.1 There exist a closed nowhere dense subset S of A, a neighbourhood U of
A\S in �2n, and a complex analytic subset Y of U with the following properties:

(a) S does not divide A, and d(R) ∩ S is nowhere dense in d(R).
(b) Y can be locally given as the zero locus of a system of holomorphic equations

each of which is independent of the variable w.
(c) A ∩ U ⊂ Y ⊂ π−1(π(A)).

Proof For 1 ≤ j ≤ n define

πj : C
2n
(z,w) → C

2n−1
(z,w1,...,wj−1,wj+1,...,wn)

(4)

to be the coordinate projection parallel to wj-direction, and observe that for any
1 ≤ k ≤ n,

π−1
k ◦ πk ◦ π−1

k−1 ◦ πk−1 . . . π
−1
1 ◦ π1(A) ⊂ π−1(π(A)). (5)

For p ∈ A let lpπ1 denote the germ of the fibre of π1|A at p, i.e. the germ at p of the
set π−1

1 (π1(p)) ∩ A. Then by the Cartan–Remmert theorem (see e.g. [9]) the set

E1 = {p ∈ A : dim lpπ1 > 0} (6)

is complex analytic. Suppose that dim E1 = dim A. Then, since A is irreducible,
E1 = A, and therefore every point of A has a fibre of dimension one. It follows
then that π−1

1 (π1(A)) = A, and so π−1
1 (π1(A)) is a complex analytic subset of �2n.

Assume now that dim E1 < dim A. Then d(R) �⊂ E1, since otherwise d(R) would
be contained in a complex analytic set of dimension smaller than that of A, but A
is a representative of the complexification of R0, which means that A is the smallest
complex analytic set containing d(R). Since every point in E1 has a fibre of dimension
one, π−1

1 (π1(E1)) = E1, and if p ∈ A\E1, then π1(p) /∈ π1(E1).
Suppose that p0 ∈ A\E1. Thenπ−1

1 (π1(p0))∩A is a finite set. Therefore, there exists
a neighbourhood �0 ⊂ �2n of p0 such that the restriction of π1 to �0 ∩ A is a finite
map. Furthermore, we can choose�0 to be of the form�0 = �′

0 ×�′′
0 ⊂ �2n−1 ×�w1 ,

with the property that A ∩ (�′
0 × (∂�′′

0)) = ∅. It follows that π1|A∩�0 is a proper map,
and by the Remmert proper mapping theorem, π1(A∩�0) is a complex analytic subset
of �′

0. Hence, π−1
1 (π1(A ∩�0)) is a complex analytic subset of �0. Furthermore,

π−1
1 (π1(A ∩�0)) ∩�0 = (

(π1(A ∩�0))×�w1

) ∩�0 (7)

defines a complex analytic set that can be given by a system of equations independent
of w1. We set S1 = E1, and thus we proved that there exists a neighbourhood U1 of
A\S1 and a complex analytic subset Y1 of U1 that locally can be represented as in (7).
It follows from (5) that Y1 ⊂ π−1(π(A)).

We now argue by induction. Suppose that there exist a closed nowhere dense subset
Sk of A, which satisfies condition (a) of the lemma, and a complex analytic subset Yk
of some neighbourhood Uk of A\Sk, which satisfies (c) and can be locally given in
the form {ϕ(z, wk+1, . . . , wn) = 0}, k < n. If the set Yk is reducible, we keep only one
irreducible component of Yk which contains A ∩ Uk, and for simplicity denote this
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component again by Yk. (Observe that A ∩ Uk is still irreducible, since the regular
part of A ∩ Uk is connected.) Consider the set

Ek+1 = {p ∈ Yk : dim lpπk+1 > 0}. (8)

Then as before, Ek+1 is a complex analytic subset of Yk. If dim Ek+1 = dim Yk, then
Ek+1 = Yk = π−1

k+1(πk+1(Yk)), and

π−1
k+1(πk+1(Yk)) =

(
π−1

k+1(πk+1(Yk)) ∩ {(z, w) : wk+1 = 0}
)

×�wk+1 .

This show that Yk is a complex analytic subset of Uk that satisfies (c), and can be given
by a system of equations independent of (w1, . . . , wk+1).

Suppose now that dim Ek+1 < dim Yk. If A ∩ Uk ⊂ Ek+1, then we simply define
Yk+1 = Ek+1. This defines a complex analytic subset of Uk with all the required prop-
erties. The remaining case is A �⊂ Ek+1. Then every point a ∈ A\Ek+1 is contained
in some neighbourhood in which the map πk+1|Yk is proper, and we may repeat the
argument above to define Yk+1 to be a complex analytic subset of some neighbour-
hood of A\Sk+1, where Sk+1 = Sk ∪ (A ∩ Ek+1), such that locally Yk+1 is given as
π−1

k+1(πk+1(Yk)). By assumption, Sk+1 is closed nowhere dense in A, does not divide A,
and does not contain d(R). By construction, Yk+1 is locally given as πk+1(Yk)×�wk+1 ,
and therefore it can be defined by a system independent of (w1, . . . , wk+1). Finally, by
(5), Yk+1 ⊂ π−1(π(A)).

After n steps the set Yn defined in a neighbourhood of A\Sn will satisfy the lemma.
�	

4 Proof of theorem 1.1

For each p ∈ R denote by d(p) the dimension of the germ Xp. Since d(p) is a positive
integer-valued function on R, there exists a minimum, say d. Let q be a point where
d(p) attains its minimum, and let Xq be the germ of a complex analytic set at q with
dim Xq = d which contains Rq. Furthermore, since the set of points where R is not
locally irreducible is contained in the singular part of R (and hence nowhere dense
in R), the point q can be chosen in such a way that R is locally irreducible at q. This
implies that Xq can also be chosen to be irreducible. Let � be a connected open
neighbourhood of q, and X ⊂ � be a particular representative of the germ Xq such
that Xp is the germ of the smallest dimension containing Rp for all p ∈ R ∩�, but X
is either not defined at some point p0 ∈ ∂� ∩ R or Xp0 does not satisfy the described
property. We consider two cases depending on whether Rp0 is irreducible or not.

Along with the complexification of R we may also consider the complexification in
C

2n of the set X. If {ϕk(ζ ) = 0} is the system of holomorphic equations defining X,
then the system {ϕk(z) = 0} (variables wj are not involved) defines a complex analytic
set Xz on some open set in C

2n. We note that Xz ∩ D = d(X), and that the canonical
complexification of X (viewed as a real analytic set) can be recovered from Xz as

Xc = Xz ∩ Xw := {ϕk(z) = 0} ∩ {ϕk(w) = 0}. (9)

In particular, Xc ⊂ Xz on a non-empty open set in C
2n where Xc and Xz are both

well-defined.
Conversely, if Y is a complex analytic set in C

2n defined by a system of equations
ϕk(z) = 0, which are independent of w, then Y induces a complex analytic set X in
C

n that can be defined as
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X := d−1 (
D ∩ {ϕk(z) = 0} ∩ {ϕk(w) = 0}) .

If fact, D ∩ {ϕ(z) = 0} ∩ {ϕ(w) = 0} = D ∩ Y, and X = d−1(D ∩ Y).
Consider first the case when Rp0 is irreducible. After a translation we may assume

that p0 = 0, and so any neighbourhood of the origin contains an open piece of X. To
simplify the exposition we denote by A some representative of Rc

0 and assume without
loss of generality that A is a complex analytic subset of the polydisc �2n defined by
a system of equations holomorphic in �2n. Here (z, w) = (z1, . . . , zn, w1, . . . , wn) ∈
C

n × C
n, and the complexification of R comes from identifying ζ with z, and ζ with

w. The set A can be chosen irreducible. Let π be as in (3). By Lemma 3.1 there exist a
closed nowhere dense subset S ⊂ A, which does not divide A and d(R) �⊂ S, a neigh-
bourhood U of A\S in�2n, and a complex analytic subset Y of U, which may be locally
defined by a system of equations independent of w, such that A∩U ⊂ Y ⊂ π−1(π(A)).
Since U is connected, and Y can be chosen irreducible, we may assume that Y has
constant dimension.

Let p ∈ R ∩ X be arbitrarily close to the origin, and d(p) ∈ �2n\S. By Proposi-
tion 2.2(i), there exists a neighbourhood V ⊂ �2n of d(p) such that certain components
of A ∩ V coincide with Rc

p ∩ V. Denote them by Ã. Since Rc
p ⊂ Xc ⊂ Xz, we conclude

that Ã ⊂ Xz. Therefore, π−1(π(Ã)) ⊂ Xz. Indeed,

π−1(π(Ã)) ⊂ π−1(π(Xz)) = Xz,

where the last equality holds because Xz is defined by a system of equation indepen-
dent of w. On the other hand, X is the smallest complex analytic germ containing
R, and therefore, π−1(π(Ã)) = Xz, as otherwise, the set π−1(π(Ã)) would induce a
smaller complex analytic set in C

n containing Rp.
We now claim that dim Y = dim Xz. First, observe that

dim π(Rc
p) = dim π(A). (10)

Indeed, suppose that on the contrary, dim π(Rc
p) < dim π(A). Let k be the generic

dimension of the fibre π−1(z) ∩ A for z ∈ π(A). Then since dim Rc
p = dim A,

Rc
p ⊂ {a ∈ A : dim laπ > k}.

The latter is a complex analytic subset of A by the Cartan–Remmert theorem, and by
the assumption, it is a proper subset of A. But this contradicts irreducibility of A. Thus
(10) holds, which implies dim π−1(π(Rc

p)) = dim Y. But dim π−1(π(Rc
p)) = dim Xz,

as otherwise, π−1(π(Rc
p)) induces a complex analytic set in C

n which contains Rp
and which is smaller than the set induced by Xz. This proves the claim. Finally, since
π−1(π(Ã)) = Xz, the set Y ∩ V contains Xz ∩ V as a union of locally irreducible
components at p.

Thus, we proved that if R is locally irreducible at p0 = 0, then for any point
p ∈ R\d−1(d(R) ∩ S), the set d−1(Y ∩ D) defines a complex analytic germ in C

n

at p which has dimension d and contains Rp. To complete the proof of part (i) of
Theorem 1.1 it remains to consider the case when Rp0 is reducible. Note that the
above construction produces a complex analytic germ of dimension d which contains
a dense open subset of one of the irreducible components of Rp0 .

We claim that given any two points on R there exists a path γ ⊂ R that connects
these points and satisfies the property that if a ∈ γ is a point where R is locally
reducible, then γ stays in the same local irreducible component of R at a. Arguing
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by contradiction, denote by 
 the set of all points on R that can be connected with a
given point q by a path γ which satisfies the above property, and suppose that
 �= R.
We claim that 
 is a real analytic set. Indeed, if p ∈ 
 is a smooth point of R, then
clearly a full neighbourhood of p in R is contained in 
. If p ∈ 
 is a singular point
of R, then either Rp irreducible, in which case again a full neighbourhood of p in R is
contained in 
, or Rp is reducible, and only some components of Rp are in 
. In any
case,
 is a real analytic subset of some neighbourhood of p. Since
 is clearly closed,
it follows that it is a real analytic set. Let 
′ := R\
, where the closure is taken in R.
Then 
′ is also a real analytic set. Indeed, if a ∈ R\
, then a full neighbourhood of a
in R is in 
′, and if a ∈ (R\
)\(R\
), then a ∈ R is a point at which Ra is reducible,
and therefore near a the set 
′ coincides with some irreducible components of Ra.
Since
′ is analytic near any of its points and closed, it follows that
′ is a real analytic
set. Thus R = 
 ∪
′, but this contradicts irreducibility of R. Hence, 
 = R, and that
proves the claim.

So if in the situation above Rp0 is reducible, we find a path γ with the described
property which connects q with the points on other components of Rp0 and repeat
the above construction along γ sufficiently many times. This proves that there exists a
dense open subset U of some neighbourhood of p0 such that for any p ∈ U, the germ
Rp is contained in some complex variety of dimension d.

For the proof of part (ii) simply observe, that by Proposition 2.2(ii), A = Xc near
p, and therefore, Y defines analytic continuation of the set Xz to a neighbourhood
of the origin. This in its turn provides analytic continuation of the set X to a neigh-
bourhood of a dense open subset of R. Further, the same holds if we repeat the above
construction near any other point on R, and therefore there exists a complex analytic
set X in a neighbourhood of a dense open subset of R with the desired properties.
Theorem 1.1 is proved.

Proof of Corollary 1.2. It follows from Theorem 1.1 that there exists an open set
� ⊂ C

n such that R ∩ � is a complex analytic set which is dense in R. We now use
the result of Diederich and Fornæss [6]. The claim in the proof of Theorem 4 in [6]
states that if Xq is a complex analytic germ at q ∈ R, and Xq ⊂ R, then there exists a
neighbourhood U of q, independent of Xq, such that Xq extends to a closed complex
analytic subset of U. It follows that � can be chosen to be a neighbourhood of R,
which proves that R is a complex analytic set. �	

5 Proof of theorem 1.3

First note that �f is an irreducible real analytic set of constant dimension. Let M̃ be
the subset of M on which f is CR. Since the set of singular points of the real analytic
set �f is nowhere dense in �f , there exists a point p ∈ M̃ such that (p, f (p)) is a smooth
point of �f . Further, the point p can be chosen in such a way that �f near (p, f (p)) is
the graph of a smooth map on M. In fact, by the real analytic version of the implicit
function theorem (see e.g. [4]) there exists a neighbourhood Up of p such that the map
f : M ∩ Up → C

N is real-analytic.
If the CR codimension of M is zero, then M is simply a complex manifold, and

the map f is holomorphic in Up. Therefore, �f is complex analytic over Up, and by
Corollary 1.2 is a complex analytic set in M × C

N . Since the projection π : �f → M
is injective, it follows (see e.g. [5]) that �f is itself a complex manifold, π : �f → M
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is biholomorphic, and therefore, f = π ′ ◦ π−1 is holomorphic everywhere on M (here
π ′ : �f → C

N is another projection). If the CR dimension of M is zero, then there is
nothing to prove since any function is CR. Hence, we may assume that both the CR
dimension and the CR codimension of M are positive.

The problem is local, therefore, it is enough to prove that f is CR in a neighbour-
hood of a point q ∈ M which is a boundary point of M̃, and then use a continuation
argument. By [1], there exists a neighbourhood U of q in M such that U can be gener-
ically embedded into C

n for some n > 1, i.e. n is the sum of the CR-dimension and
codimension of M. Thus, without loss of generality we may assume that M is a generic
real analytic submanifold of some domain in C

n, and f : M → C
N is a continuous map

which is a real analytic CR map on some non-empty subset Ũ of M. By [13], every
component fj of f |Ũ extends to a function Fj holomorphic in some neighbourhood
of Ũ. Then the map F = (F1, . . . , FN) defines a complex analytic set in C

n × C
N of

dimension n, namely, its graph �F . By construction �F contains the set �f .
Observe that �F is the smallest complex analytic set which contains �f . Indeed,

suppose, on the contrary, that there exists a complex analytic set A, dim A < n, which
contains a non-empty subset of �f . Let π : C

n+N → C
n be the projection. Then

M ⊂ π(A), where π(A) is a countable union of complex analytic sets in C
n of dimen-

sion at most n−1. This is however impossible, since M is a generic submanifold of C
n.

We now show that f is CR everywhere on M. By Theorem 1.1, there exist a
closed nowhere dense set S ⊂ �f , and a complex analytic subset X of a neigh-
bourhood of �f \S, dim X = n, which contains �f \S. Suppose first that p ∈ M, and
(p, p′) ∈ �f \S ⊂ C

n × C
N . Choose neighbourhoods� and�′ of p and p′, respectively,

so that X ∩ (�×�′) is complex analytic. Let π : X → � be the projection, and let

E = {x ∈ X : dim lxπ > 0}.
Let k be the generic dimension of π−1(ζ ) ∩ X for ζ ∈ π(X). Then k = 0, since
otherwise, π(X) is a locally countable union of complex analytic sets of dimension
at most n − k < n, and therefore π(X) cannot contain a generic submanifold M.
Therefore, dim E < n, and in particular, M �⊂ π(E). Consider the set E ∩ �f . This is
a real analytic subset of � × �′, and therefore, its projection, T := π(E ∩ �f ), is a
subanalytic set in �. From the above considerations, T �= M.

We first show that for any point ζ ∈ (M ∩�)\T, the map f is CR at ζ . Since π(E)
is closed, there exists a neighbourhood V ⊂ � of ζ such that V ∩ π(E) = ∅. We
may further shrink V and choose a neighbourhood V′ of f (ζ ) such that the projection
π : X ∩ (V × V′) → V is proper. In particular, this implies that π is a branched
covering. Let G ⊂ X ∩ (V × V′) be the branch locus of π . Then near any point
a ∈ (M ∩ V)\π(G) the map π−1 : V → X splits into a finite number of holomorphic
maps. It follows that there exists a branch of π−1, say σ , such that near a, the map f
coincides with the restriction to M of a holomorphic map π ′ ◦ σ : V → C

N . Therefore
f is CR. The set M ∩π(G) is the intersection of a real analytic manifold and a complex
analytic subset of V, and therefore it admits a stratification into a finite number of
smooth components. Each of these components is a removable CR-singularity for f .
More precisely one has the following result.

Lemma 5.1 Let M be a smooth generic submanifold of C
n, of positive CR dimension

and codimension. Let S ⊂ M be a smooth submanifold with dim S < dim M. Then any
function h continuous on M and CR on M\S is CR on M.
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This is a trivial generalization of Proposition 4 in [7] where the result is stated for
real hypersurfaces. The proof is the same, with the only difference being the degree of
the form ϕ. Applying Lemma 5.1 to each smooth component of M ∩ π(G) we deduce
that f is CR on M\T.

To prove that T is a removable CR-singularity for f we observe that by Propo-
sition 2.3, the regular part of T, is a smooth submanifold of M, and therefore, by
Lemma 5.1, reg(T) is a removable singularity for the map f . The set sing(T) is sub-
analytic of dimension strictly less than that of T, and we may repeat the process by
induction. After finitely many steps, we conclude that f is CR near p.

To complete the proof of the theorem it remains to consider the case (p, p′) ∈ �f ∩S.
We recall the construction in Lemma 3.1. Let A be some representative of the com-
plexification of the germ (�f )(p,p′) ⊂ C

2n+2N . In the notation of Lemma 3.1, let k be
the smallest integer such that (i) Yk defines a complex analytic subset in a neigh-
bourhood of A\S̃, where S̃ = S1 ∪ · · · ∪ Sk, and Sj are defined as in the proof of
Lemma 3.1, (ii) A ⊂ Yk ⊂ π−1

(w,w′)(π(w,w′)(A)), where π(w,w′) : C
2n+2N
(z,z′,w,w′) → C

n+N
(z,z′), and

(iii) Yk is locally defined by a system of equations independent of (w, w′). Then for
d : C

n+N → C
2n+2N , d(S) ⊂ S̃ near d(p, p′), and for any point q ∈ A\S̃, there exists

a small neighbourhood of q where Yk = {ϕν(z, z′) = 0}, for some ϕν(z) holomorphic
near q. Let

a ∈ Sk \
⎛
⎝

k−1⋃
j=1

Sj

⎞
⎠ ∩ d(�f ). (11)

Then there exists a neighbourhood U of d−1(a) such that near any point b ∈
d−1((A\Sk) ∩ D) ∩ U ⊂ �f , the set �f is contained in a complex analytic set of
dimension n, and d−1(Sk ∩ d(�f )) is a real analytic subset of �f ∩ U. We now may
repeat the argument which we used to prove that T is a removable CR-singularity for
f . Indeed, it follows that f is CR in π(((�f \d−1(Sk))) ∩ U), and π(�f ∩ d−1(Sk)) is a
subanalytic set in M. Using Proposition 2.3 and Lemma 5.1 we show that f is CR on
every smooth component of π(�f ∩ d−1(Sk)).

This shows that �f is the graph of a CR map at every point of d−1(Sk) ∩ �f . By
construction, the set Sk−1 is complex analytic, and therefore, d−1(Sk−1) ∩ �f is real
analytic, and therefore the same procedure as before applies. Arguing by induction
we show that for all j = 1, ..., k the set π(�f ∩ d−1(Sj)) is a removable CR-singularity
for f . This completes the proof of Theorem 1.3.
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