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1. Introduction

The classical theorem of Poincaré states that a biholomorphic map from an open
piece of∂B2 to ∂B2 extends to a global biholomorphism of the unit spheres. A
general question that arises from this result can be stated as follows.

Problem. Let ζ f : 0 → 0 ′ be a germ of a holomorphic map, at a pointζ ∈ 0,
between two smooth real-analytic connected hypersurfaces0 and0 ′ inCn. Under
what conditions on0 and0 ′ doesf extend analytically along any path on0?

We will usually identify the germζ f with one of its representatives—that is, a map
f : U → Cn defined in a small neighborhoodU 3 ζ and satisfyingf(U ∩ 0) ⊂
0 ′.

Several authors have studied this problem. Alexander [A] generalized Poin-
caré’s theorem to higher dimensions in 1974. A year later, Pinchuk [P1] proved
that any germ of a biholomorphic mapping from a connected strictly pseudo-
convex real-analytic hypersurface0 ⊂ Cn to ∂Bn extends analytically along any
path on0 as a locally biholomorphic map with the inclusionf(0) ⊂ ∂Bn.

Recall that a strictly pseudoconvex real-analytic hypersurface0 ⊂ Cn is called
sphericalat a pointp ∈0 if there exists a germ of a biholomorphic map atp from
0 to ∂Bn. It follows from [P1] that, if a connected strictly pseudoconvex hyper-
surface is spherical at a point, then it is spherical at any point. Pinchuk’s result
clearly holds if, in the target space,∂Bn is replaced by an arbitrary simply con-
nected compact strictly pseudoconvex spherical hypersurface0 ′. Indeed, if0 ′ is
spherical then a germ of a biholomorphic mappingg : 0 ′ → ∂Bn extends along
any path on0 ′. Since0 ′ is simply connected,g extends to a global mapping from
0 ′ to ∂Bn. But then0 ′ is biholomorphically equivalent to∂Bn. If 0 ′ is not simply
connected, the result is no longer true. In fact, Burns and Shnider [BS] constructed
some examples of compact and spherical but not simply connected hypersurfaces
inCn. For any such hypersurface0 ′ ⊂ Cn, there exists a germ of a biholomorphic
mappingf : ∂Bn → 0 ′ that does not extend holomorphically along some paths
on ∂Bn.
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In 1978, Pinchuk [P2] proved that, if0 is connected real-analytic strictly
pseudoconvex and0 ′ ⊂ Cn is nonspherical compact and strictly pseudoconvex,
then any germ of a biholomorphic mapf : 0 → 0 ′ continues analytically along
any path on0 as a locally biholomorphic mapping with the inclusionf(0) ⊂ 0 ′.
Note that0 ′ is not assumed to be simply connected.

If we do not require strict pseudoconvexity of0 ′ thenf may not extend holo-
morphically to certain points on0, as the following example shows.

Example. Let 0 ′ = {z ′ ∈ C2 : |z ′1|2 + |z ′2|4 = 1}. Thenf(z1, z2) = (z1,
√
z2 )

maps∂B2 to0 ′, butf can not be extended as a holomorphic mapping to a neigh-
borhood of(1,0)∈ ∂B2.

Nonetheless, it is possible to generalize Pinchuk’s results for non–strictly pseudo-
convex hypersurfaces in the preimage. In this case, of course, we can extend the
germ of a mapping only holomorphically, not locally biholomorphically. The goal
of this paper is to present the following theorem.

Theorem 1.1. Let0 be a connected, essentially finite, smooth, real-analytic hy-
persurface inCn, and letζ ∈ 0. Let 0 ′ be a compact strictly pseudoconvex real-
algebraic hypersurface inCn. Letf be a germ of a holomorphic mapping from0
to0 ′ defined atζ. Thenf extends holomorphically along any path on0 with the
inclusionf(0) ⊂ 0 ′.
By a real-algebraic hypersurface we mean a hypersurface inCn globally defined
byP(z, z̄) = 0,whereP(z, z̄) is a real polynomial. Precise definition of essential
finiteness will be given in Section 2. We do not claim thatf extends to a global
holomorphic mapping from0 to 0 ′. Without further topological assumptions on
0 it could happen that analytic continuation along different paths with the same
endpointz0 will give different holomorphic mappings in a neighborhood ofz0.

However, if0 is assumed to be simply connected, then (by the Monodromy theo-
rem)f does extend to a global mapping. Note that we do not require compactness
or pseudoconvexity of0, andf is not assumed a priori to be biholomorphic.

Corollary 1.2. Suppose that0 is an essentially finite real-analytic hypersur-
face inCn. If there exists a germ of a nonconstant holomorphic mapping from0 to
a compact strictly pseudoconvex real-algebraic hypersurface0 ′ ⊂ Cn, then0 is
pseudoconvex at any point. Moreover, the set of points on0 where the Levi form
is degenerate has real dimension at most2n− 3.

Corollary 1.3. Suppose thatD is a bounded domain inCn with a smooth
real-analytic connected and simply connected boundary∂D. Supposef is a non-
constant holomorphic mapping defined in some open setU such thatU ∩ ∂D is
not empty and connected andf(U ∩ ∂D) ⊂ ∂D ′, whereD ′ is a compact strictly
pseudoconvex real-algebraic domain inCn and ∂D ′ is its boundary. Thenf ex-
tends to a proper holomorphic mapping fromD toD ′.

The proof of Theorem 1.1 is based on the technique of Segre varieties and the re-
flection principle; the actual proof will be carried out in Section 6. We will first
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show that, by choosing a point arbitrarily close toζ (denote it again byζ) and a
defining function of0 nearζ, we may assume0 to be strictly pseudoconvex in
some neighborhoodUζ 3 ζ. Let 0s denote the set of strictly pseudoconvex points
of0 and let6 ⊂ 0 denote the set of points where the Levi form of0 is degenerate.
Then, using the results in [P1] and [P2], we can show thatf extends analytically
along any path in the connected component of0s that containsζ. The difficult part
of the proof is showing thatf extends along0 past6; in Sections 3, 4, and 5
we will build the necessary tools for such extension. Background material is pre-
sented in Section 2.

Under the additional assumptions that0 is real-algebraic and compact, the con-
clusion of Theorem 1.1 was obtained in [HJ]. The proof of this special case is
easier, since by Webster’s theorem [W] the germf is automatically algebraic,
which immediately gives its globalization.

2. Notation and Background Material

Let0 be a smooth real-analytic hypersurface inCn with a defining functionρ(z, z̄).
For a fixed pointz0 ∈ 0, choose the coordinate system so that∂ρ

∂zn
(z0) 6= 0. Let

U = {z : |zj − z0
j | < σ, j = 1, . . . , n} be a polydisk centered atz0. Chooseσ suf-

ficiently small that (a)ρ(z, z̄) has a well-defined complexificationρ(z, w̄) that is
holomorphic inz and antiholomorphic inw for (z, w)∈U×U and (b) ∂ρ

∂zn
(z, w̄) 6=

0 for (z, w)∈U × U.
Definition 2.1. Letw ∈U. The analytic varietyQw := {z ∈U : ρ(z, w̄) = 0}
is called theSegre varietyof w with respect to the hypersurface0.

Another analytic variety associated with the hypersurface0 and a pointw ∈U is
the set

Iw := {ζ ∈U : Qζ = Qw}.
Let zj = xj + iyj, ′z = (z1, . . . , zn−1), andz = (′z, zn). We next list some impor-
tant properties ofQw andIw (see e.g. [DF2; DW] for proofs).

Properties of Segre Varieties.
(a) z∈Qw ⇐⇒ w ∈Qz.

(b) z∈Qz ⇐⇒ z∈0.
(c) z∈ Iz.
(d) If z∈0 thenIz is a complex subvariety of0.
(e) Iw =

⋂{Qz : z∈Qw}.
(f ) Qw is independent of the choice of the defining function.
(g) Letz0∈0 and ∂ρ

∂zn
(z0) 6= 0. Then there exists a pair of neighborhoodsU1 and

U2 = ′U2 × nU2 ⊂ Cn−1′z × Czn of z0 with U1 b U2 and such that, for any
w ∈U1, Qw is a closed smooth complex-analytic hypersurface inU2 that can
be written as a graph of a holomorphic function,

Qw = {(′z, zn)∈ (′U2 × nU2) : zn = h(′z, w̄)},
whereh(·, w̄) is holomorphic in′U2.
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(h) The Segre mapλ : w→ Qw is locally one-to-one near strictly pseudoconvex
points of0.

Following [DP], we will call the neighborhoodsU1 andU2 just defined astandard
pair of neighborhoods of the pointz0.

Recall that a smooth real-analytic hypersurface0 ⊂ Cn is calledessentially
finiteatz∈0 if Iz = {w ∈Uz : Qw = Qz} = {z}, whereUz is a sufficiently small
neighborhood ofz. The hypersurface0 is said to be essentially finite if it is es-
sentially finite at any point. Here are some useful properties of essentially finite
hypersurfaces.

(i) Any real-analytic hypersurface of finite type is essentially finite. This fol-
lows from property (d) of Segre varieties.

(ii) If 0 contains a complex hypersurface passing throughz0 ∈ 0, then it is not
essentially finite atz0.

(iii) If 0 is essentially finite atz0 ∈ 0, then the Segre mapλ : z → Qz is finite-
to-one nearz0, as dimIz = 0 for z sufficiently close toz0.

Suppose that0 and0 ′ are real-analytic hypersurfaces inCn and that(U1, U2)

and(U ′1, U
′
2) are standard pairs of neighborhoods forz0∈ 0 andz ′0∈ 0 ′, respec-

tively. Letf : U2→ U ′2 be a holomorphic map, withf(U1) ⊂ U ′1 andf(0∩U2) ⊂
(0 ′ ∩ U ′2). Then the following invariance property holds:

f(Qw ∩ U2) ⊂ Q′f(w) ∩ U ′2 for all w ∈U1.

Throughout this paper we follow the convention of using the (right) prime to de-
note the objects in the target domain. For instance,Q′w ′ will mean the Segre variety
of w ′ with respect to the hypersurface0 ′.

Since every real hypersurface0 inCn is orientable, there exists a neighborhood
U containing0 such that0 dividesU into two connected components, which we
denote byU− andU+. Let

δ(z) =
{

dist(z, 0) if z∈U+ ∪ 0,
−dist(z, 0) if z∈U−.

If U is sufficiently small, thenδ is a defining function of0 andδ ∈ Cω(U). Any
other defining function has the formρ(z) = α(z)δ(z), whereα(z) is of constant
sign inU. If α > 0 thenρ defines the same orientation on0 asδ; if α < 0, the
orientation is opposite.

Suppose the orientation of0 is fixed byρ. Then we say that0 is pseudoconvex
(resp. strictly pseudoconvex) at a pointa ∈0 if the Levi form ofρ is nonnegative
(resp. positive) on the complex tangent planeT cz (0) for all z∈0 sufficiently close
to a. Clearly, this definition depends only on the orientation. We will assume that
the orientations of the hypersurfaces are always suitably chosen. In particular, if0

is a compact connected real hypersurface then it is the boundary of some bounded
domainD ⊂⊂ Cn, and we assume thatρ < 0 inD.

Finally, we will need the following definition.

Definition 2.2. A holomorphic correspondence between two domainsD and
D ′ in Cn is a complex-analytic setA ⊂ D × D ′ that satisfies: (i)A is of pure
complex dimensionn; and (ii) the natural projectionπ : A→ D is proper.
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We will also treatA as the graph of a multivalued mapping defined byf̂ :=
π ′ B π−1, whereπ ′ is the natural projection ofA toD ′.

3. Extension along Segre Varieties

Let0 ⊂ Cn be a connected smooth real-analytic hypersurface witha ∈0, and let
U1 andU2 be a standard pair of neighborhoods ofa.

Recall that a nonempty connected complex submanifold3 of a complex man-
ifold M is called ananalytically constructible leafif 3̄ and 3̄ \ 3 are closed
complex analytic subsets ofM. A locally finite union of analytically constructible
leaves is called an analytically constructible set; for details, see [L]. In this section
we will prove the following proposition.

Proposition 3.1. Let f be a germ of a biholomorphic map from0 to a com-
pact strictly pseudoconvex real-algebraic hypersurface0 ′ ⊂ Cn defined ata ∈
0. Then there exist a neighborhoodV ofQa ∩ U1 in Cn and an analytically con-
structible set3 ⊂ V with dimC 3 ≤ n−1such thatf extends analytically along
any pathθ ⊂ V \3.
Proof. Without loss of generality we may assume thata = 0. Let U be a neigh-
borhood of the origin wheref is biholomorphic andU = ′U × nU (here,′z∈ ′U).
We assume thatU is smaller thanU1. ChooseU andV so that, for anyw in V,
Qw ∩ U is connected. Observe that ifV is small enough thenQw ∩ U 6= ∅ for
anyw in V, asw ∈Q0 implies 0∈Qw. Following the ideas in [DF2; DP], define

A = {(w,w ′)∈V × Cn : f(Qw ∩ U) ⊂ Q′w ′ }. (3.1)

We would like to haveQw ∩ U connected for anyw ∈ V to avoid ambiguity in
the conditionf(Qw ∩ U) ⊂ Q′w ′ , since different components ofQw ∩ U could
be mapped a priori to different Segre varieties. We will also use this in further
constructions.

Let P ′(z ′, z̄ ′) be a defining polynomial of0 ′. Let z ∈ U andz ′ = f(z). The
conditionf(Qw ∩ U) ⊂ Q′w ′ can be expressed as

P ′(f(z), w̄ ′) = 0 for any z∈Qw ∩ U.
Therefore by property (g) of Segre varieties, (3.1) is equivalent to

A = {(w,w ′)∈V × Cn : P ′(f(′z, h(′z, w̄)), w̄ ′) = 0 ∀′z∈ ′U)}. (3.2)

Thus (3.2) is defined by an infinite system of holomorphic equations inw̄ andw̄ ′

that are polynomials in̄w ′. By the Noetherian property of the ring of holomor-
phic functions, we can choose finitely many points′z1, . . . , ′zm so that (3.2) can
be written as a finite system:∑

|J |≤d
αkJ (w)w

′J = 0, (3.3)

wherek = 1, . . . , m andd is the degree ofP ′ in w ′. We define the closure ofA in
V ×P n in the following way. Let̃t = (t0, t1, . . . , tn) be homogeneous coordinates
in P n, and letw ′j = tj/t0 andt = (t1, . . . , tn). Then
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t d0

∑
|J |≤d

αkJ (w)

(
t

t0

)J
= 0, k = 1, . . . , m, (3.4)

is a system of equations homogeneous int̃ that defines an analytic variety inV×P n.
Denote this variety again byA. Clearly, its restriction toV×(P n\H0) = V×(Cn)
coincides with the set defined by (3.2). HereH0 = {t0 = 0} is the “the hyperplane
at infinity”.

LetU ′ = f(U). Let us show thatA ∩ (U × U ′) = 0f . Suppose

(w,w ′)∈A ∩ (U × U ′).
Thenf(Qw∩U) ⊂ Q′w ′ . Sincef(Qw∩U) ⊂ Q′f(w) and dimC f(Qw∩U) = n−1,
we haveQ′w ′ = Q′f(w) and thereforew ′ ∈ If(w). Since0 ′ is strictly pseudoconvex,
we may assume thatU is chosen so small that the Segre mapλ′ is one-to-one in
U ′ = f(U) and

If(w) ∩ f(U) = {f(w)}.
Thus,w ′ = f(w).

Consider the irreducible component ofA that coincides with0f in U × U ′;
for simplicity, denote this component again byA. Then dimC A = n. Letπ : A→
V andπ ′ : A→ P n be the natural projections. Notice that projectionπ is proper
becauseP n is compact.

By Remmert’s theorem, the image of an analytic set under a proper map is
an analytic set. Henceπ(A) is analytic and, moreover,U ⊂ π(A). Therefore,
π(A) = V. Let

31 := π(π ′−1
(H0) ∩ A),

32 := π{(w,w ′)∈A : π is not biholomorphic near(w,w ′)},
3 := 31∪32.

For any pathθ : [0,1]→ V \3 such thatθ(0) = a ∈ (U \3), there exists a unique
lifting θ̂ ⊂ π−1(θ) ⊂ A with the starting point(a, f(a)). This lifting defines the
analytic continuation off alongθ. To finish the proposition we need only prove
the following lemma.

Lemma 3.2. 3 is an analytically constructible set inV, anddimC 3 < n.

Proof. 31 is a proper analytic subset ofV becauseπ ′−1
(H0) is a proper analytic

subset ofA andπ is proper. Thus, dimC 31 < n.

The set{(w,w ′) ∈ A : π is not biholomorphic near(w,w ′)} is the union of
two sets:S := {(w,w ′) ∈Areg : π is not biholomorphic near(w,w ′)} andAsng,

whereAreg andAsng are the regular and the singular parts (respectively) of the va-
riety A. For (w0, w ′0) ∈ Asng, π is not biholomorphic in any neighborhood of
(w0, w ′0) becauseA is not a complex manifold near(w0, w ′0), by the definition
of Asng, and hence cannot be biholomorphically equivalent to an open set inCn.
According to [L, Thm. 1, p. 265],S is an analytically constructible set inV × P n.
Sinceπ is proper onS̄, by the Chevallay–Remmert theoremπ is an analytically
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constructible set inV. Thus32 = π(S) ∪ π(Asng) is analytically constructible in
V. Clearly, dimC 32 < n.

This proves Proposition 3.1.

Note that any analytically constructible set3 of a complex dimension less thann
does not divideV. Therefore, for anyb ∈V \3 there exists a path along whichf
extends to some neighborhood ofb.

For the proof of Theorem1.1, weneed to consider an additional set:

33 := π({(w,w ′)∈A : dimC(π
−1(w) ∩ A) ≥ 1}). (3.5)

Proposition 3.3. 33 is an analytic set anddimC 33 ≤ n− 2.

Proof. {(w,w ′) ∈ A : dimC(π
−1(w) ∩ A) ≥ 1} is an analytic subset ofA by

Cartan–Remmert’s theorem (see e.g. [L]). Therefore, its image33 (under a proper
mappingπ) is also an analytic set. Suppose dimC 33 = n− 1. Then there exists
some locally analytic setZ ⊂ 33 such that dimC Z = n−1 and, for anyw in Z,
dimC(π

−1(w)) = 1. By [L, Cor. 2, p. 266], dimC(π−1(Z)) = n. This yieldsA =
π−1(Z), sinceA is irreducible. Butπ(A) = V and so we obtain a contradiction,
proving the claim.

4. Connecting Points on000 by Segre Varieties

Recall that a real submanifoldM ⊂ Cn of real dimensionk ≥ n is calledgeneric
if, for any z ∈ M, dimC T

c
z (M) = k − n (hereT cz (M) is the complex tangent

plane toM at the pointz). Following Trepreau and Tumanov, we call a hypersur-
faceminimalif it does not contain germs of complex hypersurfaces. Although (for
the proof of Theorem1.1) weneed only essential finiteness of0 in the following
proposition, we would like to prove it in full generality.

Proposition 4.1. Let0 ⊂ Cn be a minimal smooth real-analytic hypersurface.
LetM ⊂ 0 be a generic submanifold of dimension2n − 2, and letp ∈M. Let
U be a neighborhood ofp such thatU ∩ (0 \M) consists of two connected com-
ponents, which we denote by0− and0+. ThenQp ∩ U contains an open subset
ω such that, for any pointb ∈ ω, there exists a closed pathγ satisfying(i) γ ⊂
(Qb ∩ 0+) ∪ {p} and (ii) γ ∩M = {p}.
Proof. We will prove this proposition in two steps: forn = 2 andn > 2.

Step 1.Suppose thatn = 2. ThenM is totally real. After an appropriate change
of coordinates we may assume thatp = 0 and, in a small neighborhoodU of the
origin,0 is given by the defining function

ρ(z, z̄) = z2 + z̄2 +
∑
k,l

ρkl(y2)z
k
1 z̄

l
1 (4.1)

andM is given by {
x1= 0,

ρ(z, z̄)= 0.
(4.2)

Assume that0+ = {z∈0 ∩ U : x1 > 0}.
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To simplify computations, we introduce special (“normal”) coordinates, which
first appeared in [CM] as an intermediate step in their construction of normal forms
of strictly pseudoconvex hypersurfaces. The form of the defining function that we
use here is valid for arbitrary real-analytic hypersurfaces. It was shown in [CM]
that—if we subject0 to a holomorphic transformation{

z∗1 = z1,

z∗2= z2 + g(z1, z2),

whereg(z1, z2) is some holomorphic function satisfyingg(0, z2) ≡ 0—then the
defining function of0 in new coordinates (to simplify the notation we omit the
asterisks) takes the form

ρ(z, z̄) = z2 + z̄2 +
∑
k,l>0

ρkl(y2)z
k
1 z̄

l
1. (4.3)

It is clear thatM in these coordinates is also given by (4.2).
In dimension 2, a finite-type condition is equivalent to minimality. Thus we

may assume that0 is of finite type and that there exists

m = min
k,l>0
{(k + l ) : ρkl(0) 6= 0}, m <∞.

ThenQ0 = {ρ(z,0) = 0} = {z2 = 0}. Forb ∈Q0 whereb = (b1,0), we have

Qb =
{
z∈U : z2 +

∑
k,l>0

ρkl

(
z2

2i

)
zk1 b̄

l
1 = 0

}
.

By solving this equation forz2 near the origin, we obtain

z2 = ηzq1 + α(z1), (4.4)

whereη depends holomorphically on̄b1, η 6= const; α(z1) = o(z
q

1 ) with q =
min{k : ρkl(0) 6= 0} and 1≤ q < m.

The setQb ∩ 0 is given by the system{
z2 + z̄2 +

∑
k,l>0

ρkl(y2)z
k
1 z̄

l
1 = 0,

z2 = ηzq1 + α(z1).

(4.5)

By plugging the second equation into the first, we obtain

2 Re(ηzq1 + α(z1))+
∑
k,l>0

ρkl(Im(ηz
q

1 + α(z1)))z
k
1 z̄

l
1 = 0. (4.6)

Chooseω ⊂ Q0 such that, forb ∈ω, Reη 6= 0 and Imη 6= 0.
If q = 1 then, by the implicit function theorem, equation (4.6) can be rewritten

in the formx1 = cy1+ α̃(y1), whereα̃(y1) = o(y1) andc 6= 0. For b ∈ ω, γ =
0 ∩Qb is then given by {

x1= cy1+ α̃(y1),

z2 = ηz1+ α(z1).

Henceγ intersects both0+ and0−, andγ ∩M = {0} for smally1.



Analytic Continuation of Germs of Holomorphic Mappings 141

If q > 1 thenq < m and (4.6) admits the form

Re(ηzq1 )+ o(|z1|q) = 0. (4.7)

Let z1= reiϑ . Then (4.7) is equivalent to

Reη cosqϑ − Im η sinqϑ + rα̃(r, ϑ) = 0,

where α̃ is a real-analytic function in a neighborhood of the line{0} × R ⊂
R2
r,ϑ . Let 9(r, ϑ) = Reη cosqϑ − Im η sinqϑ + rα̃(r, ϑ). Chooseϑ0 such that

(Reη) cosqϑ0 − (Im η)qϑ0 = 0 and(Reη) sinqϑ0 + (Im η) cosqϑ0 6= 0. Then

∂9

∂ϑ
(0, ϑ0) 6= 0.

By the implicit function theorem, the equation9(r, ϑ) = 0 can be rewritten as
ϑ = β(r) near the point(0, ϑ0), whereβ(r) is some analytic function near the
origin.

Thus,Qb ∩ 0 contains the curve given by

(z1, z2) =
(
reiβ(r), r qeiqβ(r) + α(reiβ(r))), r ≥ 0. (4.8)

Additionally, ϑ0 can be chosen to satisfy cosϑ0 > 0. Thenx1 > 0 asr → 0, so
the curve (4.8) is contained in0+.

These computations are valid for any pointb ∈ ω. Hence, the proposition is
proved forn = 2.

Step 2.Supposen > 2. Choose the coordinate system so thatp = 0; similar
to (4.3), the defining function of0 is given by

ρ(z, z̄) = 2xn +
∑

|K|,|L|>0

ρKL(yn)
′zK ′z̄L.

ThenQ0 = {z : zn = 0}. Consider the family of 2-dim complex planesLb such
thatb ∈Lb for b = (′b,0) and{z1 = · · · = zn−1 = 0} ⊂ Lb. Since0 is minimal,
in any arbitrary neighborhood of the origin there exists an open setω ⊂ Q0 such
that, for anyb ∈ ω, 0 ∩ Lb is a real surface of real dimension 3 that is of finite
type inC2 = Lb. It is easy to see thatm(0 ∩ Lb,0), the type of0 ∩ Lb at point
0∈ 0 ∩ Lb, is an upper semicontinuous function ofb. Therefore, we can find an
open subset ofω with m(0 ∩ Lb,0) = const. Denote this subset again byω.

If we repeat step 1 for0 ∩ Lb0 then we can find a pointb0 ∈ ω such thatQb0

contains the path required by the proposition. Letη = η(b) andq = q(b) be
the functions from (4.4) satisfying Re(η(b0)) 6= 0, Im(η(b0)) 6= 0, andq(b0) <

m(0∩Lb0,0). It is clear that ifb ∈ω is sufficiently close tob0 then Re(η(b)) 6= 0,
Im(η(b)) 6= 0, andq(b) < m(0∩Lb,0). The last inequality holds becauseq(b),
the order of contact ofQb ∩ Lb with 0 ∩ Lb, is an upper semicontinuous func-
tion. Therefore, for all suchb we can apply the argument of step 1 for0∩Lb.

Remarks. 1. Analogously, it can be shown that the same setω also satisfies
Proposition 4.1 with0+ replaced by0−.
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2. It follows from the construction of the setω that, for anyb ∈ ω and any
small neighborhoodU0 of the origin, the Segre varietyQb intersects both con-
nected components ofU0 \ 0. To see this, notice that ifq = 1 in (4.4) thenQb

intersects0 transversally. Ifq > 1, then from (4.3) and (4.4) we obtain

ρ(z, z̄)
∣∣
Qb∩U0

= Re(ηzq1 )+ o(|z1|q), (z1, z2)∈U0,

and the assertion follows. Note that this implies dimQb ∩ 0 = 2n − 3 at the
origin.

3. Proposition 4.1 is false ifM is a complex hypersurface (in this case,0 is not
minimal). Indeed, letp = 0 and

0 = {z∈Cn : xn + ynφ(′z, ′z̄) = 0},
whereφ is real-analytic andφ(0) = 0. LetM = {z : zn = 0}. ThenM ⊂ 0 and
0 is not minimal. For any pointz ∈Q0 = M, we haveQz = Q0 near the origin
and the pathγ does not exist.

5. Extension across Generic Submanifolds

The next proposition is the key result for the proof of Theorem1.1.

Proposition 5.1. Let0 be an essentially finite, smooth, real-analytic hypersur-
face, and let0 ′ be a compact, real-algebraic, strictly pseudoconvex hypersurface.
LetM be a generic submanifold of dimension2n − 2, and letp ∈ M. Let U
be a neighborhood ofp. Denote by0− and 0+ the connected components of
U ∩ (0 \M). Suppose thatf is a holomorphic mapping defined in a neighbor-
hood of0+, f(0+) ⊂ 0 ′, and suppose thatJf , the Jacobian of the mappingf,
is not identically zero. Thenf extends holomorphically to a neighborhood ofp.

Proof. Let U1, U2 be a standard pair of neighborhoods ofp. Since0 is essen-
tially finite, we may assume that the Segre mapλ is finite-to-one inU1 and that
Ip ∩ U1 = {p}. By Proposition 4.1, there exists an open setω ⊂ (Qp ∩ U1) such
that, for any pointb ∈ ω, Qb ∩ 0 contains a pathγ in 0+ with the end point at
p. The choice ofb ∈ ω, γ, and a pointa ∈ γ ∩ U1 will form a triple, which we
will denote by(b, γ, a). We can choosea so close top that, possibly after a small
perturbation,U1, U2 will also be a standard pair of neighborhoods fora.

We can choose(b, γ, a) such thatJf (a) 6= 0. Indeed, by Remark 2 following
Proposition 4.1, dim(Qz ∩ 0) = 2n− 3. Since0 is essentially finite, there exists
a neighborhoodUb of the pointb such that

#{z∈Ub : Jf
∣∣
Qz∩0+ = 0} <∞.

Moving b if necessary, we may assume thatJf
∣∣
Qb∩0+ is not identically zero.

LetUa be a neighborhood ofa, so thatf is biholomorphic inUa. By Proposi-
tion 3.1,f extends analytically along any path inV \3, whereV is a neighbor-
hood ofQa ∩ U1 and3 ⊂ V is an analytically constructible set of complex
dimension at mostn−1. There are two cases to be considered: either
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(1) Qp ∩ V is not contained in3; or
(2) Qp ∩ V is contained in3.

Case 1.In this situation we can slightly perturb the triple(b, γ, a) so thatb ∈
(ω ∩ V ), b /∈ 3, andf is biholomorphic inUa. Notice that slight changes of
(b, γ, a) do not change3. SinceV \ 3 is connected, we can find a continuous
pathθ ⊂ V, with no self-intersections, connectinga andb and such thatθ ∩3 =
∅. Choose a simply connected neighborhoodUθ of θ so thatUθ ⊂ V andUθ ∩3 =
∅. Then, by the Monodromy theorem,f

∣∣
Ua

extends holomorphically toUθ .
Denote byF the extension off

∣∣
Ua

toUθ obtained by Proposition 3.1. Choose
a small neighborhoodUb ⊂ Uθ of the pointb such that, for anyz in some small
neighborhoodUγ of γ, Qz ∩ Ub is nonempty and connected. (Sinceγ ⊂ Qb, we
haveQz 3 b for all z∈ γ.) Thus,F is holomorphic inUb. Consider the set

A∗ = {(w,w ′)∈Uγ × Cn : F(Qw ∩ Ub) ⊂ Q′w ′ }. (5.1)

As in Proposition 3.1,A∗ is a closed complex-analytic subset ofUγ × Cn.
Lemma 5.2. There exists a small neighborhood� of a such that

A∗ ∩ (�×�′) = 0f |�, (5.2)

where�′ = f(�).
Proof. Choose some small neighborhood� containinga and a pointz in �.

Let w ∈ Qz ∩ Ub be an arbitrary point, and letw ′ = F(w). It follows from
the definition ofF that f(Qw ∩ Ua) ⊂ Q′w ′ and z ∈ Qw. This implies that
f(z) ∈ Q′w ′ = Q′F(w). But thenF(w) ∈ Q′f(z). Sincew ∈ Qz was arbitrary, we
deduce thatF(Qz ∩Ub) ⊂ Q′f(z). This means that(z, z ′)∈A∗ if z ′ ∈ If(z); in par-
ticular,A∗ ∩ (� × �′) 6= ∅, since(z, f(z)) ∈ A∗. If � is chosen small enough,
then�′ ∩ If(z) = {f(z)} and we conclude thatA∗ ∩ (�×�′) = 0f |�.
Consider the irreducible component ofA∗ that coincides with0f in � × �′. For
simplicity, denote this component again byA∗. Then dimC A∗ = n. Let zj → p

asj →∞, zj ∈ γ. By passing to a subsequence if necessary, we may assume that
there existsp ′ ∈ 0 ′ such thatp ′ = limj→∞ f(zj ). Since the graph off

∣∣
Uγ∩0+ is

contained inA∗, we have(zj , f(zj )) ∈ A∗ and thus(p, p ′) ∈ A∗. Let π : A∗ →
Uγ andπ ′ : A∗ → Cn be the natural projections.

Lemma 5.3. There exist neighborhoodsUp 3 p andU ′p ′ 3 p ′ such thatf̂ :=
π ′ B π−1(z) is a holomorphic mapping inUp that extendsf. Hereπ−1: Up →
A∗ ∩ (Up × U ′p ′).
Proof. ChooseU ′p ′ 3 p ′ so small that the Segre mapλ′ is one-to-one inU ′p ′ , and
let Up be a small neighborhood ofp such thatUp ⊂ π(π ′−1

(U ′p ′)). Let us show
thatπ : A∗ ∩ (Up ×U ′p ′)→ Up is one-to-one. If not, then we can findz∈Up and
z ′1, z ′2 ∈U ′p ′ (z ′1 6= z ′2) such that

(z, z ′1), (z, z ′2)∈A∗ ∩ (Up × U ′p ′). (5.3)
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ThenF(Qz ∩ Ub) ⊂ Q′z ′j for j = 1,2. It follows from the definition ofF that,
for anyw ∈Ub, we have

f(Qw ∩ Ua) ⊂ Q′F(w).
Sinceλ : z→ Qz is finite-to-one inUb, there exist only finitely many points in

Ub that have the same Segre variety asw. Thus,

#{F−1(F(w))} <∞ for anyw ∈Ub.
This shows that dimC F(Qz ∩ Ub) = n − 1. But then, sinceλ′ is one-to-one in
U ′p ′ , there exists at most one pointz ′ ∈ U ′p ′ such thatF(Qz ∩ Ub) ⊂ Q′z ′ . This
contradicts (5.3) and thereforeπ is one-to-one.

By [Ch, Sec. 3.3, Prop. 3],π : A∗ ∩ (Up × U ′p ′) → Up is a biholomorphic
mapping and hencêf := π ′ B π−1(z) is holomorphic inUp and extendsf. By
analyticity, we also havêf(0 ∩ Up) ⊂ 0 ′.

Case 2.Qp ⊂ 3. In this situation,f may not extend holomorphically to a
neighborhoodUb of b ∈Qp becauseω ⊂ 3. However, one can show thatf ex-
tends as a holomorphic correspondence. By such extension we mean a complex-
analytic set of pure dimensionn, defined inUθ ×Cn, with proper projection onto
the first component that contains0f |Ua .

Lemma 5.4. There exists a triple(b∗, γ ∗, a∗) such thatb∗ ∈ (ω ∩ V ), γ ∗ ⊂
0+ ∩ Qb∗ , a

∗ ∈ γ ∗ ∩ Ua, andf
∣∣
Ua

extends to a neighborhood ofb∗ as a holo-
morphic correspondence along some pathθ ⊂ V, possibly after a biholomorphic
change of variables in the target space.

Proof. We use the notation of Proposition 3.1. First we can exclude the case when
Qp ∩ V ⊂ 31. Indeed, after a biholomorphic change of coordinates inP n, we
may assume that (in new coordinates)0 ′ remains compact inCn ⊂ P n and that
π ′(π−1(Qp)) is not entirely contained inH0 ⊂ P n. Thus,b∗ can be chosen so
thatb∗ /∈ 31. If Qp is not contained in32, thenb∗ can be chosen so thatb∗ /∈
32 and we are in the conditions of case 1. Otherwise, since (by Proposition 3.3)
dim33 < n−1 and henceQp ∩ V is not contained in33, we can find a pointb∗

in (ω ∩ V ) \ (31 ∪ 33), that is,b∗ ∈ 32 \ 33. Furthermore, since3 is analyti-
cally constructible, we may chooseb∗ ∈3reg. Let γ ∗ ⊂ Qb∗ ∩ 0+ be close toγ.
Choosea∗ so thata∗ ∈Ua ∩ γ ∗. Analogously to case 1, there exists a pathθ ⊂ V
(without self-intersections) connectinga∗ andb∗, andθ ∩3 = {b∗}. LetUθ be a
simply connected neighborhood ofθ such thatUθ ⊂ V and

3 ∩ Uθ = (3 \ (31∪33)) ∩ Uθ = Qp ∩ Uθ .
LetA be the analytic set from Proposition 3.1, defined inV ×P n. Consider the irre-
ducible component ofA∩ (Uθ ×P n) that contains0f |Ua∗ . Denote this component
again asA. ThenA is the desired extension off

∣∣
Ua∗

as a correspondence because
A ∩ (Uθ ×H0) = ∅, sinceUθ ∩ (31∪33) = ∅ andπ : A→ Uθ is proper.

To simplify the notation we will drop the asterisks from(b∗, γ ∗, a∗). Let F :
Uθ → Cn be a multivalued mapping corresponding toA; that is,
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F(w) = {w ′ : (w,w ′)∈A}.
LetUγ be a sufficiently small neighborhood ofγ, whereλ : z→ Qz is finite-to-
one. Analogously, letU ′ be a small neighborhood of0 ′, where the Segre mapλ′

is finite-to-one. Choose a small neighborhoodUb of b (Ub ⊂ Uθ) such that, for
all z∈Uγ , Qz ∩ Ub is nonempty and connected. Define

A∗ = {(w,w ′)∈ (Uγ \ {p})× U ′ : F(Qw ∩ Ub) ⊂ Q′w ′ }.
Lemma 5.5. A∗ is a closed complex-analytic subset of(Uγ \ {p})×U ′ that con-
tains the graph off

∣∣
Ua
.

Proof. For any(w,w ′)∈A∗, the condition

F(Qw ∩ Ub) ⊂ Q′w ′
can be expressed as follows. Take an open, simply connected set� ⊂ (Ub \Qp)

such thatQw ∩ � 6= ∅. Since� ∩ 3 = ∅, the branches ofF are correctly de-
fined in�. Then (5.4) is equivalent tõf(Qw ∩�) ⊂ Q′w ′ for all branchesf̃ of F.
Notice that such an open set� can be found for anyw ∈Uγ \ {p}. The inclusion
f̃ (Qw ∩ �) ⊂ Q′w ′ can be written as a system of holomorphic equations; there-
fore,A∗ is complex-analytic.A∗ is also closed because if(wj ,w ′j )→ (w0, w ′0)
asj → ∞ with (wj ,w ′j ) ∈ A∗ and(w0, w

′
0) ∈ (Uγ \ {p}) × U ′, thenQwj →

Qw0 andQ′w ′j → Q′w ′0 asj →∞. As a result,F(Qw0 ) ⊂ Q′w ′0 and(w0, w ′0)∈
A∗. By repeating the argument in Lemma 5.2 we can show thatA∗ contains the
graph off

∣∣
Ua
.

Denote again byA∗ the irreducible component ofA∗ that contains0f |Ua . Thus,
dimC A

∗ = n. Let
S = ({p} × U ′) ⊂ Uγ × U ′.

ThenS is a removable singularity forA∗; that is,A∗ is a complex analytic variety
in Uγ × U ′. Indeed, let(zj , z ′j ) ∈ A∗ and(zj , z ′j ) → (z0, z ′0) ∈ S asj → ∞.
Thenzj → p, F(Qzj ) ⊂ Q′z ′j , and soF(Qp) ⊂ Q′z ′0. It follows that

A∗ ∩ S ⊂ {p} × {z ′ ∈U ′ : F(Qp ∩ Ub) ⊂ Q′z ′ }.
Because

{z ′ ∈U ′ : F(Qp ∩ Ub) ⊂ Q′z ′ } ⊂ Q′w ′
and dimc Q′w ′ = n − 1, it follows thatA∗ ∩ S has Hausdorff 2n-measure zero.
SinceS is a pluripolar set, Bishop’s theorem (see e.g. [Ch]) can be applied to con-
clude thatS is a removable singularity forA∗.

DenoteA∗ again byA∗. Note thatA∗ is an analytic variety inUγ ×U ′. The rest
of the proof is identical to case 1: we show that there exist neighborhoodsUp 3 p
andU ′p ′ 3 p ′ such thatπ−1 is single-valued and, as a result,f extends holomor-
phically to a neighborhood ofp if we set

f(z) = π ′ B π−1(z).

This proves Proposition 5.1.
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6. Proof of the Main Result

Let ρ(z, z̄) be a defining function of0 in a neighborhood ofζ ∈ 0. Let Uζ be
a small neighborhood ofζ and letf : Uζ → Cn be a nonconstant holomorphic
mapping such thatf(Uζ ∩0) ⊂ 0 ′, where0 ′ is a compact strictly pseudoconvex
real algebraic hypersurface with the defining functionP ′(z ′, z̄ ′).

Proposition 6.1. There exists a pointξ ∈Uζ ∩0 such that all eigenvalues of the
Levi formHρ(ξ, v), v ∈ T cζ (0), are of the same sign.

Proof. Since0 ′ is strictly pseudoconvex,f(Uζ ) is not contained in0 ′. Consider
the setf −1(0 ′). This is a real-analytic set inUζ , and0 ⊂ f −1(0 ′). Since the set
of regular points of a real-analytic set is dense, there exists a pointξ ∈Uζ ∩0 such
thatf −1(0 ′)∩Uξ = 0∩Uξ in some small neighborhoodUξ 3 ξ. Moreover, since
0 is essentially finite,ξ andUξ can be chosen such thatHρ(z, v) is nondegenerate
onT cz (0) for anyz∈Uξ . Replacingρ by−ρ (if necessary), we obtain

f({z∈Uξ : ρ(z, z̄) < 0}) ⊂ {P ′(z ′, z̄ ′) < 0}. (6.1)

Indeed, if there are two pointsa, b ∈ {z∈Uξ : ρ(z, z̄) < 0} that are mapped byf
to different sides of0 ′, then we can connecta andb by a pathγ not intersecting
0. But f(γ ) will clearly intersect0 ′, which contradicts the fact thatf −1(0 ′) =
0 in Uξ .

Consider the functionP ′ Bf(z),which is defined inUξ and negative in{z∈Uξ :
ρ(z, z̄) < 0} because of (6.1). Since0 ′ is strictly pseudoconvex, we can choose
P ′ to be plurisubharmonic in a neighborhood of0 ′. ThenP ′ B f is also plurisub-
harmonic. By the Hopf lemma,d(P ′ B f ) 6= 0 on0 ∩ Uξ ; we may thus consider
P ′ Bf to be a local defining function of0 in Uξ . By the invariance property of the
Levi form, for any vectorv ∈ T cξ (0) we have

HP ′Bf (ξ, v) = HP ′(f(ξ), f∗v) ≥ 0. (6.2)

Since the Levi form of0 is nondegenerate,0 is strictly pseudoconvex atξ.

Notice that it follows from (6.2) thatJf (ξ) 6= 0. By a suitable choice of the defin-
ing function of0, by movingζ to a nearby point (if necessary), and by the choice
ofUζ ,we may therefore assume that (6.1) holds forUζ . Then0 is strictly pseudo-
convex inUζ andf is biholomorphic. Recall that0s denotes the set of strictly
pseudoconvex points of0. Let us show thatf extends along any path in a con-
nected component of0s containingζ.

Any compact strictly pseudoconvex algebraic hypersurface0 ′ is either non-
spherical or spherical at any point. In the latter case,0 ′ is globally biholomorphi-
cally equivalent to a unit sphere, by [HJ]. Thus, we may assume that0 ′ is either
nonspherical or is a unit sphere. By the results in [P1] and [P2],f extends ana-
lytically along any path containing in a path-connected component of0s.

As before, let6 denote the set of points of0 where the Levi form is degener-
ate. Note that6 is a real-analytic set. LetM be the set of regular pointsz ∈ 6
such thatTz(6) is not a complex plane, and letM ∗ = 6 \M.
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Lemma 6.2. The setM ∗ does not divide0.

Proof. M ∗ is the union of the set6sng and the setMc := {z ∈ 6reg : Tz(6) =
T cz (6)}. Observe that, locally,Mc is a real-analytic set. Indeed, supposep ∈Mc

and that locally, nearp, 6 is given by

{z∈0 : φj(z, z̄) = 0, j = 1, . . . ,2m, m < n},
whereφj(z, z̄) are smooth real-analytic functions anddφ1∧· · ·∧dφ2m 6= 0. Then
Mc is given by the condition rank(∂φj/∂zk) = m and thusMc is defined by a finite
system of real-analytic equations. Also, dimR Mc ≤ 2n − 3, for if dimR M

c =
2n− 2 at some regular pointz∈Mc then, by the Levi–Civita theorem,Mc nearz
is a complex hypersurface contained in0. This contradicts the essential finiteness
of 0. Since dim6sng< dim6, we have

dimR M
∗ ≤ 2n− 3

and soM ∗ does not divide0.

Lemma 6.3. f extends along any path in0 \M ∗.
Proof. Let τ : [0,1] → 0 be an arbitrary simple path withτ(0) = ζ. Suppose
there exists a numbert0 ∈ (0,1] such thatf extends alongτ(t) for 0 ≤ t < t0
but does not extend to a neighborhood ofp = τ(t0). Let U be a small neigh-
borhood ofp such thatU ∩ 6 = U ∩M. If dimR(M ∩ U) < 2n − 2, then we
can find a generic submanifold̃M such that dimR M̃ = 2n− 2 andM ⊂ M̃. We
may therefore assume that dimR M = 2n− 2. The setM ∩U divides0 ∩U into
two connected and simply connected components, which we denote by0− and
0+. Let τ0 = τ

∣∣
[0,t0)

. Denote byft the extension off alongτ0. Thenft is holo-
morphic inUτ0, a small neighborhood ofτ0. There existτ(t1) ∈ (τ0 ∩ U) and a
neighborhoodU1 3 τ(t1) such thatft is holomorphic inU1. Clearly,U1 intersects
at least one of the connected components ofU \M—say,0+ for definiteness. It
follows from Proposition 6.1 that the eigenvalues ofHρ(z, v) are of the same sign
in 0+. Hence, by the choice of the defining function,0+ can be assumed to be
strictly pseudoconvex andft

∣∣
U1

extends to0+ as a locally biholomorphic map-

ping. Denote this extension bỹf . By Proposition 5.1,f̃ extends holomorphically
to some neighborhoodUp of p. If τ0 also intersects0−, then analogouslyft ex-
tends as a locally biholomorphic mapping to0−. For t < t0 and close tot0, τ (t)∈
Up andft coincides with the extension of̃f to Up. In view of Lemma 6.2, these
considerations show thatf extends along any path in0 \M ∗.
The remaining case isp ∈M ∗. It follows from the theorems of Cartan (see e.g.
[N, Prop. 15, p. 104]) and Narasimhan [N, Prop. 18, p. 105] that, if a real-analytic
set is defined by a finite system of equations, then singular points of this analytic
set are contained in some real-analytic set of lower dimension, which is also de-
fined by a finite system of equations. Hence there exists a real-analytic set61 of
real dimension at most 2n−3 such that6sng⊂ 61. It follows that61∪Mc is a lo-
cally real-analytic set of dimension at most 2n−3. For anyp ∈ (61∪Mc)reg there
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exists a small neighborhoodUp such thatUp ∩ (61 ∪Mc) is contained in some
generic submanifold of0, of dimension 2n− 2, and we can show thatf extends
holomorphically to a neighborhood ofp by repeating the argument in Lemma 6.3.

The singular part of61∪Mc is now contained in an analytic set of dimension
2n− 4. By induction on dimension,f extends holomorphically to every point in
6. Theorem 1.1 is proved.

Proof of Corollary 1.2.Since0 is essentially finite, the set of points where the
Levi form of0 is degenerate has dimension at most 2n−2. LetU be an open set,
and letf : U → Cn be a holomorphic mapping such thatf(U ∩ 0) ⊂ 0 ′. Then
there is a point inU ∩ 0 where the Levi form is nondegenerate. By Proposition
6.1,0 ∩U contains strictly pseudoconvex points (up to orientation). If dimR 6 <

2n − 2, then6 does not divide0 and the latter is globally pseudoconvex. Sup-
pose now that6 contains a componentM of dimension 2n − 2 and thatp ∈M.
By Theorem1.1,f extends holomorphically to a neighborhoodUp 3p along some
path in0. Moreover, it follows from Proposition 6.1 thatJf is not identically zero.
SinceA := {z ∈Up : Jf (z) = 0} is an analytic variety and0 is essentially finite,
M is not contained inA; hence there is a pointξ ∈M ∩ Up such thatJf (ξ) 6= 0
andf is biholomorphic nearξ. But this contradicts the fact that the Levi form of
0 is degenerate atξ. Thus, dimR 6 < 2n− 2.

Proof of Corollary 1.3.By [DF1], any compact domain with a smooth real-
analytic boundary is of finite type; in particular, it is essentially finite. By Theo-
rem 1.1,f extends holomorphically along any path on∂D and, since∂D is simply
connected,f extends to a global mapping from∂D to ∂D ′. By Hartog’s theorem,
f extends to a holomorphic mapping in̄D. Sincef(∂D) ⊂ ∂D ′, the extended
mapping is proper.
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