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POLYNOMIALLY CONVEX HULLS

OF SINGULAR REAL MANIFOLDS

RASUL SHAFIKOV AND ALEXANDRE SUKHOV

Abstract. We obtain local and global results on polynomially convex hulls
of Lagrangian and totally real submanifolds of Cn with self-intersections and
open Whitney umbrella points.
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1. Introduction

This paper is concerned with polynomially convex hulls of n-dimensional real
manifolds in Cn with singularities of special type: self-intersections and open Whit-
ney umbrellas. Our motivation comes from the work of Givental [24], where he
proved that any compact real surface can be realized as a Lagrangian submanifold
of C2 with isolated singularities of this type. More precisely, following Arnold [3],
by a Lagrangian inclusion we mean a smooth mapping from a manifold into a sym-
plectic manifold which is Lagrangian embedding in a neighbourhood of almost every
point. Givental proved that every compact real surface admits a Lagrangian in-
clusion into C2 with a finite number d of transverse double self-intersection points
and u open Whitney umbrellas, satisfying the topological formula (mod 2 for a
nonorientable L)

L · L = χ(L) + 2d + u,
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2 RASUL SHAFIKOV AND ALEXANDRE SUKHOV

where L · L is the self-intersection index of the fundamental cycle of L in H2(C2)
and χ(L) is the Euler characteristic. According to Givental [24] and Ishikawa
[29], for a generic Lagrangian inclusion double self-intersections and open Whitney
umbrellas are the only singularities. Moreover, they are stable under Lagrangian
deformations.

Since Gromov’s [27] work it is understood that topological properties of La-
grangian inclusions into Cn are related to the complex structure. For instance,
(non)existence of nonconstant Riemann surfaces with the boundary glued to a La-
grangian inclusion has many topological consequences. This problem in its turn can
be regarded from the complex analysis point of view as a question on polynomial
convexity. Polynomial convexity properties of real submanifolds in a complex man-
ifold are of fundamental importance in complex analysis and have been studied by
many authors; we refer to a recent monograph of Stout [37] dedicated to this subject.
Considerable progress in the case of Lagrangian and totally real submanifolds was
made in the works of Alexander [1], Bedford-Klingenberg [5], Duval-Sibony [16,17],
Forstnerič-Stout [23], Forstnerič-Rosay [19], Gromov [27], Ivashkovich-Shevchishin
[30], Jöricke [31], Kenig-Webster [32] and other authors. However, little is known
about polynomial convexity properties of singularities of Lagrangian inclusions.
This is the main subject of this paper, which is a continuation of our previous work
in [35].

Denote by z = x + iy and w = u + iv the standard complex coordinates in C2.
Consider the map

π : R2
(t,s) ∋ (t, s) "→ (ts,

2t3

3
, t2, s) ∈ R4

(x,u,y,v).(1)

The image Σ := π(R2) is called the standard (unfolded or open) Whitney umbrella.
Denote by Bn(p, ε) the Euclidean ball in Cn centred at p and of radius ε > 0, and
shortly write Bn if p = 0 and ε = 1. We also often drop the index n indicating
the dimension when its value is clear from the context. Note that the map π has
the only critical point at the origin; furthermore, π is a homeomorphism between
neighbourhoods of the origin in R2 and in Σ.

Definition 1.1. A closed subset X of Cn is called locally polynomially convex near
a point p ∈ X if for every sufficiently small ε > 0 the intersection X ∩ Bn(p, ε) is
polynomially convex.

Denote by ω = dx∧dy +du∧dv the standard symplectic form on C2. A smooth
map φ : C2 → C2 is called symplectic if φ∗ω = ω. Such a map is necessarily a local
diffeomorphism, so we call it a (local) symplectomorphism. Our first result is the
following.

Theorem 1.2. Suppose that φ : C2 → C2 is a smooth generic symplectomorphism
near the origin. Then the surface φ(Σ) is locally polynomially convex near φ(0).

When φ is real analytic, this result is obtained in [35]. The word “smooth”
everywhere means of class C∞, and the word “generic” here means that j∞φ, the
jet of φ at zero, does not belong to a closed nowhere dense subset of the space of jets
of symplectic maps at the origin. Our proof pushes further the method developed in
[35]: in order to pass from the real analytic category to the smooth one we use more
advanced tools of singularity theory. Theorem 1.2 can be viewed as an analogue
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POLYNOMIALLY CONVEX HULLS OF SINGULAR REAL MANIFOLDS 3

of the result of Forstnerič and Stout [23] on local polynomial convexity of a totally
real surface near an isolated hyperbolic point.

Our next result establishes local polynomial convexity near the other type of
singularity of a Lagrangian inclusion–transverse self-intersection.

Theorem 1.3. Let L1 and L2 be smooth Lagrangian submanifolds in Cn intersect-
ing transversally at a point p. Then the union (L1 ∪ L2) is locally polynomially
convex near p.

The proof of this theorem also shows that for a sufficiently small neighbourhood
U of p, any continuous function on U ∩ (L1∪L2) can be approximated by holomor-
phic polynomials. A similar conclusion holds under the assumptions of Theorem 1.2
near an open umbrella point, since the argument in [35, Corollary 1] is valid in the
smooth case.

Theorems 1.2 and 1.3 now state that a generic Lagrangian inclusion in C2 is
locally polynomially convex. This leads to some global consequences. In this paper
all compact manifolds are without boundary. Denote by D = {ζ ∈ C : |ζ| < 1} the
unit disc in C. Recall that a holomorphic map f : D → Cn is called an analytic disc;
if f is continuous on the closed disc D, the restriction f |∂D of f to the boundary
∂D is called the boundary of f . The boundary of an analytic disc f is said to be
attached to a subset E of Cn if f(∂D) ⊂ E.

Theorem 1.4. Suppose that a smooth compact Lagrangian immersion L in Cn

admits a finite number of self-intersection points and is locally polynomially convex
near every self-intersection point. Then there exists a nonconstant analytic disc
continuous on D with boundary attached to L.

For Lagrangian embeddings this result is due to Gromov [27]. Note that in the
above theorem we do not require self-intersections to be double or transverse. The
class of compact n-manifolds admitting Lagrangian immersions in Cn is consider-
ably wider that the class of manifolds embeddable as Lagrangian submanifolds. For
example, the torus is the only compact orientable surface admitting a Lagrangian
embedding in C2. By comparison, every compact orientable surface admits a La-
grangian immersion in C2.

In view of Theorem 1.3 we have the following.

Corollary 1.5. Let L be a smooth compact Lagrangian immersion in Cn with
a finite number of double transverse self-intersection points. Then there exists a
nonconstant analytic disc continuous on D with the boundary attached to L.

This corollary is not new. Ivashkovich and Shevchishin [30] proved the exis-
tence of an analytic disc f attached to an immersed Lagrangian manifold under
an assumption of weak transversality which holds for transverse double intersec-
tions. Their approach is closer to the original work of Gromov and is based on
the general compactness theorem for J-complex curves with boundaries glued to a
Lagrangian immersion with weakly transverse self-intersections. Their method also
works for symplectic manifolds with certain tamed almost complex structures. Our
proof, based on Alexander’s version [2] of Gromov’s theory, uses purely complex-
analytic tools. Note that Theorem 1.4 also works in some cases when the result
of Ivashkovich-Shevchishin cannot be applied. One occurrence of this is described
in Example 4.3 of Section 4. The condition of weak transversality from [30] fails
there, but Theorem 1.4 gives the result. We remark that in [28] Gromov asserts
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4 RASUL SHAFIKOV AND ALEXANDRE SUKHOV

that his method [27] can be adapted for the case of any immersed Lagrangian
submanifold of Cn. Neither our approach nor [30] gives the result in such gener-
ality. Nevertheless, Alexander’s method implies (see Proposition 6.4) without any
transversality assumption that the polynomially convex hull of a smooth compact
Lagrangian immersion L in Cn contains a complex analytic curve of finite area with
boundary glued to L. One technical tool used in the proof of Theorem 1.4 is Propo-
sition 5.2, which established continuity of holomorphic discs up to the boundary
when the cluster set at the boundary ∂D is contained in a singular totally real set;
see Section 5 for details.

Given a compact K ⊂ Cn we denote by K̂ the polynomially convex hull of
K. The polynomially convex hull of a general Lagrangian inclusion is described
in the next theorem. This is a consequence of Duval-Sibony’s theory of hulls [16,
17], combined with Alexander’s technique [2] adapted to the case of totally real
immersions.

Theorem 1.6. (i) Let L be a smooth compact Lagrangian surface in C2 with a
finite set of open Whitney umbrellas. Then L ̸= L̂ and there exists a positive (1, 1)
current S such that supp (ddcS) ⊂ L and supp (S) is not contained in L, but is
contained in L̂.

(ii) Let E be a smooth compact totally real immersed manifold in Cn. Then
E ̸= Ê and there exists a positive current S of bidimension (1, 1) and mass 1, with
dS supported on E, such that supp (S) is contained in Ê, but not in E.

2. Background

2.1. Rings of smooth functions and spaces of jets. We recall some basic
notions of the local theory of singularities of differentiable maps following [4,7,25];
these classical works contain proofs of all statements of the present subsection.
Denote by C(n, m) the ring of C∞ differentiable germs of functions (Rn, 0) → Rm;
we write C(n) when m = 1. Consider

M(n) = {f ∈ C(n) | f(0) = 0}.

Then M(n) is the unique maximal ideal in C(n). Let x = (x1, . . . , xn) be the
standard coordinates in Rn. The ideal M(n) coincides with the ideal ⟨x1, . . . , xn⟩
generated by the germs of the coordinate functions xj , j = 1, . . . , n. For a positive
integer s the power M(n)s consists of germs f from C(n) such that Dαf(0) = 0
for every |α| < s; this ideal is generated by the monomials xβ1

1 . . . xβn
n with |β| = s.

If f ∈ M(n)k, we say that the germ f vanishes with order at least k. The space
J k(n) can be identified with the quotient

C(n)/Mk+1 = R[x1, . . . , xn]/⟨x1, . . . , xn⟩k+1,

where R[x1, . . . , xn] denotes the ring of polynomials in the variables x1, . . . , xn.
Set M(n)∞ =

⋂∞
s=1 M(n)s. By Borel’s theorem, the quotient C(n)/M(n)∞ is

isomorphic to the ring R[[x1, . . . , xn]] of formal power series; i.e., for every formal
power series there exists a smooth function such that its Taylor series at the origin
coincides with this power series. In what follows we use the notation J ∞(n) for
C(n)/M(n)∞. Set also

J k(n, m) = J k(n) × · · · × J k(n)︸ ︷︷ ︸
m times

, k = 1, 2, . . . ,∞.
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POLYNOMIALLY CONVEX HULLS OF SINGULAR REAL MANIFOLDS 5

This is the space of jets of maps from Rn to Rm. Identifying vector fields in Rn

with maps Rn → Rn we may also define the jet spaces for vector fields.
Consider jk : C(n, m) → J k(n, m) the map which associates to every germ its

k-jet at the origin. The natural projections

πl
k : J l(n, m) → J k(n, m)

are defined for l ≥ k by
jl(f) "→ jk(f)

and satisfy πl
k ◦ πm

l = πm
k for m ≥ l ≥ k and πll = id. Similarly, we also have

the canonical projection π∞
k : J ∞(n, m) → J k(n, m). A subset V ⊂ J ∞(n, m) is

called pro-algebraic if there exist algebraic subsets Vk ⊂ J k(n, m) such that

V =
∞⋂

k=1

(π∞
k )−1(Vk).

The supk codim Vk is called the codimension of V .
For k < ∞ the space J k(n, m) can be identified with the Euclidean space Rd of

easily computable dimension d = d(k, n, m), and so J k(n, m) inherits the structure
of a topological space from this identification. The standard Whitney topology on
the space of jets J ∞(n, m) is defined as follows. If U ⊂ Rd ∼= J k(n, m) is open,
then the set M(U) := (π∞

k )−1(U) is defined to be open in J ∞(n, m). The collection
of sets M(U) for all integers k and all open subsets of J k(n, m) is then the basis
of the Whitney topology of J ∞(n, m). In this topology, all projections πl

k and π∞
k

are continuous maps. Further details can be found in [25].

2.2. The set A, the !Lojasiewicz inequality and multiplicity. In the proof
of Theorem 1.2 an important role is played by the pro-algebraic set A ⊂ J ∞(2, 2),
which is defined as follows. Given a vector field X = X1(t, s)

∂
∂t + X2(t, s)

∂
∂s in

a neighbourhood of the origin in R2
(t,s), its jet j∞(X) at the origin is not in A if

the ideal ⟨X1, X2⟩ generated by X1 and X2 contains a power of the maximal ideal
M(2) in C(2). For a germ of a vector field X = (X1, X2) at zero in R2 define

(2) τk(X) = dim C(2)/(⟨X1, X2⟩ + M(2)k+1),

and let

(3) Ak = {Tk ∈ J k(2, 2) : τk(Tk) > k − 1}.

Here we identify Tk with a smooth X such that jk(X) = Tk. For each k, Ak is a
closed algebraic subset of J k(2, 2), and one can show that

(4) A =
∞⋂

k=1

(π∞
k )−1(Ak).

Thus, A is a pro-algebraic set in J ∞(2, 2). Further, codim A = ∞. Note that for
a given germ X, its jet j∞(X) does not belong to A if and only if jk(X) /∈ Ak

for some k. This in its turn is equivalent to the fact that the algebraic multplicity
µ0(X) := dim C(2)/⟨X1, X2⟩ is finite. For more details about the set A and proofs
see [13].

It is easy to see that if X = (X1(t, s), X2(t, s)) is a germ of a smooth vector field
in R2 and j∞(X) /∈ A, then there exist k, c, δ > 0 such that

||X(x)|| ≥ c(|t|2 + |s|2)k, |t|2 + |s|2 < δ.
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6 RASUL SHAFIKOV AND ALEXANDRE SUKHOV

This is the so-called $Lojasiewicz inequality. $Lojasiewicz proved (see, e.g., [6]) that
the inequality holds for all real analytic germs with an isolated zero at the origin.
However, if a germ of a real analytic vector field has a nonisolated singularity at
the origin, it still can be of infinite multiplicity, i.e., its jet can be in A. Let X be
the germ of a real analytic vector field vanishing at the origin. Denote by XC the
germ of a complex analytic vector field defined by the power series with the same
coefficients as X, but over a neighbourhood U of the origin in C2. Then X is of
finite algebraic multiplicity, i.e., X is not in A if and only if the zero is an isolated
singularity for the vector field XC in U . This provides a convenient way to check
if a specific real analytic germ X is of finite multiplicity. We consider a particular
example of the vector field (8) since it will be used in the proof of Theorem 1.2.

Example 2.1. Let X be the vector field (8) to be considered later. Then X is
not contained in A. Complexifying the objects under consideration, consider the
holomorphic polynomial map

f : C2 → C2,

f = (f1, f2) : (t, s) "→ (−3t3 − ts2 − 3t5, s3 + 4t2s + 7st4).

It is easy to check that there exists a neighbourhood U of the origin in C2 such that
f−1(0) ∩ U = {0}, i.e., the map f is of finite multiplicity at the origin. Therefore,
X is not contained in A.

2.3. Parametrized complex curves. Let Ω be a bounded domain in C whose
boundary consists of a finite number of smooth curves Cj . By a parametrized
complex curve we mean a holomorphic map h : Ω → Cn. If in addition h ∈ C(Ω),
then the restriction h|∂Ω is called the boundary of the curve h; we use the same
terminology for the image of h. Thus the boundary ∂h(Ω) is the union of the curves
h(Cj) with the orientation induced by h(Ω).

If Ω = D, the unit disc in C, then h : D → Cn is call a holomorphic or analytic
disc, and if Ω = A(r, R) = {ζ ∈ C : r < |ζ| < R}, an annulus of radii 0 < r <
R < ∞, then h : A(r, R) → Cn is called a holomorphic or analytic annulus. Its
boundary is the union of two curves h(C(r)) and h(C(R)), where C(t) = {|ζ| = t}.

As usual, denote by ω =
∑

j dxj ∧ dyj the standard symplectic form in Cn. The
area of a parametrized complex curve h : Ω → Cn is given by

area (h) =

∫

Ω
h∗ω.

For a parametrized complex curve h continuous up to the boundary we say that
h is attached or glued to a set K if ∂h(Ω) ⊂ K. In Section 5 we will consider a more
refined version of this notion.

2.4. Currents. We briefly recall some standard terminology concerning currents.
For a detailed exposition see, e.g., [11]. Let Ω be an open subset in Cn. As usual
we set dc = i(∂ − ∂). Denote by Dp,q(Ω) the space of smooth differential forms
of bidegree (p, q) with compact support in Ω. Its dual space is called the space of
currents of bidimension (p, q) (or bidegree (n−p, n−q)). A current S of bidimension
(p, p), or simply a (p, p)-current, is called positive if for all αj ∈ D1,0(Ω), j = 1, . . . , p,
the current S ∧ iα1 ∧ α1 ∧ · · · ∧ iαp ∧ αp is a positive distribution. The operators
d and dc are defined for currents by duality. A fundamental example of a positive
(p, p)-current is the current [X] of integration over a complex purely p-dimensional
analytic set X of Ω. If X is closed in Ω, then this current is also closed in Ω,

Licensed to Univ of Western Ontario. Prepared on Mon Jul 13 15:55:56 EDT 2015 for download from IP 129.100.75.39.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



POLYNOMIALLY CONVEX HULLS OF SINGULAR REAL MANIFOLDS 7

i.e., d[X] = 0. A current of bidegree (p, q) can be viewed as a differential form
of type (p, q) with distributional coefficients. If a (p, p)-current is positive, then
its coefficients are Radon measures (this follows essentially by the Riesz duality
theorem). The mass |S| of a positive (p, p)-current S is defined by |S| = S ∧ ωp,
where ω is the standard symplectic form. If the mass is finite, we use the notation
∥ S ∥= ⟨S,ωp⟩ = ⟨|S|, 1⟩. The set supp (S), the support of a current S, is defined
in the standard way.

3. Polynomial convexity of an open Whitney umbrella:
Proof of Theorem 1.2

3.1. Reduction to a dynamical system. As observed in [35], Σ is contained in
the real hypersurface

M = {(z, w) ∈ C2 : ρ(z, w) = x2 − yv2 +
9

4
u2 − y3 = 0}.(5)

The defining function ρ of M is strictly plurisubharmonic in a neighbourhood of
the origin where it admits an isolated critical point. Hence, M is smooth away from
the origin and strictly pseudoconvex in B(0, ε) \ {0}, for ε > 0 small.

The crucial role in our approach is played by the so-called characteristic folia-
tion induced by M on Σ. Let X be a totally real surface embedded into a real
hypersurface Y in C2. Define on X a field of lines determined at every p ∈ X by
Lp = TpX ∩ HpY , where HpY = TpY ∩ J(TpY ) denotes the complex tangent line
to Y at the point p and J denotes the standard complex structure of C2. Integral
curves of the line field Lp, i.e., curves which are tangent to Lp at each point p,
define a foliation on X which is called the characteristic foliation of X.

To a given local symplectomorphism φ we associate a complex linear map ψ in
order to simplify the linear part of ψ ◦ φ. One can show (see [35] for details) that
the map ψ can be chosen to depend linearly on the differential Dφ(0) so that the
differential at the origin of the composition ψ ◦ φ is given by

(6) D(ψ ◦ φ)(0) =

(
I2 0
E G

)
,

where I2 denotes the identity 2×2 matrix, and G is a nondegenerate 2×2 matrix.
Let

Σ′ = ψ ◦ φ(Σ)

and

M ′ = (ψ ◦ φ)(M).

We put

ρ′ = ρ ◦ (ψ ◦ φ)−1.

It follows from (5) and (6) that

(7) ρ′(z′, w′) = x′2 +
9

4
u′2 + o(|(z′, w′)|2).

In particular, the function ρ′ is strictly plurisubharmonic in a neighbourhood of the
origin, and the hypersurface M ′ is strictly pseudoconvex in a punctured neighbour-
hood of the origin.

We consider the characteristic foliation of Σ\{0} ⊂ M and Σ′\{0} ⊂ (ψ◦φ)(M).
A characteristic foliation is invariant under biholomorphic maps. Therefore, in order
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8 RASUL SHAFIKOV AND ALEXANDRE SUKHOV

to study the characteristic foliation on φ(Σ) with respect to φ(M), it is sufficient
to study the characteristic foliation of Σ′ = ψ ◦ φ(Σ) induced by M ′.

The main result which we establish in this section is the following.

Proposition 3.1. Let φ satisfy the assumptions of Theorem 1.2. There exist ε > 0
small enough and two rectifiable arcs γ1 and γ2 in Σ′ ∩ B(0, ε) passing through the
origin with the following properties:

(i) γj are smooth at all points except, possibly, the origin;
(ii) γ1 ∩ γ2 = {0};
(iii) if K is a compact subset of Σ′ ∩ B(0, ε) and is not contained in γ1 ∪ γ2,

then there exists a leaf γ of the characteristic foliation on Σ′ such that
K ∩ γ ̸= ∅, but K does not meet both sides of γ.

We point out that by (i) and (ii) the union γ1∪γ2 does not bound any subdomain
with the closure compactly contained in Σ′ ∩ B(0, ε).

Once Proposition 3.1 is established, Theorem 1.2 follows immediately by the
method of [35], which does not require real analyticity. In fact, the only place in [35]
where the real analyticity assumption was used is the proof of Proposition 3.1. The
remaining part of this section is therefore devoted to the proof of Proposition 3.1.

3.2. Jets and vector fields. It is shown in [35] that the pull-back by π of the
characteristic foliation on Σ is determined by the system of ODE’s of the form

(8)

{
ṫ = −3t3 − ts2 − 3t5,
ṡ = s3 + 4t2s + 7st4,

where the dot denotes the derivative with respect to the time variable. Similarly,
the pull-back of the characteristic foliation on Σ′ is given by
(9){

ṫ = α(t, s) = −2g12ts + α02s2 − 3g22t3 + o(|t|3 + |s|2 + |ts|),
ṡ = β(t, s) = 4g11t2s + β12ts2 + β03s3 + 6g12t4 + o(|t2s| + |ts2| + |s|3 + |t|4).

System (9) corresponds to a vector field X = α ∂
∂t + β ∂

∂s defined in a neighbour-
hood of the origin in R2. As shown in [35] the vector field X does not vanish outside
the origin, i.e., the origin is its isolated singularity. We briefly recall from [35] the
construction of the vector field X from the map ψ ◦ φ.

Consider the map f : R2 → R4 given by f := ψ ◦ φ ◦ π. Set X ′
t = ∂f/∂t and

X ′
s = ∂f/∂s. Denote by ∇ρ′ the gradient of the function ρ′ = ρ ◦ (ψ ◦ φ)−1. On Σ′

it can be expressed in terms of (t, s) using the parametrization f , namely,

∇ρ′ =

(
∂ρ′

∂x′ ◦ f,
∂ρ′

∂u′ ◦ f,
∂ρ′

∂y′ ◦ f,
∂ρ′

∂v′
◦ f

)
.

Then

(10) α(t, s) = ⟨JX ′
s,∇ρ′⟩, β(t, s) = −⟨JXt,∇ρ′⟩.

Since the right-hand side of (10) is uniquely determined by φ, the map

Ξ : φ "→ Xφ = α
∂

∂t
+ β

∂

∂s
(11)

is well-defined; it associates every C∞ smooth map φ symplectic at 0 with the
vector field Xφ. Furthermore, we may extend the definition of Ξ to all smooth
diffeomorphisms defined in a neighbourhood of the origin in R4 by the same formula.
In this case the corresponding X may vanish also outside the origin.
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Remark 3.2. In [35, Proposition 3.1] is established for a C∞ vector field Xφ under
the assumption that it satisfies some generic condition and the $Lojasiewicz inequal-
ity. In the real analytic case the $Lojasiewicz inequality holds automatically since
the origin is the only point where Xφ vanishes. Our goal here is to prove that
for a generic smooth symplectomorphism φ the jet of Xφ does not belong to the
pro-algebraic set A. This implies the $Lojasiewicz inequality and hence is sufficient
in order to deduce Proposition 3.1 from the results of [35].

Recall that for k a positive integer or ∞, J k(n, m) denotes the space of k-jets at
the origin of smooth maps from Rn to Rm, while the k-jet at the origin of a specific
map g is denoted by jkg. We also consider the subspace J k

∗ (n, n) of J k(n, n)
consisting of jets of diffeomorphisms at the origin. For each k ≥ 1, the space
of jets in J k(n, n) that are not diffeomorphisms is determined by a polynomial
equation in Rd corresponding to J k(n, n), and therefore the space J k

∗ (n, n) is the
complement of a codimension one algebraic subvariety of J k(n, n). Thus, J ∞

∗ (n, n)
is the complement of a pro-algebraic subset of J ∞(n, n) of codimension one.

Lemma 3.3. For every integer k ≥ 1, the map Ξ induces the map

Ξ(k) : J k+1
∗ (4, 4) → J k(2, 2)(12)

defined by

Ξ(k) : jk+1φ "→ jkXφ(13)

on the space of k + 1-jets. This map is rational (after the identification of the jet
space with the corresponding Rd), with nonvanishing denominator for every map φ.
Furthermore, the following diagram commutes:

{φ : R4 → R4} Ξ−−−−→ {X : R2 → R2}
⏐⏐.jk+1

⏐⏐.jk

J k+1
∗ (4, 4)

Ξ(k)

−−−−→ J k(2, 2).

(14)

Proof. Let ψ be defined as in Section 3.1, and set F = ψ ◦ φ. Denote by x coordi-
nates in R4. Differentiating the identity F−1(F (x)) = x, we obtain DF−1(F (x)) =
(DF (x))−1. By Cramer’s rule, the components of (DF (x))−1, the inverse matrix to
DF (x), can be expressed as rational functions of the components of DF (x). Differ-
entiation of this identity further using the Chain Rule shows that for any integer k,
derivatives at F (0) of F−1 of order k are rational functions of the derivatives at the
origin of F of order up to k, and therefore are rational functions of the derivatives
of φ at zero. Note that the denominators in these functions are in fact powers of
the determinant of DF (0) which does not vanish for invertible φ.

By differentiating at the origin α and β given by (10) up to order k one can
express each derivative as a rational function of the derivatives of φ at the origin,
which shows that the map Ξ(k) is rational. Note that because (10) involves first
order derivatives of φ, one requires derivatives of order k + 1 of φ to determine
uniquely the k-jet of X . This makes the diagram commute. !
Lemma 3.4. For every k ≥ 1 there exists an algebraic subvariety Sk in J k(4, 4)
which contains k-jets at the origin of all symplectomorphisms φ. Furthermore, there
exists a pro-algebraic set S ⊂ J ∞(4, 4) such that j∞φ ∈ S for all symplectomor-
phisms φ.
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10 RASUL SHAFIKOV AND ALEXANDRE SUKHOV

Proof. A local diffeomorphism φ is symplectic if and only if φ∗ω = ω. This is a
system of first order partial differential equations on components of φ. To write
them explicitly, denote by x = (x1, . . . , x4) the coordinates in R4, so ω = dx1 ∧
dx2 + dx3 ∧ dx4 and φ = (φ1, . . . ,φ4). Denote by Jac(l, m, j, k) the determinant of
the 2×2 minor of Dφ(x) corresponding to derivatives of (φl,φm) with respect to
variables (xj , xk), i.e.,

Jac(l, m, j, k) =
∂φl

∂xj

∂φm

∂xk
− ∂φm

∂xj

∂φl

∂xk
.

Consider the system of equations

Jac(1, 2, j, k) + Jac(3, 4, j, k) − djk = 0, j < k,(15)

where djk is equal to 1 if j = 1, k = 2 or j = 3, k = 4 and to 0 in other cases.
For x = 0 this system can be interpreted as a polynomial equation in J k(4, 4);
say, if j1φ satisfies this equation, then it simply means that Dφ(0) is symplectic.
Applying to (15) the partial derivative operators up to the order k − 1 we obtain
that jkφ satisfies a polynomial system of equations in Rd corresponding to J k(4, 4).
Finally, the set

(16) S =
∞⋂

k=1

(π∞
k )−1(Sk)

is pro-algebraic and contains jets of all symplectic maps. !

3.3. Hénon-like symplectic maps and polynomial approximation. In the
proof of Proposition 3.1 we will need the results on (real) symplectic polynomial
approximation due to Turaev [38], which we describe below. Note that the problem
of symplectic polynomial approximation of holomorphic symplectomorphisms was
studied by Forstnerič [20, 21]. For the standard symplectic form ω =

∑
j dxj ∧ dyj

in R2n with coordinates (x, y) = (x1, . . . , xn, y1, . . . , yn), a Hénon-like map is a
symplectic map given by

(17) H(x, y) → (y,−x + ∇V (y)),

where V : Rn → R is a smooth function. A Hénon-like map is a global diffeomor-
phism of R2n, and the inverse is also a Hénon-like map. If V is a polynomial, then
H is a polynomial map as well and is called a polynomial Hénon-like map. Given
a smooth symplectic diffeomorphism φ : Bn → R2n, a compact K ⊂ Bn, an integer
m > 0, and ε > 0, there exists a collection of symplectic polynomial Hénon-like
maps {Hj}, j = 1, . . . , N , such that the composition HN ◦ · · · ◦H1 approximates φ
with accuracy ε in the Cm-topology on K. By taking K to be the origin, Turaev’s
theorem gives for any m > 0 a symplectic polynomial map whose jet of order m
at the origin is arbitrarily close to that of a given smooth symplectic map. In par-
ticular, this means that jets of symplectic polynomials which are compositions of
polynomial maps of the form (17) are dense in the Whitney topology in the space
of all jets of symplectic maps in J ∞(2n, 2n).

Turaev [38, Theorem 1] proved also a more precise result allowing the choice of
the approximating symplectic polynomial map HN in a more restricted form:

Theorem 3.5. Let U be a ball in R2n, and let φ : U → R2n be a Cr-smooth (with
an integer r > 0) symplectic diffeomorphism. Then, for any compact set K ⊂ U
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POLYNOMIALLY CONVEX HULLS OF SINGULAR REAL MANIFOLDS 11

and any ε > 0 there exists a polynomial V : Rn → R, a constant vector η ∈ Rn and
an integer N > 0 such that the 4N-th iteration

HN = Hη ◦ · · · ◦ Hη
︸ ︷︷ ︸

4Ntimes

(18)

of the symplectic map

Hη : (x, y) "→ (y + η,−x + ∇V (y))(19)

approximates F with the accuracy ε in the Cr-topology:

∥ φ− HN ∥Cr(K)< ε.

Notice that Hη is not a Hénon-like map for η ̸= 0. However, it coincides with a
Hénon-like map after the shift of coordinates y "→ y + η.

Remark 3.6. For the Henon-like map H0 : (x, y) "→ (y,−x) (corresponding to η = 0
and V = 0) its 4-th iteration is equal to the identity map. This explains why the
map HN is defined by means of the 4N -th iteration of Hη.

From now on we restrict our consideration to the case of symplectomorphisms
defined on R4, i.e., on C2 with the coordinates zj = xj + iyj , j = 1, 2. Denote by
R[y1, y2] (resp. Rl[y1, y2]) the vector space of real polynomials (resp. of degree ≤ l)
in y1, y2. Given N > 0, any polynomial V ∈ R[y1, y2] and a vector η ∈ R2 define an
H-map by formulas (18), (19). Denote this map by HN,V,η and the set of all such
maps by H(N). In what follows we call in short these symplectic polynomial maps
H-maps of order N . Of course, in general the degree of a polynomial HN can be
higher than N . If in the above definition we consider only H-maps corresponding
to generators V ∈ Rl[y1, y2], we obtain a subset of H(N) denoted by H(l, N). The
degrees of these maps are bounded above by l4N (by (l − 1)4N for l > 1). Clearly,
H(l, N) ⊂ H(l + 1, N) and

H(N) =
⋃

l≥0

H(l, N).

Denote by V(l, N) the vector space of polynomial maps R4 → R4 of degree at most
l4N . We obtain a well-defined map

θ : Rl [y1, y2] × R2 → V(l, N),

θ : (V, η) "→ HN,V,η .

Denote by i1 : Rl[y1, y2] → Rd, d = d(l), the standard linear isomorphism that
associates with a polynomial P the vector of Rd formed by the coefficients of P .
Similarly, we also identify the vector space V(l, N) with some Rp, p = p(l, N), by
means of an isomorphism i2. We obtain the map

Θ : Rd × R2 → Rp

defined by the commutative diagram

Rl[y1, y2] × R2 θ−−−−→ H(l, N) ⊂ V(l, N)
⏐⏐.i1⊗id

⏐⏐.i2

Rd × R2 Θ−−−−→ Rp.

(20)
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12 RASUL SHAFIKOV AND ALEXANDRE SUKHOV

Clearly, the map Θ is polynomial. One can view the space Rd×R2 as the moduli
space for the set H(l, N). The inverse map

(Hη)−1 : (x′, y′) "→ (−y′ + ∇V (x′ − η), x′ − η)

also is a polynomial map of the same degree as Hη with coefficients depending
polynomially on the coefficients of the generating polynomial V and the vector η.
Hence, the maps

θ̃ : Rl [y1, y2] × R2 → V(l, N),

θ̃ : (V, η) "→ (HN,V,η)
−1

also define a polynomial map

Θ̃ : Rd × R2 → Rp

by the commutative diagram

Rl[y1, y2] × R2 θ̃−−−−→ H(l, N) ⊂ V(l, N)
⏐⏐.i1⊗id

⏐⏐.i2

Rd × R2 Θ̃−−−−→ Rp.

(21)

For HN,V,η ∈ H(l, N) consider the vector field XHN,V,η = Ξ(HN,V,η) defined by
(11). Using the described above global parametrizations of H(l, N) by its moduli
space via Θ and Θ̃, and the definition of the map Ξ in (11), we obtain that XHN,V,η

is a polynomial vector field. Its degree (the maximal degree of its coefficients)
is bounded by some d′ = d′(l, N). Furthermore, the coefficients of XHN,V,η are
polynomial functions of the coefficients of V and vector η. By analogy with the
above construction, let us identify the space W(d′) of polynomial vector fields
of degree at most d′ with some Rq, q = q(l, N), by means of an isomorphism
i3 : W(d′) → Rq. We obtain the following.

Lemma 3.7. The map
Λ : Rd × R2 → Rq

defined by the commutative diagram

Rd × R2 Λ−−−−→ Rq

⏐⏐.i−1
2 ◦Θ

⏐⏐.i−1
3

H(l, N)
Ξ−−−−→ W(d′)

(22)

is a polynomial map.

This lemma implies that the maps Ξ(k) restricted to the set of jets of symplec-
tomorphisms from H(l, N) are not just rational, but even polynomial.

3.4. Proof of Proposition 3.1. The pro-algebraic set A ⊂ J ∞(2, 2) defined in
(4) plays a central role in the local theory of vector fields in R2 with isolated
singularities in view of the work of Dumortier [13]. In order to state its result,
we still need to recall some standard notions from the local theory of dynamical
systems.

Two germs X̃, Ỹ of vector fields at the origin in Rn are called topologically
equivalent (or C0-equivalent) if for some (and hence for all) representatives X, Y ,
there exist neighbourhoods U and W of the origin in Rn and a homeomorphism
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h : U −→ W mapping integral curves of X to integral curves of Y preserving the
phase portrait, but not necessarily the parametrization.

The jet jkX of a vector field X is called C0-determining if any germ Y with
jk(X) = jk(Y ) is topologically equivalent to X. We say that (a germ of) a vec-
tor field X is finitely determined if there exists some k such that jk(X) is C0-
determining. A characteristic orbit of X is an integral curve that asymptotically
approaches the singularity in such a way that the tangent line has a well-defined
limit. The main theorem of [13] (see also Theorem 3.3 in [14] or Theorem 2.2 in
[15] for a more detailed account and more general results) states that if X has a
characteristic orbit and j∞(X) is not contained in A (in fact, it suffices to impose
a weaker assumption that j∞(X) satisfies the $Lojasiewicz inequality), then X is
finitely determined. Further, whether X has a characteristic orbit depends only on
a jet of X of some finite order.

Let Ak be defined as in (3). Since by Lemma 3.3 the map Ξ(k) is rational, the
set

Ã =
∞⋂

k=1

Ãk,

where

Ãk = (π∞
k )−1

(
Ξ(k)

)−1
(Ak),

is pro-algebraic in J ∞(4, 4). Let S̃ ⊂ J ∞(4, 4) be the subset of jets of symplecto-
morphisms, so S̃ ⊂ S.

Lemma 3.8. The intersection S̃ ∩ Ã is closed nowhere dense in S̃ in the Whitney
topology.

Proof. The set Ã is closed, so S̃∩ Ã is closed in S̃. Therefore we only need to prove
that S̃ ∩ Ã is nowhere dense in S̃.

We will use notation introduced in Section 3.3. Arguing by contradiction suppose
that there exist a symplectomorphism φ and an open neighbourhood U of j∞φ in
J ∞(4, 4) such that S̃ ∩ U is contained in S̃ ∩ Ã.

From the properties of the Whitney topology, there exist m > 0 and ε > 0 such
that

(π∞
m )−1 (B(jmφ, 2ε)) ⊂ U,

where the ball is in Rs corresponding to J m(4, 4). By Theorem 3.5, the map
φ can be approximated by polynomial symplectomorphisms in the Cm-topology,
and so we conclude that there exist l, N and a polynomial symplectomorphism
H ∈ H(l, N) such that jmH ∈ B(jmφ, ε). This means that j∞H ∈ S̃ ∩ U , so by
our assumption, j∞H ∈ S̃ ∩ Ã.

For k big enough, every polynomial symplectomorphism from H(l, N) is uniquely
determined by its k-jet. So we can assume that H(l, N) is included in Jk(4, 4). If k
satisfies additionally the condition k ≥ max(m, d′) (where d′ = d′(l, N) is defined
in Section 3.3), then every polynomial vector field from W(d′) is also uniquely
determined by its k-jet, and we can view W(d′) as a subset of the jet space J k(2, 2)
as well. Fix now such a k. The map Λ of Lemma 3.7 defines a polynomial map

(23) Φ : Rd × R2 → Jk(2, 2)

given by Φ = jk ◦i−1
3 ◦Λ and satisfying jk ◦Ξ(i−1

2 ◦Θ(ξ)) = Φ(ξ) for all ξ ∈ Rd×R2.
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14 RASUL SHAFIKOV AND ALEXANDRE SUKHOV

Since Ak is an algebraic subset of Jk(2, 2) and the map Φ is polynomial, the
pull-back Z := Φ−1(Ak) is a proper real algebraic subvariety of Rd+2 defined by

Z = {x ∈ Rd+2 : Qj(x) = 0, j = 1, . . . , s}.

Here Qj : Rd+2 −→ R are polynomials. Recall that by Remark 3.6 the image
i−1
2 ◦ Θ(0) of the origin 0 ∈ Rd+2 is the jet of the identity map in H(l, N) (cf.

diagram (20)). It follows from diagram (22) that the image Φ(0) coincides with the
jet of the vector field (8). Therefore, as seen in Example 2.1, the origin 0 ∈ Rd+2

does not belong to Z; in particular, Z is a proper subset of Rd+2.
Since j∞H ∈ Ã, the point p := (Θ−1 ◦ i2)(H) belongs to Z (cf. diagram (20)).

Consider in Rd+2 the real line L : R ∋ t "→ tp through the origin and p. Since the
line L is not contained in the real algebraic set Z, at least one of the polynomials
Qj(tp) does not vanish identically in t ∈ R; hence L intersects Z in a finite set of
points. Choosing a point p̃ ∈ L \ Z close enough to p, we obtain the polynomial
symplectomorphism H̃ := (i−1

2 ◦ Θ)(p̃) ∈ H(l, N) satisfying jmH̃ ∈ B(jmH, ε).
Then for the corresponding vector field XH̃ = Ξ(H̃) ∈ W(d′) we have j∞(XH̃) /∈ A,
and so j∞H̃ /∈ Ã, a contradiction. !

Now we are able to conclude the proof of Proposition 3.1. By Lemma 3.8, for
a smooth symplectomorphism φ the condition j∞φ /∈ Ã is generic; i.e., it holds
for a subset O1, which is open and dense in S̃. For such a symplectomorphism the
corresponding vector field Xφ defined by (11) satisfies j∞Xφ /∈ A and, in particular,
satisfies the $Lojasiewicz inequality. Denote by O2 the set of jets j∞φ ∈ S̃ such that
the coefficients α02, β12, β03 in (9) (i.e., from the Taylor expansion of the vector
field Xφ) do not vanish. As shown in [35], this condition is also generic, i.e., O2 is
an open dense subset of S̃. Hence, the intersection O := O1∩O2 also is open dense
in S̃.

Consider a symplectomorphism φ with j∞φ ∈ O. We need to show that the cor-
responding vector field Xφ satisfies Proposition 3.1. Since j∞φ ∈ O, the $Lojasiewicz
inequality for Xφ holds, and in view of the results in [35] this already implies Propo-
sition 3.1 (cf. Remark 3.2). For the reader’s convenience we summarize the argu-
ment. Recall that whether a vector field satisfying the $Lojasiewicz inequality has a
characteristic orbit is determined by its jet at the origin of some finite order. Using
truncation of the Taylor expansion of Xφ of arbitrarily high degree and its Newton
diagram, it was shown in [35] that the topological phase portrait of the truncated
vector field (9) is a “saddle”, i.e., it precisely satisfies requirements (i), (ii), and
(iii) of Proposition 3.1. In particular, it has characteristic orbits, the curves γj of
Proposition 3.1. Hence, by the theorem of Dumortier, the vector field Xφ is finitely
determined, and therefore Xφ has the same phase portrait as its polynomial trun-
cation of some sufficiently high degree, that is, the jet at zero of Xφ of some finite
order. This concludes the proof of Proposition 3.1 and proves Theorem 1.2.

In what follows by a generic open Whitney umbrella point, or simply a generic
umbrella point, we mean a point for which the conclusion of Theorem 1.2 holds.
If φ is an arbitrary (not necessarily generic) symplectomorphism, we call φ(0) an
open umbrella point for the surface φ(Σ).

Remark 3.9. Instead of considering the space S̃ of jets of symplectomorphisms as
above, we may consider the space of jets of maps which only have a symplectic
linear part at zero. Such maps define characteristic foliation on Σ′ which can be
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singular at more points than just the origin. However, a similar argument as in
Theorem 1.2 shows that for a generic map φ symplectic at zero, the characteristic
foliation is singular only at zero in a small neighbourhood of the origin and has the
phase portrait determined by (9). Thus, Theorem 1.2 also holds under a weaker
assumption that Dφ(0) is symplectic.

4. Polynomial convexity near double points:
Proof of Theorem 1.3

We recall the result due to Weinstock [39] that can be stated as follows:
Let E1 and E2 be maximally totally real linear subspaces of Cn intersecting

transversally at the origin. Then either the union E1 ∪ E2 is polynomially con-
vex or there exists an analytic annulus h : A(r, R) → Cn smooth up to the boundary
such that h(C(r)) ⊂ E1 and h(C(R)) ⊂ E2, i.e., the union E1 ∪ E2 contains the
boundary of h.

As a consequence we have

Lemma 4.1. Let E1 and E2 be Lagrangian subspaces of Cn intersecting transver-
sally at the origin. Then the union E1 ∪ E2 is polynomially convex.

Proof. It suffices to show that E1∪E2 does not contain the boundary of an analytic
annulus. Arguing by contradiction, suppose that there exists an analytic annulus
h attached to E1 ∪ E2. Let λ be a 1-form on C2 such that dλ = ω. By Stokes’
formula ∫

h(A(r,R))
ω =

∫

h(C(r))
λ +

∫

h(C(R))
λ.

The restriction λ|E1 is a closed form because E1 is Lagrangian. Since the closed
curve h(C(r)), resp. h(C(R)), is null-homotopic in E1, resp. in E2, we conclude
that both integrals on the right vanish. Therefore, the integral on the left also
vanishes. But since the map h is holomorphic, this integral represents the area of
h(A(r, R)) with respect to the usual Euclidean metric and so is different from zero.
This contradiction shows that the union E1∪E2 does not contain a boundary of an
analytic annulus. Thus E1∪E2 is polynomially convex by Weinstock’s theorem. !

The next theorem generalizes Weinstock’s result to submanifolds.

Theorem 4.2. Let L1 and L2 be smooth totally real submanifolds in Cn intersecting
transversally at the origin. Suppose that the union of their tangent spaces at the
origin is locally polynomially convex near the origin. Then the union (L1 ∪ L2) is
locally polynomially convex near 0.

Gorai [26] proved this for n = 2. Also note that Theorem 1.3 is an immediate
consequence of Theorem 4.2 and Lemma 4.1.

Proof of Theorem 4.2. Let Ej = T0Lj , j = 1, 2. After a complex linear change of
coordinates we may assume that E1 = Rn

x , x = (x1, . . . , xn), zj = xj + iyj . Then
E2 can be expressed as the graph of a real valued linear map A : Rn

y → Rn
x , so the

points z ∈ E2 can be given by z = (A+ iIn)y, where In is the identity n×n matrix.
Weinstock [39] proved that the union E1 ∪ E2 is locally polynomially convex near
the origin if and only if A does not have purely imaginary eigenvalues of absolute
value bigger than one.
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16 RASUL SHAFIKOV AND ALEXANDRE SUKHOV

By Lemma 4.1 the above condition on eigenvalues of A holds if Ej are Lagrangian
spaces. As in [39], our argument is based on Kallin’s lemma (see, for instance, [37]).
For the reader’s convenience we recall its statement:

Let X1 and X2 be compact, polynomially convex subsets of Cn. Let p be a poly-
nomial such that the set p−1(0) ∩ (X1 ∪ X2) is polynomially convex. Assume that

the polynomially convex sets p̂(Xj), j = 1, 2, of C meet only at the origin, which is
a boundary point for each of them. Then the set X1 ∪ X2 is polynomially convex.

We will deal with the special case where p(X1) and p(X2) are contained in
{ξ + iη ∈ C | η < 0} ∪ {0} and {ξ + iη ∈ C | η > 0} ∪ {0} respectively. Note that

this implies that the sets p̂(Xj) also satisfy this property.
A complex linear change of coordinates of Cn defined by z "→ Bz, where B is

a real n × n-matrix, will transform E2 into the linear space z = (BAB−1 + iIn)y,
and so we may assume without loss of generality that the matrix A is in the Jordan
normal form:

(24) A =

⎛

⎜⎜⎝

A1 0 0 . . . 0
0 A2 0 . . . 0

. . .
0 0 0 . . . Am

⎞

⎟⎟⎠ ,

where each Aj is either a Jordan block of the form

(25) Aj =

⎛

⎜⎜⎝

λj 1 0 . . . 0
0 λj 1 . . . 0

. . .
0 0 0 . . . λj

⎞

⎟⎟⎠

for a real eigenvalue λj of A or of the form

Aj =

⎛

⎜⎜⎜⎜⎝

Cj I2 0 . . . 0
0 Cj I2 0 . . .
0 0 Cj I2 . . .

. . .
0 0 0 0 Cj

⎞

⎟⎟⎟⎟⎠
, Cj =

(
sj −tj
tj sj

)
,(26)

for a complex eigenvalue sj + itj .
Applying the implicit function theorem to the defining equations of L1, we con-

clude that for a small polydisc U ⊂ Cn,

(27) L1 = {z ∈ U : z = x + iφ(x)} ,

where φ : Rn → Rn is a smooth map with φ(0) = 0, and ∂φj

∂xk
(0) = 0 for j, k =

1, . . . , n. Similarly,

(28) L2 = {z ∈ U : z = (Ay + ψ(y)) + iy} ,

with ψ(0) = ∂ψj

∂yk
(0) = 0, j, k = 1, . . . , n. When A is in the Jordan normal form, then

the transformation x = Ay can be split into m transformations of the form xµj =
Aj yµj , where xµj and yµj are the appropriate subvectors of x and y of size equal
to the dimension of the block Aj . Because of this decomposition, we may construct
polynomials pj(zµj ) corresponding to each block Aj , and then combine the results
together to obtain a polynomial p(z) for A that will satisfy the assumptions of
Kallin’s lemma. We consider several cases depending on the shape of Aj . In what
follows C denotes a positive constant which may change from line to line.
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POLYNOMIALLY CONVEX HULLS OF SINGULAR REAL MANIFOLDS 17

Case 1. Let Aj = (λj). Denote by zj = xj + iyj the corresponding variable.
Consider the polynomial

pj(z) = (λj − i)z2
j .

Then

Im pj |L1 = −x2
j + O(∥ x ∥3),

while

Im pj |L2 = (λ2
j + 1)y2

j + O(∥ y ∥3).

Case 2. Suppose now that

Aj =

(
sj −tj
tj sj

)
.

Let zj , zj+1 be the variables corresponding to this block. Set

pj(z) = (s − δi)(z2
j + z2

j+1), δ > 0.

Then

Im pj |L1 = −δ(x2
j + x2

j+1) + O(∥ x ∥3)

and

Im pj |L2 = (2s2
j − δ(s2

j + t2j − 1))(y2
j + y2

j+1) + O(∥ y ∥3).

If sj ̸= 0, then by choosing δ > 0 small enough we ensure that Im pj |L2 ≥
C(x2

j + x2
j+1). If sj = 0, then |tj | < 1 and the same estimate holds with δ = 1.

Case 3. Suppose that Aj is a Jordan block of size k as in (25). Without loss of
generality assume that the block Aj corresponds to the first k coordinates, i.e., to
z1, . . . , zk. In what follows we use the convention that xl = yl = 0 for l > k to
simplify the formulas with summation. Consider the polynomial

pj(z) =
k∑

l=1

(αl − δi)z2
l ,

where αl and δ will be suitably chosen positive constants. For any z ∈ L1 we have

Im p(z) = −δ
∑

l

x2
l + O(∥ x ∥3).(29)

Suppose now that z = (A + iIn) y ∈ E2. Then

Im p(z) = λj

(
α1y

2
1 + αky2

k

)
+ λj

k−1∑

l=1

(
αly

2
l +

2αl

λj
ylyl+1 + αl+1y

2
l+1

)

+ qδ(y) + O(∥ y ∥3).

Here and below qδ(y) denotes a quadratic form in y1, . . . , yk of the norm smaller than
δ. Since a quadratic polynomial ax2 + bxy + cy2 is nonnegative (resp. nonpositive)
whenever a > 0 (resp. a < 0) and b2 ≤ 4ac, we may choose αl > 0 inductively,
starting with α1 = 1, so that every term in the sum above is nonnegative. Further,
a choice of δ small enough will ensure that

(30) Im p(z) ≥ C
k∑

j=1

y2
j .
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18 RASUL SHAFIKOV AND ALEXANDRE SUKHOV

Case 4. Consider the Jordan block of size k given by (26) corresponding to a
complex eigenvalue sj + itj of A. As was mentioned previously, we always have
|tj | < 1 if sj = 0. This follows from Weinstock’s criterion of polynomial convexity
for the union of two totally real spaces which holds in the Lagrangian case. Consider
the polynomial

(31) pj(z) = (sj − δi)(α1z
2
1 + · · · + αkz2

k),

where αl and δ are some positive constants. Then

Im pj |L1 = −δ(α1x
2
1 + · · · + αkx2

k) + O(∥ x ∥3).

As for L2, first note that k is necessarily even, and we set α2l−1 = α2l, l =
1, 2, . . . , k/2. If sj ̸= 0, then for z ∈ L2 we have

Im pj(z) = 2s2
j

(
k∑

l=1

αl(y
2
l + αl yl yl+2)

)
+ qδ(y) + O(∥ y ∥3),

where qδ has the same properties as above. As in Case 3, we may choose coefficients
αl inductively so that the first term on the right-hand side above is positive-definite,
and further we may choose δ > 0 small enough so that

(32) Im pj |L2 ≥ C(y2
j + · · · + y2

k).

If sj = 0, then

Im pj |L2 = δ

⎛

⎝α1(1 − tj)
2(y2

1 + y2
2) +

k/2∑

l=2

(α2l−1(1 − t2j ) − α2l−3)(y
2
2l−1 + y2

2l)

+2t

k/2∑

l=1

α2l−1(y2l−1y2l+2 − y2ly2l+1)

⎞

⎠ .

Again, coefficients αl can be chosen in such a way that the required estimate (32)
holds.

Now to combine all cases together, consider

p(z) =
m∑

j=1

pj(z),

where pj are the polynomials constructed above for each Jordan block of A. Then

Im p|L1 ≤ −C ∥ x ∥2 and Im p|L2 ≥ C ∥ y ∥2 .

Note that these estimates are possible precisely because in p(z) constructed above
all quadratic terms z2

ν , ν = 1, 2, . . . , n, are present. Hence p(L1) ⊂ {ξ + iη ∈ C |
η < 0} ∪ {0} and p(L2) ⊂ {ξ + iη ∈ C | η < 0} ∪ {0}. Furthermore, p−1(0)∩
(L1 ∪ L2) = {0}, and Kallin’s lemma concludes the proof. !

Transversality of the intersection is not a necessary condition for local polynomial
convexity of the union L1 ∪ L2 of two Lagrangian submanifolds.

Example 4.3. Consider in C2 with the coordinates z = x + iy, w = u + iv the
Lagrangian submanifolds L1 = R2

(x,u) and L2 = {(z, w) : (x + ix3, u + iu3), (x, u) ∈
R2}. Then L1 ∩ L2 = {0}, the manifolds L1 and L2 are tangent at the origin and
their union L1 ∪ L2 is locally polynomially convex at the origin. Indeed, consider
the polynomial p(z, w) = z2 + w2. Then p(L1) = {ζ ∈ C | Re ζ ≥ 0, Im ζ = 0}, i.e.,

Licensed to Univ of Western Ontario. Prepared on Mon Jul 13 15:55:56 EDT 2015 for download from IP 129.100.75.39.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



POLYNOMIALLY CONVEX HULLS OF SINGULAR REAL MANIFOLDS 19

the positive real semi-axis. The image p(L2) is contained in the set {ζ ∈ C | Im ζ
> 0}∪ {0}. Therefore, the polynomially convex hulls of these images intersect only
at the origin, which is a boundary point for both of them. It is easy to see that
p−1(0)∩ (L1∪L2) = {0}. Hence, by Kallin’s lemma L1 ∪L2 is locally polynomially
convex near the origin.

5. Boundary behaviour of analytic discs
near singular real manifolds

In this section we establish continuity up to the boundary of certain holomorphic
discs, which is needed for the proof of Theorem 1.4, and discuss related results.
From Theorem 1.3 and Theorem 1.2 we obtain immediately

Proposition 5.1. Let L be a smooth compact Lagrangian surface in C2 with a finite
number of transverse double self-intersections and generic open Whitney umbrellas.
Then L is locally polynomially convex.

Let K be a compact subset of Cn. There are several ways to define an analytic
disc with the boundary on K. The simplest one is to assume that the map f is
continuous on the closed disc D and f(∂D) is contained in K. In this case the image
X := f(D) is a complex purely 1-dimensional set in Cn (i.e., a complex curve) with
the boundary ∂X := X \ X contained in K.

One can weaken the assumption of boundary continuity. Let γ be a nonempty
subset of ∂D. By the cluster set C(f, γ) of an analytic disc f on γ we mean
the set of the (partial) limits of the sequences (f(ζk)) for all sequences (ζk) in D
converging to γ, i.e., such that dist(ζk, γ) −→ 0. We recall a well-known (and easy
to prove; see [10]) fact that C(f, ∂D) is connected. If the cluster set C(f, ∂D) is
contained in the compact set K, then f : D \ f−1(K) −→ Cn \ K is a proper
holomorphic map. Therefore, the image X = f(D) is still a complex curve with the
boundary ∂X = X \X contained in K although the restriction f |∂D is not defined.
The following theorem gives a sufficient condition for the equivalence of these two
notions of the boundary of an analytic disc.

Proposition 5.2. Let E be a compact subset of Cn and f be an analytic disc
with C(f, ∂D) ⊂ E. Suppose that E is a smooth totally real submanifold in a
neighbourhood of every point of C(f, ∂D) except possibly a finite subset Sing(E) =
{p1, . . . , pm}. Suppose further that E is locally polynomially convex near every point
pj ∈ Sing(E). Then f extends continuously to D.

The case when the set Sing(E) is empty is due to Chirka [8]. In the proof of this
theorem we employ the following result essentially due to Forstnerič and Stout [23]:

Lemma 5.3. In the assumptions of Proposition 5.2, there exists a neighbourhood Ω
of C(f, ∂D) in Cn and a continuous nonnegative plurisubharmonic function ρ on Ω
such that E∩Ω = {p ∈ Ω : ρ(p) = 0}. Furthermore, for every δ > 0 one can choose
ρ such that it is a smooth strictly plurisubharmonic function on Ω \

⋃m
j=1 B(pj , δ).

Forstnerič and Stout stated this result for a totally real disc with a finite number
of hyperbolic points in C2, but one can adapt their proof to the general situation
with minor changes since it uses only local polynomial convexity near a hyperbolic
point. For the reader’s convenience we provide the details.
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20 RASUL SHAFIKOV AND ALEXANDRE SUKHOV

Proof of Lemma 5.3. Consider the function ρ1(z) = (dist(z, E))2, where dist de-
notes the Euclidean distance. This function is Lipschitz continuous on a neigh-
bourhood Ω1 of E. We will construct a suitable modification of ρ1 near every point
pj ∈ Sing(E) making it plurisubharmonic. Since the construction is local, we fix a
point pj and assume that pj = 0.

By assumption, for every real ε > 0 small enough the intersection E ∩ εB is
polynomially convex. Given δ > 0, fix numbers ε, ε1 and ε2 such that 0 < ε2 <
ε1 < ε < δ/2. Since E′ := E \ Sing(E) is totally real near every point, there
exists an open neighbourhood Ω2 ⊂ Ω1 of E′ such that ρ1 is a smooth strictly
plurisubharmonic function on Ω2.

Consider a smooth function ψ : Cn −→ (−∞, 0] with the following properties:

(a) the support of ψ is contained in ε1B,
(b) ψ < 0 in a neighbourhood of E ∩ ε2B,
(c) the C2 norm of ψ is small enough so that the function ρ2 := ρ1 + ψ is

strictly plurisubharmonic in a neighbourhood Ω3 of E ∩ (εB \ ε2B).

Consider the function ρ3 := max(ρ2, 0). It is nonnegative, continuous and
plurisubharmonic on Ω3. Furthermore, ρ3 vanishes in a neighbourhood of E ∩
(ε2∂B). Therefore, one can extend the restriction of ρ3 to Ω3 as a plurisubharmonic
function on a neighbourhood Ω4 of E ∩ εB by setting it to zero in a neighbourhood
of E ∩ (εB \ ε2B). We again denote this extended function by ρ3.

It follows from polynomial convexity of E near the origin (see [37, Theorem
1.3.8, p. 25]) that there exists a smooth nonnegative plurisubharmonic function φ
on Cn such that its zero locus coincides with E ∩ εB. The function ρt

4 := ρ3 + tφ is
nonnegative plurisubharmonic on Ω4 for every t > 0. It is easy to see that its zero
locus coincides with E ∩ εB for every value of the parameter t > 0. Since ρ3 = ρ1

on the set Ω4∩(εB\ε1B), the equality ρt
4 = ρ1 +tφ holds there. Hence ρt

4 is smooth
and strictly plurisubharmonic on Ω4 ∩ (εB \ ε1B) for every t > 0.

Now fix a smooth function χ : Cn −→ [0, 1] equal to zero on ε1B and to 1 outside
εB. In order to patch ρ1 and ρ4, we set

ρt = χρ1 + (1 − χ)ρt
4.

On the set Ω4 ∩ (εB \ ε1B) where the patching occurs we have ρt = ρ1 + (1− χ)tφ.
Since ρ1 is strictly plurisubharmonic on this set, we can fix t > 0 sufficiently small
such that ρt is strictly plurisubharmonic on Ω4 ∩ (εB \ ε1B). Dropping the upper
index t, we obtain a function ρ which is the required modification of ρ1 near pj .
By repeating this argument near every point pj ∈ Sing(E), we conclude the proof
of the lemma. !

The second ingredient is the following result [9, Corollary 1.2]:

Theorem 5.4. Let Ω be a domain in Cn, ρ a plurisubharmonic function in Ω with
the zero set X = ρ−1(0), and f : D −→ Ω+ = {ρ ≥ 0} a bounded analytic disc such
that the cluster set C(f, γ) on an open arc γ ⊂ ∂D is contained in X. Assume that
for a certain point ζ ∈ γ the cluster set C(f, ζ) contains a point p ∈ X such that,
for some ε > 0, the function ρ(z)−ε ∥ z ∥2 is plurisubharmonic in a neighbourhood
of p. Then f extends to a Hölder 1/2-continuous mapping in a neighbourhood of ζ
on D ∪ γ.

Proof of Proposition 5.2. Fix ζ ∈ ∂D. Consider first the case when the cluster set
C(f, ζ) contains at least one point p ∈ E \Sing(E). Let ρ be the plurisubharmonic
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function given by Lemma 5.3. Shrinking the balls B(pj , δ), one can assume that ρ is
strictly plurisubharmonic near p. Then f extends continuously to ζ by Theorem 5.4.
Now suppose that C(f, ζ) contains only points of Sing(E). The cluster set C(f, ζ)
is connected [10], and so it can contain only one singular point pj ∈ Sing(E), which
means that the analytic disc f extends continuously to the point ζ. !

Corollary 5.5. Let L be a smooth compact Lagrangian surface in C2 with a finite
number of transverse double self-intersections and generic open Whitney umbrellas.
Suppose that f is an analytic disc such that the cluster set C(f, ∂D) is contained
in L. Then f extends continuously to D.

The corollary immediately follows from Proposition 5.2 in conjunction with The-
orems 1.2 and 1.3. The next result is a version of Gromov’s removable singularities
theorem with nonsmooth boundary data.

Corollary 5.6. Suppose that a compact subset E of Cn is a totally real submanifold
in a neighbourhood of every point of E except a finite subset Sing(E) = {p1, . . . , pm}
(which may be empty). Assume that E is locally polynomially convex near every
point pj ∈ Sing(E). Consider an analytic disc f of bounded area, continuous on
D \ {1} and such that f(∂D \ {1}) is contained in E. Then f extends continuously
to D.

Proof. By [2, Theorem 2], f : D \ f−1(E) −→ Cn \ E is a proper map. Therefore,
C(f, ∂D) is contained in E and we apply Proposition 5.2. !

In particular, the conclusion of this corollary holds if E = L is a smooth compact
Lagrangian surface in C2 with a finite number of transverse double self-intersections
and generic open Whitney umbrellas.

Remark 5.7. Corollary 5.5 and Corollary 5.6 still remain true if E is a smooth
surface totally really embedded in C2 with a finite number of hyperbolic points.
Indeed, Forstnerič and Stout [23] proved that in this case E is locally polynomially
convex near every hyperbolic point.

Remark 5.8. Let L satisfy the assumptions of Proposition 5.1. Then every non-
constant analytic disc f with boundary attached to L has area bounded away from
zero by a constant depending only on L. Indeed, since L is locally polynomially
convex, there exists ε > 0 such that the boundary of f cannot be contained in the
ball B(p, ε). Then there exists a point p in the boundary of f such that B(p, ε/2)
contains only smooth points of L. Applying estimates from [8] to the analytic set
f(D) ∩ B(p, ε), we obtain the desired estimate from below. Combining this result
with Corollary 5.6, we conclude that Gromov’s compactness theorem holds for fam-
ilies of analytic discs with boundary glued to L. The same holds for totally real
surfaces with hyperbolic points and for a sequence of analytic discs with uniformly
bounded area.

6. Hulls of compact real manifolds with singularities

6.1. Hulls of Lagrangian surfaces with open umbrella singularities. In this
subsection we give the proof of Theorem 1.6(i). Note that here umbrella points are
not assumed to be generic. We also notice that according to Givental [24] any
orientable compact surface of genus g > 1 admits a Lagrangian inclusion into C2
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with 2g−2 open umbrella singularities and without self-intersections (topologically
this inclusion is an embedding).

Proof of Theorem 1.6(i). It follows from the definition of umbrella points that a
neighbourhood of an open umbrella in L is homeomorphic to the unit ball in R2;
hence L is a topological manifold. According to a result of A. Browder (for the
orientable case) and Duchamp-Stout (for the nonorientable case) (see [37, Corollary
2.3.5, p. 95]), no n-dimensional compact topological manifold in Cn is polynomially
convex. Applying it to L, we obtain L ̸= L̂.

We employ the following result due to Duval-Sibony [16, Theorem 5.3]: let K be
a compact set in Cn with K̂ ̸= K and let Y be a closed polynomially convex subset
of K. Suppose that K \Y is locally contained in a totally real manifold. Then there
exists a compactly supported, positive (1,1)-current S such that supp (ddcS) ⊂ K
and supp (S) is not contained in K.

Since a finite set is polynomially convex, we can take L as K and the set of its
umbrella points as Y , and use L̂ ̸= L. !

Remark 6.1. Recall that a (1,1)-current on an open subset Ω is called plurihar-
monic (or simply harmonic) in Ω if ddcS = 0 in Ω. Thus, the current S given by
Theorem 1.6(i) is pluriharmonic in C2 \ L. The theory of pluriharmonic currents is
now well developed; see, for instance, [12, 18].

Remark 6.2. One can obtain more information about the structure of the current
S of Theorem 1.6(i). We recall two general results concerning the structure of
polynomially convex hulls, which we state for L, though they hold for any compact
subset of Cn. Let p be a point in L̂ \ L. The first result, which is due to Duval-
Sibony [16], states that there exists a positive (1, 1)-current R with p ∈ supp (R)
such that

ddcR = σ − δp,(33)

where σ is a representative Jensen measure for evaluation at p, and δp is the
Dirac mass at p. A typical example of such a current arises if there exists a
bounded holomorphic disc f : D −→ C2 such that its radial boundary values
f̃(θ) := limr→1 f(reiθ) belong to L for almost all eiθ ∈ ∂D. Suppose for simplicity
that f(0) = p. It is well-known that the image f(D) is contained in L̂. However, in
general f(D) is not a complex analytic set and its current of integration is not de-
fined. Consider the Green function G(ζ) = (−1/2π) log |ζ|, ζ ∈ D, and the current
[D]. The current G[D] acts on a test form ψ ∈ D1,1(C) by

⟨G[D],ψ⟩ := ⟨[D], Gψ⟩ =

∫

D
Gψ.

Pushing it forward by the analytic disc f , we obtain the Green current Gf of the
disc f acting on φ ∈ D1,1(C2) by

⟨Gf ,φ⟩ := ⟨f∗G[D],φ⟩ = ⟨G[D], f∗φ⟩.

It is easy to check that this current is defined correctly and satisfies ddcS = f∗σ−δp,
and f∗σ is a Jensen measure for p; see [16].

Fix a Runge domain Ω containing L. For every ε > 0 there exist a subset Γ ⊂ ∂D
of measure less than ε and a map f : U −→ Ω holomorphic in a neighbourhood U
of D with f(ζ) ∈ L for all ζ ∈ ∂D \ Γ. This is Poletsky’s theorem [34]. Recently

Licensed to Univ of Western Ontario. Prepared on Mon Jul 13 15:55:56 EDT 2015 for download from IP 129.100.75.39.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



POLYNOMIALLY CONVEX HULLS OF SINGULAR REAL MANIFOLDS 23

Wold [40] proved that Poletsky’s theorem implies the existence of Duval-Sibony’s
current R satisfying (33). He proves that every such R can be obtained as a limit
of the Green currents Gfk corresponding to a sequence of Poletsky’s discs. As
the proof of [16] shows, the current S of Theorem 1.6(i) is a limit of a sequence
of normalized (i.e., with suitable positive factors) currents satisfying (33); these
currents are associated with a suitably chosen sequence of points pk converging to
the smooth part of L. Combining this with the result of Wold, we conclude that
the current S in Theorem 1.6(i) is a limit of a suitably chosen sequence of (up to
positive factors) Green currents Gfk corresponding to Poletsky’s discs.

Remark 6.3. When L has open Whitney umbrella points and transverse self-
intersections one can remove self-intersections by Lagrangian surgery; see [33]. This
procedure consists of gluing an arbitrarily small Lagrangian handle to L near the
self-intersection point, turning L into a local embedding. Applying such a surgery
to every self-intersection we obtain a topological Lagrangian embedding satisfying
the assumptions of Theorem 1.6(i). Note that this operation changes the genus of
L.

6.2. Hulls of totally real immersions. In the remaining part of the section we
prove Theorem 1.6(ii) and Theorem 1.4. Theorem 1.6(ii) is due to Duval-Sibony
[17] in the case when E is a totally real embedding.

Notice that every compact n-manifold admits a totally real immersion into Cn

(see, for instance, [22]). Since immersions are not in general topological submani-
folds of Cn, the algebraic topology methods used in the proof of polynomial non-
convexity in Theorem 1.6(i) do not work directly. Instead, we use Alexander’s
version [2] of Gromov’s method [24], which gives the existence of an analytic disc at-
tached to a totally real immersion, which is stronger than the existence of Poletsky’s
discs. This yields more precise information on the structure of the polynomially
convex hull of L than gluing to L a closed positive current.

Proof of Theorem 1.6(ii). The current S will also be obtained as a limit of (normal-
ized) currents of integration over suitable analytic discs. The absence of umbrellas
on E allows us to choose analytic discs with boundaries better attached to E than
Poletsky’s discs.

A nearly smooth holomorphic disc of class Cm is an H∞ (i.e., bounded holomor-
phic) disc which extends Cm-smoothly to ∂D \ {1}. We say that a nearly smooth
holomorphic disc f is attached to a compact subset K ⊂ Cn if f(∂D \ {1}) ⊂ K.
If f is nonconstant we call it an A-disc of class Cm (after Herbert Alexander, who
proved the existence of such discs for totally real manifolds, [2]). We simply write
A-disc if it is of class C∞.

In the next subsection we will prove Proposition 6.4, which gives the existence
of an A-disc f for a totally real immersed manifold E. Assuming this result we
conclude the proof of Theorem 1.6(ii). It suffices to apply to an A-disc f the result
of Duval-Sibony [17, Theorem 3.1]. Though their theorem is stated for a totally
real embedding E, the part of their proof which we need goes through in our case.
Indeed, consider an exhausting sequence Uk of subdomains in D defined as in [17].
Pushing forward their currents of integration by the disc f , we obtain the sequence
of currents f∗[Uk]. Set ak = area(f |Uk). Then the argument of [17] shows that the
current S satisfying the hypothesis of the proposition is the limit of the sequence
Sk = f∗[Uk]/ak. This part of the argument of Duval-Sibony is based on a general
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estimate of the harmonic measure in [17, Lemma 3.2] and a general isoperimetric
inequality for analytic discs [17, p. 629]. These ingredients do not require any
assumptions on E. Then the convergence of the sequence f∗[Uk]/ak to S follows
by the argument of [17, p. 629], which is independent of the structure of E as well.
The obtained current is supported on f(D), so its support is contained in Ê. It
also follows from [17, pp. 629-630] that supp (S) ̸⊂ E. !
6.3. Existence of A-discs and proof of Theorem 1.4. Let E = (Ẽ, ι) be a pair
which consists of a compact real manifold Ẽ of dimension n ≥ 1 and a C∞-smooth
totally real immersion ι : Ẽ → Cn. We simply say that E is an immersed totally
real manifold in Cn identifying it with the image ι(Ẽ). We say that an A-disc f
is adapted for the immersion E if for every point ζ ∈ ∂D \ {1} there exist an open
arc γ ⊂ ∂D containing ζ and a smooth map fb : γ −→ Ẽ satisfying ι ◦ fb = f |γ . In
other words, in a neighbourhood of every self-intersection point p of E the values
of f belong to a smooth component of E through p.

Proposition 6.4. Let E = (Ẽ, ι) be an immersed totally real manifold in Cn.
Then:

(i) E admits an adapted A-disc f ∈ C(D \ {1}).
(ii) If in addition E is Lagrangian, then f is of bounded area with the cluster

set C(f, ∂D) contained in E. Its image X = f(D) is a holomorphic curve
of bounded area with the boundary ∂X := X \ X contained in E.

It follows by the maximum principle that the disc f is contained in the polyno-
mially convex hull of E. Since the area of X is finite, the current of integration [X]
over X is correctly defined. While in Proposition 6.4 we do not impose any restric-
tions of transversality type on E, under additional assumptions we can deduce the
boundary continuity of a disc.

Proof of Theorem 1.4. Theorem 1.4 follows from Proposition 6.4 and Proposition
5.2. !

It remains to establish Proposition 6.4.

Proof of Proposition 6.4. The proof follows Alexander’s argument with some nec-
essary modifications. We first deal with part (i).

Step 1 (Manifolds of discs and elliptic estimates). Fix a point p = ι(p̃) ∈ E which
is not a self-intersection point and fix also a noninteger r > 1. Consider the set of
pairs
(34)

F =
{
(f, fb) ∈ Cr+1(D, Cn) × Cr+1(∂D, Ẽ) : f(∂D) ⊂ E, f(1) = p, ι ◦ fb = f |∂D

}
.

In other words, together with a (not necessarily analytic) disc f we specify a lift of
its boundary to the source manifold Ẽ. This idea is due to Ivashkovich-Shevchishin
[30]. In what follows we will write for short f instead of (f, fb) when it does not
lead to confusion.

Denote by F an open subset of F which consists of f homotopic to a constant
map f0 ≡ p in F . It is well-known that F is a C∞-smooth complex Banach
manifold. Denote by G the complex Banach space of all Cr maps g : D → Cn. Set
H = {(f, g) ∈ F × G : ∂f/∂ζ = g}. Then H is a connected submanifold of F × G.

For 0 < t < 1, let Dt := tD and D+
t := tD ∩ {Im ζ > 0}.
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Lemma 6.5. Let E′ be an embedded totally real manifold. Let fk : (D+
t , ∂D+

t ∩R) →
(Cn, E′) be maps of class Cr+1 which converge uniformly to f : (D+

t , ∂D+
t ∩ R) →

(Cn, E′). Suppose that the sequence gk = ∂fk/∂ζ converges in Cr(D+
t ) to g ∈

Cr(D+
t ). Then for every τ < t one has f ∈ Cr+1(D+

t ) and {fk} converges to f in
D+

τ in the Cr+1 norm.

Denote by

TDf(ζ) =
1

2πi

∫

D

f(τ )

τ − ζ
dτ ∧ dτ

the Cauchy-Green integral on D. Recall the classical regularity property of the
Cauchy-Green integral: for every noninteger s > 0 the linear map TD : Cs(D) −→
Cs+1(D) is bounded. The proof of Lemma 6.5 given in [2] is based on the stan-
dard elliptic “bootstrapping” argument employing this regularity property of the
Cauchy-Green operator and elementary estimates of the harmonic measure. An
immediate but crucial observation for our goals is that this proof is purely local;
i.e., all estimates and the convergence are established in a neighbourhood of a given
boundary point of a disc. The global statement is the following.

Lemma 6.6. Let E be an immersed totally real manifold. Suppose that for a
sequence {(fk, (fk)b)} in F the sequence {fk} converges to a continuous mapping
f : (D, ∂D) → (Cn, E) uniformly on D, and gk := ∂fk/∂ζ converges in Cr(D) to
g ∈ Cr(D). Then f ∈ Cr+1(D), {(fk)b} converges to some fb, and {(fk, (fk)b)}
converges to (f, fb) in F after possibly passing to a subsequence.

We stress that the local character of Lemma 6.5 allows us to pass automatically
from an embedded E′ to a globally immersed E in Lemma 6.6. Indeed, suppose
that q is a self-intersection point of E and f(ζ0) = q for some ζ0 ∈ ∂D. It follows
from the uniform convergence of the sequence (fk) and the definition of the set F
that there exists a neighbourhood U of ζ0 such that f(U ∩ ∂D), and after passing
to a subsequence, fk(U ∩ ∂D) belong to the same smooth component through p
of the immersed manifold E. This reduces the situation to the embedded case of
Lemma 6.5.

Considering the finite covering of ∂D by such neighbourhoods we obtain Cr+1

convergence in a neighbourhood of ∂D. The convergence in the interior of D follows,
since fk = TDgk +hk and the bounded sequence (hk) of holomorphic functions form
a normal family.

Step 2 (Renormalization). The canonical projection π : H → G given by π(f, g) = g
is a map of class C1 between two Banach manifolds. It is known [2,27,30] that π is
a Fredholm map of index 0 and the constant map f0 is a regular point for π. The
proof in the immersed case is the same as in the embedded case; see [30].

The crucial property of π is described in the following lemma proved in [2]: the
map π is not surjective. Now assume by contradiction that an adapted A-disc of
class Cr+1(D) for E does not exist. In particular, π−1(0) = {f0}. Then 0 ∈ G is a
regular value of π. If π is proper, then Gromov’s argument based on Sard-Smale’s
theorem implies surjectivity of π (see [2]), a contradiction. Thus, it remains to show
that π : H → G is proper.

Arguing by contradiction, suppose that π is not proper. Then there exists a
sequence {(fk, gk)} ⊂ H such that gk → g in G but fk diverge in F . For every
k consider the function qk defined by qk(ζ) = TDgk(ζ) for ζ ∈ D and qk(ζ) = 0
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on ζ ∈ C \ D. Then qk → q = TDg in Cr+1(D, Cn) and fk = qk + hk, where
hk ∈ Cr+1(D, Cn) and hk is holomorphic on D. We have fk(∂D) ⊂ E and qk are
uniformly bounded since gk are; we conclude that hk|∂D are uniformly bounded.
By the maximum principle the functions hk are uniformly bounded on D. Hence,
fk are uniformly bounded.

Set Mk = supD |h′
k(λ)|. Since hk ∈ Cr(D, Cn) and r > 1, the constants Mk are

finite for every k. If (Mk) contains a bounded subsequence, then a subsequence of
(hk) converges uniformly on D. Then a subsequence of (fk) converges uniformly,
and by Lemma 6.6 it converges in F , a contradiction. Thus, we may suppose
Mk → ∞. The key idea of [2] is to apply a renormalization argument.

There exists λk ∈ ∂D with Mk = |h′(λk)|, and, taking a subsequence if necessary,
suppose that λk → λ∗. Set zk = (1 − 1

Mk
)λk ∈ D and consider the renormalization

sequence of Mobius maps φk(λ) = (λ+zk)(1+ z̄kλ)−1. Set f̃k = fk ◦φk, q̃k = qk ◦φk

and h̃k = hk ◦ φk. It is proved in [2] that after extracting a subsequence, the
sequences (q̃k) and (h̃k) converge uniformly on compacts in D \ {−λ∗} respectively
to a constant map c and a holomorphic map h̃.

Notice that since qk converge in Cr+1(D), the sequence q̃k converges on compacts
in D \ {−λ∗} in this norm. Since Lemma 6.6 is local, it applies and gives the
convergence of (f̃k) to f̃ also in the Cr+1-norm on compacts in D\{−λ∗}. This is the
key observation which makes Alexander’s construction valid in the immersed case.
Then again the argument of [2] shows that |h̃′

k(λk)| converges to 1/2 = |h̃′(λ∗)|.
Hence, f̃ is nonconstant, and so is an adapted A-disc of class Cr+1. Since locally
E is an embedding and the disc is adapted, it is C∞ smooth on D \ {1} by the
boundary regularity theorem for analytic discs. This contradicts our assumption of
nonexistence of adapted A-discs, which proves Proposition 6.4(i).

As for (ii), repeating verbatim the argument of [2, pp. 140-141] we obtain that
the A-disc f constructed in (i) has a bounded area. Then [2, Theorem 2] implies
that f : D \ f−1(E) → Cn \ E is a proper map. This completes the proof. !
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