In this brief note we use our uniformization result from [11, 12] to extend the work of Fu and Wong [8] on the relationship between two long-standing conjectures about the behaviour of the Bergman metric of a strictly pseudoconvex domain in \(\mathbb{C}^n \), \(n \geq 2 \).

1. Let \(D \subseteq \mathbb{C}^n \) be an arbitrary bounded domain. The Bergman kernel function of \(D \) can be defined by the formula
\[
K_D(z) := \sum_{j=1}^{\infty} \varphi_j(z) \overline{\varphi_j(z)},
\]
where \(\{ \varphi_j \}_{j=1}^{\infty} \) is any orthonormal basis of the space \(L^2O(D) \) of square-integrable holomorphic functions in \(D \).

It is a standard result that the function \(\log K_D(z) \) is strictly plurisubharmonic and the positive \((1,1)\)-form
\[
k_D := i\partial \bar{\partial} \log K_D(z)
\]
is invariant with respect to biholomorphic mappings between bounded domains. The Bergman metric on \(D \) is the Kähler metric associated with this Kähler form.

2. A classical problem, proposed in different forms by Bergman, Hua, and Yau, asks to describe the domain in terms of the differential-geometric properties of its Bergman metric. For example, a bounded domain with complete Bergman metric of constant holomorphic sectional curvature is biholomorphic to the ball by a well-known theorem of Lu Qi-Keng [10].

The Cheng conjecture [4] asserts that the hypotheses of Lu’s theorem can be weakened considerably for a smoothly bounded strictly pseudoconvex domain. Namely, such a domain has to be biholomorphic to the ball if and only if its Bergman metric is Kähler–Einstein. (The formulation in [4] is somewhat vague; the precise statement above is taken from [8].)

3. Fefferman [7] (see also [2]) established the following deep result on the boundary behaviour of the kernel function of a smoothly bounded strictly pseudoconvex domain \(D \). Let \(\rho \in C^\infty(D) \) be a defining function for \(D \). Then there is a decomposition
\[
K_D(z) = \varphi(z) \rho(z)^{-(n+1)} + \psi(z) \log |\rho(z)|,
\]
where the functions \(\varphi, \psi \in C^\infty(D) \), and \(\varphi \neq 0 \) everywhere on \(\partial D \). Note that the latter property implies that the Bergman metric of a strictly pseudoconvex domain is complete.

Although the kernel function is defined globally, its asymptotic behaviour as \(z \to z_0 \in \partial D \) depends only on the local CR geometry of the boundary at the point \(z_0 \) (see [7]). For instance, the kernel function of the unit ball \(B \subset \mathbb{C}^n \) can be explicitly decomposed as
\[
K_B(z) = \frac{n!}{\pi^n} (1 - \|z\|^2)^{-(n+1)}
\]
with identically vanishing logarithmic term. Thus if the boundary of a strictly pseudoconvex domain \(D \) is spherical (i.e., locally CR diffeomorphic to the unit sphere \(\partial B \subset \mathbb{C}^n \) at each point \(q \in \partial D \)), then the coefficient \(\psi \) in the logarithmic term of (1) vanishes to infinite order at the boundary of \(D \).

The Ramadanov conjecture [13] asserts that, conversely, the condition \(\psi(z) = O(\rho^n) \) as \(z \to \partial D \) implies that the boundary of \(D \) is spherical. This conjecture was proved for domains in \(\mathbb{C}^2 \) by Graham and Burns [9] and Boutet de Monvel [1].

4. Now we are in position to state and prove the main results of this note.
Theorem. The Cheng conjecture in \(\mathbb{C}^n \) follows from the Ramadanov conjecture in \(\mathbb{C}^2 \).

Since the Ramadanov conjecture is known to be true in dimension 2, the theorem implies the following result.

Corollary. The Bergman metric of a smoothly bounded strictly pseudoconvex domain \(D \subseteq \mathbb{C}^2 \) is Kähler–Einstein if and only if this domain is biholomorphic to the ball.

Remark. Fu and Wong [8] proved these results in the special case of simply connected domains using a weaker uniformization result of Chern and Ji [6] and stated the general case as an open question.

Proof of the theorem. Suppose that the Bergman metric of a strictly pseudoconvex domain \(D \) is Kähler–Einstein. Fu and Wong [8] computed (rather ingeniously) that in this case the logarithmic coefficient \(\psi \) in the decomposition (1) vanishes to infinite order at \(\partial D \). Assuming the Ramadanov conjecture, we conclude that the boundary of \(D \) is spherical. Hence, by the uniformization theorem (see [11, Thm. A.2] and [12, Cor. 3.2]) the domain \(D \) is covered by the unit ball.

Since \(D \) is the quotient of the ball by the group of holomorphic deck transformations, there is a natural complete metric of constant holomorphic sectional curvature on \(D \) obtained by taking the quotient of the standard invariant metric on the ball. According to Cheng and Yau [5], the complete Kähler–Einstein metric on \(D \) is unique up to a constant factor. Hence, the Bergman metric of \(D \) is proportional to the quotient metric and so has constant holomorphic sectional curvature. It follows that \(D \) is biholomorphic to the ball by Lu’s theorem [10].

Example. The domain \(D_{BS} = \{ (z, w) \in \mathbb{C}^2 \mid \sin \log |z| + |w|^2 < 0, \ e^{-\pi} < |z| < 1 \} \) constructed by Burns and Shnider [3] is a non-simply connected strictly pseudoconvex domain with spherical boundary in \(\mathbb{C}^2 \). Thus, the kernel function of \(D_{BS} \) has no logarithmic asymptotic at the boundary but its Bergman metric is not Kähler–Einstein. It would be interesting to give a direct proof of the latter assertion that would not use the uniqueness of the Cheng–Yau metric and the Lu Qi-keng theorem.

References

Steklov Mathematical Institute, 119991 Moscow, Russia
Ruhr-Universität Bochum, D-44780 Bochum, Germany
E-mail address: stefan@mi.ras.ru

Department of Mathematics, the University of Western Ontario, London, Canada N6A 5B7
E-mail address: shafikov@uwo.ca