Calculus 2502A Midterm Examination Thursday, October 23, 2008
PART A (20 marks) (2 marks for each problem)
NOTE: YOUR ANSWERS TO THE PROBLEMS IN THIS SECTION MUST BE INDICATED ON THE SCANTRON SHEET. FOR SAFETY, ALSO CIRCLE YOUR ANSWERS IN THIS BOOKLET.

A1. [2 marks] The distance from the point $(2,-5,1)$ to the y-axis is

$\mathrm{A}: \sqrt{30}$	$\mathrm{~B}: \sqrt{29}$	$\mathrm{C}: \sqrt{26}$	$\mathrm{D}: \sqrt{5}$	E: none of A,B,C,D

A2. [2 marks] If \mathbf{u} is a unit vector, then the length of the vector $-3 \mathbf{u}$ is

A: 3	B: $\frac{1}{3}$	C: $\sqrt{3}$	D: $\frac{1}{\sqrt{3}}$	E: none of A,B,C,D

A3. [2 marks] The vector projection projab $_{\mathbf{a}} \mathbf{b}$ of $\mathbf{b}=\langle 1,1,2\rangle$ onto $\mathbf{a}=\langle-3,0,1\rangle$ is

$\mathrm{A}: \frac{1}{\sqrt{10}}$	$\mathrm{~B}:-\frac{1}{\sqrt{10}}$	$\mathrm{C}:\left\langle\frac{3}{10}, 0,-\frac{1}{10}\right\rangle$	$\mathrm{D}:\left\langle-\frac{3}{10}, 0, \frac{1}{10}\right\rangle$	$\mathrm{E}:$ none of A,B,C,D

A4. [2 marks] Lines

$$
\begin{array}{ll}
L_{1}: & x=2-t, y=3 t, z=5+8 t \\
L_{2}: & \frac{x+1}{3}=\frac{y+2}{8}=z-1
\end{array}
$$

are

A: parallel	B: perpendicular	C: neither

A5. [2 marks] Planes $6 x-2 y+5 z=0$ and $x+3 y+8=0$ are

A: parallel	B: perpendicular	C: neither

A6. [2 marks] The domain of $\mathbf{r}(t)=\left\langle\sqrt{2-t},\left(e^{t}-1\right) / t, \ln (t+1)\right\rangle$ is the interval

$\mathrm{A}:(-1,2]$	$\mathrm{B}:[-2,0) \cup(0,1)$	$\mathrm{C}:[-1,0) \cup(0,2)$	$\mathrm{D}:(-1,0) \cup(0,2]$	$\mathrm{E}:$ none of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$

A7. [2 marks] The curve $\mathbf{r}(t)=\langle\cos (t), \sin (t), \ln (t)\rangle$ is which of the curves in the graphs below:

A: VI	B: II	C: III	D: IV	E: V

A8. [2 marks] The curve $\mathbf{r}(t)=\left\langle t, t^{2}, e^{-t}\right\rangle$ is which of the curves in the graphs below:

A: I	B: II	C: III	D: IV	E: V

A9. [2 marks] In spherical coordinates, $\rho=\sin (\theta) \sin (\phi)$ represents

A: a sphere	B: a half cone	C: an ellipsoid	D: a paraboloid	E: none of A,B,C,D

A10. [2 marks] In cylindrical coordinates, $z^{2}=4+r^{2}$ represents

A: a cone	B: a hyperbolic paraboloid	C: a cylinder
D: a hyperboloid of two sheets	E: a hyperboloid of one sheet.	

PART B (80 marks)

NOTE: SHOW ALL YOUR WORK FOR THE PROBLEMS IN THIS SECTION.

B1. [6 marks] Let $\mathbf{a}=\langle 2,3,1\rangle, \mathbf{b}=\langle-2,1,1\rangle$, and let Θ be the angle between these vectors. Find the following:
(a) $3 \mathbf{a}-2 \mathbf{b}=$
(b) $|\mathbf{b}|=$
(c) $\mathbf{a} \cdot(\mathbf{a}+\mathbf{b})=$
(d) $\mathbf{a} \times \mathbf{b}=$
(e) $\cos \Theta=$
(f) the area of the parallelogram determined by \mathbf{a} and $\mathbf{b}=$

B2. (a) [3 marks] Find parametric and symmetric equations for the line through points (1, 2, 3) and ($4,-1,5$).
(b) [3 marks] Find an equation of the plane passing through the origin and orthogonal to this line.

B3. Let S be the region that lies inside (or on) the cone $z^{2}=x^{2}+y^{2}$ and between the $x y$ plane and the plane $z=2$. Describe S in terms of inequalities using
(a) [4 marks] rectangular Cartesian coordinates;
(b) [4 marks] cylindrical coordinates;
(c) [4 marks] spherical coordinates.

B4. [12 marks] For each of the following equations, state
(i) which of the graphs in Figure II from the extra page has the given equation,
(ii) whether w denotes x, y, or z (here w labels an axis in the diagram).
(iii) the correct name of the surface.
(a) $4 x^{2}-y^{2}+z^{2}=4$
(i) Graph=
(ii) $w=$
(iii) Surface $=$
(b) $-x^{2}+4 y^{2}+z^{2}=0$
(i) Graph $=$
(ii) $w=$
(iii) Surface=
(c) $x^{2}-z^{2}=1$
(i) Graph $=$
(ii) $w=$
(iii) Surface $=$
(d) $x^{2}-y-z^{2}=0$
(i) Graph=
(ii) $w=$
(iii) Surface=

B5. [4 marks] Let C be the curve of intersection of the hyperboloid $x^{2}+y^{2}-z^{2}=2$ and the plane $z=x+y$. Find a parametrization of the curve C. Give a description in words of this curve C.

B6. [6 marks] For the curve C defined by $\mathbf{r}(t)=\langle 3 \sin (t), 5 \cos (t), 4 \sin (t)\rangle$
(a) find the arclength of the curve as t varies from 0 to 1.
(b) reparametrize the curve with respect to arclength measured from the point where $t=0$ in the direction of increasing t.

B7. (a) [4 marks] Find the parametric equations for the tangent line to the curve C defined by

$$
\mathbf{r}_{1}(t)=\left\langle t e^{-t}, 2 \arctan (t), 2 e^{t}\right\rangle
$$

at the point $\mathbf{r}_{1}(0)$.
(b) [4 marks] The curve C given by

$$
\mathbf{r}_{1}(t)=\left\langle t e^{-t}, 2 \arctan (t), 2 e^{t}\right\rangle
$$

intersects the curve D given by

$$
\mathbf{r}_{2}(t)=\left\langle t \cos (t), t \sin (t), 1+\cos ^{2}(t)\right\rangle
$$

at the point $(0,0,2)$. Find the cosine of the angle of intersection of these curves at $(0,0,2)$.

B8. [12 marks] For the vector function $\mathbf{r}(t)=\left(\cos (t), e^{t}, \sin (t)\right)$, find
(a) $\mathbf{r}^{\prime}(t)$,
(b) $\mathbf{r}^{\prime \prime}(t)$,
(c) $\mathbf{T}(0)$,
(d) $\kappa(0)$,
(e) $a_{T}(0)$,
(f) $a_{N}(0)$.

B9. [10 marks] For the vector function $\mathbf{r}(t)=\langle\ln (\cos (t)), \sin (t), \cos (t)\rangle$ find
(a) the equation of the osculating plane at $\mathbf{r}(0)$.
(b) the equation of the normal plane at $\mathbf{r}(0)$.

B10. [4 marks] Find the velocity and position vectors of a particle that has acceleration given by

$$
\mathbf{a}(t)=\left\langle 2, e^{t},(2+t) e^{t}\right\rangle
$$

with initial velocity $\mathbf{v}(0)=\langle 0,1,1\rangle$ and initial position $\mathbf{r}(0)=\langle 0,1,0\rangle$.

Graph I.

Graph II.

Graph III.

Graph IV.

Graph V.

Figure II.

Graph 1.

Graph 2.

Graph 3.

Graph 4.

