Homework 1.

Due October 13.

1. Let $M=\left\{z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}: x_{1}=0\right\}$. Suppose that $f(z)$ is a holomorphic function in \mathbb{C}^{n}, such that $\left.f\right|_{M}=0$. Prove that $f \equiv 0$.
2. Problem E.1.9 (Textbook, p. 18)
3. A complex line in \mathbb{C}^{n} is a subset of the form

$$
\left\{z \in \mathbb{C}^{n}: z=A \zeta+B, \zeta \in \mathbb{C}\right\}
$$

for some $A, B \in \mathbb{C}^{n}$. Prove that two different complex lines in \mathbb{C}^{2} can intersect at most at one point.
4. Prove that if $f \in \mathcal{O}\left(\mathbb{C}^{n}\right)$, and $|f(z)| \leq C\left|z^{\alpha}\right|$, for some $\alpha \in \mathbb{N}^{n}$, then $f(z)$ is a polynomial of degree at most $|\alpha|$.

