Homework 1.

Due October 13.

- 1. Let $M = \{z = (z_1, \ldots, z_n) \in \mathbb{C}^n : x_1 = 0\}$. Suppose that f(z) is a holomorphic function in \mathbb{C}^n , such that $f|_M = 0$. Prove that $f \equiv 0$.
- 2. Problem E.1.9 (Textbook, p. 18)
- 3. A complex line in \mathbb{C}^n is a subset of the form

$$\{z \in \mathbb{C}^n : z = A\zeta + B, \ \zeta \in \mathbb{C}\}\$$

for some $A, B \in \mathbb{C}^n$. Prove that two different complex lines in \mathbb{C}^2 can intersect at most at one point.

4. Prove that if $f \in \mathcal{O}(\mathbb{C}^n)$, and $|f(z)| \leq C|z^{\alpha}|$, for some $\alpha \in \mathbb{N}^n$, then f(z) is a polynomial of degree at most $|\alpha|$.