CALCULUS 2302 FALL 2012

PRACTICE QUESTIONS FOR THE FINAL

Note: problems are taken from the previous finals.
7.1. Consider the function $f(x, y)=-4+(x-1)^{2}+(y-1)^{2}$ on the triangular region where $x \geq 0, y \geq 0$, and $y \leq 4-x$. Find the absolute maximum and absolute minimum values of f on this region, and all points at which they occur.
7.2. Use Lagrange multipliers to find the maximum and minimum values of the function

$$
f(x, y, z)=2 x+6 y+10 z
$$

subject to the constraint $x^{2}+y^{2}+z^{2}=35$. List the points at which the maximum and minimum occur.
7.3. Let $M=w e^{u v}$, where $u=r+s, v=r-s$, and $w=r s$. Using the chain rule, find $\frac{\partial M}{\partial s}$ for $r=3$ and $s=2$.
7.4. Find and classify the critical points of $f(x, y)=x^{4}+y^{4}-4 x y+2$.
7.5. The temperature at a point (x, y, z) is given by

$$
T(x, y, z)=\sqrt{x^{2}+2 y^{2}+3 z^{2}}
$$

(a) Find the rate of change of the temperature at the point $P(1,0,1)$ in the direction toward the point $Q(3,1,3)$.
(b) Give a vector pointing in the direction that the temperature decreases fastest at $P(1,0,1)$
(c) What is the directional derivative of T at P in the direction you found in (b)?
7.6. Find the linear approximation of the function

$$
f(x, y)=\ln \left(x^{2}+y\right)
$$

at $(0,1)$ and use it to approximate $f(0.1,0.9)$.
7.7. Verify that the function $u(x, y)=\ln \left(x^{2}+y^{2}\right)$, where $(x, y) \neq(0,0)$, satisfies the Laplace equation $u_{x x}+u_{y y}=0$.
7.8. Find the position vector $\vec{r}(t)$ of a particle whose acceleration, initial position and velocity are given by

$$
\vec{a}(t)=6 t \vec{i}+e^{t} \vec{j}+\cos t \vec{k}, \vec{v}(0)=\vec{i}+\vec{j}, \vec{r}(0)=\vec{j}-\vec{k}
$$

7.9. Let $\vec{r}(t)=\left\langle t^{2}, \sin t-t \cos t, \cos t+t \sin t\right\rangle$.
(a) Find parametric equations of the tangent line to \vec{r} at $t=\pi$.
(b) Find the equation of the plane through the point $\vec{r}(\pi)$ which is perpendicular to the curve $\vec{r}(t)$. Write your answer in the form $a x+b y+c z+d=0$.
(c) Find the arc length of $\vec{r}(t)$ for $0 \leq t \leq \pi$.
7.10. Find a tangent plane to the surface

$$
x^{2}+3 y^{2}+z^{2}=8
$$

at $(1,-1,2)$.
7.11. Given that $y z=e^{x+z}$ implicitly defines z as a function of x and y, find the partial derivative $\frac{\partial z}{\partial y}$.
7.12. Find the line that passes through the origin and is perpendicular to the plane $2 x-5 y+z=6$.
7.13. Find the tangent plane to $\arctan (y z)=\ln (x+z)$ at $(0,0,1)$.
7.14. Consider two surfaces $S_{1}: z=x^{2}+y^{2}$ and $S_{2}: x^{2}+4 y^{2}=4$.
(a) Find a vector equation for the curve of intersection C of S_{1} and S_{2}.
(b) Find parametric equations of the tangent line to C at $P=(2,0,4)$.
(c) Find the gradient vectors of $f(x, y, z)=x^{2}+y^{2}-z$ and $g(x, y, z)=x^{2}+4 y^{2}$ at P. Explain how you would use this information to find a direction vector for the tangent line to C at P.
7.15. Let $f(x, y)=x^{2}-y$.
(a) Make a careful neat drawing of the level curve of f that goes through $(1,0)$ and the vector $\nabla f(1,0)$ with its initial point at $(1,0)$. Clearly indicate any important features in your drawing.
(b) Find the rate of change of f at the point $P=(1,0)$ in the direction from the point P to the point $Q=(0,1)$.
(c) Find the maximum rate of change of f at $(1,0)$ and the direction in which it occurs.
7.16. Use Lagrange multipliers to find the point on the surface $x^{2}+y^{2}-z^{2}=20$ that is closest to the point $(2,1,0)$.

