CALCULUS 2302 FALL 2012

HOMEWORK ASSIGNMENT 2.

Due October 3.

1.1. Find the acute angle between two lines in \mathbb{R}^{2} given by

$$
\begin{aligned}
& x+2 y=7 \\
& 5 x-y=2
\end{aligned}
$$

1.2. (i) Given the vector $\vec{u}=3 \vec{i}+5 \vec{j}-3 \vec{k}$, find a scalar c such that the scalar projection of \vec{u} onto the vector $\vec{v}=-\vec{i}+2 \vec{j}+c \vec{k}$ has length 2 .
(ii) Find the vector projection of the vector \vec{u} above onto each \vec{i}, \vec{j}, and \vec{k}.
1.3. Find a unit vector orthogonal to the plane passing through the points $(-1,3,1),(0,5,2)$, and $(4,3,-1)$.
1.4. Let

$$
\begin{aligned}
\vec{u} & =\langle 3,-2,4\rangle \\
\vec{v} & =\langle 1,-1,0\rangle \\
\vec{w} & =\langle-2,0, c\rangle
\end{aligned}
$$

(i) Find the constant c such that the volume of the parallelepiped determined by the vectors equals one.
(ii) Find c such that the three vectors are coplanar.
1.5. Given three vectors $\vec{a}=\langle 2,-1,0\rangle, \vec{b}=\langle 3,1,2\rangle$, and $\vec{c}=\langle 1,0,-7\rangle$, find two of them that have the cross product of largest length.
1.6. Let \mathbf{V} be a parallelepiped in \mathbb{R}^{3} with one vertex at the origin, which is spanned by vectors $a \vec{i}, b \vec{j}$, and $c \vec{k}$. Suppose that the directional angles of the biggest diagonal satisfy

$$
(\cos \alpha, \cos \beta, \cos \gamma)=\left(\frac{1}{2}, \frac{1}{2}, \frac{\sqrt{2}}{2}\right) .
$$

If the volume of \mathbf{V} equals 5 , find a, b, and c.
1.7. Prove that

$$
\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}
$$

1.8. Prove that if vectors $\vec{u}+\vec{v}$ and $\vec{u}-\vec{v}$ are orthogonal, then the vectors \vec{u} and \vec{v} must have the same length.

