CALCULUS 2302 FALL 2012

HOMEWORK ASSIGNMENT 2.

Due October 3.

1.1. Find the acute angle between two lines in \mathbb{R}^2 given by

$$x + 2y = 7$$
$$5x - y = 2$$

- 1.2. (i) Given the vector $\vec{u} = 3\vec{i} + 5\vec{j} 3\vec{k}$, find a scalar *c* such that the scalar projection of \vec{u} onto the vector $\vec{v} = -\vec{i} + 2\vec{j} + c\vec{k}$ has length 2.
 - (ii) Find the vector projection of the vector \vec{u} above onto each \vec{i} , \vec{j} , and \vec{k} .
- 1.3. Find a unit vector orthogonal to the plane passing through the points (-1,3,1), (0,5,2), and (4,3,-1).

1.4. Let

$$\vec{u} = \langle 3, -2, 4 \rangle$$
$$\vec{v} = \langle 1, -1, 0 \rangle$$
$$\vec{w} = \langle -2, 0, c \rangle$$

- (i) Find the constant c such that the volume of the parallelepiped determined by the vectors equals one.
- (ii) Find c such that the three vectors are coplanar.
- 1.5. Given three vectors $\vec{a} = \langle 2, -1, 0 \rangle$, $\vec{b} = \langle 3, 1, 2 \rangle$, and $\vec{c} = \langle 1, 0, -7 \rangle$, find two of them that have the cross product of largest length.
- 1.6. Let **V** be a parallelepiped in \mathbb{R}^3 with one vertex at the origin, which is spanned by vectors $a\vec{i}, b\vec{j}$, and $c\vec{k}$. Suppose that the directional angles of the biggest diagonal satisfy

$$(\cos \alpha, \cos \beta, \cos \gamma) = \left(\frac{1}{2}, \frac{1}{2}, \frac{\sqrt{2}}{2}\right).$$

If the volume of \mathbf{V} equals 5, find a, b, and c.

1.7. Prove that

$$ec{a} imes (ec{b} imes ec{c}) = (ec{a} \cdot ec{c}) \, ec{b} - (ec{a} \cdot ec{b}) \, ec{c}$$

1.8. Prove that if vectors $\vec{u} + \vec{v}$ and $\vec{u} - \vec{v}$ are orthogonal, then the vectors \vec{u} and \vec{v} must have the same length.