CALCULUS 2302 FALL 2012

HOMEWORK ASSIGNMENT 4.

Due November 5.

4.1. Find a vector function that represents the curve of intersection of the surfaces $z=4 x^{2}+y^{2}$ and $z=x y$.
4.2. Prove the Chain Rule for vector-valued functions:

$$
\frac{d}{d t}[\vec{u}(f(t))]=f^{\prime}(t) \vec{u}^{\prime}(f(t)) .
$$

4.3. Find parametric equations for the tangent line to the curve given by

$$
\begin{gathered}
x=\sqrt{t^{2}+3} \\
y=\ln \left(t^{2}+1\right) \\
z=5 t
\end{gathered}
$$

at the point $(2, \ln 2,5)$.
4.4. Use Theorem 10 of the textbook (p. 880) to show that

$$
\kappa=\frac{|\dot{x} \ddot{y}-\dot{y} \ddot{x}|}{\left|\dot{x}^{2}+\dot{y}^{2}\right|^{3 / 2}} .
$$

4.5. Consider the curve $y=x^{2}$ in the plane. What is its maximal curvature, and at which point(s) does it occur?
4.6. Find the value of constant c such that the curve $\vec{r}(t)=\left\langle t^{2}, \ln t, c t\right\rangle$ has curvature 0 at the point $t=1$.
4.7. Find the velocity acceleration and speed of a particle with the position function

$$
\vec{r}(t)=\left\langle e^{\ln \left(t^{2}+1\right)}, t^{\sin t}, \sqrt{t}\right\rangle
$$

at time $t=1$.
4.8. Evaluate the integral

$$
\int_{0}^{1}\left(\left(t e^{t}\right) \vec{i}+\frac{1}{\sqrt{1-t^{2}}} \vec{j}+\frac{1}{\cos t} \vec{k}\right) d t .
$$

4.9. Reparametrize the curve

$$
\vec{r}(t)=2 \vec{i}+e^{2 t} \cos 2 t \vec{j}+e^{2 t} \sin 2 t \vec{k}
$$

with respect to arc length measured from the point $t=0$ in the direction of increasing t.

