## CALCULUS 2302 FALL 2012

HOMEWORK ASSIGNMENT 6.

## Due December 3.

6.1. If $u=f(x, y)$, where $x=e^{s} \cos t$ and $y=e^{s} \sin t$, show that

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=e^{-2 s}\left(\frac{\partial^{2} u}{\partial s^{2}}+\frac{\partial^{2} u}{\partial t^{2}}\right)
$$

6.2. Find the directions in which the directional derivative of $f(x, y)=y e^{-x y}$ at the point $(0,2)$ has the value 1 .
6.3. Consider the function $G(x, y, z)=\sin \left(x^{2}+z\right)-\sin \left(z^{2}-y\right)$. Assume that near $x=y=z=0$ we define $g(x, y)$ implicitly by $G(x, y, g(x, y))=0$. Find $\frac{\partial g}{\partial y}(0,0)$.
6.4. Compute the tangent plane to the ellipsoid

$$
\frac{x^{2}}{3}+\frac{y^{2}}{6}+\frac{z^{2}}{9}=1
$$

at the point $P(-1, \sqrt{2}, \sqrt{3})$.
6.5. Let $f(x, y)=-x^{3}+4 x y-2 y^{2}+1$. Find all the critical points of $f$. For each critical point of $f$, determine whether it is a local maximum, a local minimum or a saddle point.
6.6. Find the absolute minimum and maximum of $f(x, y, z)=x y z$ in the region $x^{2}+y^{2}+2 z^{2} \leq 3$.
6.7. At what point on the paraboloid $y=x^{2}+z^{2}$ is the tangent plane parallel to the plane $x+2 y+3 z=1$ ?
6.8. Find three positive numbers whose sum is 12 and the sum of whose squares is as small as possible.
6.9. Find the maximum and minimum volumes of a rectangular box whose surface area is $1500 \mathrm{~cm}^{2}$ and whose total edge length is 200 cm .

