MATH 4155/9055 FALL 2013

HOMEWORK ASSIGNMENT 1. DUE SEPTEMBER 27.

1.1. Derive Minkowski’s inequality
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1.2. Prove that if a map f : R™ — R™ is differentiable at a point p, then it is continuous there.
Give example of a function that is continuous at the origin, has there partial derivatives,
but is not differentiable.

1.3. Suppose that a differentiable function f : 2 — R on a domain (2 satisfies D f(x) = 0 for all
x € Q. Prove that f is a constant function.

1.4. Consider the function
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Show that Dy f # Dy, f.

1.5. If f and g are differentiable real functions on R", prove that
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and that for f # 0,
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