MATH 4155/9063 FALL 2013

HOMEWORK ASSIGNMENT 4. DUE NOVEMBER 22.

- 4.1. Suppose that a function ϕ is real analytic on \mathbb{R}^n and is a test function. Prove that $\phi \equiv 0$.
- 4.2. Suppose that $\phi \in \mathcal{D}(\Omega)$ for a domain $\Omega \subset \mathbb{R}^n$. Assume that $\phi \ge 0$, and that $K = \text{supp } \phi$ is compact in D. Determine supp ϕ_{ϵ} , where ϕ_{ϵ} is the regularization of ϕ .
- 4.3. Suppose that f and g are test functions on \mathbb{R}^n . Prove that f * g = g * f.
- 4.4. Suppose (f_k) is a sequence of continuous functions converging to a function f in $\mathcal{C}(\mathbb{R})$. Prove that (f_k) converges to f in $\mathcal{D}'(\mathbb{R})$.
- 4.5. (Math 9063 only) Prove that

$$\lim_{n \to \infty} \sin(nx) = 0$$

in $\mathcal{D}'(\mathbb{R})$, but

$$\lim_{n \to \infty} \sin^2(nx) \neq 0.$$

Conclude that multiplication of distributions is not a continuous operation even where it is defined.