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REAL ANALYSIS LECTURE NOTES

RASUL SHAFIKOV

1. Functions of several variables: differentiation

1.1. Vector Space Rn. We view Rn as a n-dimensional vector space over the field of real numbers
with the usual addition of vectors and multiplication of scalars. The scalar or dot product of two
vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) is defined as

(1) x · y =

n∑
i=1

xiyi.

Together with this dot product Rn forms and n-dimensional Euclidean space. The norm of a vector
is then defined as

|x| =
√
x · x.

This norm satisfies the following three properties:
(i) |x| ≥ 0, |x| = 0 iff x = 0;
(ii) |cx| = |c||x|, for all x ∈ Rn and c ∈ R;
(iii) |x+ y| ≤ |x|+ |y|, for all x, y ∈ Rn.
A vector space with a norm satisfying the above three properties is called a normed space. The

normed also induces a metric on Rn given by

d(x, y) = |x− y| =

√√√√ n∑
i=1

(xi − yi)2,

which is, of course, the standard Euclidean distance in Rn. One can verify that this metric satisfies
all three required properties: (i) d(x, y) ≥ 0, d(x, y) = 0 iff x = y; (ii) d(x, y) = d(y, x); (iii)
d(x, y) ≤ d(x, z) + d(z, y) for any x, y, z ∈ Rn. To prove properties (iii) of the norm and of the
metric in Rn one can use so-called Minkowski’s inequality:(

n∑
i=1

(ai + bi)
k

)1/k

≤

(
n∑

i=1

aki

)1/k

+

(
n∑

i=1

bki

)1/k

,

where ai, bi ≥ 0, and k > 1. In fact, Minkowski’s inequality is a special case of the Hölder inequality:

n∑
i=1

aibi ≤

(∑
i=1

api

)1/p

·

(∑
i=1

bqi

)1/q

,

where ai, bi ≥ 0, p, q > 1, 1/p + 1/q = 1. Note that when p = q = 2 the Hölder inequality can be
written in the form a · b ≤ |a| · |b|.

The topology on Rn is induced by the metric: an open set contains a point x together with a
small ball

B(x, ε) = {y ∈ Rn : |x− y| < ε}, ε > 0.

This topology defines Rn as a complete metric space, i.e, every Cauchy sequence with respect to the
metric converges to an element of the space. Further, (Rn, | · |) is a Banach space, i.e., a complete
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normed space. A Banach space is called a Hilbert space if its norm comes from a scalar product.
Thus, Rn is a Hilbert space with the scalar product defined by (1).

A map A : Rn → Rm is called linear if A(ax+ by) = aA(x)+ bA(y) for all x, y ∈ Rn and a, b ∈ R.
A linear map can be identified with a n×m matrix with real coefficients. We define the norm of a
linear map as

||A|| = sup
x∈Rn,|x|≤1

|Ax|.

It follows immediately from the definition that |Ah| ≤ ||A|| · |h| for all h ∈ Rn.
A map f : Rn → Rm is called affine if f(x) = Ax + B, where A is a linear map, and B is a

constant vector.

1.2. Continuity. A domain Ω ⊂ Rn is a connected open set. Given a function f : Ω → R and
point x0 ∈ Ω, we say that f is continuous at x0 if for any ε > 0 there exists δ > 0 such that
|f(x)− f(x0)| < ε whenever |x− x0| < δ.

Theorem 1.1. A function f is continuous at x0 if and only if limj→∞ f(xj) = f(x0) for any
sequence of point (xj)→ x0.

The proof of ⇒ follows from the definition of continuity. To prove the converse formulate the
negation of continuity of a function and get a contradiction with the assumption.

Example 1.1. The function f(x, y) = xy
x2+y2

does not have a limit as x, y → 0, and thus does not

admit continuous extension to the origin. On the other hand, the function g(x, y) = x2y
x2+y2

has

limit equal to 0 as x, y → 0, which follows from the estimate∣∣∣∣ x2y

x2 + y2

∣∣∣∣ =

∣∣∣∣ xy

x2 + y2

∣∣∣∣ |x| ≤ 1

2
|x|.

Hence, g become continuous at the origin after setting g(0) = 0. �

Continuity of maps f : Rn → Rm is defined similarly.

1.3. Differtiability. Recall that for n = 1, a function f : R→ R is called differentiable at a point
x if the limit

lim
h→0

f(x+ h)− f(x)

h
exists. This implies that

f(x+ h)− f(x) = f ′(x) · h+ r(h),

where r(h) = o(h), i.e., r(h)/h→ 0 as h→ 0. The definition of differentiability in higher dimensions
is defined similarly.

Definition 1.2. Let Ω ⊂ Rn be a domain, f : Ω → Rm be a map, x ∈ Ω. If there exists a linear
map A : Rn → Rm such that

(2) lim
h→0

|f(x+ h)− f(x)−Ah|
|h|

= 0,

then we say that f is differentiable at x and we write f ′(x) = A. If f is differentiable at every point
of Ω, then we say that f is differentiable in Ω. The map A is called the differential of f at x, and
the corresponding matrix is called the Jacobian matrix of f .

Theorem 1.3. If the above definition holds for A = A1 and A = A2 then A1 = A2.
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Proof. Let B = A1 −A2. Then

|Bh| ≤ |f(x+ h)− f(x)−A1h|+ |f(x+ h)− f(x)−A2h|.

Hence, by differentiability of f , we have |Bh|
|h| → 0 as h → 0. It is a straightforward exercise to

verify that for a linear map B this implies that B ≡ 0. �

Example 1.2. The Jacobian matrix of a linear map A : Rn → Rm coincides with the matrix that
represents the map A, i.e, A′(x) = A for any x ∈ Rn. �

Theorem 1.4 (The Chain Rule). Let Ω ⊂ Rn be a domain, and f : Ω → Rm be a differentiable
map at a ∈ Ω. Suppose that g : f(Ω) → Rl be a map differentiable at f(a). Then the map
F = g ◦ f = g(f) is differentiable at a and

F ′(a) = g′(f(a)) · f ′(a).

Note that the product in the above formula is just the matrix multiplication of the Jacobian
matrices g′ and f ′.

Proof. Let b = f(a). We set A = f ′(a), B = g′(b), U(h) = f(a + h) − f(a) − Ah, and V (k) =
g(b+ k)− g(b)−Bk, where h ∈ Rn and k ∈ Rm. Then

(3) ν(h) =
|U(h)|
|h|

→ 0 as h→ 0, µ(k) =
|V (k)|
|k|

→ 0, as k → 0.

Given a vector h we set k = f(a+ h)− f(a). Then

(4) |k| = |Ah+ U(h)| ≤ (||A||+ ν(h)) |h|,

and

F (a+ h)− F (a)−BAh = g(b+ k)− g(b)−BAh = B(k −Ah) + V (k) = BU(h) + V (k).

Hence, (3) and (4) imply that for h 6= 0,

|F (a+ h)− F (a)−BAh|
|h|

≤ (||B||ν(h) + (||A||+ ν(h))µ(k).

Letting h → 0 we have ν(h) → 0, and k → 0 by (4), so µ(k) → 0. From this it follows that
F ′(a) = BA as required. �

Example 1.3. Suppose that f : Rn → Rn is a differentiable map at a ∈ Rn such that in a
neighbourhood of f(a) the map f−1 is defined and differentiable. Then the composition of f−1 ◦ f
is a differentiable map whose differential at a by the Chain Rule equals

(f−1 ◦ f)′(a) = (f−1)′(f(a)) · f ′(a).

On the other hand, the differential of the identity map is the identity, and we conclude that the
matrix corresponding to (f−1)′(f(a)) is the inverse matrix to that of f ′(a). �

Let e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), ... en = (0, . . . , 0, 1) be the standard basis in Rn, and
denote by {u1, . . . , um} a similar basis in Rm. For a domain Ω ⊂ Rn the map f : Ω → Rm can be
written in the form

(5) f(x) =

n∑
i=1

fi(x)ui = (f1(x), . . . , fm(x)),
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where each fi : Ω→ R is a function. For a function f : Ω→ R the limit

(Djf)(x) = Dxjf(x) = fxj (x) =
∂f

∂xj
= lim

t→0

f(x+ tej)− f(x)

t
,

if exists, is called a partial derivative with respect to variable xj . Unlike functions of one variable,
existence of partial derivatives does not imply in general that a function is differentiable, for example
the function f(x, y) in Example 1.1 has partial derivatives everywhere with respect to variables x
and y, but is not even continuous at the origin. Examples of continuous functions that have partial
derivatives but are not differentiable also exist.

Applying partial derivatives with respect to variable xj to components fi of a map f : Ω→ Rm

we obtain a matrix ( ∂fi
∂xj

). As it turns out, if f is differentiable at a point x ∈ Ω, then all partial

derivatives exist.

Theorem 1.5. Suppose f : Ω → Rm is differentiable at x ∈ Ω. Then (Djfi)(x) exist for all i, j
and

f ′(x)ej =

m∑
i=1

(Djfi)(x)ui =

(
∂f1
∂xj

,
∂f2
∂xj

, . . . ,
∂fm
∂xj

)
.

Proof. Fix j. Since f is differentiable at x, f(x+tej)−f(x) = f ′(x)(tej)+r(tej), where r(tej) = o(t).
Then by the linearity of f ′(x),

lim
t→0

f(x+ tej)− f(x)

t
= f ′(x)ej .

If now f is represented in terms of components as in (5), we have

lim
t→0

m∑
i=1

fi(x+ tej)− fi(x)

t
ui = f ′(x)ej .

Thus, each coefficient in front of ui has a limit, which shows existence of the partial derivatives
of f . �

It follows from the above theorem that the Jacobian matrix f ′(x) is given by

f ′(x) =

 ∂f1
∂x1

· · · ∂f1
∂xn

· · · · · ·
∂fm
∂x1

· · · ∂fm
∂xn

 .

Example 1.4. Let γ : R → Rn be a differentiable map, γ = (γ1, . . . , γn). Its image in Rn is a
called a (parametrized) smooth curve. Its differential is a column or an n× 1 matrix of the form

Dγ =

(
dγ1
dt
, . . . ,

dγn
dt

)T

.

Note that we used the usual sign of derivative because each component of γ is a function of one
variable t. (T indicates transposition of a matrix.) Let f : Rn → R be a differentiable function.
Then its differential is the 1× n matrix

Df =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
.
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The composition function g = f ◦ γ is a usual function of one variable. By the Chain Rule its
derivative can be computed as

(6)
dg

dt
(t) =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
·
(
dγ1
dt
, . . . ,

dγn
dt

)T

=

n∑
i=1

∂f

∂xi
(γ(t))

dγi
dt

(t).

�

The above example has an important generalization. For a differentiable function f , define ∇f ,
the gradient of f , to be the vector given by

∇f(x) =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
=

n∑
i=1

(Dif)(x) ei.

Then (6) can be written in the form g′(t) = ∇f(γ(t)) ·γ′(t), where the dot indicates the dot product
in Rn. Let u now be a unit vector, and let γ(t) = x + tu be the line in the direction of u. Then
γ′(t) = u for all t, and so g′(0) = (∇f(x))u. On the other hand, g(t) − g(0) = f(x + tu) − f(x),
hence,

lim
t→0

f(x+ tu)− f(x)

t
= ∇f(x) · u.

This is called the directional derivative of f at x in the direction of vector u, denoted sometimes by
Duf(x) or ∂f

∂u . For a fixed f and x it is clear that the directional derivative attains its maximum
if u is a positive multiple of ∇f . So ∇f gives the direction of the fastest growth of the function f .

Theorem 1.6. If a function f : Ω → R has continuous partial derivatives ∂f
∂xj

at a point a for

j = 1, . . . , n, then f is differentiable at a.

Proof. For simplicity of notation we assume that Ω ⊂ R2, the proof in the general case is the same.
We need to show that there exists a linear map A : R2 → R such that (2) holds. The clear choice
for A is the (D1f,D2f). Let a = (a1, a2). For a fixed h = (h1, h2) we have

∆f = f(a+ h)− f(a) = [f(a+ h)− f(a1, a2 + h2)] + [f(a1, a2 + h2)− f(a)].

We apply the Mean Value theorem to two expressions on the right to obtain

∆f = h1
∂f

∂x1
(a1 + θ1h1, a2 + h2) + h2

∂f

∂x2
(a1, a2 + θ2h2)

for some numbers θi ∈ (0, 1). Hence,

∆f = h1
∂f

∂x1
(a) + h2

∂f

∂x2
(a) + ε(h),

where

ε(h) = h1

(
∂f

∂x1
(a1 + θ1h1, a2 + h2)−

∂f

∂x1
(a)

)
+ h2

(
∂f

∂x2
(a1, a2 + θ2h2)−

∂f

∂x2
(a)

)
.

By continuity of partial derivatives we obtain

|∆f −D1f(a)h1 −D2f(a)h2|
|h|

=
|ε(h)|
|h|

→ 0, as h→ 0,

which is the required statement. �

Definition 1.7. A map f : Ω→ Rm is called continuously differentiable, or of class C1(Ω), if f ′(x)
is a continuous function on Ω, i.e., for every ε > 0 there exists δ > 0 such that ||f ′(y)− f ′(x)|| < ε
whenever |x− y| < δ.



6 RASUL SHAFIKOV

Theorem 1.8. f ∈ C1(Ω) if and only if all partial derivatives exist and continuous on Ω.

Proof. Suppose that f ∈ C1(Ω). Then

(Djfi)(x) = [f ′(x)ej ]ui =


 ∂f1

∂x1
· · · ∂f1

∂xn

· · · · · ·
∂fm
∂x1

· · · ∂fm
∂xn

 ej

 · uj ,
for all i, j and x ∈ Ω (we continue to use the notation {uj} for the standard basis in the target
domain). Then

(Djfi)(y)− (Djfi)(x) =
[
(f ′(y)− f ′(x))ej

]
ui

Since |ui| = |ej | = 1, we have

|(Djfi(y)− (Djfi)(x)| ≤ ||f ′(y)− f ′(x)||,
which shows continuity of Djfi.

For the proof of the theorem in the other direction it suffices to consider the case m = 1, i.e.,
when f is a function. But this is exactly the content of Theorem 1.6. �

Suppose that f : Ω → R with partial derivatives D1f, . . . ,Dnf . If the functions Djf are
themselves differentiable, then the second-order partial derivatives of f are defined by

Dijf = DiDjf =
∂

∂xi

(
∂f

∂xj

)
=

∂2f

∂xi∂xj
(i, j = 1, . . . , n).

If all functions Dijf are continuous on Ω, we say that f is of class C2(Ω) and write f ∈ C2(Ω). In

the same way we define derivatives of any order and functions of class Ck(Ω), k = 1, 2, . . . ,∞. A
map f ∈ Ck(Ω) if every component of f is of class Ck(Ω).

It may happen that Dijf 6= Djif at some point where both derivatives exist. But if both
derivatives are continuous, the following holds.

Theorem 1.9. Suppose f is defined in Ω ⊂ Rn, and D1f , D21f and D2f exist at every point of
Ω, and D21f,D12f are continuous at some point a ∈ E. Then

(D12f)(a) = (D21f)(a).

In particular D12f = D21f for f ∈ C2(Ω).

Proof. For simplicity assume that n = 2, as the proof for a general n is the same. Let a = (a1, a2).
Consider the expression

∆ =
f(a1 + h, a2 + k)− f(a1 + h, a2)− f(a1, a2 + k) + f(a)

hk
,

where h, k are nonzero, say positive, and sufficiently small. The auxiliary function

φ(x1) =
f(x1, a2 + k)− f(x1, a2)

k

is, by the assumptions of the theorem, differentiable on the interval [a1, a1 + h] with

φ′(x1) =
D1f(x1, a2 + k)−D1f(x1, a2)

k
,

in particular, it is continuous. Then ∆ can be written in the form

∆ =
φ(a1 + h)− φ(a1)

h
.
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By the Mean Value theorem applied to φ(x1) on [a1, a1 + h] we get for 0 < θ < 1,

∆ = φ′(a1 + θh) =
D1f(a1 + θh, a2 + k)−D1f(a1 + θh, a2)

k
.

Since D12f exists, we apply the Mean Value theorem to D1f(a1 +θh, x2) on the interval [a2, a2 +k]
to get for 0 < θ1 < 1,

(7) ∆ = D21f(a1 + θh, a2 + θ1k).

By symmetry in ∆ we can interchange the variables in the auxiliary function by considering

ψ(x2) =
f(a1 + h, x2)− f(a1, x2)

h
,

and obtain analogously that for 0 < θ2, θ3 < 1

(8) ∆ = D12f(a1 + θ2h, a2 + θ3k).

Comparing (7) and (8) we conclude that

D21f(a1 + θh, a2 + θ1k) = D12f(a1 + θ2h, a2 + θ3k).

By letting h, k → 0, and from continuity of the second order derivatives we conclude the result. �

Definition similar to (1.2) also works for general Banach spaces of arbitrary dimension. We say
that a map f : V →W between two Banach spaces is called differentiable at a point a ∈ V , if there
exists a continuous linear map (operator) A := Df(a) : V →W such that

lim
h→0

||f(a+ h)− f(a)−Ah||
||h||

= 0.

Note that the requirement is that the map A is linear and continuous which is essential for infinite
dimensional space. Sometimes Df is called the Fréchet derivative of the map f . Proofs similar to
those of this section show that Theorem 1.3 and the Chain Rule also hold in this general setting.
If the derivative of f exists at every point of V , then Df becomes the map

Df : V → B(V,W ); x→ Df(x).

Here B(V,W ) denotes the space of continuous linear operators from V to W , a Banach space itself.
The map f is called continuously differentiable if Df is continuous. Note that this is not the same
as the map Df(x) being continuous for every x, which is part of the definition of differentiability
of f . From here higher order derivatives are defined inductively.


